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Interacting electrons in polygonal quantum dots
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The low-lying eigenstates of a system of two electrons confined within a two-dimensional quantum dot with
a hard polygonal boundary are obtained by means of exact diagonalization. The transition from a weakly
correlated charge distribution for small dots to a strongly correlated ‘‘Wigner molecule’’ for large dots is
studied, and the behavior at the crossover is determined. In sufficiently large dots, a recently proposed mapping
to an effective charge-spin model is investigated, and is found to produce the correct ordering of the energy
levels and to give a good first approximation to the size of the level spacings. We conclude that this approach
is a valuable method to obtain the low-energy spectrum of few-electron quantum dots.
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The success of modern nanoscale technology in the
ation and manipulation of quantum dots1 has stimulated con
siderable theoretical interest in elucidating the physical p
cesses in these structures. In the first analyses e
numerical diagonalizations were carried out to study h
many-body effects modify the energy-level spectra,2–5 which
may be measured by means of nonlinear transp
spectroscopy.6 As the number of electrons in a quantum d
can be changed in a controlled way down to values oN
51,2,3 . . . ,1,7 they can be thought of as ‘‘artificial’’ H, He
Li, etc. atoms, composed of interacting electrons confined
an external potential. A vital difference between these str
tures and real atoms, however, is the importance of corr
tions. Real atoms can be described to good accuracy by
dependent electron models within suitable mean-fi
theories, which can be systematically improved via pertur
tion theory. This is not generally true for quantum dots
which an independent electron approximation can give
sults which are not even qualitatively correct. This behav
is a consequence of the relatively small kinetic energies
few electron quantum dots compared with their mutual C
lomb interaction. For sufficiently low-electron densities t
Wigner limit will be approached,8,9 in which the ground state
will adopt a quasicrystalline form to minimize the interactio
energy. In nontranslationally invariant systems this can oc
at larger ‘‘critical’’ densities than in the homogeneous tw
dimensional~2D! liquid.10

This feature of quantum dots containing low-density el
trons has been exploited recently11 as a starting point
complementary to perturbative or mean-field approaches
are reliable at weak-interaction strengths. As the elect
density in these systems localizes around the Wigner la
points,12 it is sensible to construct a many-particle basis fro
PRB 590163-1829/99/59~16!/10719~6!/$15.00
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antisymmetrized combinations of nonorthogonal one-part
states localized at these sites. Orthogonalization leads
lattice model of strongly correlated electrons of Hubba
type, and the subsequent elimination of the high-ene
states of this model was then shown to yield an effect
‘‘ tJV’’ Hamiltonian,11 relevant to the study of electron co
relations in real lattice systems, such as the copper-ox
planes of high-temperature superconductors.13 This effective
Hamiltonian has a very much smaller Hilbert space than t
of the original quantum dot enabling, in principle, the tre
ment of systems of many more electrons than can be han
by direct diagonalization methods. The ordering of the lo
energy levels as well as their relative separations agree q
satisfactorily with data obtained by exact diagonalization
a one-dimensional dot containing up to four electrons.11 Here
we examine the validity of thetJV approach in two-
dimensional hard-wall boxes. In the case of two~or higher!
dimensions, it should be noted that the number of ene
minima in configuration space, i.e., the number of peaksN0
in the charge-density distribution in the low-density lim
can be larger than the number of electrons. For example
two electrons in a square box the ground state will consis
a superposition of states in which the electrons are locate
diagonally opposite vertices of the square, and so will exh
a four-peak structure. In this paper we consider three dif
ent box shapes: triangular, square, and hexagonal. For
case of two electrons the eigenenergies and eigenfunct
are obtained by exact diagonalization, and then compa
with the predictions of thetJV model.

