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Collective charge-density excitations in two-component one-dimensional quantum plasmas:
Phase-fluctuation-mode dispersion and spectral weight in semiconductor

quantum-wire nanostructures

S. Das Sarma and E. H. Hwang
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 3 November 1998!

Collective charge-density excitation spectra of both a spatially separated two-component quasi-one-
dimensional~1D! quantum plasma, as existing in a semiconductor double quantum-wire structure, and a 1D
homogeneous electron-hole plasma, as appropriate for a photoexcited semiconductor quantum-wire system, are
calculated within the two-component random-phase approximation. We find two phase-fluctuation collective
modes, one~optical plasmon, OP! with energy proportional toqu ln(qa)u1/2 is the total in-phase~out-of-phase!
charge-density oscillation of the system and the other~acoustic plasmon, AP! with a linear energy dispersion
asq→0 is theneutralout-of-phase~in-phase! charge-density oscillation of the system for the situation where
the two components have the same~opposite! charges, whereq is the 1D wave vector anda is a characteristic
1D confinement size. In contrast to higher dimensional systems we find the neutral long wavelength AP mode
to be generically undamped by Landau damping effects due to the severe suppression of single-particle
excitations in 1D systems. We also investigate the effect of impurity scattering on the collective-mode disper-
sion and damping, and calculate the collective-mode spectral weight by obtaining the dynamical structure
factor. We find that both OP and AP modes are overdamped by impurity scattering below some critical wave
vector. We find that in the long wavelength limit the spectral weight is carried mostly by the OP, but the
spectral weight of the undamped AP mode at finite~but not too large! wave vectors is comparable with that of
the OP mode, making it viable to observe the AP mode in semiconductor quantum-wire systems. The effect of
the interwire electron tunneling in a biwire system on the collective charge density excitation spectra is also
studied. We discuss the mode dispersion and damping from an effective Luttinger liquid perspective as well
and in some cases include local-field corrections in our calculations.@S0163-1829~99!09115-8#
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I. INTRODUCTION

Recent advances in fabrication techniques involv
molecular-beam epitaxy and lithography have now mad
possible to make narrow GaAs-based quasi-one-dimensi
~1D! electronic systems with lateral dimensions of the or
of the Bohr radius.1 In these so-called quantum-wire stru
tures, the motion of charge carriers is confined in two tra
verse directions but is essentially free~in the effective-mass
sense! in the longitudinal direction. Study of collectiv
modes in reduced dimensional electron systems in semi
ductor nanostructures is a subject of growing experime
and theoretical interest. Experimentally, far-infrared opti
spectroscopy2,3 and resonant inelastic light-scatterin
spectroscopy4–6 have been used to study quasi-1D elem
tary electronic excitations. Several theoretical studies, mo
based on the random-phase approximation~RPA!, have been
reported on the energy dispersion of elementary excitat
in semiconductor quantum wires. The measured 1D intras
band plasmon dispersion agrees remarkably well with
RPA predictions.7 The quantitative agreement between RP
predictions and the experimental results6 was later explained
by the fact8 that the calculated RPA plasmon dispersion a
the Tomonaga-Lutinger theory for the collective charg
density excitations of the 1D electron system are equiva
at long wavelengths by virtue of the vanishing of vert
corrections9 in the irreducible polarizability of the 1D elec
tron gas.
PRB 590163-1829/99/59~16!/10730~14!/$15.00
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The two-component quasi-1D systems which are co
posed of electrons and holes have been generated in a
variety of semiconductor quantum wires by optical pumpin
Spatially separated two-component quasi-1D systems ca
produced by additional lateral confinement to produce
double quantum-wire structure in GaAs-GaxAl12xAs double
quantum well systems. The collective modes of the tw
component plasma also play important roles in the ma
body physics of carriers such as screening of the Coulo
interaction potential and in Coulomb drag problem. In th
paper, we calculate the dispersion and the spectral weigh
longitudinal collective modes~with and without spatial sepa
ration! in quasi-1D two-component plasmas as in semic
ductor double quantum-wire structures or in photoexci
homogeneous 1D electron-hole plasmas~EHP!. Our theory
is based mostly on the two-component RPA~which should
be well-valid in 1D systems!; in the 1D EHP case we go
beyond RPA to include local-field corrections to assess
validity of 1D RPA. The collective modes of the two
component plasma have been widely studied in hig
dimension,10–12 and recently, in quasi-1D two-compone
systems.13

It is well known that a two-component plasma has tw
branches of longitudinal collective excitation spectra cal
the optical plasmon~OP! and the acoustic plasmon~AP!,
where the density fluctuations in each component oscillat
phase~OP! and out of phase~AP!, respectively, relative to
each other, assuming the two charge components to be
10 730 ©1999 The American Physical Society



w
1D
to
P

e
,
p
a

g
pa

il
om
P
er

tra
er
n

m
ab
A
ich
la

ed

e
ie
a
e
e

gt
e
a
b

n
le

al
th
tro
iv
las
th
g

er
in
d

he
na
in
om
it
up
le
t
e
o

he

the

o-
ing.
er-
the

r is

ty
the
act

if-
gh
ts.
ing
ant
nce
OP
se

of

AP

a-
e-
of

1D
re

finite

e
g

ell

b-
ere
the
mon

by
y a

ns
dif-
ire

PRB 59 10 731COLLECTIVE CHARGE-DENSITY EXCITATIONS IN . . .
same. As expected, we find two plasma modes in the t
component 1D system; the in-phase OP with a typical
plasmon dispersion with the frequency proportional
qu ln(qa)u1/2 at long wavelengths and the out-of-phase A
with its frequency linear inq as q→0, whereq is the 1D
wave vector anda is a characteristic 1D confinement siz
~i.e., roughly the wire width!. Unlike 2D and 3D systems
where the electron-hole pair continua have only an up
boundary,qvF1q2/2m, the 1D pair continuum has also
low-energy gap under the lower boundaryuqvF2q2/2mu,
implying no low-energy single-particle excitations~SPE! are
allowed in 1D. This gap, the nonexistence of low-ener
SPE in 1D Fermi systems, arises from severe phase-s
restrictions ~Pauli exclusion principle! imposed by 1D
energy-momentum conservation, and leads to the possib
of the existence of an undamped plasmon mode in multic
ponent 1D systems.14 We find a low-energy undamped A
mode in the double quantum-wire system for arbitrary int
wire separations~including the zero separation case!. In gen-
eral, in higher dimensions, the collective-mode spec
weight is mostly carried by the OP, which makes the exp
mental observation of the AP mode in higher dimensio
rather difficult. In contrast, we find that in quasi-1D syste
the spectral weight of the undamped AP mode is compar
to that of the OP mode and the spectral weight of the
mode increases as the spatial separation increases, wh
similar to the corresponding 2D situation. The greater re
tive spectral weight of the AP mode in 1D is directly relat
to the nonexistence of low-energy 1D SPE.

The plasma modes in 1D systems have vanishing frequ
cies at long wavelengths, and in general their energ
at experimentally accessible wave vectors are sm
('1 meV). Their observability therefore depends rath
crucially on the absence of appreciable damping or broad
ing in the system. While the absence of long wavelen
Landau damping~to SPE! makes it feasible to discuss th
observability of the AP mode, one must also have very sm
impurity broadening in order for the plasmon modes to
observable. Impurity scattering causes the carrier motio
be diffusive assuming the scattering to be weak. In princip
any impurity disorder, no matter how weak, localizes
single electron 1D states; for weak disorder, however,
localization length is larger than the system size and elec
dynamics could be considered to be diffusive. The diffus
nature of the electronic dynamics strongly affects the p
mon dispersion in the long wavelength limit because
plasma frequency is vanishingly small at lon
wavelengths.15–17 The 1D plasmons therefore become ov
damped due to impurity scattering induced level broaden
at sufficiently long wavelengths. This plasmon level broa
ening may actually play a significant role in determining t
physical characteristics in quantum wires. The collisio
damping of the plasmon modes due to impurity scatter
occurs in addition to the Landau damping which arises fr
the decay of the plasmon to SPE electron-hole pair exc
tions. ~As emphasized above, while Landau damping is s
pressed in 1D, impurity broadening is always present un
the system is perfectly pure.! In the single-componen
plasma, it is known that, as the impurity scattering increas
the collisional damping becomes strong and the plasm
mode becomes overdamped and disappears at smallq in 1D
o-
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and 2D systems~by contrast, this is a small effect in 3D
since the plasmon energy is finite at zero wave vector!.15

