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Interacting electrons in polygonal quantum dots
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The low-lying eigenstates of a system of two electrons confined within a two-dimensional quantum dot with
a hard polygonal boundary are obtained by means of exact diagonalization. The transition from a weakly
correlated charge distribution for small dots to a strongly correlated “Wigner molecule” for large dots is
studied, and the behavior at the crossover is determined. In sufficiently large dots, a recently proposed mapping
to an effective charge-spin model is investigated, and is found to produce the correct ordering of the energy
levels and to give a good first approximation to the size of the level spacings. We conclude that this approach
is a valuable method to obtain the Ilow-energy spectrum of few-electron quantum dots.
[S0163-18289)03715-1

The success of modern nanoscale technology in the crentisymmetrized combinations of nonorthogonal one-particle
ation and manipulation of quantum dbtsas stimulated con- states localized at these sites. Orthogonalization leads to a
siderable theoretical interest in elucidating the physical prolattice model of strongly correlated electrons of Hubbard
cesses in these structures. In the first analyses exabtpe, and the subsequent elimination of the high-energy
numerical diagonalizations were carried out to study howstates of this model was then shown to yield an effective
many-body effects modify the energy-level spe@ifawhich ~ “tIV” Ha.miltonian,lll relevant to the study of electron cor-
may be measured by means of nonlinear transpori€lations in real lattice systems, such as the copper-oxide
spectroscop§l.As the number of electrons in a quantum dot Planes of high-temperature superconductdrBnis effective
can be changed in a controlled way down to valuesNof Hamllton_la_n has a very much sma}ller I_—||Ibe_rt space than that
=1,23... " they can be thought of as “artificial” H, He, of the original quantum dot enabling, in principle, the treat-
Li, etc. atoms, composed of interacting electrons confined b{'€Nt of Systems of many more electrons than can be handled
an external potential. A vital difference between these strucPY direct diagonalization methods. The ordering of the low-

tures and real atoms, however, is the importance of correl&2"€rgy levels as well as their relative separations agree quite
tions. Real atoms can be described to good accuracy by irsatisfactorily with data obtained by exact diagonalization for

dependent electron models within suitable mean-field® ©n€-dimensional dot containing up to four electrridere

theories, which can be systematically improved via perturba?V® €xamine the validity of theJV approach in two-

tion theory. This is not generally true for quantum dots fordimensional hard-wall boxes. In the case of tieo highe)

which an independent electron approximation can give redimensions, it should be noted that the number of energy

sults which are not even qualitatively correct. This behaviofMinima in configuration space, i.e., the number of peldks

is a consequence of the relatively small kinetic energies if? the charge-density distribution in the low-density limit,

few electron quantum dots compared with their mutual Cou£an be larger than the number of electrons. For example, for

lomb interaction. For sufficiently low-electron densities the WO eIectror_1_s In a square box '_che ground state will consist of

Wigner limit will be approache8in which the ground state alsuperposmon o_f state; in which the electrons are Ipcate(_j on

will adopt a quasicrystalline form to minimize the interaction diagonally opposite vertices of the square, and so will exhibit

energy. In nontranslationally invariant systems this can occuf four-peak structure. In this paper we consider three differ-

at larger “critical” densities than in the homogeneous two- €Nt Pox shapes: triangular, square, and hexagonal. For the

dimensional2D) liquid.X° case of t_WO electrons th_e eigenenergies and eigenfunctions
This feature of quantum dots containing low-density elec-2® obtained by exact diagonalization, and then compared

trons has been exploited receffiyas a starting point With the predictions of théJV model.

complementary to perturbative or mean-field approaches that e consider the Hamiltonian:

are reliable at weak-interaction strengths. As the electron 2 72

density in these systems localizes around the Wigner lattice 4 — ———V2+V(r))

pointsX?it is sensible to construct a many-particle basis from i=1 2m* ! '
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where we assume that the electrons can be described within
the parabolic band approximation by an effective mass

The shape of the dot is set by the confining poteni@d), .

which is zero within the dot and infinite outside. The full @
wave function of the two-electron system may be written as ,

a product of a spinor and a spatial function:

