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Collective charge-density excitation spectra of both a spatially separated two-component quasi-one-
dimensional(1D) quantum plasma, as existing in a semiconductor double quantum-wire structure, and a 1D
homogeneous electron-hole plasma, as appropriate for a photoexcited semiconductor quantum-wire system, are
calculated within the two-component random-phase approximation. We find two phase-fluctuation collective
modes, ondoptical plasmon, OPwith energy proportional tg|In(qa)|*? is thetotal in-phase(out-of-phasg
charge-density oscillation of the system and the ofaeoustic plasmon, ARwith a linear energy dispersion
asq—0 is theneutral out-of-phas€in-phasé charge-density oscillation of the system for the situation where
the two components have the safopposit¢ charges, wherg is the 1D wave vector andis a characteristic
1D confinement size. In contrast to higher dimensional systems we find the neutral long wavelength AP mode
to be generically undamped by Landau damping effects due to the severe suppression of single-particle
excitations in 1D systems. We also investigate the effect of impurity scattering on the collective-mode disper-
sion and damping, and calculate the collective-mode spectral weight by obtaining the dynamical structure
factor. We find that both OP and AP modes are overdamped by impurity scattering below some critical wave
vector. We find that in the long wavelength limit the spectral weight is carried mostly by the OP, but the
spectral weight of the undamped AP mode at fifiiiet not too largewave vectors is comparable with that of
the OP mode, making it viable to observe the AP mode in semiconductor quantum-wire systems. The effect of
the interwire electron tunneling in a biwire system on the collective charge density excitation spectra is also
studied. We discuss the mode dispersion and damping from an effective Luttinger liquid perspective as well
and in some cases include local-field corrections in our calculati&i4.63-18209)09115-9

I. INTRODUCTION The two-component quasi-1D systems which are com-
posed of electrons and holes have been generated in a wide
Recent advances in fabrication techniques involvingvariety of semiconductor quantum wires by optical pumping.
molecular-beam epitaxy and lithography have now made iSpatially separated two-component quasi-1D systems can be
possible to make narrow GaAs-based quasi-one-dimensionptoduced by additional lateral confinement to produce a
(1D) electronic systems with lateral dimensions of the orderdouble quantum-wire structure in GaAss@& _,As double
of the Bohr radiug. In these so-called quantum-wire struc- quantum well systems. The collective modes of the two-
tures, the motion of charge carriers is confined in two transeomponent plasma also play important roles in the many-
verse directions but is essentially fréa the effective-mass body physics of carriers such as screening of the Coulomb
sensg in the longitudinal direction. Study of collective interaction potential and in Coulomb drag problem. In this
modes in reduced dimensional electron systems in semicomaper, we calculate the dispersion and the spectral weight of
ductor nanostructures is a subject of growing experimentabngitudinal collective mode&vith and without spatial sepa-
and theoretical interest. Experimentally, far-infrared opticalration) in quasi-1D two-component plasmas as in semicon-
spectroscopy® and resonant inelastic light-scattering ductor double quantum-wire structures or in photoexcited
spectroscop® have been used to study quasi-1D elementhomogeneous 1D electron-hole plasniE$iP). Our theory
tary electronic excitations. Several theoretical studies, mostlis based mostly on the two-component RR#hich should
based on the random-phase approximat®RA), have been be well-valid in 1D systems in the 1D EHP case we go
reported on the energy dispersion of elementary excitationseyond RPA to include local-field corrections to assess the
in semiconductor quantum wires. The measured 1D intrasubsalidity of 1D RPA. The collective modes of the two-
band plasmon dispersion agrees remarkably well with theomponent plasma have been widely studied in higher
RPA predictions. The quantitative agreement between RPAdimension:’~? and recently, in quasi-1D two-component
predictions and the experimental restiltsas later explained systems=
by the fact that the calculated RPA plasmon dispersion and It is well known that a two-component plasma has two
the Tomonaga-Lutinger theory for the collective charge-branches of longitudinal collective excitation spectra called
density excitations of the 1D electron system are equivalerthe optical plasmor{OP) and the acoustic plasmofiP),
at long wavelengths by virtue of the vanishing of vertexwhere the density fluctuations in each component oscillate in
corrections in the irreducible polarizability of the 1D elec- phase(OP) and out of phas€AP), respectively, relative to
tron gas. each other, assuming the two charge components to be the
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same. As expected, we find two plasma modes in the twoand 2D systemgby contrast, this is a small effect in 3D
component 1D system; the in-phase OP with a typical 1Dsince the plasmon energy is finite at zero wave veécfor
plasmon dispersion with the frequency proportional tolnclusion of impurity scattering in 1D and 2D overdamps the
g|In(ga)|¥? at long wavelengths and the out-of-phase APplasmon below a critical wave vecttt:!’ This disappear-
with its frequency linear i as g—0, whereq is the 1D  ance of the plasmon spectral weight at sngatlas important
wave vector andh is a characteristic 1D confinement size consequences for the existence and characteristics of the
(i.e., roughly the wire width Unlike 2D and 3D systems, Fermi surface in a one-dimensional electron am this
where the electron-hole pair continua have only an uppepaper we investigate the plasmon damping of the two-
boundary,qug+g%/2m, the 1D pair continuum has also a component 1D plasma in the presence of impurity scattering.
low-energy gap under the lower bounddiyw —qg2/2m|, (As noted above, any finite impurity disorder leads to Ander-
implying no low-energy single-particle excitatiofSPB are  son localization of 1D one-electron states, and therefore the
allowed in 1D. This gap, the nonexistence of low-energylD electron dynamics in the presence of impurity disorder is
SPE in 1D Fermi systems, arises from severe phase-spag¥ponentially localizedpot diffusive—this is, however, a
restrictions (Pauli exclusion principle imposed by 1D purely academic point of little relevance to high quality
energy-momentum conservation, and leads to the possibilitpaAs quantum-wire systems with low disorder, where the
of the existence of an undamped plasmon mode in multicomlocalization lengths are many microns long and are in fact
ponent 1D system¥ We find a low-energy undamped AP longer than the 1D sample lengttswe are therefore justi-
mode in the double quantum-wire system for arbitrary interfied in treating the effective electron dynamics as being dif-
wire separationgincluding the zero separation cask gen-  fusive, neglecting the Anderson localization effects in high
eral, in higher dimensions, the collective-mode spectrafuality quantum wires of relevance to plasmon experimgnts.
weight is mostly carried by the OP, which makes the experi- We also discuss the effect of interwire electron tunneling
mental observation of the AP mode in higher dimension®n the biwire collective-mode spectra. The most important
rather difficult. In contrast, we find that in quasi-1D systemsqualitative feature of the plasmon dispersion in the presence
the spectral weight of the undamped AP mode is comparablef interwire tunneling is that, even though the in-phase OP
to that of the OP mode and the spectral weight of the APModew . depends weakly on the tunneling, the out-of-phase
mode increases as the spatial separation increases, whichA® modew_, which is purely acoustic in the absence of
similar to the corresponding 2D situation. The greater relatunneling @_~q), develops a plasmon gap @0 in the
tive spectral weight of the AP mode in 1D is directly related presence of nonzero tunneling; the plasmon gap in the AP
to the nonexistence of low-energy 1D SPE. depends nontrivially on the 1D electron densitythe inter-
The plasma modes in 1D systems have vanishing frequenvire tunneling amplitudet, and the interwire distancd.
cies at long wavelengths, and in general their energiesunneling therefore effectively changes the AB_(~q)
at experimentally accessible wave vectors are smalinto an optical mode with a long wavelength gap.
(=1 meV). Their observability therefore depends rather We use the RPA for most of our calculations. As empha-
crucially on the absence of appreciable damping or broadersized, RPA is a very good approximation for the collective-
ing in the system. While the absence of long wavelengthmode dispersion in 1D quantum-wire structures by virtue of
Landau dampingto SPBE makes it feasible to discuss the the essential vanishing of all vertex corrections to the 1D
observability of the AP mode, one must also have very smalpolarizability function. We consider the zero-temperature
impurity broadening in order for the plasmon modes to becase and assume that our quasi-1D system has an infinite
observable. Impurity scattering causes the carrier motion tsgquare-well confinement with a finite widthin they direc-
be diffusive assuming the scattering to be weak. In principletion and a zero width in the direction. It is easy to include
any impurity disorder, no matter how weak, localizes alla finite width in thez direction but our results do not change
single electron 1D states; for weak disorder, however, thegualitatively. In typical quantum wires, the wire width along
localization length is larger than the system size and electrothe growth direction % direction is much smaller(by an
dynamics could be considered to be diffusive. The diffusiveorder of magnitudethan that in the lateral directiory (di-
nature of the electronic dynamics strongly affects the plasrection, justifying our 2D finite width model for the 1D
mon dispersion in the long wavelength limit because thewire. In the finite width 2D model we use a square-well
plasma frequency is vanishingly small at long confining potential with infinite barriers gt=—a/2 andy
wavelengths®~1 The 1D plasmons therefore become over-=a/2, with the electron dynamics along tkexis being free.
damped due to impurity scattering induced level broadeningonfinement of the electrons in tlyeand z directions leads
at sufficiently long wavelengths. This plasmon level broad-to the quantization of energy levels into different 1D sub-
ening may actually play a significant role in determining thebands, and we assume the 1D extreme quantum limit where
physical characteristics in quantum wires. The collisionalonly the lowest subband is occupied by carriers, and all the
damping of the plasmon modes due to impurity scatterindlD higher subbands are neglected. We study the plasmon
occurs in addition to the Landau damping which arises frommodes of the spatially separated two-component system by
the decay of the plasmon to SPE electron-hole pair excitataking two identical parallel quantum wires separated by a
tions. (As emphasized above, while Landau damping is supédistanced. We include results for the cask=0 because it
pressed in 1D, impurity broadening is always present unlesapplies directly to the photoexcited 1D EHP where electrons
the system is perfectly pude.n the single-component and holes are not spatially separated. We consider two dif-
plasma, it is known that, as the impurity scattering increasederent spatial configurations for our two-component biwire
the collisional damping becomes strong and the plasmostructure: two 1D wires with a spatial separatidrbeing
mode becomes overdamped and disappears at gnrallD  parallel to each other aligned in tlig) x-z plane(separated
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along they axis) and (2) x-y plane(separated along the 2e?
axis). Since the difference in our calculated results between V(Q)=V11(d)=Voiq) = e—f(Q), 2
these two configurations is within 1%, we only give the re- b
sults for the configurationl). 262
It is well known that 1D electron systems are fundamen- U(q)=Vi(q)=Vy(q)= ie—g(q), 3)
b