We consider the Hamiltonian:

H5(
i 51

2 F2
\2

2m*
¹ i

21V~r i !G1
e2

4pe0e r

1

ur12r2u
, ~1!
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where we assume that the electrons can be described w
the parabolic band approximation by an effective massm* .
The shape of the dot is set by the confining potentialV(r ),
which is zero within the dot and infinite outside. The fu
wave function of the two-electron system may be written
a product of a spinor and a spatial function:

C~r1 ,s1 ; r2 ,s2!5c~r1 ;r2!x~s1 ;s2!, ~2!

where for a singlet~triplet! statec is symmetric~antisym-
metric! under particle exchange. As the Hamiltonian~1! does
not contain any spin dependent terms it is only necessar
consider its action on the spatial component of the w
function to obtain its eigenvalues. We choose to use a b
of position eigenstates~a finite-difference method! as op-
posed to the momentum eigenbasis used, for example
Refs. 2 and 14. An advantage of using this basis is that
a simple matter to impose the required homogeneous Dir
let boundary conditions for dots regardless of their sha
which can be very difficult to achieve in a momentum-spa
basis. An exception to this is the case of the square sh
which we used to check the reliability of the finite-differen
approach by comparing with results obtained using
momentum-space basis. The agreement was found to be
cellent.

Using the basis of position eigenstates amounts to rep
ing the spatial continuum (r1 ;r2) with a four-dimensional
mesh. The wave-functionc is then only evaluated at a dis
crete set of points:

c~x1 ,y1 ;x2 ,y2!→c i jkl , ~3!

and the spatial derivatives in Eq.~1! are replaced with sym
metric difference approximations:

]2c

]x1
2
→

c i 11 jkl22c i jkl 1c i 21 jkl

~Dx!2
, etc. ~4!

The Hamiltonian can now be represented as aN43N4 ma-
trix, whereN is the number of mesh points per dimensio
Since the Coulomb interaction is diagonal in this represe
tion, and the kinetic terms~4! only operate between neigh
boring mesh points, this matrix will clearly be extreme
sparse. This allows it to be stored in a very economical fa
ion, and also permits a highly efficient use of Lanczos dia
nalization routines to obtain the lowest few eigenstates. AN
is increased, and the separation between the mesh point
creases, the spectrum of the discrete system will appro
that of the continuum model and the form of the mesh w
be irrelevant. Finite-size effects can be minimized, howev
by choosing a mesh that matches the symmetries of the
tential as far as possible. For the case of a square do
therefore chose a square mesh, and a triangular mesh fo
triangular and hexagonal dots. On an Alpha workstation
many as 244 lattice points could be used, and in all cases
checked the convergence of the eigenvalues as the numb
lattice points was increased to this level.

In Fig. 1 we present the ground-state charge distributi
for the three types of polygonal boundary for a selection
dot sizesL, whereL is the side length of the polygon. In eac
case the dot material was taken to be GaAs, with an effec
massm* 50.067me , and a relative permittivitye r510.9, re-
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sulting in a Bohr radius ofaB58.8 nm. For small dots the
Coulomb interaction is weak on the scale of the kinetic e
ergy, and the two-particle ground state resembles the no
teracting ground state, with the charge distribution be
peaked at the center of the dot. Conversely, in very large d
the charge distribution is strongly localized near the verti
of the dot where the interaction is minimized, and the cha
distribution practically vanishes away from these maxima.
analogy to the formation of a Wigner crystal in an infini
electron system, this configuration is referred to as aWigner
molecule.14 It is an important question to clarify the chara
teristic scaler c of the mean-electron separation for which t
crossover between these two extreme cases takes place,
the actual value ofr c cannot be obtained reliably using an
lytical arguments. In 1D boxesr c'1.5aB has been found
from tracing the charge-density distribution of the exa
ground state.14 Using this technique we detect the chan
from the noninteracting situation by observing the point
which the charge distribution first shows a local minimum
the center of the dot instead of a maximum. In this way
estimate from Fig. 1 thatr c'10aB for all three dot geom-
etries, which is almost an order of magnitude larger than
values found in one dimension. This rough estimate is
reasonable agreement with the critical value ofr c'35aB
found by Ceperley for crystallization of the 2D electron ga9