Inclusion of impurity scattering in 1D and 2D overdamps t
plasmon below a critical wave vector.15–17 This disappear-
ance of the plasmon spectral weight at smallq has important
consequences for the existence and characteristics of
Fermi surface in a one-dimensional electron gas.16 In this
paper we investigate the plasmon damping of the tw
component 1D plasma in the presence of impurity scatter
~As noted above, any finite impurity disorder leads to And
son localization of 1D one-electron states, and therefore
1D electron dynamics in the presence of impurity disorde
exponentially localized,not diffusive—this is, however, a
purely academic point of little relevance to high quali
GaAs quantum-wire systems with low disorder, where
localization lengths are many microns long and are in f
longer than the 1D sample lengths;18 we are therefore justi-
fied in treating the effective electron dynamics as being d
fusive, neglecting the Anderson localization effects in hi
quality quantum wires of relevance to plasmon experimen!

We also discuss the effect of interwire electron tunnel
on the biwire collective-mode spectra. The most import
qualitative feature of the plasmon dispersion in the prese
of interwire tunneling is that, even though the in-phase
modev1 depends weakly on the tunneling, the out-of-pha
AP modev2 , which is purely acoustic in the absence
tunneling (v2;q), develops a plasmon gap atq50 in the
presence of nonzero tunneling; the plasmon gap in the
depends nontrivially on the 1D electron densityn, the inter-
wire tunneling amplitudet, and the interwire distanced.
Tunneling therefore effectively changes the AP (v2;q)
into an optical mode with a long wavelength gap.

We use the RPA for most of our calculations. As emph
sized, RPA is a very good approximation for the collectiv
mode dispersion in 1D quantum-wire structures by virtue
the essential vanishing of all vertex corrections to the
polarizability function. We consider the zero-temperatu
case and assume that our quasi-1D system has an in
square-well confinement with a finite widtha in the y direc-
tion and a zero width in thez direction. It is easy to include
a finite width in thez direction but our results do not chang
qualitatively. In typical quantum wires, the wire width alon
the growth direction (z direction! is much smaller~by an
order of magnitude! than that in the lateral direction (y di-
rection!, justifying our 2D finite width model for the 1D
wire. In the finite width 2D model we use a square-w
confining potential with infinite barriers aty52a/2 andy
5a/2, with the electron dynamics along thex axis being free.
Confinement of the electrons in they andz directions leads
to the quantization of energy levels into different 1D su
bands, and we assume the 1D extreme quantum limit wh
only the lowest subband is occupied by carriers, and all
1D higher subbands are neglected. We study the plas
modes of the spatially separated two-component system
taking two identical parallel quantum wires separated b
distanced. We include results for the cased50 because it
applies directly to the photoexcited 1D EHP where electro
and holes are not spatially separated. We consider two
ferent spatial configurations for our two-component biw
structure: two 1D wires with a spatial separationd being
parallel to each other aligned in the~1! x-z plane~separated
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10 732 PRB 59S. DAS SARMA AND E. H. HWANG
along they axis! and ~2! x-y plane ~separated along thez
axis!. Since the difference in our calculated results betwe
these two configurations is within 1%, we only give the r
sults for the configuration~1!.

It is well known that 1D electron systems are fundame
tally different from their higher dimensional counterparts b
cause 1D interacting electrons form a Luttinger liquid, no
Fermi liquid, and any electron-electron interaction, no ma
how weak, destroys the Fermi surface, i.e., the discontin
in the momentum distribution function, in 1D. It turns ou
however, that this distinction, while being profound at a fu
damental theoretical level~because it implies the nonexis
ence of quasiparticles in 1D systems!, is rather irrelevant to
the understanding of the collective-mode spectra and t
experimental realization in semiconductor quantum-w
structures. As has been emphasized elsewhere, RPA giv
very good account of the collective-mode properties in
semiconductor quantum-wire structures, and we discuss
issue in some detail in this paper in the context of the tw
component 1D plasma.

The rest of the paper is organized as follows: In Sec. II
provide the basic RPA formalism as well as the calcula
analytic and numerical results for plasmon dispersion, da
ing, and spectral weight by obtaining the dynamical struct
factor ~which is a direct measure of the light-scattering
tensity!; in Sec. III we study the effects of the interwir
electron tunneling in a biwire system on the collective cha
density excitation spectra; in Sec. IV the plasmon dispers
and damping in the photoexcited 1D EHP is studied in b
RPA and including local-field corrections; in Sec. V w
briefly discuss the acoustic plasmon mode of the tw
component 1D Luttinger liquid; we conclude in Sec. VI pr
viding a brief summary of our results.

II. RPA THEORY AND RESULTS

In general, the density-fluctuation spectra or the plasm
or the longitudinal collective modes of a solid-state plas
are given by the poles of the density-density correlat
function, or equivalently by the zeros of the dynamical
electric function. For a multicomponent plasma the colle
tive modes are given by the zeros of the generalized die
tric tensore. In the two-component spatially separated 1
plasma the generalized dielectric tensor with wire indicesi , j
(51,2 indicating the two quantum wires! is given ~neglect-
ing any interwire tunneling! within the RPA by

e i j ~q,v!5d i j 2Vi j ~q!P j j ~q,v!, ~1!

where q is the 1D wave vector in thex direction of free
motion,v is the mode frequency (\51 throughout this pa-
per!, Vi j (q) the Coulomb interaction in the 1D wire repre
sentation, andP j j (q,v) the 1D noninteracting irreducible
polarizability function for thej th ‘‘component’’ ~i.e., thej th
wire with j 51,2 corresponding to the two wires!. In an ideal
1D electron system the Coulomb interactionV(q) in the
wave-vector space is logarithmically divergent, but in o
realistic finite width quantum-wire model with the confin
ment widtha we obtain the intrawire@interwire# Coulomb
interaction matrix elementV(q)@U(q)# by taking the quan-
tizing confinement potential to be of infinite square-w
type,16
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V~q!5V11~q!5V22~q!5
2e2

eb
f ~q!, ~2!

U~q!5V12~q!5V21~q!56
2e2

eb
g~q!, ~3!

whereeb is the background high-frequency lattice dielect
constant, the1 ~2! sign in Eq.~3! refers to interaction be-
tween the same~opposite! types of charge in the two wires
~the two wires could in principle have electrons and hol
respectively, rather than being just all electrons or all ho
in both wires!, and f (q), g(q) are form factors associate
with confinement matrix elements, which are given, for o
infinite square-well confinement model, by

f ~q!5E
0

1

dxK0~ uqaxu!h~x!, ~4!

g~q!5E
0

1

dxK0~qA~ax!21d2!h~x!, ~5!

for two wires parallel to each other aligned in thex-z plane.
HereK0 is the zeroth-order modified Bessel function of t
second kind, and the functionh(x)5(12x)@21cos(2px)#
13 sin(2px)/(2p). If the two wires are parallel to each othe
aligned in thex-y plane the interwire Coulomb form facto
becomes@with f (q) remaining the same#

g~q!5E
0

1

dxK0@ uq~ax1d!u#h~x!. ~6!

As q→0, f (q),g(q);K0(uqau)1C, whereC is a constant
~independent ofd) for f (q), but a function of the interwire
spatial separationd for g(q). Note that asd→0 U(q) be-
comesV(q), as it should, because the two wires are iden
cal.

The irreducible 1D polarizabilityP0(q,v) in the pure 1D
system is given by the bare bubble diagram. The anal
form of P i i

0 (q,v) for complex frequency is given by7

P i i
0 ~q,v!5

mi

pq
lnFv22~q2/2mi2qvFi !