tally different from their higher dimensional counterparts be-

cause 1D interacting electrons form a Luttinger liquid, not awheree, is the background high-frequency lattice dielectric

Fermi liquid, and any electron-electron interaction, no matteonstant, the+ (—) sign in Eq.(3) refers to interaction be-

how weak, destroys the Fermi surface, i.e., the discontinuityyeen the saméopposite types of charge in the two wires,

in the momentum distribution function, in 1D. It turns out, (the two wires could in princip|e have electrons and ho|es7

however, that this distinction, while being profound at a fun-respectively, rather than being just all electrons or all holes

damental theoretical leveébecause it implies the nonexist- in poth wires, and f(q), g(q) are form factors associated

ence of quasiparticles in 1D systemis rather irrelevant to  with confinement matrix elements, which are given, for our

the Understanding of the collective-mode SpeCtra and the‘hﬂnne Square-we” confinement modeL by

experimental realization in semiconductor guantum-wire

structures. As has been emphasized elsewhere, RPA gives a 1

very good account of the collective-mode properties in 1D f(q)= fo dxKo(|gax)h(x), (4)

semiconductor quantum-wire structures, and we discuss this

issue in some detail in this paper in the context of the two- 1

component 1D plasma. g(q)=f dxKo(gv(ax)?+d?)h(x), (5)
The rest of the paper is organized as follows: In Sec. Il we 0

analytic and numerical results for plasmon dispersion, dampriere K is the zeroth-order modified Bessel function of the

ing, and spectral weight by obtaining the dynamical structurgecond kind, and the function(x) = (1—x)[ 2+ cos(27X)]

factor (which is a direct measure of the light-scattering in- +3sin(2mx)/(2). If the two wires are parallel to each other

tensity; in Sec. lll we study the effects of the interwire gjigned in thex-y plane the interwire Coulomb form factor
electron tunneling in a biwire system on the collective Chargebecomes{with f(q) remaining the sanje

density excitation spectra; in Sec. IV the plasmon dispersion

and damping in the photoexcited 1D EHP is studied in both 1

RPA and including local-field corrections; in Sec. V we Q(Q)ZJ dxKo[|a(ax+d)[Th(x). (6)
briefly discuss the acoustic plasmon mode of the two- 0

component 1D Luttinger liquid; we conclude in Sec. VI pro- As q—0, f(q),9(q)~Ky(|gal) + C, whereC is a constant

viding a brief summary of our results. (independent ofl) for f(q), but a function of the interwire
spatial separatiod for g(q). Note that ad—0 U(q) be-
Il. RPA THEORY AND RESULTS comesV(q), as it should, because the two wires are identi-

. . cal.
In general, the density-fluctuation spectra or the plasmons The irreducible 1D polarizabilitf1(q, ) in the pure 1D

or the longitudinal collective modes of a solid-state plasmasystem is given by the bare bubble diagram. The analytic
are given by the poles of the density-density correlatioryj ., of 70

function, or equivalently by the zeros of the dynamical di- 1(,) for complex frequency is given By
electric function. For a multicomponent plasma the collec- m | w?—(gq%2m - qu;)?

tive modes are given by the zeros of the generalized dielec- 12(g,0)=—1n ' allan (7)
tric tensore. In the two-component spatially separated 1D 74 | w?=(g%/2mi+qug)?

plasma the generalized dielectric tensor with wire indicgs
(=1,2 indicating the two quantum wiress given (neglect-
ing any interwire tunnelingwithin the RPA by

where the principal value of logarithiihe., — 7<<Im[In(2)]
<) should be taken for complex frequency. In evaluating
ITo(q,w) for real frequency, the usual retarded limit- w

3 — s\, - +i07" is implied. In Eq.(7) m; andv; are the effective band

i (0,0) =0 = Vi (Q)1j;(q,), @ mass and the Fermi velocity, respectively. In the long-
where g is the 1D wave vector in the direction of free  wavelength limit §—0), we can expand the irreducible 1D
motion, w is the mode frequencyfi(=1 throughout this pa- polarizability as
pen, Vij(q) the Coulomb interaction in the 1D wire repre-
sentation, andl;j(q,») the 1D noninteracting irreducible UFi q
polarizability function for thejth “component” (i.e., thejth T wl—(qug)?
wire with j=1,2 corresponding to the two wiredn an ideal Fi
1D electron system the Coulomb interactidt{q) in the  wherevg;=Kkg;/m; is the Fermi velocity with a Fermi mo-
wave-vector space is logarithmically divergent, but in ourmentumkg;= 7n;/2 for theith 1D component witm; being
realistic finite width quantum-wire model with the confine- the 1D density in théth component. Since RPA is known to
ment widtha we obtain the intrawirdinterwire] Coulomb  be valid in the long-wavelength limitg(—0), the limiting
interaction matrix elemen¥(q)[U(q)] by taking the quan- forms for the polarizability would be sufficient for our ana-
tizing confinement potential to be of infinite square-well lytic calculations since we are interested in the leading-order
typel® wave-vector dependence of the collective modes of the sys-