A somewhat larger value forr c has been conjectured15 in two
dimensions, as compared to one dimension, due to the
siderably enhanced tendency for the electrons to surro
one another. Althoughr c marks the transition from the non
interacting regime, an additional qualitative change occur
a somewhat longer length scale, at which the charge di
bution developsN0 sharply defined, well-separated maxim
It is to be expected that as the number of vertices is
creased, and the polygon becomes closer to a circle, that
transition will occur at increasingly low densities. Accor
ingly, we can observe this change at;30aB for the triangle
and square, but only at the larger value of;100aB for the
hexagon. Before this transition occurs in the hexagonal

FIG. 1. Ground-state charge distributions for the three types
quantum dot. Dot sizes are~a! 50 nm,~b! 100 nm, and~c! 800 nm.
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PRB 59 10 721INTERACTING ELECTRONS IN POLYGONAL QUANTUM DOTS
the charge density shows a ringlike structure~as would occur
in a circular dot!, and in this regime the spectrum indee
resembles that of a diatomic rotor composed of spin 1/2
mions, as can be seen below in Fig. 6~b!.

Figure 1 clearly shows how the electron localization tak
place in sufficiently large dots around specific sites in r
space. Anticipating this behavior motivated the mapping
lattice model with a combination of hopping, exchange,
perexchange, and Coulomb repulsion processes. In Ref.
tJV model:

HtJV5PF (
^ i , j &,s

2t~cis
† cj s1H.c.!

1JS Si•Sj2
ninj

4 D1Vninj GP ~5!

was proposed to describe the low-energy physics. HereP is
a projector eliminating doubly occupied lattice sites, ant
and J are the standard hopping and Heisenberg terms
tween nearest-neighbor sites. TheV term accounts for the
nearest-neighbor Coulomb repulsion and may be writtenV
'e2/4pe0e rL for largeL. Although first-principles calcula-
tions of the energiest and J are difficult, one can easily
estimate the ordering of their magnitudes:

uJu!utu!V. ~6!

For the three geometries considered hereHtJV can be di-
agonalized analytically to obtain the energy levels in ter
of t, J, andV, together with their corresponding spins. Let
first consider the case of the square dot, which is descr
by two electrons moving on a four-site lattice. Here theV
term in Eq.~5! is important to discriminate energetically b
tween two electrons sitting on diagonally opposite vertices
opposed to being on adjacent vertices. The lowest ene
manifold of states was derived in Ref. 11 and, setting
ground-state energy to zero, the manifold consists of a
glet ground state, two degenerate triplet states at (2D1J),
and a singlet at an energy of 4D whereD52t2/V, and D
@uJu. The next set of levels are separated from this low
energy multiplet by an energy gap of the order ofV. The
transition from the almost constant level separation found
small dots to a spectrum consisting of multiplets separa
by relatively large energy gaps of this sort can be regarde
a signature for the crossover to the Wigner regime.16 Note,
however, that the absolute level separations decrease ra
with increasing dot size, as does the temperature scale
which this crossover might be observed.

In Fig. 2 we plot the lowest energy levels of the squa
dot as a function of the dot size, normalized to the energy
the highest singlet state. The overall structure of the sp
trum agrees with that of thetJV Hamiltonian~5!, and quan-
titatively reproduces the numerically exact spectra obtai
by Bryant for large dots.2 The doubly degenerate triplet sta
lies between the two singlet states and, asymptotically,
spectrum becomes equidistant asL→`. Remarkably, the
triplet levels are below 1/2 for finiteL corresponding to a
ferromagneticJ,0. This is somewhat unexpected, since p
exchanges of electrons would be expected to have antife
magnetic couplings.17 However, the analysis presented
r-
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Ref. 11 does nota priori exclude negative values for th
exchange coupling, since the direct exchange term m
dominate the superexchange term. To exclude perturba
influences on the ground manifold arising from higher e
cited states that are ignored in the effective low-energy
scription, we plot the decay ofuJ/Du versus dot size in Fig.
3~a!. The excellent straight line of the data in this semilog
rithmic plot clearly suggests thatJ}De2L/r c, as opposed to
the power law that perturbative influences would give. T
value of r c'52aB , as read off from Fig. 3~a!, provides in-
dependent corroboration of the length scale characteriz
the transition to the Wigner state estimated earlier from
charge-density distributions.