W(ry,o1; r2,02)=(ry;r)x(oy;07), (2

where for a singleftriplet) state is symmetric(antisym-
metric) under particle exchange. As the Hamiltonidhdoes

not contain any spin dependent terms it is only necessary to
consider its action on the spatial component of the wave
function to obtain its eigenvalues. We choose to use a basis
of position eigenstatega finite-difference methgdas op-
posed to the momentum eigenbasis used, for example, in
Refs. 2 and 14. An advantage of using this basis is that it is
a simple matter to impose the required homogeneous Dirich-
let boundary conditions for dots regardless of their shape,
which can be very difficult to achieve in a momentum-space
bagls. An exception to this is Fhe, case of th_elsquf’ire shape, FIG. 1. Ground-state charge distributions for the three types of
which we used to chec!< the rgllablllty of the f|n'|te-d|ffer.ence quantum dot. Dot sizes ate) 50 nm, (b) 100 nm, andc) 800 nm.
approach by comparing with results obtained using a

momentum-space basis. The agreement was found to be ex- = ]
cellent. sulting in a Bohr radius odg=8.8 nm. For small dots the

Using the basis of position eigenstates amounts to repladoulomb interaction is weak on the scale of the kinetic en-
ing the spatial continuumrg;r,) with a four-dimensional ~€rgy, and the two-particle ground state resembles the nonin-
mesh. The wave-functio is then only evaluated at a dis- teracting ground state, with the charge distribution being

crete set of points: peaked at the center of the dot. Conversely, in very large dots
the charge distribution is strongly localized near the vertices
P(X1,Y1:%2,Y2) = Pij » (3)  of the dot where the interaction is minimized, and the charge

distribution practically vanishes away from these maxima. In
and the spatial derivatives in E€l) are replaced with sym- analogy to the formation of a Wigner crystal in an infinite
metric difference approximations: electron system, this configuration is referred to a¥igner
molecule' It is an important question to clarify the charac-
7Y Yi+1jk— 285k T Yi- 1k teristic scale . of the mean-electron separation for which the
a_xf_) (Ax)2 crossover between these two extreme cases takes place, since
the actual value of . cannot be obtained reliably using ana-
The Hamiltonian can now be represented ag*x N* ma-  lytical arguments. In 1D boxes,~1.5az has been found
trix, whereN is the number of mesh points per dimension.from tracing the charge-density distribution of the exact
Since the Coulomb interaction is diagonal in this representaground staté? Using this technique we detect the change
tion, and the kinetic term&4) only operate between neigh- from the noninteracting situation by observing the point at
boring mesh points, this matrix will clearly be extremely which the charge distribution first shows a local minimum at
sparse. This allows it to be stored in a very economical fashthe center of the dot instead of a maximum. In this way we
ion, and also permits a highly efficient use of Lanczos diagoestimate from Fig. 1 that.~10ag for all three dot geom-
nalization routines to obtain the lowest few eigenstatesNAs etries, which is almost an order of magnitude larger than the
is increased, and the separation between the mesh points de&lues found in one dimension. This rough estimate is in
creases, the spectrum of the discrete system will approadieasonable agreement with the critical value rgf35ag
that of the continuum model and the form of the mesh willfound by Ceperley for crystallization of the 2D electron gas.
be irrelevant. Finite-size effects can be minimized, howeverA somewhat larger value far, has been conjecturérdn two
by choosing a mesh that matches the symmetries of the palimensions, as compared to one dimension, due to the con-
tential as far as possible. For the case of a square dot w&derably enhanced tendency for the electrons to surround
therefore chose a square mesh, and a triangular mesh for tbae another. Although, marks the transition from the non-
triangular and hexagonal dots. On an Alpha workstation asteracting regime, an additional qualitative change occurs at
many as 24lattice points could be used, and in all cases wea somewhat longer length scale, at which the charge distri-
checked the convergence of the eigenvalues as the numberlmfition developdN, sharply defined, well-separated maxima.
lattice points was increased to this level. It is to be expected that as the number of vertices is in-
In Fig. 1 we present the ground-state charge distributionsreased, and the polygon becomes closer to a circle, that this
for the three types of polygonal boundary for a selection oftransition will occur at increasingly low densities. Accord-
dot sized., whereL is the side length of the polygon. In each ingly, we can observe this change-aB0ag for the triangle
case the dot material was taken to be GaAs, with an effectivand square, but only at the larger value-e100ag for the
massm* =0.067,, and a relative permittivitg, =10.9, re-  hexagon. Before this transition occurs in the hexagonal dot