2

v22~q2/2mi1qvFi !
2G , ~7!

where the principal value of logarithm~i.e., 2p,Im@ ln(z)#
,p) should be taken for complex frequency. In evaluati
P0(q,v) for real frequency, the usual retarded limitv→v
1 i01 is implied. In Eq.~7! mi andvFi are the effective band
mass and the Fermi velocity, respectively. In the lon
wavelength limit (q→0), we can expand the irreducible 1
polarizability as

P i i
0 ~q,v!'

2vFi

p

q2

v22~qvFi !
2

, ~8!

wherevFi5kFi /mi is the Fermi velocity with a Fermi mo
mentumkFi5pni /2 for the i th 1D component withni being
the 1D density in thei th component. Since RPA is known t
be valid in the long-wavelength limit (q→0), the limiting
forms for the polarizability would be sufficient for our ana
lytic calculations since we are interested in the leading-or
wave-vector dependence of the collective modes of the
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tem. @For our numerical results we use the full 1DP(q,v)
as given in Eq.~7!.# Note thatP, vF , kF , etc., refer to the
noninteracting or the bare 1D system, and are therefore
fectly well defined.

The expression for the 1D polarizabilityP0(q,v) given
in Eq. ~7! assumes that the system is pure and free from
impurity scattering. In the presence of impurity scatteri
characterized by a level broadening or dampingg, the polar-
izability Pg can be evaluated by means of the standard p
turbation theory19 to include the impurity scattering induce
vertex correction. The impurity scattering effects are int
duced diagrammatically in the RPA by including impuri
ladder diagrams into the electron-hole bubble consiste
with self-energy corrections in the electron Green’s functi
Since the exact expression forPg(q,v) within this diagram-
matic approach is complicated, we use in the numerical
culation a particle-conserving approximation for arbitra
values ofq andv, given by Mermin.19 The Mermin expres-
sion is, in fact, equivalent to the diagrammatic result at lo
wavelength as long as the density of states renormaliza
by impurity scattering is negligible. In this relaxation-tim
approximation,19 with the impurity scattering induced leve
broadeningg51/(2t), the polarizability is given by

Pg~q,v!5
~v1 ig!P0~q,v1 ig!

v1 ig@P0~q,v1 ig!/P0~q,0!#
. ~9!

For smallq andv, the polarizability within the Mermin for-
mula becomes

Pg~q,v!'
nq2

mv~v1 ig!
. ~10!

This approximate formula gives the same long-wavelen
and low-frequency diffusive behavior as one gets from
diagrammatic approach.15 In this paper, we take the impurit
scattering induced broadeningg as a constant phenomen
logical parameter, which, for example, could be taken fr
the experimentally measured carrier mobilitym5e2t/m,
with g51/(2t).

The condition for the existence of a collective mode
given by the zeros ofueu, the determinant of the dielectri
tensor defined by Eq.~1!. For a two-component system with
out any tunneling, we have within RPA:

12V~q!@P11
0 ~q,v!1P22

0 ~q,v!#

1@V~q!22U~q!2#P11
0 ~q,v!P22

0 ~q,v!50,

~11!

with i , j 51,2 being the two charge components in confin
wires 1 and 2. This equation indicates that the sign of
charge components forming the plasma has no effect on
dispersion relation of the collective modes of a tw
component system.

The analytical formulas for the long-wavelength plasm
dispersion can be obtained even in the general situa
where the two charge components have different Fermi w
vectors and Fermi energies~by virtue of having, for example
different effective massesm1,2 and densitiesn1,2). In this
section we study the collective modes in this general sit
tion ~i.e., dÞ0, n1Þn2, and m1Þm2) although we should
r-
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emphasize that such a completely general situation is
physically particularly applicable~because in most existing
quantum-wire systems either one hasm15m2 and dÞ0 or
m1Þm2 and d50, corresponding, respectively, to a biwir
system or an EHP system!, and in Sec. IV, we investigate, in
detail, the modes in a photoexcited homogeneous~i.e., d
50) 1D EHP (d50, n15n2 , m1Þm2) where the electrons
and holes are not spatially separated, but have differen
fective masses.

First, we consider the plasmons of a symmetric tw
component system having equal densities (n15n25n),
masses (m15m25m), and a finite interwire separationd,
and neglecting impurity scattering effects (g50) for sim-
plicity. In this caseP11

0 5P22
0 and Eq.~11! becomes

@122V1~q!P11
0 ~q,v!#3@122V2~q!P11

0 ~q,v!#50,
~12!

whereV65@V(q)6U(q)#/2. By solving Eq.~12! we have
two branches of collective modes corresponding to the
phase OP modev1 and the out-of-phase AP modev2 ~the
in-phasev1 and out-of-phasev2 nomenclature applies to
the situation when both components are electrons or both
holes; otherwise, i.e., for an electron-hole system,v1 is the
out-of-phase mode andv2 the in-phase mode!:

v6
2 ~q!5

A6~q!@vFq1E~q!#22@vFq2E~q!#2

A6~q!21
, ~13!

whereE(q)5q2/2m andA6(q)5exp@pq/(2mV6)#. The op-
tical modev1 ~acoustic modev2) indicates the symmetric
in-phase~antisymmetric out-of-phase! density oscillation of
the coupled system assuming the two carriers have the s
charge. In the long-wavelength limitq→0, Eq.~13! becomes

v6~q→0!5qFvF
21

4

p
vFV6~q→0!G1/2

, ~14!

where the asymptotic forms of the Coulomb potentialV6(q)
asq→0 are given by

V1~q→0!5
2e2

eb
@K0~ uqau!11.97269•••#,

V2~q→0!5
2e2

eb
E

0

1

dx lnFy~x!

x G
3F ~12x!@21cos~2px!#1

3

2p
sin~2px!G ,

~15!

where y(x)5@x21(d/a)2#1/2 @y(x)5x1d/a# for the sys-
tem aligned in thex-z ~x-y! plane. Asq→0, V1(q) diverge
as2 ln(qa), but the leading-order term inV2(q) is finite and
depends only on the spatial separationd. Therefore the
leading-order term in the 1D OP dispersionv1(q) is en-
hanced by a factorA2 compared to the one-component sy
tem ~corresponding trivially to the change in density fromn
to 2n) and behaves asqu ln(qa)u]1/2 asq→0. The dispersion
of the acoustic modev2(q) shows a purely linear behavio
v2(q)5v2q for q→0 with the velocity v25vF@1
14V2(q50)/(pvF)#1/2 asq→0, and lies always above th



ea
o

-

e
si
ica

ite

ne

er
nt

o

e
o

b
th
v
fo
n
gh

en

rent

pho-
us-
a

as-

f

tion
.,
ld
igh-

cy

s,

he

e
the
bi-
-
of

m
by
PE

al

-

e

-

n
;

at

10 734 PRB 59S. DAS SARMA AND E. H. HWANG
single-particle Landau damping region becausev2.vF .
The spatial separation of the two wires produces a w
second-order correction to the OP dispersion in the tw
component system. Ford50, thev2 mode becomes degen
erate with the electron-hole continuum~i.e., v25vF) in the
long-wavelength limit, and thev1 mode becomes that of th
corresponding one-component system with a total den
N52n. As the spatial separation increases the opt
~acoustic! plasmon mode frequency decreases~increases!
slowly at long wavelengths. For the system with an infin
separation, the two modes become uncoupled, and have
same dispersion as the 1D plasmon in the one-compo
system with a total densityn.

In Fig. 1 we show our calculated collective-modes disp
sion for different spatial separations between the two ide
cal quantum wires;~a! d50.2aB and 2.0aB with n50.6
3106 cm21, and ~b! d52.0aB and 4.0aB with n
5106 cm21, whereaB('100 Å ) is the Bohr radius of the
GaAs system and we use this as our length unit through
this paper. In Fig. 1 we use the parametersm50.067m0 and
the wire widtha5aB . As discussed above, we find that th
plasmon dispersion strongly depends on the interwire C
lomb correlation determined byd. In these figures we find
that for larger spatial separation the energy difference ofv6

modes is small because asd increases the interwire Coulom
correlation decreases. The important point to note is
both thev6 modes remain undamped upto very large wa
vectors due to the suppression of 1D SPE, and there
experimental observation ofv6 charge-density modes i
coupled biwire systems should be relatively easy via li
scattering or far-infrared spectroscopy.