2

0 _ 2
Hii(q'w)N ’ (8)
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tem. [For our numerical results we use the full 1IXq, ) emphasize that such a completely general situation is not

as given in Eq(7).] Note thatll, vg, kg, etc., refer to the physically particularly applicablébecause in most existing

noninteracting or the bare 1D system, and are therefore pegquantum-wire systems either one hag=m, andd+0 or

fectly well defined. m; #m, andd=0, corresponding, respectively, to a biwire
The expression for the 1D polarizabiliffy(g,w) given  system or an EHP systgnpand in Sec. IV, we investigate, in

in Eq. (7) assumes that the system is pure and free from angletail, the modes in a photoexcited homogene6iss, d

impurity scattering. In the presence of impurity scattering=0) 1D EHP @=0, n;=n,, m;#m,) where the electrons

characterized by a level broadening or dampjnghe polar- and holes are not spatially separated, but have different ef-

izability IT., can be evaluated by means of the standard perfective masses.

turbation theory’ to include the impurity scattering induced  First, we consider the plasmons of a symmetric two-

vertex correction. The impurity scattering effects are intro-component system having equal densitigs, =n,=n),

duced diagrammatically in the RPA by including impurity masses fi;=m,=m), and a finite interwire separatio,

ladder diagrams into the electron-hole bubble consistentland neglecting impurity scattering effecty=£€0) for sim-

with self-energy corrections in the electron Green'’s functionplicity. In this casell$,=TI9, and Eq.(11) becomes

Since the exact expression fir,(q, ) within this diagram-

matic approach is complicated, we use in the numerical cal- [1—2V, (q)[13,(q,w)]1X[1—2V_(q)T1}(q,®)]=0,

culation a particle-conserving approximation for arbitrary (12

values ofq and w, given by Mermin‘® The Mermin expres- whereV. =[V(q) +U(q)]/2. By solving Eq.(12) we have

sion is, in fact, equivalent to the Qiagrammatic result a@ lor.‘gmwo branches of collective modes corresponding to the in-
wavelength as long as the density of states renormallzatlo'alhase OP mode . and the out-of-phase AP mode_ (the
. B . . . . . . . +
by impurity scgtte_rmg IS _negllglble. In th|s r_elaxatlon-tlme in-phasew, and out-of-phases_ nomenclature applies to
gpprgxmatloiﬁl /V\gth t?ﬁ |mplur!ty ts).clzl?tt'ermg mdgced 'evel the situation when both components are electrons or both are
roadeningy=1/(27), the polarizability is given by holes; otherwise, i.e., for an electron-hole system, is the

(0+ip)Ty(q,0+iy) out-of-phase mode and_ the in-phase mode

I1.(q,w)= - - . 9
H00)= gt i )Ta@0] O V2 (@) A E QP T E@P
For smallg and w, the polarizability within the Mermin for- - A.(q)—1 '
mula becomes whereE(q) =q%2m andA. (q) = exd m/(2mV.)]. The op-
ng? tical modew, (acoustic modev_) indicates the symmetric
I1,(g,0)~ . (10) in-phase(antisymmetric out-of-phagalensity oscillation of
M(w+iy) the coupled system assuming the two carriers have the same

This approximate formula gives the same long-wavelengttfharge. In the long-wavelength limit—0, Eq.(13) becomes

and low-frequency diffusive behavior as one gets from the
diagrammatic approacfi.In this paper, we take the impurity w.(q—0)=q
scattering induced broadeningas a constant phenomeno-
logical parameter, which, for example, could be taken fromyhere the asymptotic forms of the Coulomb potendal q)
the experimentally measured carrier mobility=e?7/m, asgq—0 are given by N
with y=1/(27).

The condition for the existence of a collective mode is 2¢?
given by the zeros ofe|, the determinant of the dielectric Vi(g—=0)= E—[KO(|qa|)+1.97269~ -1
tensor defined by Eql). For a two-component system with- b
out any tunneling, we have within RPA:

1-V(Q)[TT134(q,0) +T154(q, )]

+[V(q)2—U(q)4T195(q, 0) 1134, 0) =0, %
(11)

with i,j=1,2 being the two charge components in confined 19
wires 1 and 2. This equation indicates that the sign of thavhere y(x)=[x*+(d/a)?]*? [y(x)=x+d/a] for the sys-
charge components forming the plasma has no effect on tHem aligned in thes-z (x-y) plane. Asq—0, V,(q) diverge
dispersion relation of the collective modes of a two-as—In(qa), but the leading-order term M_(q) is finite and
component system. depends only on the spatial separatidn Therefore the
The analytical formulas for the long-wavelength plasmonleading-order term in the 1D OP dispersian.(q) is en-
dispersion can be obtained even in the general situatiohanced by a factor2 compared to the one-component sys-
where the two charge components have different Fermi wavtem (corresponding trivially to the change in density fram
vectors and Fermi energiésy virtue of having, for example, to 2n) and behaves ag|In(qa)|]¥? asq—0. The dispersion
different effective massem, , and densities; ;). In this  of the acoustic mode _(q) shows a purely linear behavior
section we study the collective modes in this general situaw_(q)=v_q for g—0 with the velocity v_=uvg[1
tion (i.e., d#0, n;#n,, andm;#m,) although we should +4V_(q=0)/(mvg)]*2asq—0, and lies always above the

4 1/2
v,2:+ ;UFVi(qHO)} , (14

y(X)

X

2e? 1
V_(q—0)= —f dxIn
€ Jo

(1—x)[2+cos{27-rx)]+%sin(21-rx) ,
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8 (a) ' ‘ Er eral system where the two components may have different
6l —a=-0za, " Al densities and masses. The general situation ditt0 is of
e d=20a, special experimental relevance because it describes the pho-
= toexcited 1D EHP system — we therefore defer the discus-
} & sion of thed=0 1D EHP system to Sec. IV. Since there is a
ol SPE ] low-energy gap in the 1D SPE, we look for undamped plas-
mons in two regions: the high-frequency regiap>qug,,
0”& ‘ ‘ que,) and the low-frequency regiom( ;> w>que,). (We
00 05 10 15 20 choosev;>vE, throughout this section without any loss of
q/Kg generality) In the long-wavelength limitd—0), we solve
Eq. (12) using Eq.(8) to get
4F (o)
JE — d=204a k (q)= 1+2(l—+a)v( —0) v (16)
i o i s 50 @ (Q)=quEs e, L q ,
=
} _E il 8 o 12
1 o_(q4)=quFy a+mmV(QH0)} , (17
0 . ; where a=vps/vgi=(ny/ny)(My/my)<1. In the long-
0.0 0.5 1.0 1.5 wavelength limit, these asymptotic expressions dor are
q/ kg valid in both the high-frequencya(>qug;) and the low-

frequency Qug > w>qug,) regimes. The condition for the

FIG. 1. Calculated RPA collective-mode dispersion for different€Xistence of an undamped AP mode () in the high-
spatial separations between the two identical quantum wigs; frequency regime¢>duvg,) is given byv _(a@,d)>vg,, Or
n;=n,=0.6x10f cm ! and (b) n;=n,=10° cm ®. Here the
higher(lower) frequency mode corresponds to the @#®) mode in o
each case. Shaded region indicates the single-particle excitation @ TUEL 1+aV,(q—>0)>1. (18)
(SPB continuum.