, etc. (4)
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the charge density shows a ringlike struct(as would occur
in a circular do}, and in this regime the spectrum indeed

resembles that of a diatomic rotor composed of spin 1/2 fer-
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mions, as can be seen below in Figb)s B g ?:L“?ﬁt(xz)
Figure 1 clearly shows how the electron localization takes g

place in sufficiently large dots around specific sites in real B 05 1 T

space. Anticipating this behavior motivated the mapping to a § o

lattice model with a combination of hopping, exchange, su-

perexchange, and Coulomb repulsion processes. In Ref. 11 a ol

tJV model: . . . .
O 400 800 1200 1600

HBYV="p 2 —t(CiTGCjU+H.C.) Dot size L (nm)
Lo FIG. 2. Lowest energy levels for a square dot.
n;n;
+J S,‘Sj—% +Vnin; P (5) Ref. 11 does not priori exclude negative values for the
exchange coupling, since the direct exchange term might

was proposed to describe the low-energy physics. Heie
a projector eliminating doubly occupied lattice sites, and

and J are the standard hopping and Heisenberg terms bé-

tween nearest-neighbor sites. TReterm accounts for the
nearest-neighbor Coulomb repulsion and may be writen
~e?l4meye L for largeL. Although first-principles calcula-
tions of the energies and J are difficult, one can easily
estimate the ordering of their magnitudes:

[J]<]t|<V. (6)

For the three geometries considered hdr’ can be di-
agonalized analytically to obtain the energy levels in term

dominate the superexchange term. To exclude perturbative
influences on the ground manifold arising from higher ex-
ited states that are ignored in the effective low-energy de-
scription, we plot the decay ¢8/A| versus dot size in Fig.
3(a). The excellent straight line of the data in this semiloga-
rithmic plot clearly suggests thdtcAe™"'"c, as opposed to
the power law that perturbative influences would give. The
value ofr.~52ag, as read off from Fig. @), provides in-
dependent corroboration of the length scale characterizing
the transition to the Wigner state estimated earlier from the
charge-density distributions.

The dominant energy scal® can be roughly estimated

dising the pocket-state pictdfetogether with the WKB ap-

proximation:

of t, J, andV, together with their corresponding spins. Let us
first consider the case of the square dot, which is described
by two electrons moving on a four-site lattice. Here e
term in Eq.(5) is important to discriminate energetically be-
tween two electrons sitting on diagonally opposite vertices as
opposed to being on adjacent vertices. The lowest energy
manifold of states was derived in Ref. 11 and, setting the
ground-state energy to zero, the manifold consists of a sin-
glet ground state, two degenerate triplet states &+3),

and a singlet at an energy ofAdwhere A=2t%/V, and A

>|J|. The next set of levels are separated from this lowest
energy multiplet by an energy gap of the order\ofThe
transition from the almost constant level separation found in
small dots to a spectrum consisting of multiplets separated
by relatively large energy gaps of this sort can be regarded as
a signature for the crossover to the Wigner regifhblote,
however, that the absolute level separations decrease rapidly
with increasing dot size, as does the temperature scale for
which this crossover might be observed.

In Fig. 2 we plot the lowest energy levels of the square
dot as a function of the dot size, normalized to the energy of
the highest singlet state. The overall structure of the spec-
trum agrees with that of the]VV Hamiltonian(5), and quan-
titatively reproduces the numerically exact spectra obtained
by Bryant for large doté.The doubly degenerate triplet state
lies between the two singlet states and, asymptotically, the
spectrum becomes equidistant las»«. Remarkably, the
triplet levels are below 1/2 for finité corresponding to a
ferromagnetic)<0. This is somewhat unexpected, since pair
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exchanges of electrons would be expected to have antiferro- FIG. 3. (a) Decay ofJ/A with dot sizeL; (b) decay ofA with L,
magnetic couplings’! However, the analysis presented in line of best fit is shown.
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wiglet T '
4] t+J4+3K
singlet (x2) 70 . 1
2t 2t
HRletOR) el =
R £
t+] singlet T 9.0 . 1
(@ (b) ‘
FIG. 4. (a) Energy-level structure obtained by solution of tde 1.0 ‘ ‘ L
model. Level degeneracies are shown in brackejsModifications 30.0 400 500 60.0
to the energy levels produced by the addition of Keerm (see L™ (m™)
texy. FIG. 5. Decay oft with L for a triangular dot, line of best fit is