Now we consider the collective-mode spectrum in a g

FIG. 1. Calculated RPA collective-mode dispersion for differe
spatial separations between the two identical quantum wires~a!
n15n250.63106 cm21 and ~b! n15n25106 cm21. Here the
higher~lower! frequency mode corresponds to the OP~AP! mode in
each case. Shaded region indicates the single-particle excit
~SPE! continuum.
k
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eral system where the two components may have diffe
densities and masses. The general situation withd50 is of
special experimental relevance because it describes the
toexcited 1D EHP system — we therefore defer the disc
sion of thed50 1D EHP system to Sec. IV. Since there is
low-energy gap in the 1D SPE, we look for undamped pl
mons in two regions: the high-frequency region (v.qvF1 ,
qvF2) and the low-frequency region (qvF1.v.qvF2). ~We
choosevF1.vF2 throughout this section without any loss o
generality.! In the long-wavelength limit (q→0), we solve
Eq. ~11! using Eq.~8! to get

v1~q!5qvF1F11
2~11a!

pvF1
V1~q→0!G1/2

, ~16!

v2~q!5qvF1Fa1
8

pvF1

a

11a
V2~q→0!G1/2

, ~17!

where a5vF2 /vF15(n2 /n1)(m1 /m2)<1. In the long-
wavelength limit, these asymptotic expressions forv6 are
valid in both the high-frequency (v.qvF1) and the low-
frequency (qvFl.v.qvF2) regimes. The condition for the
existence of an undamped AP mode (v2) in the high-
frequency regime (v.qvF1) is given byv2(a,d).vF1, or

a1
8

pvF1

a

11a
V2~q→0!.1. ~18!

We find that the condition defined by the inequality@Eq.
~18!# leads to the conclusion that within RPAv2 can exist
as an undamped mode either for a large spatial separa
~and arbitrarya) or for almost equal Fermi velocities, i.e
a'1, ~and arbitraryd). As a decreases the system shou
have a large spatial separation to have an undamped h
energy AP mode. Fora51 ~e.g., equal mass and density!,
we find that the acoustic mode lies in the high-frequen
regime and is always undamped for arbitraryd. This is also
true in 2D bilayer systems with finite layer separation
where the AP mode is undamped as long asa51 and d
Þ0. The condition for the existence of the AP mode in t
low-frequency regime (qvF1.v2.qvF2) is given byvF2
,v2(a,d),vF1. Due to the energy gap in the 1D SPE th
AP mode is undamped in this regime. The existence of
undamped AP mode in the low-frequency regime for ar
trary a and d is a unique phenomenon in the 1D two
component system arising entirely from the nonexistence
low-energy SPE in 1D. In 2D or 3D two-component syste
the low-frequency regime is necessarily accompanied
Landau damping due to the presence of the low-energy S
continua.

In Fig. 2 we show our numerically calculated longitudin
collective modes~for differentd anda) with a fixed density
n150.63106 cm21, effective massm150.067me ~corre-
sponding to the effective electron mass of the GaAs!, and a
wire confinement a5aB . In these figures the higher
~lower-! energy modev1 (v2) denotes the optical~acous-
tic! mode. In Fig. 2~a! we use these parameters: th
spatial separation of the two wiresd50.5aB and a
5(n2 /n1)(m1 /m2)50.6. ~Note thata determines the den
sity of the component two for a givenn1 and m1 , m2. For
example, ifm25m1 we haven250.6n1.! With these param-
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eters the velocity of the acoustic modev2 exceeds the Ferm
velocity of the component one (v2.vF1) and lies well
above the SPE’s of both components~high-frequency re-
gime!. In Fig. 2~b! we choose the parameters which limit th
v2 betweenvF1 andvF2 : d50.2aB anda50.2. ~Note that
this requirement restrictsd to unrealistically small values.!
Thus the undamped AP mode with these conditions lies
the low-frequency regime (vF2,v2,vF1) which corre-
sponds to the regime between two SPE’s. The impor
point is that in both cases~‘‘large’’ d anda, and ‘‘small’’ d
and a) the AP is undamped in 1D in contrast to high
dimensional systems.

Next we investigate the plasmon modes of the tw
component system in the presence of impurity scattering.
calculate the plasmon dispersion of a spatially separated
two-component system with equal masses and densitiea
51) in the presence of impurity scattering~characterized by
a constant level broadeningg). With the approximation for
the polarizability function for smallq andv defined by Eq.
~10! the plasmon dispersion is given by

v6~q!;2 i
g

2
1A2

g2

4
1

2nq2

m
V6~q!, ~19!

wherev1 (v2) indicates the OP~AP! mode. Note that for
g→0, Eq. ~19! recovers the result previously obtained f
the pure two-component system. Thus in the presence
impurity scattering the plasmon modes acquire a wa
vector dependent imaginary part which corresponds t
plasma damping,v6(q)5vp6(q)2 ia6(q). The plasmon
becomes overdamped at smallq as it becomes completel
imaginary for smallq, i.e., the plasmon modes are total
overdamped below the critical wave vectorsqc6 and exist

FIG. 2. Calculated RPA collective mode dispersion~a! for the
spatial separationd50.5aB and a5vF2 /vF150.6; and~b! for d
50.2aB anda50.2. Thev1 (v2) lines denote the OP~AP! mode
and SPE1 (SPE2) denote the single-particle excitation of the com
ponent 1~2!.
in

nt

-
e
D

(

of
-
a

only for wave vectorsq larger than these critical values
~Note that the plasmon broadeninga6(q) is, in general, de-
termined by the imaginary part of the complex plasm
mode, and is different from the level broadeningg.! For q
.qc6 the plasma dampings are roughly comparable to
half of the impurity scattering, i.e.,a6(q)'g/2. From Eq.
~19! we find the critical wave vectors~below which the plas-
mon is no longer a well-defined collective mode! as

qc15
K

A2u ln~Ka/A2!u
,

qc25
K

A eb

2e2
V2~q50!

, ~20!

whereK5gAmeb /(8ne2). As the impurity scattering rateg
increases the critical wave vectorsqc6 also increase. The
qc1 ~just asv1 itself! depends weakly ond, butqc2 ~just as
v2) is strongly affected byd. As d→0 the intra- and inter-
wire Coulomb interactions become the same,V2(q)→0,
and consequentlyqc2→`. Thus, for the system with a larg
impurity scattering and a small spatial separation we h
only the OP mode in the long-wavelength limit. In gener
we haveqc2.qc1 from Eq. ~20!, which means that the AP
mode is easily affected by impurity scattering~and is there-
fore more difficult to observe experimentally.!

In Fig. 3 we show the plasmon dispersion calculated
merically by using the full polarizability, Eq.~9!, in the pres-
ence of finite impurity scattering. We find zeros of the co
plex dielectric function of the 1D two-component system
the presence of impurity scattering, i.e.,e(q,v)50, to ob-
tain the plasmon dispersion curves. In Fig. 3 the curves w
v.0 give the plasma frequency or the real part@vp(q)#,
and those withv,0 give the plasma damping or the imag
nary part (a) of the complex zero solutions@v(q)#. The
figure shows that the plasmons are overdamped below c
cal wave vectorsq,qc6 . The critical wave vectors,qc6 ,
below which the plasmon does not exist due to impur
scattering effects, depend on the density and the impu

FIG. 3. RPA plasmon dispersions of the 1D two-compon
system are shown for various impurity scattering ratesg as given in
the figure. Herev.0 gives the dispersions of the mode andv
,0 the dampings of the mode. Thick~thin! lines correspond to the
OP ~AP! mode. The overdampings of the plasmons forq,qc6 are
clearly seen. We use the parameters:a51 (n15n250.6
3106 cm21 andm15m250.067me) a5aB , andd50.5aB .
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10 736 PRB 59S. DAS SARMA AND E. H. HWANG
scattering rate. We note that the overdamping of the plasm
mode occurring for smallq is a direct consequence of th
diffusive nature of the electron dynamics. We emphasize
this long-wavelength impurity scattering induced suppr
sion of collective modes is more severe in 1D than in 2D
3D ~in 3D, because the OP is gapped, it is hardly affected
impurity scattering.!