The dominant energy scaleD can be roughly estimated
using the pocket-state picture15 together with the WKB ap-
proximation:

D;e2S0, ~7!

FIG. 2. Lowest energy levels for a square dot.

FIG. 3. ~a! Decay ofJ/D with dot sizeL; ~b! decay ofD with L,
line of best fit is shown.
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10 722 PRB 59CREFFIELD, HÄUSLER, JEFFERSON, AND SARKAR
where the classical Euclidian action:

S05E
1

2

dqWA2mn@v~qW !2v~0W !# ~8!

is taken along the pathqW :(r1
(1) ,r2

(1))→(r1
(2) ,r2

(2)) that carries
n electrons between two adjacent energy minimum confi
rations ‘‘~1!’’ and ‘‘ ~2!’’ ( n52 for the example of the squar
andn51 for the triangle!. Here,v(qW )5e2/4pe0e r ur12r2u.
For the square, the path corresponds to ap/2 rotation of the
two electrons around the center of the square, yielding:

S0
square'0.79Ar s. ~9!

The parameterr s is the typical scale of electron separatio
~which for two electrons is equal to the dot sizeL). In Fig.
3~b! we showD versusAL on a semilogarithmic plot and
verify thatD;e2AL/j. From the slope we extract a value fo
j51.64aB that is in excellent agreement with the pocke
state prediction ofj51.60aB from Eq. ~9!.

The triangular dot is described by two electrons mov
on a three-site lattice, and hence theV term is irrelevant as it
will just give rise to an overall shift in energy levels. Th
resulting tJ model has a more complicated ground-st
manifold than for the square dot, and is shown in Fig. 4~a!.
This is also exactly the ground-state manifold for the h
agonal dot, where theV term is again of importance. We ca
again employ the pocket state WKB theory to estimate
magnitude of the dominant energy scalet. For the triangle
we have

S0
triangle'0.42Ar s ~10!

for one electron hopping along the edge to the empty site
Fig. 5 we present a semilogarithmic plot oft versusAL for
the triangle, which again confirms that the scaling of t
dominant energy is of the formt;e2AL/j. The value ofj
54.45aB measured from this plot compares reasonably w
j55.67aB as predicted by the WKB theory from Eq.~10!.

In Fig. 6 we present the energy levels obtained by
diagonalizations~again scaled by the energy of the highe
singlet state! for the triangle and the hexagon. The sequen
and the asymptotic ratios of the energy separations a
agree with that predicted by thetJV model. In contrast to the
earlier result, however, it is not possible to fit these res
with a singleJ. For example, for both geometries the high
triplet approaches its asymptotic value 4/3 from above,
plying J.0, whereas the lower triplet approaches 1/3 fro

FIG. 4. ~a! Energy-level structure obtained by solution of thetJ
model. Level degeneracies are shown in brackets.~b! Modifications
to the energy levels produced by the addition of theK term ~see
text!.
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below, requiring a ferromagneticJ. This behavior indicates
that although thetJV Hamiltonian is able to adequately pre
dict the gross features of the low-energy spectrum, it d
not, in fact, provide a complete description of the dynam
occurring in the triangular and hexagonal dots. As t
Hamiltonian was obtained as a reduced version of a m
general model of Hubbard type,11 this raises the possibility
that during the reduction procedure some terms w
dropped, which may be of importance in these situations.
investigate this further we again consider the lattice mo
with three sites forming an equilateral triangle and occup
by two electrons. With one orthogonal state per site
Hamiltonian is a generalized Hubbard model:

FIG. 5. Decay oft with L for a triangular dot, line of best fit is
shown.

