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Ground state of the spin4 Heisenberg antiferromagnet on a two-dimensional
square-hexagonal-dodecagonal lattice
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Up to now, the existence of the magnetic edong-range ordefNLRO) in nearest-neighbor, spi%]-
antiferromagnetiod AF) lattice systems has been examined for seven of the 11 existing, two-dimensional,
uniform lattices. Plaquettes forming these unifd@nchimedea lattices(e.g., square, triangulakagome are
different regular polygons. An investigation of the NLRO in the ground state of AF spin systems on the eighth
uniform (bipartite) lattice consisting of squares, hexagons, and dodecagons is presented. The NLRO is shown
to occur in this system. A simple conjecture concerning the existence of the NLRO in the ground state of
antiferromagnetic, spié- systems on two-dimensional, Archimedean lattices, is formulated.
[S0163-182699)03601-3

[. INTRODUCTION does not exist in the case kigomdattice® For the zig-zag-
ladder lattic@ there seems to exist an incommensurate spiral
Despite great progregstimulated originally by the dis- order. The most complicated situation is for the model ex-
covery of highT, superconductivity made recently in the amined by Shastry and Sutherldhdnd more recently by
understanding of the nature of the ground state of quanturAlbrecht and Mild* which corresponds to a Heisenberg an-
Heisenberg antiferromagnets for low values of spin variablegiferromagnet on an uniform lattice fod;=J, (notation
on two-dimensional lattices, the problem is far from beingtaken from Ref. 11 In that case spin-wave theory gives a
solved. The basic question, if there existSeNbng-range disordered ground state, whereas Schwinger-boson mean-
order (NLRO) in the ground state of an antiferromagnetic field theory predicts NLRO. However, fdp/J;~1.1 NLRO
spin+ system on a given lattice is still not completely an- becomes unstable and gives way to spiral otder.
swered. In fact, a subtle interplay between quantum effects We formulate now the simple conjecture which seems to
and lattice effectgrather difficult to deal with, may lead to  apply to the problem of the NLRO in the ground state of
nontrivial properties of the ground state. We restrict now ourspin4 systems with nearest-neighbor interactions on uni-
attention to the most simple case of a spin system with equafprm lattices. At first, however, let us classify all investigated
antiferromagnetic, nearest-neighbor interactions: (so fap uniform lattices according to the number of edges of
polygons of the smallest area bound by the nearest-neighbor
H=S §.§ ) interaction_s. Th(_are exist three possible cagpsonly even
) 1 polygons(i.e., with an even number of edgeare present,
e.g., square lattice indicated by squares, honeycomb lattice
The natural way to represent this kind of spin system is to
put the spins onto vortices of a so-called uniform e me e me e

. ; . : : o Ton® Sen® Fen® Jen "
(Archimedean lattice and to assign the antiferromagnetic E "% "% ¢"%x "% o"°
spin-spin interactions along the lines connecting the nearest ae ae ae 2. ..
spins.Uniform means that all polygons of the smallest area ELVPR LV LA TP TPy
built from nearest-neighbor interaction@laquettes are oy .. S __on o= 4
regular, and consequently, each lattice site has the same local om® Nom® Neg® N o 0 m__o &

. . . - ety e i e P me " e
environment. For example, in the case okagomelattice on om or om on
there exist two kinds of such polygons: triangles and hexa- % ae me me he
gons. Up to now, the problem of the eventual existence of n RO Teme N me N ue Shne

. .1 . g . . oH . 6B ____oR ' o= on
the NLRO in a spinz system residing on a uniform lattice me e ne ne me
has been investigated for seven uniform lattices only. Let Us @R ey Sne ®®ine ®ue oy s

summarize the results of those investigations. First, we take o= on on on om
into accountunfrustratedlattices. In the case of squafe,
honeycomb, and CaVO(Ref. 3 lattices there exists a well ¢t yniform, even, bipartite lattice. Sublattices are marked by

grounded opinion that the ground state iseNkke ordered.  jrles and squares. Spins residing on the A sublattice interact only
For frustratedlattices, however, the situation is more com- it its nearest neighbors from the B sublattice. The 48-spin cluster
plicated. There exists three sublattice magnetic order in th@sed in calculations is also marked. Other clusters have the same
spin+ system on the triangular lattié€ which probably  shape.