Finally, we study the dynamical structure factor,S(q,v)
}Im@e(q,v)21#, which gives a direct measure of the osc
lator strength of the density fluctuation spectrum, and m
experimental probes such as inelastic electron and Ra
scattering spectroscopies are directly related to the dyna
cal structure factor.20 Equivalently, the dynamical structur
factor is a measure of the spectral weight carried by
particular collective mode of the electron liquid. An u
damped plasmon shows up as ad-function peak inS(q,v)
indicating the existence of a simple zero ofe(q,v). When
both Re@e# and Im@e# become zero@i.e., e(q,v)50# the
imaginary part of the inverse dielectric functio
Im@e(q,v)21# is a d function with the strength

W~q!5
p

u] Re@e~q,v!#/]vuv5v6~q!
, ~21!

where v6(q) are the plasmon dispersions for the syste
The damped plasmon (aÞ0), however, corresponds to
broadened peak inS(q,v)—for larger broadening, as forq
,qc in the system with impurity scattering, the plasmon
overdamped and there is no peak inS(q,v). At long wave-
lengths (q→0), the optical plasmonv1 mostly exhausts the
f-sum rule and carries almost all the spectral weight.W(q)
approaches zero asq→0 because the 1D plasma frequen
vanishes. Note that the small weight of the AP mode at lo
wavelengths makes it particularly susceptible to collisio
damping effects in 1D two-component system. For the s
tem with the same effective mass and a large spatial sep
tion, the acoustic plasmon mode has an energy compar
to that of the optical plasmon mode, which gives the e
hanced spectral weight associated with the AP mode.

In Fig. 4 the Im@e(q,v)21# is plotted for different wave
vectors as a function of the frequency for two different s
tems. In Fig. 4~a! we choose the parameters such that the
mode lies in the low-frequency regime:n151.0
3106 cm21, a52aB , a50.2, andd50.5aB . In Fig. 4~b!
we choose the parameters such that the AP mode lies in
high-frequency regime:n150.63106 cm21, a5aB , a
50.9, andd5aB . The insets in Fig. 4 show the weigh
W(q) of the plasmon modes. For pure system the plasm
peaks becomed-function peaks with weights given in th
inset, but with impurity scattering rateg150.1Ef 1 and g2
50.1Ef 2, we show broadened peaks giving the damped p
mon modes. As shown in Fig. 4 the spectral weight of
acoustic mode is comparable with that of the optical mod
finite wave vectors, but not in the long-wavelength lim
With the enhanced spectral weight the acoustic plasm
mode in 1D should be more easily observable than in hig
dimensions and may significantly affect physical propert
of the quasi-1D two-component systems. The results p
sented in this section indicate that the AP mode should
observable in double wire structures under experiment
realizable conditions.
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III. BIWIRE WITH WEAK TUNNELING

In this section we analytically calculate the collectiv
mode dispersions in biwire structures (a51, i.e.,n15n2 and
m15m2, anddÞ0) in the presence of significant interwir
quantum tunneling, all earlier work in the previous sectio
having dealt with the zero tunneling limit. Since our focus
on understanding tunneling effects in this section, we pua
51 with no loss of generality. In the presence of interw
tunneling, the electron energy eigenstatesE6 should be
used21 as the basis set rather than the wire index which is
longer a good quantum number. The energy levelsE6

5«(k)6t, where«(k)5k2/2m is the parabolic one-electro
1D kinetic energy in each wire andt is the tunneling
strength, are the usual symmetric and antisymmetric o
electron eigenstates in the presence of tunneling with
single-particle symmetric-antisymmetric~SAS! gap given by
DSAS5E12E252t. In the SAS representation th
collective-mode spectra become decoupled by virtue of
symmetric nature of our biwire system~i.e., both wires iden-
tical with equal electron density!, and the collective density
fluctuation spectra are given by the following two equatio
for the in-phase and the out-phase plasmon modesv6 , re-
spectively:

e1~q,v!512V1~q!@P11~q,v!1P22~q,v!#50,
~22!

and

FIG. 4. The RPA dynamical structure factor Im@e(q,v)21# in
1D two-component systems as a function of frequencyv for dif-
ferent wave vectorsq. We use the parameters:~a! n15106 cm21,
a52aB , a50.2, andd50, ~b! for n150.63106 cm21, a5aB ,
a50.9, and d5aB . We use the impurity scattering rateg1

50.1EF1 and g250.1EF2 in both figures. The inset shows th
weightsW(q) of the plasmon modes in the absence of the impu
scattering.
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e2~q,v!512V2~q!@P12~q,v!1P21~q,v!#50,
~23!

whereV6(q)5V(q)6U(q) with V(q) andU(q) being, re-
spectively, the intrawire and interwire Coulomb interacti
matrix elements given in Eqs.~2! and~3!. ThePab(q,v) in
Eqs.~22! and~23!, with (a,b)5(1,2), are the noninteract
ing SAS polarizability functions within our RPA theory:

Pab~q,v!52E dk

~2p!

f a~k1q!2 f b~k!

w1Ea~k1q!2Eb~k!
, ~24!

where f a,b are Fermi occupancy factors.
Solving Eqs.~22!–~24! we obtain the collective density

fluctuation spectra of the coupled biwire system. In the
sence of tunneling,t50, one hasE15E25«(k), and one
then recovers in a straightforward fashion the results we h
in Sec. II, i.e., the in-phase optical@v1;qu ln(qa)u1/2# and
the out-of-phase acoustic (v2;q) plasmons of a biwire sys
tem without any electron tunneling. It is, in fact, straightfo
ward to obtain analytically@from Eqs.~22!–~24!# the long-
wavelength (q→0) plasma modes of the coupled biwi
systemincluding effects of interwire tunneling. We obtain in
the long-wavelength limit the following results:

v1
2 ~q→0!5q2FvF

21
2

p
~b11b2!vFV1~q!G , ~25!

v2
2 ~q→0!5DSAS

2 1
4kF

p
~b12b2!V2~q50!DSAS,

~26!

where vF5kF /m is the Fermi velocity andb65(1
6t/EF)1/2 for n.nc54mDSAS/p2 when both symmetric
and antisymmetric levels are occupied~i.e., the 1D Fermi
energyEF.DSAS), andb152,b250 for n<nc when only
the symmetric level is occupied~i.e., EF,DSAS).

The most important qualitative feature of the plasmon d
persion in the presence of interwire tunneling is that ev
though the in-phase OP mode (v1) depends weakly on tun
neling, the out-of-phase mode (v2), which is purely acous-
tic in the absence of tunneling (v2;q if DSAS50), devel-
ops a plasmon gap atq50 in the presence of nonzer
tunneling. The plasmon gapD[v2(q50) depends non-
trivially on the 1D electron densityn, the interwire tunneling
amplitudet, and the interwire distanced. It is easy to see
from Eq. ~26! that this plasmon gapD, has the following
behavior:

D;DSAS or ADSAS, ~27!

depending on whether the interwire tunneling is strong
weak. It should be emphasized that the strikingly nonint
tive DSAS

1/2 dependence of the collective-mode gap~on the
square root of the single-particle gap! is purely a Coulomb
interaction effect, which dominates the collective excitati
spectra in the weak tunneling situation. We mention the
rious phenomenon that interwire tunneling converts thev2
-

ve

-
n

r
i-

-

mode into an effective optical mode by opening up a lon
wavelength plasmon gap~for t50 the v2 mode is the AP
mode!.

IV. PHOTOEXCITED ONE-DIMENSIONAL
ELECTRON-HOLE PLASMA

In Secs. II and III we discussed a double wire syste
where the two one-dimensional charged components
separated by a distanced. Now we consider the possibility o
acoustic plasmons in a photoexcited homogeneous~i.e., d
50) 1D EHP where the electrons and holes are not spati
separated. This is, in fact, the original context10 in which the
AP mode was first discussed in the solid-state plasma m
than forty years ago. The photoexcited EHP in semicond
tors is also the system in which most of the ea
investigations11 of acoustic plasmons were carried out. O
reason for singling out the 1D EHP for a detailed investig
tion in this section~in principle, it is just thed50 limit of
Sec. II! is the existence of 1D EHP in real samples22 from
several groups where a search for 1Dv6 modes via light-
scattering spectroscopy should be successful.

