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Ground state of the spin-12 Heisenberg antiferromagnet on a two-dimensional
square-hexagonal-dodecagonal lattice
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Up to now, the existence of the magnetic Ne´el long-range order~NLRO! in nearest-neighbor, spin-1
2

antiferromagnetic~AF! lattice systems has been examined for seven of the 11 existing, two-dimensional,
uniform lattices. Plaquettes forming these uniform~Archimedean! lattices~e.g., square, triangular,kagome´! are
different regular polygons. An investigation of the NLRO in the ground state of AF spin systems on the eighth
uniform ~bipartite! lattice consisting of squares, hexagons, and dodecagons is presented. The NLRO is shown
to occur in this system. A simple conjecture concerning the existence of the NLRO in the ground state of
antiferromagnetic, spin-1

2 systems on two-dimensional, Archimedean lattices, is formulated.
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I. INTRODUCTION

Despite great progress~stimulated originally by the dis-
covery of high-Tc superconductivity!, made recently in the
understanding of the nature of the ground state of quan
Heisenberg antiferromagnets for low values of spin variab
on two-dimensional lattices, the problem is far from bei
solved. The basic question, if there exists Ne´el long-range
order ~NLRO! in the ground state of an antiferromagne
spin-12 system on a given lattice is still not completely a
swered. In fact, a subtle interplay between quantum effe
and lattice effects~rather difficult to deal with!, may lead to
nontrivial properties of the ground state. We restrict now o
attention to the most simple case of a spin system with eq
antiferromagnetic, nearest-neighbor interactions:

H5(
^ i , j &

SW i•SW j . ~1!

The natural way to represent this kind of spin system is
put the spins onto vortices of a so-called unifor
~Archimedean! lattice and to assign the antiferromagne
spin-spin interactions along the lines connecting the nea
spins.Uniform means that all polygons of the smallest ar
built from nearest-neighbor interactions~plaquettes! are
regular, and consequently, each lattice site has the same
environment. For example, in the case of akagome´ lattice
there exist two kinds of such polygons: triangles and he
gons. Up to now, the problem of the eventual existence
the NLRO in a spin-12 system residing on a uniform lattic
has been investigated for seven uniform lattices only. Le
summarize the results of those investigations. First, we t
into accountunfrustrated lattices. In the case of square1

honeycomb,2 and CaVO~Ref. 3! lattices there exists a we
grounded opinion that the ground state is Ne´el-like ordered.
For frustrated lattices, however, the situation is more com
plicated. There exists three sublattice magnetic order in
spin-12 system on the triangular lattice4–7 which probably
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m
s

ts

r
al,

o

st

cal

-
f

s
e

e

does not exist in the case ofkagome´ lattice.8 For the zig-zag-
ladder lattice9 there seems to exist an incommensurate sp
order. The most complicated situation is for the model e
amined by Shastry and Sutherland10 and more recently by
Albrecht and Mila11 which corresponds to a Heisenberg a
tiferromagnet on an uniform lattice forJ15J2 ~notation
taken from Ref. 11!. In that case spin-wave theory gives
disordered ground state, whereas Schwinger-boson m
field theory predicts NLRO. However, forJ2 /J1'1.1 NLRO
becomes unstable and gives way to spiral order.11

We formulate now the simple conjecture which seems
apply to the problem of the NLRO in the ground state
spin-12 systems with nearest-neighbor interactions on u
form lattices. At first, however, let us classify all investigat
~so far! uniform lattices according to the number of edges
polygons of the smallest area bound by the nearest-neig
interactions. There exist three possible cases:~i! only even
polygons~i.e., with an even number of edges! are present,
e.g., square lattice indicated by squares, honeycomb la

FIG. 1. SHD ~square-hexagonal-dodecagonal! lattice. The
fourth uniform, even, bipartite lattice. Sublattices are marked
circles and squares. Spins residing on the A sublattice interact
with its nearest neighbors from the B sublattice. The 48-spin clu
used in calculations is also marked. Other clusters have the s
shape.
107 ©1999 The American Physical Society
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TABLE I. Comparison between exact and variational results for finite clusters for different bip
lattices. All the variational results were obtained in three parameter spaceKAA ,KAB ,s.