We find that the condition defined by the inequalfq.
single-particle Landau damping region because>uv. (18)] leads to the conclusion that within RPA_ can exist
The spatial separation of the two wires produces a weaks an undamped mode either for a large spatial separation
second-order correction to the OP dispersion in the two{and arbitrarya) or for almost equal Fermi velocities, i.e.,
component system. Fal=0, thew_ mode becomes degen- a~1, (and arbitraryd). As « decreases the system should
erate with the electron-hole continuuire.,v_=uv¢) in the  have a large spatial separation to have an undamped high-
long-wavelength limit, and the , mode becomes that of the energy AP mode. Foe=1 (e.g., equal mass and dengijty
corresponding one-component system with a total densitye find that the acoustic mode lies in the high-frequency
N=2n. As the spatial separation increases the opticategime and is always undamped for arbitraryThis is also
(acousti¢ plasmon mode frequency decreada@screases true in 2D bilayer systems with finite layer separations,
slowly at long wavelengths. For the system with an infinitewhere the AP mode is undamped as longaas1 andd
separation, the two modes become uncoupled, and have the0. The condition for the existence of the AP mode in the
same dispersion as the 1D plasmon in the one-componefdw-frequency regime dvg>w_>qugy) iS given byuvg,
system with a total density. <v_(a,d)<vg,. Due to the energy gap in the 1D SPE the

In Fig. 1 we show our calculated collective-modes disper-AP mode is undamped in this regime. The existence of the
sion for different spatial separations between the two identiundamped AP mode in the low-frequency regime for arbi-
cal quantum wiresja) d=0.2ag and 2.@g with n=0.6 trary « and d is a unique phenomenon in the 1D two-
x10f cm !, and (b) d=2.0ag and 4.Gz with n component system arising entirely from the nonexistence of
=10° cm !, whereag(~100 A) is the Bohr radius of the low-energy SPE in 1D. In 2D or 3D two-component system
GaAs system and we use this as our length unit throughouhe low-frequency regime is necessarily accompanied by
this paper. In Fig. 1 we use the parameters 0.067n, and Landau damping due to the presence of the low-energy SPE
the wire widtha=ag. As discussed above, we find that the continua.
plasmon dispersion strongly depends on the interwire Cou- In Fig. 2 we show our numerically calculated longitudinal
lomb correlation determined bg. In these figures we find collective modesfor differentd and «) with a fixed density
that for larger spatial separation the energy difference of n;=0.6x10° cm™?!, effective massm;=0.067m, (corre-
modes is small because @éncreases the interwire Coulomb sponding to the effective electron mass of the Gadsd a
correlation decreases. The important point to note is thawire confinementa=ag. In these figures the higher-
both thew. modes remain undamped upto very large wave(lower-) energy modevw, (w_) denotes the opticghacous-
vectors due to the suppression of 1D SPE, and thereforéic) mode. In Fig. 2a) we use these parameters: the
experimental observation ob. charge-density modes in spatial separation of the two wired=0.5a5 and «
coupled biwire systems should be relatively easy via light=(n,/n;)(m;/m,)=0.6. (Note thate determines the den-
scattering or far-infrared spectroscopy. sity of the component two for a givem; andm;, m,. For

Now we consider the collective-mode spectrum in a genexample, ifm,=m; we haven,=0.6n,.) With these param-
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FIG. 2. Calculated RPA collective mode dispersi@h for the
spatial separationi=0.5ag and a=vg,/vg1=0.6; and(b) for d
=0.2ag anda=0.2. Thew, (w_) lines denote the OPAP) mode
and SPE (SPE) denote the single-particle excitation of the com-
ponent 1(2).

eters the velocity of the acoustic mode exceeds the Fermi
velocity of the component onev(>vg,) and lies well
above the SPE’s of both componentsgh-frequency re-

gime). In Fig. 2b) we choose the parameters which limit the

v_ betweerwr; andvg,: d=0.2a5 and @=0.2. (Note that
this requirement restrictd to unrealistically small values.

Thus the undamped AP mode with these conditions lies in

the low-frequency regime v,<v_<wvgq) Which corre-
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FIG. 3. RPA plasmon dispersions of the 1D two-component
system are shown for various impurity scattering rates given in
the figure. Herew>0 gives the dispersions of the mode aad
<0 the dampings of the mode. Thi¢thin) lines correspond to the
OP (AP) mode. The overdampings of the plasmonsdetq,.. are
clearly seen. We use the parameter&=1 (n;=n,=0.6
x10f cm ! andm;=m,=0.067"n,) a=ag, andd=0.5a5.

only for wave vectorsg larger than these critical values.
(Note that the plasmon broadening.(q) is, in general, de-
termined by the imaginary part of the complex plasmon
mode, and is different from the level broadening For q
>(.~ the plasma dampings are roughly comparable to the
half of the impurity scattering, i.eq.(q)~ y/2. From Eq.
(19) we find the critical wave vector®elow which the plas-
mon is no longer a well-defined collective modes

K
ter T lin(Kai2)|

K

Qc-= )
€p
—,V-(q=0)
2e

(20

sponds to the regime between two SPE'’s. The important

point is that in both caseslarge” d anda, and “small” d

whereK = y\/me, /(8n€?). As the impurity scattering ratg

and a) the AP is undamped in 1D in contrast to higherincreases the critical wave vectogs. also increase. The

dimensional systems.

Jc. (just asw, itself) depends weakly od, butg,_ (just as

Next we investigate the plasmon modes of the two-, ) js strongly affected byl. As d—0 the intra- and inter-
calculate the plasmon dispersion of a spatially separated 14 consequentlg,_ — . Thus, for the system with a large

two-component system with equal masses and densities (

=1) in the presence of impurity scatterificharacterized by
a constant level broadening). With the approximation for
the polarizability function for smakjj and w defined by Eq.
(10) the plasmon dispersion is given by

-z
-——+
4

wherew, (w_) indicates the OFAP) mode. Note that for
vy—0, Eq. (19) recovers the result previously obtained for

2ng?

m

LY
o (q)~—iz+

2 (19

V(q),

impurity scattering and a small spatial separation we have
only the OP mode in the long-wavelength limit. In general,
we haveq._>q.; from Eqg.(20), which means that the AP
mode is easily affected by impurity scatterit@nd is there-
fore more difficult to observe experimentally.

In Fig. 3 we show the plasmon dispersion calculated nu-
merically by using the full polarizability, Eq9), in the pres-
ence of finite impurity scattering. We find zeros of the com-
plex dielectric function of the 1D two-component system in
the presence of impurity scattering, i.e(q,w)=0, to ob-
tain the plasmon dispersion curves. In Fig. 3 the curves with

the pure two-component system. Thus in the presence ab>0 give the plasma frequency or the real pamt,(q)],
impurity scattering the plasmon modes acquire a waveand those withw <0 give the plasma damping or the imagi-
vector dependent imaginary part which corresponds to aary part @) of the complex zero solutionsw(q)]. The

plasma dampingw.(q) = wp+(q) —ia-(q). The plasmon
becomes overdamped at smellas it becomes completely
imaginary for smallq, i.e., the plasmon modes are totally
overdamped below the critical wave vectars. and exist

figure shows that the plasmons are overdamped below criti-
cal wave vectorgy<q.. . The critical wave vectorsy;- ,

below which the plasmon does not exist due to impurity
scattering effects, depend on the density and the impurity
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scattering rate. We note that the overdamping of the plasmon 101 (a) ‘ 2o~

mode occurring for smaldj is a direct consequence of the sl :

diffusive nature of the electron dynamics. We emphasize that - i

this long-wavelength impurity scattering induced suppres- I’s\ 6L

sion of collective modes is more severe in 1D than in 2D or o I

3D (in 3D, because the OP is gapped, it is hardly affected by vooalo ]

impurity scattering. E Py . q=05 Ky
Finally, we study the dynamical structure facts§(g, ) 2F | oo a=08 Ky

i — q=1.0 k,

«Im[ e(q,w) '], which gives a direct measure of the oscil-
lator strength of the density fluctuation spectrum, and many
experimental probes such as inelastic electron and Raman

scattering spectroscopies are directly related to the dynami- /B
cal structure factof’ Equivalently, the dynamical structure 50 F(p) T W
factor is a measure of the spectral weight carried by the 3 oo o,
particular collective mode of the electron liquid. An un- | A0 A g
damped plasmon shows up assdunction peak inS(q,w) ‘fg\ 300 _ 2/\
indicating the existence of a simple zero &g, w). When o ¢ [ 00 05 10 15 24
both R¢e] and Injfe] become zerdi.e., e(q,w)=0] the Yoot Lo Vi
imaginary part of the inverse dielectric function E i o a=lB Ky
Im[ e(q,w) 1] is a & function with the strength 10F i e q:;-z 11: 3
— g=0 11
il 00: 1lo 15
W(q)= , 21
U FTF P [ e o/