FIG. 6. Energy-level structures:d denotes singlet states,s

denotes triplet states. Level degeneracies are shown in bracket~a!
Triangular dot: the asymptotic decay to the values predicted by
tJ model is very evident.~b! Hexagonal dot: the decay to th
asymptotic values is clearly less rapid than for the triangle. T
arrows mark the energy levels of a rigid rotor system.
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H5(
i j s

t i j cis
† cj s1

1

2 (
i jkl ss8

Ui jkl cis
† cj s8

† cls8cks , ~11!

wheret i j are the one-electron matrix elements coming fro
the kinetic energy and the confining potential, andUi jkl are
Coulomb matrix elements. We now considerall contribu-
tions to the low-lying manifold for which there is no doub
occupation of sites.~These are much higher in energy a
their effect may be accounted for by second-order pertu
tion theory where they give rise to an antiferromagnetic
perexchange term, as described in Ref. 11.! The largest in-
tersite Coulomb term has matrix elementsUi ji j [V and the
corresponding~ferromagnetic! exchange term has matrix e
ementsUi j j i [JF/2. These terms are already included in t
tJV Hamiltonian. All other terms in Eq.~11! involve hop-
ping of electrons and fall into the following three classes

~1! ( i 5 j 5 l :k→ j )

1

2(i j s
Uii j i cis

† ci s̄
†

cj s̄cis5
1

2(i j s
Uii j i nisci s̄

†
cj s̄ .

This is a spin-dependent hopping term whichalwaystakes us
to a high-energy state since it involves double occupa
~e.g., an electron hops from site 1 to site 2 provided site
occupied with an electron of opposite spin!. It thus contrib-
utes to superexchange by lowering the energy of singl
This term, which renormalizesJ, is also discussed in Ref. 11

~2! ( i 5k: j Þ lÞ i )

1

2 (
i j l ss8

Ui jil cis
† cj s8

† cls8cis5
1

2(
ikls

Ui jil nicj s
† cls .

This is potentially an important term since it operates in
ground manifold. However, for two electrons in a triang
we can setni51 ~i.e., sitei is always occupied for states i
which cj s

† cls does not give zero! and hence this term merel
renormalizes the kinetic energy~t! term.

~3! ( i 5 l : j ÞkÞ i )

1

2 (
i jkss8

Ui jki cis
† cj s8

† cis8cks52
1

2 (
i jkss8

Ui jki cis
† cis8cj s8

† cks

52K (
i jkss8

cis
† cis8cj s8

† cks

where the last step follows since allU ’s are the same (K
5U/2).

This last term is potentially important since it operates
the ground manifold and it cannot be accounted for simply
a renormalization of the other parameters~i.e., J andt). It is
also spin dependent, behaving differently when operating
singlet states from triplet states. Consider a base stat
which there is a spin-up electron on sitei, a spin-down elec-
tron on sitek, and no electron on sitej. This operator will
move an electron from sitek to site j and then flip the spins
of sites i and j. It is thus a combined hop and spin flip, a
shown in Fig. 7~a!. On the other hand, when it operates on
state where both electrons have the same spin it only
forms the hop. Furthermore, an estimate of the magnitud
K shows that it is comparable withJ.

Retaining all terms gives the effective model:
a-
-

n
is

s.

e
,

s

n
in

r-
of

Heff5HtJ2K (
i jkss8

cis
† cis8cj s8

† cks ~12!