Linear chain
18-spin cluster

Honeycomb lattice
18-spin cluster

CaVO lattice
16-spin cluster

SHD lattice
12-spin cluster

Ground state Exact 20.4457 20.3740 20.3800 20.3850
energy, per bond variational 20.4450 20.3698 20.3733 20.3803
m2 Exact 0.1851 0.2481 0.2504 0.2913

variational 0.1859 0.2509 0.2616 0.2979
Correlation for largest Exact 0.0859 0.1655 0.1468 0.1924
distance in cluster variational 0.0752 0.1714 0.1724 0.2032
Gap Exact 0.241 0.394 0.446 0.568

variational 0.241 0.323 0.378 0.519
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indicated by hexagons, CaVO lattice3 indicated by squares
and octagons. Call those lattices the even ones.~ii ! Only odd
polygons are present, triangular lattice indicated by triang
This is the only one odd lattice and~iii ! even and odd poly-
gons are present, e.g.,kagome´ lattice indicated by hexagon
and triangles, zig-zag-ladder lattice9 and Shastry-Sutherlan
lattice10 indicated by squares and triangles. Those are ev
odd lattices. The above classification allows one to formu
the following conjecture: the antiferromagnetic spin-1

2 sys-
tem on an even-odd lattice has no NLRO in its ground st
If the lattice is evenor odd, then the ground state is Ne´el-like
ordered.

The aim of this paper is to report an additional exam
which does support this conjecture. This example conce
the spin-12 system located on the last possible, yet not inv
tigated, even square-hexagonal-dodecagonal~SHD! lattice,
see Fig. 1. Note that there exist only four even, one odd,
six even-odd uniform~Archimedean! lattices.

II. METHOD

To answer the question about the NLRO in the grou
state of the spin system on thebipartite lattice from Fig. 1 a
variational approach developed by Huse and Elser12 and im-
proved later to restore theSx,Sy symmetry by Carneiro,
Kong, and Swendsen13 was applied. It was also shown th
within this method one can obtain reliable results for bo
magnetically Ne´el ordered and disordered systems.12,14 Let
us remind the reader of the basic points of this method.
the beginning, the variational wave function is expanded i
the complete set of Ising statesua& in the subspace of tota
Sz50:

TABLE II. The ground-state energy, the squared sublattice m
netization, the energy of the first excitationE1 and the spin gap for
some clusters on SHD lattice. In the case of the 12-spin cluste
values were obtained in the wholeSz50 sector, for bigger clusters
the Monte Carlo method was applied. Statistical errors, in paren
ses, are the last digit.

N E0 /bond m2 E1 E12E0

12 20.3803 0.2979 26.3285 0.519
48 20.3628~4! 0.1743~8! 226.01460.019 0.10760.038

108 20.3614~2! 0.1476~6! 258.50660.034 0.04260.060
192 20.3609~2! 0.1384~5! 2103.94860.019 0.00360.080
s.
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expS 1

2
H̃ D ua& , ~2!

and the operatorH̃, diagonal in that base is defined as

H̃52p i S (
i PB

1

2
2Si

zD 1(
i , j

K~r i j !Si
zSj

z . ~3!

The first term produces a proper sign~phase! for a given
stateua& ~the first sum runs over spins belonging to theB
sublattice! whereas the second one, taking into account i
variational way the long-range correlations in the spin s
tem, gives the value of the amplitude for that state. The s
ond sum runs over all possible pairs of spins. The next s
of this method is to find a minimum of the ground-sta
energy^CuHuC&/^CuC& with respect to parametersK(r i j )
and, subsequently, to calculate for thoseK(r i j ) the expecta-
tion values of the operators which characterize the LRO
the ground state of a given spin system. In the case of sm
clusters this can be accomplished by taking into account
whole subspace of Ising states, in the case of larger one
within a Monte Carlo approach.12,13Finally, those values are
extrapolated to the thermodynamic limit.

Actually, two expectation values of such operators we
calculated: the squared sublattice magnetization and, w
is new within this approach, the spin gap, i.e.,E12E0 ,
whereE0 and E1 stand for the ground-state energy~sector
Sz50) and the energy with one flipped spin~sector
Sz51), respectively.