It has been known for a long time10 that a two-componen
EHP allows for the existence of two collective modes, one
which ~the low-frequency one! is linear in wave vector or
acoustic at long wavelengths, and the other mode~the high-
frequency or the optical plasmon! is essentially the combined
collective charge-density oscillation of the whole system
ing therefore qualitatively similar to the usual plasmon mo
in a single-component plasma. In an electron-hole tw
component plasma, as appropriate in a photoexcited se
conductor system, the AP corresponds to the in-phase co
tive density-fluctuation excitation of electrons and holes, a
the OP corresponds to their out-of-phase motion with resp
to each other.@If the two components are both electrons
both holes, for example, in a biwire~as considered in Sec. I
of the paper! or bilayer or a two-band system, then the A
signifies the out-of-phase collective mode and the OP
in-phase motion—in general, the acoustic mode is the neu
mode at long wavelengths and the optical mode the char
mode.# In spite of compelling theoretical arguments10,23,24

for the existence of ‘‘quantum’’ AP in degenerate tw
component homogeneous electron-hole solid-state plas
the experimental observation of low-temperature AP in tw
and three-dimensional homogeneous electron-hole semi
ductor plasmas has been very severely hindered by Lan
damping effects. It turns out that in two- and thre
dimensional degenerate homogeneous EHP the AP is ne
sarily Landau damped~by decaying into single-particle exci
tations! and is in fact unobservable as a well-defined mo
unless the effective-mass ratio between the two specie
extremely large.10,23,24 This has prevented an unambiguo
observation11 of a quantum AP in degenerate solid-state EH
although the corresponding classical AP~in the nondegener-
ate high-temperature electron-ion plasma! was experimen-
tally observed25 almost forty years ago.

In this section we show that the elusive quantum AP
the homogeneous~i.e., d50) EHP should be relatively eas
to observe in the degenerate 1D EHP~Ref. 22! confined in
semiconductor quantum-wire structures due to the sev
suppression of single-particle excitations in one-dimensio
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systems. In particular, within the RPA which should
quantitatively valid in one dimension by virtue of the sma
ness of vertex corrections, the AP mode in a 1D EHP
GaAs quantum wires should becompletelyundamped up to a
rather large wave vectorq>kF , in contrast to two-/three-
dimensional EHP where the AP is damped in GaAs and
essentially unobservable. We believe that resonant inela
light-scattering spectroscopy, which has already been
cessfully used6 in observing the 1D plasmon insingle-
component(n-doped! GaAs quantum wires, is the ideal too
in the search for the AP inphotoexcited~undoped! two-
component EHP in GaAs quantum wires. Theoretical res
presented in this section show that the 1D in-phase AP m
should be readily experimentally observable in resonant
elastic light-scattering experiments performed on photo
cited 1D EHP~Ref. 22! in narrow GaAs-AlGaAs quantum
wires.

We putd50 in the formalism developed in Sec. II of th
paper and allow for the possibility of different massesme
andmh taking equal densitiesne5nh5n of the electrons and
holes. Below we present and discuss our results for collec
modes in 1D EHP both in the RPA and in the Hubba
approximation~HA! where one includes a local-field corre
tion to the RPA noninteracting polarizability. The inclusio
of local-field corrections~HA! beyond RPA distinguishe
this section from Sec. II where strict RPA was used — o
motivation for using HA~as well as RPA! is to make our
results more realistic for the experimental systems wh
local-field corrections may very well be important at the e
perimentally feasible densities and wave vectors. The

FIG. 5. The calculated~a! plasmon dispersions and~b! spectral
weights for densitiesne5nh51.03106 cm21 in the photoexcited
GaAs quantum-wire EHP within both RPA~solid lines! and HA
~dashed lines!. The SPEe,h denote the single-particle excitation o
the electron and the hole, respectively. At this density the AP m
v2 is completely suppressed by the local-field effects in the
~no dashed line corresponding to the AP mode exists within HA!.
n
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namical dielectric function in the HA is given by

eH~q,v!5$12V~q!@12Ge~q!#Pe
0~q,v!%

3$12V~q!@12Gh~q!#Ph
0~q,v!%

2V~q!2Pe
0~q,v!Ph

0~q,v!, ~28!

whereGe,h(q) is a simple static local-field correction to th
RPA and is given byGe,h(q)5V(Aq21kFe,h

2 )/2V(q), where
kFe,h are the Fermi wave vector of the electron and ho
respectively. The calculation in the HA is similar to that
the RPA with the RPA dielectric function@Eq. ~1!# being
replaced by the HA dielectric function@Eq. ~28!#. By putting
d50 we haveV2(q)50, V1(q)5V(q). Thus in the long-
wavelength limitq→0, we have the plasmon mode dispe
sions within RPA from Eqs.~16! and ~17!:

v1~q!5qvFeF11
2~11a!

pvFe
V~q→0!G1/2

, ~29!

v2~q!5AaqvFe , ~30!

where a[vFh /vFe corresponds to the mass ratiome /mh
sincene5nh . As the mass ratio decreases (a→0), the OP
mode (v1) becomes the plasmon mode of the on
component system. Since 0,a,1 we haveqvFh,v2(q)
,qvFe . The AP mode within RPA lies always in the un
damped region~low-frequency regime! between two SPE’s.
This undamped 1D AP modev2 in the long-wavelength
limit is fundamentally different from the AP mode of th
higher dimensional EHP since the presence of the lo
energy Landau damping region in 2D or 3D gives rise to
complete damping of AP mode, unlessa is very small — in
the 1D EHP the AP mode is undamped within RPA for a
bitrary values ofa (a,1 by choice!.

e

FIG. 6. The same as Fig. 5 for densitiesne5nh51.2
3106 cm21. Note that the AP modev2 lies below the SPEh due
to the local-field effects.
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In Figs. 5–7 we show the numerically calculated plasm
modes and spectral weights for different densities in the p
toexcited GaAs quantum-wire 1D EHP within both RPA a
HA. In Figs. 5–7 we use the parameters corresponding
GaAs: me50.067m0 , mh50.45m0 , eb511, and the con-
finement width of the wirea5aB . We also use a leve
broadeningge,h50.1EFe,h due to the impurity scattering in
calculating the mode spectral weights. Note that in the lo
wavelength limit the RPA AP modes are undamped~except,
of course, for impurity damping! for all densities because o
the absence of long-wavelength Landau damping. In gen
similar to the corresponding higher dimensional situatio
the local-field effects in the HA reduce the plasm
frequencies15 compared with the RPA results, in particula
in the low-density system. Since thev1 mode exhausts the
f-sum rule in the long-wavelength limit, the local-field co
rection has relatively little effect on thev1 mode. Thev2

AP mode is, however, very strongly affected by local-fie
effects. Figure 5 shows the results for the EHP densityne
5nh5106 cm21: At this density we find the remarkabl
result that thev2 AP mode is completely suppressed
local-field effects as it gets pushed into the SPE Lan
damping continua. Thus in Fig. 5~a! the AP mode dispersion
within HA does not show up becausev2 lies completely in
the Landau damping continuum. Figure 5~b! shows that
within RPA ~solid lines! the v2 mode ~low-energy peaks!
carries an appreciable spectral weight which is comparab
that carried by the OP modev1 ~high-energy peaks!, how-
ever, within HA~dashed lines! thev1 mode actually carries
all the spectral weight~we find only the high-energyv1

peaks in the HA with the low-energyv2 peaks being com-
pletely suppressed!. As density increases the~completely
suppressed! v2 mode in HA reappears in the low-energ
regime as the AP mode comes out of the Landau continu
In Figs. 6 and 7 we show the results for densityne5nh

FIG. 7. The same as Fig. 5 for densitiesne5nh51.5
3106 cm21. Note that the AP modev2 lies between SPEe and
SPEh .
n
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51.23106 cm21 and ne5nh51.53106 cm21, respec-
tively. At the densityne5nh51.23106 cm21 thev2 mode
reappears below the SPEh in the HA. Thisv2 mode lying
below SPEh is undamped due to the low-energy SPE gap
1D and is a characteristic feature of 1D EHP. The spec
weight of the undampedv2 mode in the low-energy region
~at higher density! is comparable to that of thev1 mode
even within HA @Fig. 6~b!#. At very high density~Fig. 7!
ne5nh51.53106 cm21 the local-field corrections are
weak, and we find that thev2 mode ~in the HA! lies be-
tween SPEe and SPEh and is undamped in the long
wavelength limit. The calculated spectral weight in the HA
comparable to that in the RPA in these high-density syste
One conclusion of our HA-based calculations is that o
should use higher EHP densities for an unambiguous ob
vation of undamped 1D AP — this is consistent with o
RPA results also, where Landau damping is absent, bec
in RPA higher carrier densities imply quantitatively weak
effects of impurity level broadening.