. - . shown.
where the classical Euclidian action:

) below, requiring a ferromagnetit This behavior indicates

Sy= f dﬁ\/Zm no(q)—v(0)] (8)  that although theJV Hamiltonian is able to adequately pre-
1 dict the gross features of the low-energy spectrum, it does
. =0 (1) (1) @) .(2) . not, in fact, provide a complete description of the dynamics
is taken along the patdy.(r 12 )= (i ). t_hat carries occurring in the triangular and hexagonal dots. As this
n e_Iectrons between wo adjacent energy minimum Comc'g'uHamiItonian was obtained as a reduced version of a more

rations *(1)” and §2) (n=2for thf exazmple of the square general model of Hubbard tygé this raises the possibility
andn=1 for the triangle. Here,v(q) =e“/4mepe|r1—ro|.  that during the reduction procedure some terms were
For the square, the path corresponds t@/2 rotation of the  dropped, which may be of importance in these situations. To
two electrons around the center of the square, yielding:  investigate this further we again consider the lattice model
with three sites forming an equilateral triangle and occupied
quuare“ojg\/r—? ©) by two electrons. With one orthogonal state per site the

The parameter, is the typical scale of electron separation Hamiltonian is a generalized Hubbard model:
(which for two electrons is equal to the dot sizg. In Fig.
3(b) we showA versus\/f on a semilogarithmic plot and a)
verify that A ~e™ ™€, From the slope we extract a value for 5, o000

£=1.64ag that is in excellent agreement with the pocket- 43 e g
state prediction of=1.60ag from Eq. (9).

The triangular dot is described by two electrons moving
on a three-site lattice, and hence W&erm is irrelevant as it
will just give rise to an overall shift in energy levels. The
resulting tJ model has a more complicated ground-state
manifold than for the square dot, and is shown in Fi@g) 4 0
This is also exactly the ground-state manifold for the hex-
agonal dot, where th¥ term is again of importance. We can
again employ the pocket state WKB theory to estimate the
magnitude of the dominant energy scaéld~or the triangle
we have T e

spiangle~ 0,42,/ ¢ (10

for one electron hopping along the edge to the empty site. In
Fig. 5 we present a semilogarithmic plot bfersusy/L for
the triangle, which again confirms that the scaling of the
dominant energy is of the for~e I, The value ofé¢ x2)
=4.45g measured from this plot compares reasonably with B .. <
£=5.67ag as predicted by the WKB theory from EQLO). ol <
In Fig. 6 we present the energy levels obtained by the
diagonalizationdagain scaled by the energy of the highest
singlet statgfor the triangle and the hexagon. The sequence
and the asymptotic ratios of the energy separations again g, 6. Energy-level structure® denotes singlet state€)
agree with that predicted by théV model. In contrast to the genotes triplet states. Level degeneracies are shown in bra@ets.
earlier result, however, it is not possible to fit these resultsrriangular dot: the asymptotic decay to the values predicted by the
with a singleJ. For example, for both geometries the higherty model is very evident(b) Hexagonal dot: the decay to the
triplet approaches its asymptotic value 4/3 from above, im-asymptotic values is clearly less rapid than for the triangle. The
plying J>0, whereas the lower triplet approaches 1/3 fromarrows mark the energy levels of a rigid rotor system.