FIG. 1. SHD (square-hexagonal-dodecaggndhttice. The
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TABLE |. Comparison between exact and variational results for finite clusters for different bipartite
lattices. All the variational results were obtained in three parameter $pacK 5,0

Linear chain Honeycomb lattice CaVO lattice  SHD lattice
18-spin cluster 18-spin cluster 16-spin cluster 12-spin cluster

Ground state Exact —0.4457 —0.3740 —0.3800 —0.3850

energy, per bond variational —0.4450 —0.3698 —0.3733 —0.3803

m? Exact 0.1851 0.2481 0.2504 0.2913
variational 0.1859 0.2509 0.2616 0.2979

Correlation for largest Exact 0.0859 0.1655 0.1468 0.1924

distance in cluster variational 0.0752 0.1714 0.1724 0.2032

Gap Exact 0.241 0.394 0.446 0.568
variational 0.241 0.323 0.378 0.519

indicated by hexagons, CaVO latticendicated by squares 1.

and octagons. Call those lattices the even oBOnly odd [w)=2 ex §H> la), 2

polygons are present, triangular lattice indicated by triangles. “

This is the only one odd lattice aridi) even and odd poly- _

gons are present, e.dagomelattice indicated by hexagons and the operatoH, diagonal in that base is defined as

and triangles, zig-zag-ladder latticand Shastry-Sutherland

lattice'® indicated by squares and triangles. Those are even- _ 1

odd lattices. The above classification allows one to formulate H=2i ( E 57 S

the following conjecture: the antiferromagnetic sgirsys- B

tem on an even-odd lattice has no NLRO in its ground state. ] . ]

If the lattice is everor odd, then the ground state is &ldike ~ The first term produces a proper sigphas¢ for a given

ordered. state|a) (the first sum runs over spins belonging to Be
The aim of this paper is to report an additional examp|esublattice whereas the second one, taking into account in a

which does support this conjecture. This example concern¥ariational way the long-range correlations in the spin sys-

the Spin% system located on the last possib|e, yet not invesiem, giveS the value of the amplitude for that state. The sec-

tigated1 even Square_hexagona]_dodecag(ﬁﬁa{D) |attice, ond sum runs over all pOSSible pairs of SpinS. The next Step

see Fig. 1. Note that there exist only four even, one odd, an@f this method is to find a minimum of the ground-state

+i§j) K(rij)S's;. )

six even-odd uniforn{Archimedeai lattices. energy(W[H|W)/(W|¥) with respect to parameters(r;;)
and, subsequently, to calculate for thd$g ;) the expecta-
Il. METHOD tion values of the operators which characterize the LRO in

the ground state of a given spin system. In the case of small

To answer the question about the NLRO in the grouncclusters this can be accomplished by taking into account the
state of the spin system on thépartite lattice from Fig. 1 a  whole subspace of Ising states, in the case of larger ones—
variational approach developed by Huse and Efsamd im-  within a Monte Carlo approact:3Finally, those values are
proved later to restore th€,S symmetry by Carneiro, extrapolated to the thermodynamic limit.
Kong, and Swendséhwas applied. It was also shown that  Actually, two expectation values of such operators were
within this method one can obtain reliable results for bothcalculated: the squared sublattice magnetization and, which
magnetically Nel ordered and disordered systethd? Let  is new within this approach, the spin gap, i.&;—Eg,
us remind the reader of the basic points of this method. Aivhere E, and E; stand for the ground-state ener¢gector
the beginning, the variational wave function is expanded intcs?=0) and the energy with one flipped spifsector
the complete set of Ising statés) in the subspace of total S?=1), respectively.

$=0:
-0.355
TABLE Il. The ground-state energy, the squared sublattice mag-
netization, the energy of the first excitati&q and the spin gap for -
some clusters on SHD lattice. In the case of the 12-spin cluster the _§ -0.365
values were obtained in the whd#=0 sector, for bigger clusters 5
the Monte Carlo method was applied. Statistical errors, in parenthe- :
ses, are the last digit. g -0.375
()
N  Egy/bond m? E, E,—E,
12 -0.3803 02979  —6.3285 0.519 0388
. . . . 0.00 0.01 0.02 0.03
48 —0.36284) 0.17438) —26.014£0.019 0.10%0.038 N32
108 —0.36142) 0.14766) —58.506-0.034 0.0420.060
192 —0.36092) 0.13845) —103.948-0.019 0.0030.080 FIG. 2. Energy per bond for the spin system on the SHD lattice

as a function oN %2
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FIG. 3. Plot of them? as a function oN~Y2, Squares indicate FIG. 4. Plot of the spin-gap=E;— E, vs 1N. Errors result