FIG. 2. Energy per bond for the spin system on the SHD latt
as a function ofN23/2.
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How to choose the variational parametersK(r i j ) in Eq.
~3! for the bipartite SHD lattice? Several choices of the p
rameter space were tested in variational calculations done
spin systems on finite clusters of other bipartite lattices:
18 spins on the linear chain and on the honeycomb latt
for 16 spins on the CaVO lattice and for 12 spins on the S
lattice. The wholeSz50 basis in expansion~2! was taken
into account. The minimal value of the variance of t
ground-state energy has been obtained in all cases in t
parameter space: (KAA ,KAB ,s). It means that K(r i j )
5KAA /r s when spins at the distancer i j belong to the same
sublattice,K(r i j )5KAB /r s otherwise, andr i j is the Manhat-
tan metric~the shortest path over bonds!, instead of the com-
monly used Euclidean one. Henceforth, all expectation v
ues of the operators are calculated for the latter choice of
variational parameters.

III. RESULTS

To estimate the quality of this approach to the proble
the ground-state energy, the squared magnetization, the
relation function for the highest distance in the cluster, a
the spin gap were calculated by the direct diagonaliza
and, in addition, the variational approach described abo
The results for some clusters on different bipartite lattices
collected and compared in Table I. Notice that for all clust
considered in this paper periodic boundary conditions w
used. In the variational approach all the base functions of
Sz50 subspace were taken into account. From Table I
can see that this variational method overestimates a little
the tendency towards LRO—the variational valuesm2 and
the correlations are bigger than the exact ones and the v
tional values of the spin gap are smaller than the exact o

Now, let us take into account larger clusters. The va
tional results for 48-, 108-, and 192-spin clusters are c
lected in Table II and the finite-size analysis is presented
Figs. 2–4. It has also been checked that the energy minim
for the lattice of 108 spins is attained for values of the var
tional parametersKAA522.77,KAB522.85, ands51.17,
different but very slightly from those for 48 spins, so it w
decided to keep them unchanged in the calculations for
192-spin cluster.

One can assume that the leading term of the finite-s
correction of the ground-state energy per bondE resulting

FIG. 3. Plot of them2 as a function ofN21/2. Squares indicate
values obtained by applying the variational method. The stra
line is fit to the squares. Sizes of squares are comparable to the
bars.
-
for
r
e,
D

ree

l-
he

,
or-
d
n
e.
re
s
e
e
e
it

ia-
s.
-
l-
in
m
-

e

e

from the cutoff of the long-wavelength magnons which a
linear ink, is, like in the case of other translationally invar
ant systems,N23/2. The data from Table II can be fitted t
this dependence and hence the energy per bond,E` in the
thermodynamic limit is obtained:E(N)5E`1aN23/2 with
E`520.3605 anda520.8200. This dependence is show
in Fig. 2. Using in the fitting only the data for 48, 108, an
192 spins one obtainsE`520.3607, and practically the
same value ofE` gives a fit to the formulaE(N)5E`

1a8N23/21bN22.
In Fig. 3 the order parameter squared as a function of

system sizeN21/2 is depicted. The square of order parame
should scale asN21/2, therefore, for smallN, corrections of
higher orders may be important. Thus we decided to t
into account only the data forN548, 108, and 192 spins in
the extrapolation. This leads to the following form for th
square of sublattice magnetization as a function
N: m2(N)5m`

2 1cN21/2 with m`
2 50.1007 andc50.5058.

One can conclude that the long-range magnetic order per
in the ground state of this spin system.

Finally, an additional argument, supporting the existen
of the NLRO order, is presented in Fig. 4 which shows t
extrapolation of the spin gap to the thermodynamic lim
according to the relation D(N)5D`1dN21 with
D`520.0260 andd56.514. Note that the value ofd is
consistent with the leading-order spin-wave result15 for the
finite-lattice energy gap:D(N)52zN211 . . . , where z is
the number of nearest neighbors. Keeping in mind the t
dency of the variational method to the underestimation of
spin gap one can regard the ground state as being gaple

IV. SUMMARY

In this paper, the first investigation of the ground state
the Heisenberg spin-1

2 system on square-hexagona
dodecagonal lattice is presented. The calculated values om`

2

and D` seem to be evidence for the existence of tw
sublattice Ne´el long-range magnetic order in this system
This result can also be regarded as an argument support
very simple conjecture concerning the existence of the m
netic NLRO in the ground state of the Heisenberg antifer
magnets on uniform lattices, however further studies, es
cially for even-odd lattices, supporting~or not! this
conjecture are required.

t
ror

FIG. 4. Plot of the spin-gapD5E12E0 vs 1/N. Errors result
from adding the errors forE0 andE1 .
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