Scaled energy

0 800 1600 2400 3200
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0 800 1600 2400 3200
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1
+
H:; tijCiTngo+§ > UijkICiTangfCIo—’Cko1 (11
g HA ’
ijkloo >
wheret;; are the one-electron matrix elements coming from
the kinetic energy and the confining potential, dngl, are

. . . v
Coulomb matrix elements. We now considat contribu-

a)
]
tions to the low-lying manifold for which there is no double b)
occupation of sites(These are much higher in energy and =
their effect may be accounted for by second-order perturba-
tion theory where they give rise to an antiferromagnetic su-
A

perexchange term, as described in Ref) The largest in-

tersite Coulomb term has matrix elemeftg; =V and the c)

correspondindferromagneti exchange term has matrix el- =S

ementsU;;;; =J/2. These terms are already included in the

tJV Hamiltonian. All other terms in Eq(1l) involve hop- v

ping of electrons and fall into the following three classes: _ )
1) (i=j=1:k—j) FIG. 7. K processega) Triangular dot: hop followed by spin

flip. (b) Equivalent process for hexagonal det/3 rotation fol-

1 1 lowed by spin flip.(c) Square dotr/2 rotation followed by spin
f; Uiiji CiTUCiT;CjECig=§; Uiiji nigci%cj;. flip, equivalent to— /2 rotation without spin flip.

This is_a spin-dependent _hoppi_ng term whadtvaystakes us _ Heff= HU_ K 2 ciT(,ciJ,CT o (12)

to a high-energy state since it involves double occupation koo lo

(e.g., an electron hops from site 1 to site 2 provided site 2 is

occupied with an electron of opposite spitt thus contrib- o E 1) 4

utes to superexchange by lowering the energy of singlets. =H _2Kijkg S'SJJ“Z CjoCka

This term, which renormalize} is also discussed in Ref. 11. (13)

2 (i=k:j#1#i0) . . .
whereK is a positive coupling and th¥ dependence has
1 R 1 been dropped since it gives the same energy contribution for
> Z Uijii CiTanger'Cia:iz Uijii nic;rgc“,. all states. Introducing this additional term alters the eigenen-
ijlog’ ko ergies as shown in Fig.(8), and this alteration is of exactly
This is potentially an important term since it operates in theth® correct form to account for the energy-level separations
ground manifold. However, for two electrons in a triangle obtained from the numerical diagonalizations. For both dot

we can seh =1 (i.e., sitei is always occupied for states in geometries, fitting the results with these parameters yields a

which cJ-T(,ch, does not give zencand hence this term merely positive' value f'or|.< as expgcted, and a positiventiferro-
renormalizes the kinetic enerd) term. magnetig J of similar magnitude. . .
@) (i=1:]#k#i) We can also show thatld term is also important for the
low-lying manifold of other polygonal quantum dots. Con-
1 1 sider, for example, the regular hexagonal geometry for which
> > Uijkicfac;rg,cig,ckg= -= > Uijkicfgciarcfg,ckg the exact numerical low-lying spectrum was described ear-
ijkoo’ ijkoo’ lier. Starting with an extended Hubbard model and taking the
“atomic” limit gives a 12-fold degenerate ground manifold
=—K > cf,,ci(,,c;ro,ck,, of states, corresponding to three equivalent positions in
ijkoo’ which the two electrons are directly opposite each other and

a factor of 4 for spin. In second order the degeneracy is
=U/2) partly lifted giving an effective Hamiltonian with “ring”

This last term is potentially important since it operates interms, which correspond to a simultaneous rotation of the

the ground manifold and it cannot be accounted for simply aglrzctrrc\);s bytitk:-r/3 abolut ther (;err]]terg Oft trhn(: l:()jott. ir|1n E’é’irth
a renormalization of the other parametérs., J andt). It is ci)one wee Ste X tZrlrJr?ltjr?atsglgi gofrei %)?10?3 o aus’imu;’jt\ane;ous
also spin dependent, behaving differently when operating offon: g P

singlet states from triplet states. Consider a base state fotation O s b.Ut now a|$° mvoIvgs aspin flip, as shown
which there is a spin-up electron on site spin-down elec- in Fig. 7(b). The final effective Hamiltonian has the form:

tron on sitek, and no electron on sitg This operator will

move an electron from sitke to sitej and then flip the spins Heffl=> [—A(Rw,3+ R_.;3)+J

of sitesi andj. It is thus a combined hop and spin flip, as (L5

shown in Fig. Ta). On the other hand, when it operates on a 1

state where both electrons have the same spin it only per- —K(S~Sj+ 1

forms the hop. Furthermore, an estimate of the magnitude of

K shows that it is comparable with where the summation is over all three pairs of opposite sites,
Retaining all terms gives the effective model: and the operatdr, rotates the electrons by an angl@bout