where w.(q) are the plasmon dispersions for the system. FIG. 4. The RPA dynamical structure factor[lafg,») 1] in
The damped plasmonaf:0), however, corresponds to a 1D two-component systems as a function of frequencfor dif-
broadened peak i8(q,w)—for larger broadening, as fay ~ ferent wave vectors. We use the parameterg) n,=10° cm*,
<q. in the system with impurity scattering, the plasmon is@=2as, a=0.2, andd=0, (b) for n;=0.6x10° cm™*, a=as,
overdamped and there is no peak3fy, »). At long wave- @=0.9, andd=ag. We use the impurity scattering ratg,
lengths (|—0), the optical plasmom_, mostly exhausts the ~09-1Er1 and y,=0.1Eg, in both figures. The inset shows the
f-sum rule and carries almost all the spectral weidi¢q) welght§W(q) of the plasmon modes in the absence of the impurity
approaches zero a0 because the 1D plasma frequency SCa€ring-

vanishes. Note that the small weight of the AP mode at long
wavelengths makes it particularly susceptible to collisional

damping effects in 1D two-component system. For the sys- |n this section we analytically calculate the collective
tem with the same effective mass and a large spatial separgrode dispersions in biwire structures< 1, i.e.,n;=n, and
tion, the acoustic plasmon mode has an energy comparabj, =m,, andd+0) in the presence of significant interwire
to that of the optical plasmon mode, which gives the enquantum tunnelingall earlier work in the previous section
hanced spectral weight associated with the AP mode. having dealt with the zero tunneling limit. Since our focus is
In Fig. 4 the Infe(q,w) '] is plotted for different wave on understanding tunneling effects in this section, wedgut

vectors as a function of the frequency for two different sys-—=1 with no loss of generality. In the presence of interwire
tems. In Fig. 4a) we choose the parameters such that the Aﬂunneling, the electron energy eigenstates should be
mode lies in the low-frequency regimemn;=1.0 ysed!as the basis set rather than the wire index which is no

X10° cm !, a=2ag, a=0.2, andd=0.5ag. In Fig. 4b)  |onger a good quantum number. The energy levels

we choose the parameters such that the AP mode lies in the ¢ (k) +t, wheree (k) = k?/2m is the parabolic one-electron

high-frequency regime:n;=0.6x10° cm™*, a=ag, a 1D kinetic energy in each wire and is the tunneling

=0.9, andd=ag. The insets in Fig. 4 show the weight strength, are the usual symmetric and antisymmetric one-
W(q) of the plasmon modes. For pure system the plasmoglectron eigenstates in the presence of tunneling with the
peaks become-function peaks with weights given in the single-particle symmetric-antisymmeti8AS) gap given by
inset, but with impurity scattering ratg;=0.1E; andy,  Ag,e=E.,—E_=2t. In the SAS representation the
=0.1E¢,, we show broadened peaks giving the damped plaseollective-mode spectra become decoupled by virtue of the
mon modes. As shown in Fig. 4 the spectral weight of thesymmetric nature of our biwire systefie., both wires iden-
acoustic mode is comparable with that of the optical mode afical with equal electron densityand the collective density-
finite wave vectors, but not in the long-wavelength limit. fluctuation spectra are given by the following two equations

With the enhanced spectral weight the acoustic plasmofor the in-phase and the out-phase plasmon mades re-
mode in 1D should be more easily observable than in highegpectively: N

dimensions and may significantly affect physical properties

of the quasi-1D two-component systems. The results pre- . (g »)=1-V I o)+ _(d.0)]=0
sented in this section indicate that the AP mode should be +(a@) DT (,) (@)] (22)
observable in double wire structures under experimentally

realizable conditions. and

lll. BIWIRE WITH WEAK TUNNELING
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€ (9,0)=1=V_(q)[Il; _(q,0)+I1_,(q,w)]=0, mode into an effective optical mode by opening up a long-
(23)  wavelength plasmon gaffor t=0 the w_ mode is the AP

whereV.(q)=V(q) =U(q) with V(gq) andU(q) being, re- modg.

spectively, the intrawire and interwire Coulomb interaction

matrix elements given in Eq2) and(3). Thell ,4(q, ) in IV. PHOTOEXCITED ONE-DIMENSIONAL
Egs.(22) and(23), with («,8) =(+,—), are the noninteract- ELECTRON-HOLE PLASMA

ing SAS polarizability functions within our RPA theory: In Secs. Il and Il we discussed a double wire system

where the two one-dimensional charged components are
dk  fu(k+q)—fz(k) separated by a distande Now we consider the possibility of
I,5(q,w)=2 . (29 : . . :
B (27) WHE,(k+0)—Eg(k) acoustic plasmons in a photoexcited homogenegaass, d
=0) 1D EHP where the electrons and holes are not spatially
wheref . are Fermi occupancy factors separated. This is, in fact, the original cont&in which the
@B pancy ' AP mode was first discussed in the solid-state plasma more

Solving Egs.(22)—(24) we obtain the collective density- : . . )
fluctuation spectra of the coupled biwire system. In the ab:[han forty years ago. The photoexcited EHP in semiconduc

sence of tunnelingt=0, one hast ., —E_ - £(K), and one tors is also the system in which most of the early

then recovers in a straightforward fashion the results we havinvestigation%l of acoustic plasmons were carried out. Our
in Sec. II, i.e., the in-phase optichls., —q|In(ga)2] and eason for singling out the 1D EHP for a detailed investiga-

the out-of-phase acousties(.~q) plasmons of a biwire sys- tion in this sectiqn(in principle, it is jgst thed=0 limit of
tem without any electron tunneling. It is, in fact, straightfor- Sec. ) is the existence of 1D EHP in real sampfefsom

. . ) ' ' several groups where a search for & modes via light-
ward to obtain analyticallyfrom Egs.(22)—(24)] the Ion_g-_ scattering spectroscopy should be successful.
wavelength —0) plasma modes of the coupled biwire

. N . ) ; L It has been known for a long tinféthat a two-component
systemincluding effect_s (.)f Interwire f[unnellngWe obtain in EHP allows for the existence of two collective modes, one of
the long-wavelength limit the following results: '

which (the low-frequency oneis linear in wave vector or
acoustic at long wavelengths, and the other mghe high-
) ol a2 frequency or the optical plasmpis essentially the combined
@5 (4—0)=0% v+ — (b, +b_)veV.(a) |, (25 collective charge-density oscillation of the whole system be-
ing therefore qualitatively similar to the usual plasmon mode
in a single-component plasma. In an electron-hole two-
component plasma, as appropriate in a photoexcited semi-
conductor system, the AP corresponds to the in-phase collec-
(26) tive density-fluctuation excitation of electrons and holes, and
the OP corresponds to their out-of-phase motion with respect
where ve=kg/m is the Fermi velocity andb.=(1 to each other[If the two components are both electrons or
it/EF)l’2 for n>nC:4mASAS/772 when both symmetric both holes, for example, in a biwit@as considered in Sec. Il
and antisymmetric levels are occupiéice., the 1D Fermi of the paperor bilayer or a two-band system, then the AP
energyEr>Aga9, andb, =2b_=0 for n<n, when only  signifies the out-of-phase collective mode and the OP the
the symmetric level is occupig@de., Ep<Aga9. in-phase motion—in general, the acoustic mode is the neutral
The most important qualitative feature of the plasmon disimode at long wavelengths and the optical mode the charged
persion in the presence of interwire tunneling is that evernode] In spite of compelling theoretical argumetft&*2
though the in_phase oP mode() depends Weak|y on tun- for the existence of “quantum” AP in degenerate two-

neling, the out-of-phase mode (), which is purely acous- component homogeneous electron-hole solid-state plasmas
tic in the absence of tunnelingo( ~q if Agas=0), devel- the experimental observation of low-temperature AP in two-