Given the unique nature of the SPE continua~and the
strong low-energy suppression of Landau damping! in the
1D system, the question naturally arises about whether
collective-mode behavior in 1D EHP is fundamentally d
ferent from that in 2D and 3D systems, where the AP mo
is usually unobservable due to its unavoidable decay
Landau damping to the electron~i.e., the lighter-mass com
ponent! SPE unlessa is very small~i.e., the mass ratio very
small, me!mh) which cause the Landau damping to b
small, but still nonzero. In the 1D EHP, however, there a
three ~as opposed to only one in 2D and 3D EHP! Landau
damping-free regimes in thev-q space — these are@see
Figs. 5~a!, 6~a!, or 7~a!# the high-energy–low wave-vecto
regime above the lighter-mass SPE continuum~which is
present in 2D and 3D systems also!, the low-energy regime
below both the SPE continua, and the intermediate energ
low to intermediate wave-vector regime in the SPE gap
tween the SPE continua of the two components~we empha-
size that Landau damping of collective modes is allowed
2D and 3D systems in the last two regimes even in the R
because there is no low-energy gap in the SPE continuum
higher dimensions!. To emphasize the qualitative differenc
between 1D EHP and its higher dimensional counterp
with respect to the Landau damping characteristics of
collective modes, we provide in Figs. 8 and 9 our calcula
RPA results for collective-mode dispersion and damping
2D and 3D EHP, respectively, choosing the same effec
mass, lattice dielectric constant, level broadening, and ‘‘
proximately equivalent’’ carrier densities. One can see t
in Figs. 8~a!, the 2D EHP case, and 9~a!, the 3D EHP case
the OP mode is above the SPE continua of both compon
~exactly the same as in Figs. 5 –7 for the OP in 1D EHP! and
is therefore not Landau damped whereas the AP mod
both case lies within the electron~i.e., the lighter-mass! SPE
continuum~but above the hole SPE! and is therefore Landau
damped by decaying into the quasiparticles of the elect
component in the EHP. The contrast between the RPA
sults for the 2D/3D AP mode~Figs. 8 and 9! and the 1D AP
mode~Figs. 5–7! is striking in terms of Landau damping —
the 2D/3D AP mode is invariably Landau damped by be
inside the SPE continuum of the lighter carrier compon
~i.e., the higher Fermi velocityvFe , in our case! where the



e

xi
a

in
ex
a

c-
e

, the
ed
nd
ce
ell
ens,

e
e-

er
the
as

igs.

e

t
e

he
D

eas
ess
ct
in
e-
OP
han

au

in
al
At
h

t

ive

HP
ch

ly

p-
ast

en-

m-
liq-

We
ar-

10 740 PRB 59S. DAS SARMA AND E. H. HWANG
1D AP mode~within RPA! is undamped by being in th
intermediate regime in between~the SPE ‘‘gap’’ regime! the
SPE continua of the two components and is thereforenot
Landau damped by either plasma component. This none
ence of AP Landau damping in the SPE ‘‘gap’’ regime in
1D EHP is a fundamental one-dimensional effect aris
from the suppression of long-wavelength single-particle
citations peculiar to 1D. We should mention, however, th

FIG. 8. The calculated~a! plasmon dispersions and~b! spectral
weights for densitiesne5nh50.631012 cm22 in the photoexcited
GaAs 2D EHP within RPA.

FIG. 9. The calculated~a! plasmon dispersions and~b! spectral
weights for densitiesne5nh50.46531018 cm23 in the photoex-
cited bulk GaAs EHP within RPA.
st-

g
-

t,

as is obvious from Figs. 5–7, inclusion of local-field corre
tions within the HA may push the AP mode down into th
SPE continua of the higher mass plasma component, i.e.
hole SPE, making the AP mode strongly Landau damp
even in the 1D EHP — our comparison between 1D a
2D/3D EHP collective modes and their qualitative differen
are based on the RPA, going beyond RPA may very w
render the 1D AP unobservably Landau damped as happ
for example, within the HA in our calculation forn,1.2
3106 cm21 in Figs. 5 and 6.

It is very anticlimactic, however, that even within th
RPA the qualitative difference in the Landau damping b
havior of the AP in the 1D EHP compared with its high
dimensional counterparts is not dramatically reflected in
mode spectral weight or the dynamical structure factor,
can be seen by comparing the RPA spectral weights in F
5~b!, 6~b!, and 7~b! in the 1D EHP with those in the 2D/3D
EHP given in Figs. 8~b! and 9~b!. ~We emphasize that we us
equivalent impurity level broadening,g50.1EF , in all our
spectral weight calculations.! In general, the spectral weigh
carries by the AP mode~the lower-frequency peak in th
dynamical structure factor Im@e21# for eachq) is compa-
rable, albeit slightly larger, in the 1D EHP as that in t
2D/3D EHP. In particular, the AP spectral weights in the 1
and the 2D EHP seem to be quantitatively similar wher
the corresponding 3D AP mode carries considerably l
spectral weight~which is understandable based on the fa
that in 3D the OP has a finite gap at long-wavelengths
contrast with the 1D/2D OP which vanishes at long wav
lengths, and therefore in a 3D EHP the long-wavelength
mode carries considerably more relative spectral weight t
its lower dimensional counterparts!. The fact that the 1D AP
carries small spectral weight in spite of its lack of Land
damping can be easily understood on the basis of thef-sum
rule, which is essentially completely exhausted by the OP
the long-wavelength limit, leaving rather little spectr
weight to be carried by the 1D AP in the long wavelength.
large wave vectors~i.e., away from the long-wavelengt
limit !, on the other hand, the AP is Landau damped~because
it enters the SPE continua! and all collective modes star
carrying little spectral weights.

We therefore conclude this section on 1D EHP collect
modes with two relatively modest conclusions:~1! In spite of
the nonexistence of AP Landau damping in the 1D E
within RPA, the calculated AP spectral weight is not mu
larger than the corresponding 2D situation~it is, however,
substantially larger than the corresponding 3D situation!, and
therefore the observability of 1D EHP AP should be on
slightly more favorable than the corresponding 2D case;~2!
inclusion of local-field corrections in general severely su
presses the AP spectral weight in the 1D EHP, and at le
within the HA the AP becomes unobservable at lower d
sities.

V. TWO-COMPONENT LUTTINGER LIQUID

In this section we briefly discuss, for the sake of co
pleteness, the AP mode of the two-component Luttinger
uid, which has two different Fermi velocitiesvFe and vFh
corresponding to the electron and the hole, respectively.
make the standard Luttinger model approximation of line
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izing the single-particle energy. This system can be
scribed by the two-component Luttinger model26 Hamil-
tonian

H5 (
i ,k,s

vFik@ai ,k,s
† ai ,k,s2bi ,k,s

† bi ,k,s#

1
1

2L (
i , j ,q

Vi , j~q!r i~q!r j~2q!, ~31!

wherei,j5e,h, andai ,k,s(bi ,k,s) is the destruction operator o
the right- ~left-! moving i th component with momentumk
and spins, Vi , j (q) the Coulomb interaction betweeni th and
j th component~here Vi , j5Vee5Vhh52Veh , and r i(q)
5r i ,a(q)1r i ,b(q) the total density operator of thei th com-
ponent.