where the last step follows since all's are the sameK

1
S'Sj_Z)

(Raz+R_z3) [niny, (14)
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the center of the hexagon. The effective Hamilton{a#) give a good first approximation to the energy-level spacings.
describing the low-lying states of the hexagon is isomorphicThe dominant energy scale of the systems can be estimated
to the effective Hamiltonian for the triangular d&q. (12)]  semiclassically to good accuracy, and although it is hard to
with A playing the role oft. This may be seen explicitly by obtain estimates for the remaining parameters, they decrease
writing down expressions for the effective Hamiltonian ma-exponentially with the size of the dot and so this description
trices in their respective localized bases. Thus, the low-lyinthecomes increasingly reliable in large dots. For the case of
eigenstates of the triangular and hexagonal dots are in ONgrangular and hexagonal dots, however, it was evident that it
to-one correspondence, in agreement with the numerical r§yas necessary to retain the three-site terms previously ne-
sults. o _ _ glected in the derivation of the effective model to account for
Note that by a similar reasoning we can generate effectivg,q yetajled behavior of the lowest energy levels. The lattice
K terms for any polygonal dot. With the exception of the yoqeriniion of the dot considerably simplifies the calculation

square dot, such terms are necessary in order to give quantiz ihe energy spectrum, and provides an appealing interpre-

tative agreement with the exact low-lying spectrum. This is__.. o NP
; : tation of the low-energy excitations occurring in these struc-
not the case for the square since, as shown in Fig, a

rotation of /2 followed by a spin flip is equivalent to a tures. It is still desirable to investigate different electron
rotation of— /2 with no spin flip. The effect is, therefore, to numbers and dot geometries to check the universality of our
merely renormalize the second-order ring pr(;cesses " results concerning the critical density characterizing the

In conclusion, we have examined the behavior of the low-CrOSSOVer into the Wigner regime.
est energy levels of two electrons confined to two- CE.C. is grateful for financial support from the Lever-
dimensional polygonal quantum dots. For sufficiently largenyime Foundation and W.H. acknowledges support by the
dots the ground-state charge distribution shows a quasicry$yetsche Forschungsgemeinschaft through SFB 276. EU
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the system to an effectivelV lattice model. This model is edged.

found to give the correct ordering of energy levels and to

IFor reviews see, e.g., M. A. Kastner, Rev. Mod. PHy4. 849 (1993; S. Tarucha, D. G. Austing, T. Honda, R. J. van der
(1992; L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Da- Hage, and L. P. Kouwenhoven, Phys. Rev. Létf, 3613
noeastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, (1996.

Science278 1788(1997. 8E. P. Wigner, Phys. Rewvi6, 1002(1934).
2G. W. Bryant, Phys. Rev. Let§9, 1140(1987. 9B. Tanatar and D. M. Ceperley, Phys. Rev38 5005(1989.
3U. Merkt, J. Huser, and M. Wagner, Phys. Rev.4B, 7320  1°S. T. Chui and B. Tanatar, Phys. Rev. L&t, 458 (1995.

(1991). 113. H. Jefferson and W. Hler, Phys. Rev. B4, 4936(1996.
4D. Pfannkuche, V. Gudmundsson, and P. A. Maksym, Phys. Rev!?V. M. Bedanov and F. M. Peeters, Phys. Revd® 2667(1994).

B 47, 2244(1993. 3L, F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Re§1B
SE. M. Peeters and V. A. Schweigert, Phys. Rev.58 1468 12 797(1995.

(1996. 14K. Jauregui, W. Hasler, and B. Kramer, Europhys. Le®4, 581
6J. Weis, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. B (1993.

46, 12 837(1992. 15w, Hausler, Z. Phys. B99, 551 (1995.

"R. C. Ashoori, H. L. Stormer, J. S. Weiner, L. N. Pfeiffer, S. J. 1W. Hausler and B. Kramer, Phys. Rev.&, 16 353(1993.
Pearton, K. W. Baldwin, and K. W. West, PhysicalB4, 378 e, Herring, Rev. Mod. Phys34, 631 (1962.