ops a plasmon gap aj=0 in the presence of nonzero and three-dimensional homogeneous electron-hole semicon-
tunneling. The plasmon gap=w_(q=0) depends non- ductor plasmas has been very severely hindered by Landau
trivially on the 1D electron density, the interwire tunneling damping effects. It turns out that in two- and three-
amplitudet, and the interwire distance. It is easy to see dimensional degenerate homogeneous EHP the AP is neces-
from Eq. (26) that this plasmon gap, has the following Sarily Landau dampetby decaying into single-particle exci-
behavior: tationg and is in fact unobservable as a well-defined mode
unless the effective-mass ratio between the two species is
extremely largé®?*2?4This has prevented an unambiguous
A~Agpas OF VAgsas (27)  observatioh! of a quantum AP in degenerate solid-state EHP
although the corresponding classical AR the nondegener-
depending on whether the interwire tunneling is strong ofate high-temperature electron-ion plagnweas experimen-
weak. It should be emphasized that the strikingly nonintui-tally observeé® almost forty years ago.
tive A2 dependence of the collective-mode gam the In this section we show that the elusive quantum AP in
square root of the single-particle gaig purely a Coulomb the homogeneous.e.,d=0) EHP should be relatively easy
interaction effect, which dominates the collective excitationto observe in the degenerate 1D EKRef. 22 confined in
spectra in the weak tunneling situation. We mention the cusemiconductor quantum-wire structures due to the severe
rious phenomenon that interwire tunneling convertsd¢he  suppression of single-particle excitations in one-dimensional

5 ) AKkg
w—(qﬂo):ASAs+7(b+_b—)V—(qzo)ASAs:
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FIG. 6. The same as Fig. 5 for densitieg=n,=1.2
FIG. 5. The calculateda) plasmon dispersions ar(t) spectral  x10° cm . Note that the AP mode _ lies below the SPEdue
weights for densitiem,=n,=1.0x10° cm ! in the photoexcited to the local-field effects.
GaAs quantum-wire EHP within both RP&olid lines and HA
(dashed lines The SPE,, denote the single-particle excitation of namical dielectric function in the HA is given by
the electron and the hole, respectively. At this density the AP mode
w_ is completely suppressed by the local-field effects in the HA eH(q,w)={1—V(q)[1—Ge(q)]Hg(q,w)}

(no dashed line corresponding to the AP mode exists within. HA 0
X{1=V(a)[1-Gn(a)]ITx(q, @)}
systems. In particular, within the RPA which should be _ 2140 0
quantitatively valid in one dimension by virtue of the small- V(@) le(g, )ITx(q, ), (28
ness of vertex corrections, the AP mode in a 1D EHP inwhereG, (q) is a simple static local-field correction to the
GaAs quantum wires should Imempletelyundamped uptoa RPA and is given by, () =V(\/q?+ kzFe,h)/ZV(q)' where
rather large wave vectag=kg, in contrast to two-/three- .. are the Fermi wave vector of the electron and hole,
dimensional EHP where the AP is damped in GaAs and igespectively. The calculation in the HA is similar to that in
essentially unobservable. We believe that resonant inelastie RPA with the RPA dielectric functiofEg. (1)] being
light-scattering spectroscopy, which has already been sugeplaced by the HA dielectric functidiEq. (28)]. By putting
cessfully used in observing the 1D plasmon isingle- 4= we haveV_(q)=0, V. (q)=V(q). Thus in the long-
componen{n-doped GaAs quantum wires, is the ideal tool \yayelength limitg— 0, we have the plasmon mode disper-

component EHP in GaAs quantum wires. Theoretical results

presented in this section show that the 1D in-phase AP mode 2(1+ta) 12

should be readily experimentally observable in resonant in- w1 (Q)=quge 1+ ?V(QHO) : (29
elastic light-scattering experiments performed on photoex- €

\(,:\;creeds 1D EHP(Ref. 22 in narrow GaAs-AlGaAs quantum w—(Q):\/;que, (30)

We putd=0 in the formalism developed in Sec. Il of the where a=vg,/vg, corresponds to the mass ratm,/my
paper and allow for the possibility of different massas  sincen,=n;. As the mass ratio decreases—+0), the OP
andm;, taking equal densities,=n,=n of the electrons and mode (@,) becomes the plasmon mode of the one-
holes. Below we present and discuss our results for collectiveomponent system. Since<x<<1 we havequgy<w_(Q)
modes in 1D EHP both in the RPA and in the Hubbard<qug.. The AP mode within RPA lies always in the un-
approximation(HA) where one includes a local-field correc- damped regiorilow-frequency regimebetween two SPE’s.
tion to the RPA noninteracting polarizability. The inclusion This undamped 1D AP mode_ in the long-wavelength
of local-field corrections(HA) beyond RPA distinguishes limit is fundamentally different from the AP mode of the
this section from Sec. Il where strict RPA was used — ourhigher dimensional EHP since the presence of the low-
motivation for using HA(as well as RPAis to make our energy Landau damping region in 2D or 3D gives rise to the
results more realistic for the experimental systems whereomplete damping of AP mode, unlegss very small — in
local-field corrections may very well be important at the ex-the 1D EHP the AP mode is undamped within RPA for ar-
perimentally feasible densities and wave vectors. The dybitrary values ofae (a<<1 by choice.
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R.O[@) /N =1.2x10° ecm ! and n,=n,=1.5x1° cm™!, respec-
5t - HA ] tively. At the densityn,=n,=1.2x10° cm ! thew_ mode
o o reappears below the SR the HA. Thisw_ mode lying
5 10 / I I below SPE, is undamped due to the low-energy SPE gap in
3 1D and is a characteristic feature of 1D EHP. The spectral
05¢L/ weight of the undamped _ mode in the low-energy region
SPE, (at higher densityis comparable to that of the, mode
0.0 ‘ < i even within HA[Fig. 6(b)]. At very high density(Fig. 7)
0.0 05 1.0 15 20 ne=n,=15x10° cm ! the local-field corrections are
q/ Kpe weak, and we find that the_ mode (in the HA) lies be-
. ‘ ‘ tween SPE and SPE and is undamped in the long-
20 Hp) N wavelength limit. The calculated spectral weight in the HA is
U . / | } comparable to that in the RPA in these high-density systems.
'/3\ éu&_“_’z’;/ </k One conclusion of our HA-based calculations is that one
S 1ob Ih q=1.5x10%m™" ] should use higher EHP densities for an unambiguous obser-
R gu&#,f:ﬁ—ﬂ—f/ \\qﬂs& vation of undamped 1D AP — this is consistent with our
& 5L j\\fo ext0fem! ] RPA results also, where Landau damping is absent, because
e T in RPA higher carrier densities imply quantitatively weaker
ol A\ q=02xiofem™ effects of impurity level broadening.
0 20 40 60 80 Given the unique nature of the SPE contin@end the
» (mev) strong low-energy suppression of Landau dampimgthe

1D system, the question naturally arises about whether the

FIG. 7. The same as Fig. 5 for densitieg,=n,=1.5 collective-mode _behavior in 1D EHP is fundamentally dif-
x10° cm L. Note that the AP mode_ lies between SPEand  ferent from that in 2D and 3D systems, where the AP mode
SPE,. is usually unobservable due to its unavoidable decay via