By standard bosonization methods20,26we can diagonalize
Eq. ~31! and find two eigenmodes corresponding to t
charge-density excitations:

v6
2 ~q!5

q2vFe
2

2
@11a21~11a!Ṽ~q!#

6
q2vFe

2

2
$@11a21~11a!Ṽ~q!#2

24a@a1~11a!Ṽ~q!#%1/2, ~32!

where a5vFh /vFe and Ṽ(q)52Vee(q)/(pvFe); note that
Vee5Vhh52Veh in the 1D EHP. In the long-wavelengt
limit, q→0, Eq. ~32! becomes

v1~q!5vFeq@11~11a!Ṽ~q!#1/2, ~33!

v2~q!5AaqvFe . ~34!

These long-wavelength charge-density modes defined
Eqs. ~33! and ~34! are exactly the same as the lon
wavelength collective modes in the 1D EHP within RP
@Eqs. ~29! and ~30!#. This can be explained by the fact th
vertex corrections to the irreducible polarizability of the 1
system vanish9 in the Luttinger model, and therefore RP
and Luttinger model results become identical in the lon
wavelength limit. Even though the charge-density mode d
persions of the Luttinger model are identical to the RP
collective-mode predictions based on the Fermi-liqu
theory, the damping properties of thev2 AP mode in the
Luttinger model is strikingly different form the RPA resul
In the previous section we found that within RPA the A
mode in the 1D EHP exists only at long wavelengths as
AP mode gets severely damped by Landau damping at fi
wave vectors where it enters the electron single-particle c
tinua and is Landau damped. However, since there are
equivalent SPE Landau damping mechanisms in the L
tinger model the AP mode in the Luttinger model seems
to be damped out even at the finite wave vectors, and se
to exist at arbitrary wave vectors.

The above-discussed difference between the RPA~Fermi-
liquid! result and the Luttinger model~non-Fermi-liquid! re-
sult seems to suggest a direct experimental approach to
serve the predicted non-Fermi-liquid-like behavior of a on
dimensional system by studying its plasmon damp
-

by
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behavior which, according to the RPA~Luttinger! model,
should ~should not! manifest finite wave-vector Landa
damping. This is, however, misleading because the s
nonexistence of any damping of the collective modes at
wave vectors is purely a result of the Luttingermodel~rather
than being a generic Luttingerliquid result!, arising entirely
from the linearization of the single-particle energy@the first
term in Eq.~31!# in the Hamiltonian. In the generic Luttinge
liquid behavior, where one doesnot linearize the single-
particle energy, higher-order processes~which asymptoti-
cally vanish at low energies and long wavelengths! produce
collective-mode damping arising from the~multiboson!
boson-boson collision processes within the bosonized th
retical description. Such multiboson collision process
which are akin to phonon-phonon anharmonic scattering p
cesses producing phonon decay beyond the harmonic cr
theory, areirrelevant in the renormalization group sense
long wavelengths, but do produce damping of the collect
modes at finite wave vectors. In this sense, therefore,
fundamental distinction exists between the two theoret
approaches since both predict damping of the collec
modes at finite wave vectors, butnot at zero wave vectors
One expects the AP damping in the Luttinger liquid theory
be a smooth function of wave vectorq, vanishing only in the
long-wavelength limitq→0. This seems to be drasticall
different from our RPA damping result where the AP is u
damped upto a wave vectorqc when it becomes damped as
enters the SPE continuum. Going beyond RPA, howev
one finds that the AP is damped even outside the SPE L
dau damping continua due to multipair~i.e., multiple
electron-hole excitations! productions, and therefore ther
may not be much qualitative difference between RPA a
Luttinger liquid theories even for the AP damping propertie
This issue, however, merits further investigations, and
tailed theoretical calculations of the AP damping propert
in the two-component Luttinger liquid may very well poin
to some significant differences with our RPA results, whi
then may lead to a direct method of differentiating betwe
Luttinger liquid and RPA results, based on the experim
tally measured damping properties. Very recently, suc
calculation27 has been carried out for aone-componentclean
Luttinger liquid using theshort-range interaction which,
however, has to be generalized to the realistic long-ra
Coulomb interaction in 1D quantum wires before any fir
conclusion on the damping behavior contrast between R
and Luttinger liquid may be reached. We emphasize that
AP damping property being manifestly a nonuniversal pro
erty ~determined by irrelevant operators such as the b
curvature!, its actual quantitative calculation in the Luttinge
liquid theory is problematic.

VI. SUMMARY

We have obtained the dispersion and spectral weigh
collective charge-density excitations in zero-temperat
two-component one-dimensional quantum plasma confi
in semiconductor quantum-wire structures. In some se
this paper is a two-component generalization of our ear
work15 where we studied the zero-temperature collect
charge-density excitations of the one-component 1D sys
in some detail. In a separate earlier publication14 we consider
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a specific example of collective modes in a two-compon
1D electron system~namely, a two-subband 1D system! in
the context of obtaining quantitative agreement with the
perimental results of Ref. 6. In the current paper we refr
from repeating any results from these earlier publications14,15

of ours, and the current paper, along with Refs. 14 and
forms a reasonably complete quantitative description of p
sible low-lying collective charge-density excitations in 1
semiconductor quantum-wire structures.

Our main results in this paper are the following:~1! there
are two possible collective charge-density excitations in
two-component 1D quantum plasma associated with the r
tive phase fluctuations in the two charge densities — the
mode is the in-phase~out-of-phase! mode when the two
components are the same~opposite! kind ~both electrons or
both holes versus one component electron and the other c
ponent hole! and the AP is the out-of-phase~in-phase! mode
in the same situation~in general, the AP is essentially
neutral excitation at long wavelengths and the OP is the
lective oscillation of the total charge density!; ~2! in contrast
to higher dimensional systems where the AP mode is o
Landau damped because it lies in the SPE continuum of
faster moving charge component, the 1D AP mode is inv
ably undamped at long wavelengths~within RPA! due to the
severe suppression of long-wavelength SPE continua in
~3! this RPA result of the nonexistence of long-waveleng
Landau damping in the 1D AP mode is drastically affec
by local-field corrections, which at low density may ove
damp the AP mode by pushing it inside the SPE continua
both components—the OP mode, on the other hand, is r
tively robust with respect to local-field corrections since
long-wavelength dispersion is fixed by thef-sum rule;~4! the
AP mode in general carries little spectral weight at lon
wavelengths, and even at finite wave vectors its spec
weight is only slightly enhanced with respect to the cor
sponding 2D two-component situation, leading to the som
what disappointing and unexpected conclusion that in s
of the complete suppression of the long-wavelength S
continua in 1D systems the neutral AP mode is not subs
tially easier to observe in 1D than in 2D/3D systems;~5!
s
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finite interwire separation in general enhances the AP sp
tral weight increasing its observability;~6! finite impurity
scattering induced level broadening gives rise to a criti
wave vector below which the collective modes are alwa
overdamped, and thus the concept of a long-wavelength
lective mode does not strictly apply;~7! finite interwire tun-
neling produces a long-wavelength plasma gap in the
mode; ~8! Luttinger liquid theory and Fermi-liquid-base
RPA theory produce formally identical OP and A
collective-mode behavior in 1D two-component syste
making it impossible to observe any characteristic 1D L
tinger liquid signature in the collective charge-density ex
tation spectral in one dimension;~9! the AP mode being
strongly~and qualitatively! affected by the local-field correc
tions~with the OP mode being relatively unaffected!, in prin-
ciple, it should be possible to investigate many-body effe
in 1D systems by studying the dispersion and damping of
AP mode~the OP mode, on the other hand, should be re
tively insensitive to these many-body corrections excep
rather large wave vectors!.

In our calculations we have concentrated on two disti
types of experimentally realizable two-component quasi-
quantum plasmas confined in semiconductor~GaAs!
quantum-wire nanostructures: spatially separated do
quantum double-wire structures and photoexcited homo
neous 1D EHP in a single wire. Both systems are potenti
interesting from the perspective of 1D collective excitati
spectra and provide somewhat complementary informat
Our hope is that our detailed quantitative~both numerical
and analytical! investigation of the collective-mode dispe
sion and spectral weight in two-component 1D system w
motivate experimental work~involving inelastic light-
scattering and far infrared frequency domain spectroscop!
on the subject searching for the 1D AP mode in quantu
wire structures.
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