5HtJ22K(
i jks

S Si•Sj1
1

4D cj s
† cks ,

~13!

where K is a positive coupling and theV dependence ha
been dropped since it gives the same energy contribution
all states. Introducing this additional term alters the eigen
ergies as shown in Fig. 4~b!, and this alteration is of exactly
the correct form to account for the energy-level separati
obtained from the numerical diagonalizations. For both
geometries, fitting the results with these parameters yield
positive value forK as expected, and a positive~antiferro-
magnetic! J of similar magnitude.

We can also show that aK term is also important for the
low-lying manifold of other polygonal quantum dots. Co
sider, for example, the regular hexagonal geometry for wh
the exact numerical low-lying spectrum was described e
lier. Starting with an extended Hubbard model and taking
‘‘atomic’’ limit gives a 12-fold degenerate ground manifol
of states, corresponding to three equivalent positions
which the two electrons are directly opposite each other
a factor of 4 for spin. In second order the degeneracy
partly lifted giving an effective Hamiltonian with ‘‘ring’’
terms, which correspond to a simultaneous rotation of
electrons by6p/3 about the center of the dot. In fourt
order we get the usual superexchange~J! term but, in addi-
tion, we get aK term that also corresponds to a simultaneo
rotation of6p/3 but now also involves a spin flip, as show
in Fig. 7~b!. The final effective Hamiltonian has the form:

Heff5(
^ i , j &

F2D~Rp/31R2p/3!1JS Si•Sj2
1

4D
2KS Si•Sj1

1

4D ~Rp/31R2p/3!Gninj , ~14!

where the summation is over all three pairs of opposite si
and the operatorRu rotates the electrons by an angleu about

FIG. 7. K processes.~a! Triangular dot: hop followed by spin
flip. ~b! Equivalent process for hexagonal dot:p/3 rotation fol-
lowed by spin flip.~c! Square dot:p/2 rotation followed by spin
flip, equivalent to2p/2 rotation without spin flip.
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10 724 PRB 59CREFFIELD, HÄUSLER, JEFFERSON, AND SARKAR
the center of the hexagon. The effective Hamiltonian~14!
describing the low-lying states of the hexagon is isomorp
to the effective Hamiltonian for the triangular dot@Eq. ~12!#
with D playing the role oft. This may be seen explicitly by
writing down expressions for the effective Hamiltonian m
trices in their respective localized bases. Thus, the low-ly
eigenstates of the triangular and hexagonal dots are in
to-one correspondence, in agreement with the numerica
sults.

Note that by a similar reasoning we can generate effec
K terms for any polygonal dot. With the exception of th
square dot, such terms are necessary in order to give qu
tative agreement with the exact low-lying spectrum. This
not the case for the square since, as shown in Fig. 7~c!, a
rotation of p/2 followed by a spin flip is equivalent to
rotation of2p/2 with no spin flip. The effect is, therefore, t
merely renormalize the second-order ring processes.

In conclusion, we have examined the behavior of the lo
est energy levels of two electrons confined to tw
dimensional polygonal quantum dots. For sufficiently lar
dots the ground-state charge distribution shows a quasic
talline structure, which can be used as the basis for map
the system to an effectivetJV lattice model. This model is
found to give the correct ordering of energy levels and
a-
ha

e

. B

J.
c

-
g
e-
e-

e

ti-
s

-
-
e
s-

ng

o

give a good first approximation to the energy-level spacin
The dominant energy scale of the systems can be estim
semiclassically to good accuracy, and although it is hard
obtain estimates for the remaining parameters, they decr
exponentially with the size of the dot and so this descript
becomes increasingly reliable in large dots. For the cas
triangular and hexagonal dots, however, it was evident th
was necessary to retain the three-site terms previously
glected in the derivation of the effective model to account
the detailed behavior of the lowest energy levels. The lat
description of the dot considerably simplifies the calculat
of the energy spectrum, and provides an appealing inter
tation of the low-energy excitations occurring in these str
tures. It is still desirable to investigate different electr
numbers and dot geometries to check the universality of
results concerning the critical density characterizing
crossover into the Wigner regime.
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