Landau damping to the electrdhe., the lighter-mass com-

In Figs. 5-7 we show the numerically calculated plasmorponenj SPE unless is very small(i.e., the mass ratio very
modes and spectral weights for different densities in the phosmall, m,<m;) which cause the Landau damping to be
toexcited GaAs quantum-wire 1D EHP within both RPA andsmall, but still nonzero. In the 1D EHP, however, there are
HA. In Figs. 5-7 we use the parameters corresponding téhree (as opposed to only one in 2D and 3D EHRandau
GaAs: m=0.06M,, m,=0.45m,, €,=11, and the con- damping-free regimes in the-q space — these arfsee
finement width of the wirea=ag. We also use a level Figs. 5a), 6(a), or 7(a)] the high-energy—low wave-vector
broadeningy, ,=0.1Er, ;, due to the impurity scattering in regime above the lighter-mass SPE continuGmhich is
calculating the mode spectral weights. Note that in the longpresent in 2D and 3D systems alsthe low-energy regime
wavelength limit the RPA AP modes are undamgexicept, below both the SPE continua, and the intermediate energy —
of course, for impurity dampingor all densities because of low to intermediate wave-vector regime in the SPE gap be-
the absence of long-wavelength Landau damping. In generajween the SPE continua of the two componemts empha-
similar to the corresponding higher dimensional situationssize that Landau damping of collective modes is allowed in
the local-field effects in the HA reduce the plasma2D and 3D systems in the last two regimes even in the RPA
frequencie®’ compared with the RPA results, in particular, because there is no low-energy gap in the SPE continuum in
in the low-density system. Since the, mode exhausts the higher dimensions To emphasize the qualitative difference
f-sum rule in the long-wavelength limit, the local-field cor- between 1D EHP and its higher dimensional counterparts
rection has relatively little effect on the, mode. Thew_ with respect to the Landau damping characteristics of the
AP mode is, however, very strongly affected by local-field collective modes, we provide in Figs. 8 and 9 our calculated
effects. Figure 5 shows the results for the EHP density RPA results for collective-mode dispersion and damping in
=n,=10° cm™1: At this density we find the remarkable 2D and 3D EHP, respectively, choosing the same effective
result that thew AP mode is completely suppressed by mass, lattice dielectric constant, level broadening, and “ap-
local-field effects as it gets pushed into the SPE Landagroximately equivalent” carrier densities. One can see that
damping continua. Thus in Fig(® the AP mode dispersion in Figs. §a), the 2D EHP case, and#, the 3D EHP case,
within HA does not show up because lies completely in  the OP mode is above the SPE continua of both components
the Landau damping continuum. Figurébb shows that (exactly the same as in Figs. 5 —7 for the OP in 1D EBIRd
within RPA (solid lineg the  ~ mode (low-energy peaks is therefore not Landau damped whereas the AP mode in
carries an appreciable spectral weight which is comparable tboth case lies within the electrgne., the lighter-magsSPE
that carried by the OP mode, (high-energy peakshow-  continuum(but above the hole SBE&nNd is therefore Landau
ever, within HA (dashed linesthe v, mode actually carries damped by decaying into the quasiparticles of the electron
all the spectral weightwe find only the high-energy . component in the EHP. The contrast between the RPA re-
peaks in the HA with the low-energy_ peaks being com- sults for the 2D/3D AP modéFigs. 8 and and the 1D AP
pletely suppressed As density increases théeompletely mode(Figs. 57 is striking in terms of Landau damping —
suppressedw_ mode in HA reappears in the low-energy the 2D/3D AP mode is invariably Landau damped by being
regime as the AP mode comes out of the Landau continuumnside the SPE continuum of the lighter carrier component
In Figs. 6 and 7 we show the results for density=n, (i.e., the higher Fermi velocityg., in our casg where the
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GaAs 2D EHP within RPA.

1D AP mode(within RPA) is undamped by being in the
intermediate regime in betweéthe SPE “gap” regimgthe
SPE continua of the two components and is therefare

PRB 59

as is obvious from Figs. 5—7, inclusion of local-field correc-
tions within the HA may push the AP mode down into the
SPE continua of the higher mass plasma component, i.e., the
hole SPE, making the AP mode strongly Landau damped
even in the 1D EHP — our comparison between 1D and
2D/3D EHP collective modes and their qualitative difference
are based on the RPA, going beyond RPA may very well
render the 1D AP unobservably Landau damped as happens,
for example, within the HA in our calculation fan<1.2
x10° cm ! in Figs. 5 and 6.

It is very anticlimactic, however, that even within the
RPA the qualitative difference in the Landau damping be-
havior of the AP in the 1D EHP compared with its higher
dimensional counterparts is not dramatically reflected in the
mode spectral weight or the dynamical structure factor, as
can be seen by comparing the RPA spectral weights in Figs.
5(b), 6(b), and 7b) in the 1D EHP with those in the 2D/3D
EHP given in Figs. &) and 9b). (We emphasize that we use
equivalent impurity level broadening;=0.1E¢, in all our
spectral weight calculationsln general, the spectral weight
carries by the AP modéthe lower-frequency peak in the
dynamical structure factor e~ '] for eachq) is compa-
rable, albeit slightly larger, in the 1D EHP as that in the
2D/3D EHP. In particular, the AP spectral weights in the 1D
and the 2D EHP seem to be quantitatively similar whereas
the corresponding 3D AP mode carries considerably less
spectral weight(which is understandable based on the fact
that in 3D the OP has a finite gap at long-wavelengths in
contrast with the 1D/2D OP which vanishes at long wave-
lengths, and therefore in a 3D EHP the long-wavelength OP

Landau damped by either plasma component. This nonexistnode carries considerably more relative spectral weight than
ence of AP Landau damping in the SPE “gap” regime in aits lower dimensional counterpartshe fact that the 1D AP
1D EHP is a fundamental one-dimensional effect arisingcarries small spectral weight in spite of its lack of Landau
from the suppression of long-wavelength single-particle exdamping can be easily understood on the basis of-then
citations peculiar to 1D. We should mention, however, thatrule, which is essentially completely exhausted by the OP in
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cited bulk GaAs EHP within RPA.

in the photoex-

the long-wavelength limit, leaving rather little spectral
weight to be carried by the 1D AP in the long wavelength. At
large wave vectorgi.e., away from the long-wavelength
limit), on the other hand, the AP is Landau damgeetause
it enters the SPE continuand all collective modes start
carrying little spectral weights.

We therefore conclude this section on 1D EHP collective
modes with two relatively modest conclusiof¥} In spite of
the nonexistence of AP Landau damping in the 1D EHP
within RPA, the calculated AP spectral weight is hot much
larger than the corresponding 2D situatighis, however,
substantially larger than the corresponding 3D situatiand
therefore the observability of 1D EHP AP should be only
slightly more favorable than the corresponding 2D c#2g;
inclusion of local-field corrections in general severely sup-
presses the AP spectral weight in the 1D EHP, and at least
within the HA the AP becomes unobservable at lower den-
sities.

V. TWO-COMPONENT LUTTINGER LIQUID

In this section we briefly discuss, for the sake of com-
pleteness, the AP mode of the two-component Luttinger lig-
uid, which has two different Fermi velocitias-, and vgy,
corresponding to the electron and the hole, respectively. We
make the standard Luttinger model approximation of linear-
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izing the single-particle energy. This system can be debehavior which, according to the RPA.uttingen model,
scribed by the two-component Luttinger modeHamil-  should (should not manifest finite wave-vector Landau
tonian damping. This is, however, misleading because the strict
nonexistence of any damping of the collective modes at any
wave vectors is purely a result of the Luttingaodel(rather
than being a generic Luttingéiquid resuly, arising entirely
from the linearization of the single-particle enerdlge first
term in Eq.(31)] in the Hamiltonian. In the generic Luttinger
liquid behavior, where one doesot linearize the single-
N ) . particle energy, higher-order process@ehich asymptoti-
wherei,j=e,h anda;  ,(b; « ) is the destruction operator of cq|ly vanish at low energies and long wavelengipduce
the right- (left-) moving ith component with momenturk  ¢ojlective-mode damping arising from thémultiboson
and spina, V; j(q) the Coulomb interaction betweéth and  poson-boson collision processes within the bosonized theo-
jth component(here V; j=Vee=Vppn=—Vepn, and pi(d)  retical description. Such multiboson collision processes,
= pi (@) + pi p(q) the total density operator of théh com-  which are akin to phonon-phonon anharmonic scattering pro-
ponent. cesses producing phonon decay beyond the harmonic crystal
By standard bosonization methdt8°we can diagonalize  theory, areirrelevantin the renormaiization group sense at
Eg. (31 and find two eigenmodes corresponding to thejong wavelengths, but do produce damping of the collective