values obtained by applying the variational method. The straightrom adding the errors foE, andE; .
line is fit to the squares. Sizes of squares are comparable to the error

bars.
from the cutoff of the long-wavelength magnons which are

How to choose the variational parametétér;;) in Eq. linear ink, is, I_ilé?zin the case of other translationally invari-
(3) for the bipartite SHD lattice? Several choices of the pa-2Nt SystemsN =% The data from Table Il can be fitted to
rameter space were tested in variational calculations done féPiS dependence and hence the energy per bﬁ%gn the
spin systems on finite clusters of other bipartite lattices: foth€rmodynamic limit is obtained=(N)=E..+aN"~* with
18 spins on the linear chain and on the honeycomb latticeE== —0.3605 anda= —0.8200. This dependence is shown
for 16 spins on the CaVO lattice and for 12 spins on the SHDN Fig. 2. Using in the fitting only the data for 48, 108, and
lattice. The wholeS?’=0 basis in expansio2) was taken 192 spins one obtaing..=—0.3607, and practically the
into account. The minimal value of the variance of thesame value ofE. gives a fit to the formulaE(N)=E.,
ground-state energy has been obtained in all cases in threea’N~3?+bN~2,
parameter space:K{a,Kag,o). It means thatK(rj;) In Fig. 3 the order parameter squared as a function of the
=Kaa/r? when spins at the distancg belong to the same  system size\ Y2 is depicted. The square of order parameter
sublattice K(rij) =K g/r 7 otherwise, and;; is the Manhat-  should scale adl~*?, therefore, for smalN, corrections of
tan metric(the shortest path over bondstead of the com-  higher orders may be important. Thus we decided to take
monly used Euclidean one. Henceforth, all expectation valintg account only the data fdi=48, 108, and 192 spins in
ues of the operators are calculated for the latter choice of thgye extrapolation. This leads to the following form for the
variational parameters. square of sublattice magnetization as a function of

N: m?(N)=m?+cN~2 with m2=0.1007 andc=0.5058.
IIl. RESULTS _One can conclude that the Iong-range magnetic order persists
in the ground state of this spin system.

To estimate the quality of this approach to the problem, Finally, an additional argument, supporting the existence
the ground-state energy, the squared magnetization, the casf the NLRO order, is presented in Fig. 4 which shows the
relation function for the highest distance in the cluster, andextrapolation of the spin gap to the thermodynamic limit
the spin gap were calculated by the direct diagonalizatiomccording to the relation A(N)=A,.+dN"! with
and, in addition, the variational approach described aboveA .= —0.0260 andd=6.514. Note that the value df is
The results for some clusters on different bipartite lattices argonsistent with the leading-order spin-wave réSuior the
collected and compared in Table I. Notice that for all clusterinite-lattice energy gapA(N)=2zN"+ ..., wherez is
considered in this paper periodic boundary conditions weréhe number of nearest neighbors. Keeping in mind the ten-
used. In the variational approach all the base functions of th@ency of the variational method to the underestimation of the

§=0 subspace were taken into account. From Table | Ongpin gap one can regard the ground state as being gapless_
can see that this variational method overestimates a little bit

the tendency towards LRO—the variational value$ and

the correlations are bigger than the exact ones and the varia- IV. SUMMARY

tional values of the spin gap are smaller than the exact ones.

Now, let us take into account larger clusters. The varia- In this paper, the first investigation of the ground state of
tional results for 48-, 108-, and 192-spin clusters are colthe Heisenberg Spik- system on square-hexagonal-
lected in Table Il and the finite-size analysis is presented irdodecagonal lattice is presented. The calculated valueg of
Figs. 2—4. It has also been checked that the energy minimurand A,, seem to be evidence for the existence of two-
for the lattice of 108 spins is attained for values of the varia-sublattice Nel long-range magnetic order in this system.
tional parameter& o= —2.77,K,g=—2.85, ando=1.17,  This result can also be regarded as an argument supporting a
different but very slightly from those for 48 spins, so it was very simple conjecture concerning the existence of the mag-
decided to keep them unchanged in the calculations for thaetic NLRO in the ground state of the Heisenberg antiferro-
192-spin cluster. magnets on uniform lattices, however further studies, espe-

One can assume that the leading term of the finite-sizeially for even-odd lattices, supportingor noY this
correction of the ground-state energy per bdhdesulting  conjecture are required.
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