H= i; UFik[aiT,k,(rai,k,(J'_ biT,k,a'bi,k,u']

1
+ o0 2 Vig(@pi(@p(—a), (3Y)
11,9

charge-density excitations: modes at finite wave vectors. In this sense, therefore, no
5 2 fundamental distinction exists between the two theoretical
2( ):q UFe[1+a2+(1+a)\~/( ) approaches since both predict damping of the collective
@=(d 2 q modes at finite wave vectors, bnbt at zero wave vectors.
o One expects the AP damping in the Luttinger liquid theory to
+ 1 “Fe 2 Y 2 be a smooth function of wave vectgr vanishing only in the
-2 {[1t+a™+ (1t a)V(g)] long-wavelength limitgq—0. This seems to be drastically

- different from our RPA damping result where the AP is un-
—4ala+(1+a)V(q) ]}, (32)  damped upto a wave vectqg when it becomes damped as it
enters the SPE continuum. Going beyond RPA, however,
one finds that the AP is damped even outside the SPE Lan-
dau damping continua due to multipaii.e., multiple
electron-hole excitationsproductions, and therefore there
may not be much qualitative difference between RPA and

where a=vgp/vee and V(q)=2Ved(q)/(mvee); note that
Vee=Vph=—Vep in the 1D EHP. In the long-wavelength
limit, g—0, Eq.(32) becomes

— Y, 1/2
®+(q) =veed[1+(1+a)V(Q)]™ (33 Luttinger liquid theories even for the AP damping properties.
This issue, however, merits further investigations, and de-
w_(q)= \/qu Fe- (34 tailed theoretical calculations of the AP damping properties

These long-wavelength charge-density modes defined b the two-component Luttinger liquid may very well point
Egs. (33 and (34) are exactly the same as the long- o some significant differences with our RPA results, which

wavelength collective modes in the 1D EHP within RPA then may lead to a direct method of differentiating between
[Egs. (29 and (30)]. This can be explained by the fact that Luttinger liquid and R.PA results,_ based on the experimen-
vertex corrections to the irreducible polarizability of the 1D t@lly measured damping properties. Very recently, such a

system vanishin the Luttinger model, and therefore RPA calculatiort’ has been carried out forane-componentlean

and Luttinger model results become identical in the long-Luttinger liquid using theshort-range interaction which,

wavelength limit. Even though the charge-density mode disPOWeVer, has to be generalized to the realistic long-range

persions of the Luttinger model are identical to the RPACOUlOMD interaction in 1D quantum wires before any firm
collective-mode predictions based on the Fermi-liquigconclusion on the damping behavior contrast between RPA
theory, the damping properties of the AP mode in the and Luttinger liquid may _be reached. We emph§13|ze that the
Luttinger model is strikingly different form the RPA result. AP damping property being manifestly a nonuniversal prop-
In the previous section we found that within RPA the AP €y (determined by irrelevant operators such as the band
mode in the 1D EHP exists only at long wavelengths as th _ur\_/ature), |ts.actual quan'qtatwe calculation in the Luttinger
AP mode gets severely damped by Landau damping at finithduid theory is problematic.
wave vectors where it enters the electron single-particle con-
tinua and is Landau damped. However, since there are no
equivalent SPE Landau damping mechanisms in the Lut-
tinger model the AP mode in the Luttinger model seems not We have obtained the dispersion and spectral weight of
to be damped out even at the finite wave vectors, and seenesllective charge-density excitations in zero-temperature
to exist at arbitrary wave vectors. two-component one-dimensional quantum plasma confined
The above-discussed difference between the RR&&mi-  in semiconductor quantum-wire structures. In some sense
liguid) result and the Luttinger modéhon-Fermi-liquid re-  this paper is a two-component generalization of our earlier
sult seems to suggest a direct experimental approach to obvork!®> where we studied the zero-temperature collective
serve the predicted non-Fermi-liquid-like behavior of a one-charge-density excitations of the one-component 1D system
dimensional system by studying its plasmon dampingn some detail. In a separate earlier publicatfome consider

VI. SUMMARY
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a specific example of collective modes in a two-componenfinite interwire separation in general enhances the AP spec-
1D electron systentnamely, a two-subband 1D systein  tral weight increasing its observabilityf) finite impurity
the context of obtaining quantitative agreement with the exscattering induced level broadening gives rise to a critical
perimental results of Ref. 6. In the current paper we refrairvave vector below which the collective modes are always
from repeating any results from these earlier publicafibfs  overdamped, and thus the concept of a long-wavelength col-
of ours, and the current paper, along with Refs. 14 and 19gctive mode does not strictly apply?) finite interwire tun-
forms a reasonably complete quantitative description of posneling produces a long-wavelength plasma gap in the AP
sible low-lying collective charge-density excitations in 1D mode; (8) Luttinger liquid theory and Fermi-liquid-based
semiconductor quantum-wire structures. RPA theory produce formally identical OP and AP
Our main results in this paper are the followiri@) there  collective-mode behavior in 1D two-component systems
are two possible collective charge-density excitations in anaking it impossible to observe any characteristic 1D Lut-
two-component 1D quantum plasma associated with the relainger liquid signature in the collective charge-density exci-
tive phase fluctuations in the two charge densities — the ORation spectral in one dimensiont9) the AP mode being
mode is the in-phaséout-of-phasg mode when the two strongly(and qualitatively affected by the local-field correc-
components are the san@pposite kind (both electrons or tions(with the OP mode being relatively unaffecieth prin-
both holes versus one component electron and the other coraiple, it should be possible to investigate many-body effects
ponent holg and the AP is the out-of-phasm-phas¢ mode in 1D systems by studying the dispersion and damping of the
in the same situatioriin general, the AP is essentially a AP mode(the OP mode, on the other hand, should be rela-
neutral excitation at long wavelengths and the OP is the coltively insensitive to these many-body corrections except at
lective oscillation of the total charge dengity2) in contrast  rather large wave vectors
to higher dimensional systems where the AP mode is often In our calculations we have concentrated on two distinct
Landau damped because it lies in the SPE continuum of thiypes of experimentally realizable two-component quasi-1D
faster moving charge component, the 1D AP mode is invariquantum plasmas confined in semiconduct@GaAs
ably undamped at long wavelengtiveithin RPA) due to the  quantum-wire nanostructures: spatially separated doped
severe suppression of long-wavelength SPE continua in 10quantum double-wire structures and photoexcited homoge-
(3) this RPA result of the nonexistence of long-wavelengthneous 1D EHP in a single wire. Both systems are potentially
Landau damping in the 1D AP mode is drastically affectedinteresting from the perspective of 1D collective excitation
by local-field corrections, which at low density may over- spectra and provide somewhat complementary information.
damp the AP mode by pushing it inside the SPE continua oOur hope is that our detailed quantitativieoth numerical
both components—the OP mode, on the other hand, is reland analyticgl investigation of the collective-mode disper-
tively robust with respect to local-field corrections since itssion and spectral weight in two-component 1D system will
long-wavelength dispersion is fixed by theum rule;(4) the  motivate experimental work(involving inelastic light-
AP mode in general carries little spectral weight at long-scattering and far infrared frequency domain spectroscppies
wavelengths, and even at finite wave vectors its spectradn the subject searching for the 1D AP mode in quantum-
weight is only slightly enhanced with respect to the corre-wire structures.
sponding 2D two-component situation, leading to the some-
what disappointing and unexpected conclusion that in spite
of the complete suppression of the long-wavelength SPE
continua in 1D systems the neutral AP mode is not substan- This work was supported by U.S.-ONR and the U.S.-
tially easier to observe in 1D than in 2D/3D systens)  ARO.
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