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Density-matrix renormalization group for a gapless system of free fermions

Martin Andersson, Magnus Boman, and Stellan O¨ stlund
Institute of Theoretical Physics, Chalmers University of Technology and Go¨teborg University, S-412 96 Go¨teborg, Sweden

~Received 22 September 1998!

We investigate convergence of the density-matrix renormalization group~DMRG! in the thermodynamic
limit for gapless systems. Although the DMRG correlations always decay exponentially in the thermodynamic
limit, the correlation length at the DMRG fixed-point scales asj;m1.3, wherem is the number of kept states,
indicating the existence of algebraic order for the exact system. The single-particle excitation spectrum is
calculated, using a Bloch-wave ansatz, and we prove that the Bloch-wave ansatz leads to the symmetry
E(k)5E(p2k) for translationally invariant half-integer spin-systems with local interactions. Finally, we
provide a method to compute overlaps between ground states obtained from different DMRG calculations.
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I. INTRODUCTION

Since White constructed the density-matrix renormali
tion group ~DMRG! technique about five years ago,1,2 nu-
merical renormalization techniques have become very use
The DMRG has by now been applied to a wide range
different problems beyond quantum spin systems, wher
was originally used. Today, people use it to compute,
instance, properties of two-dimensional classical latt
systems,3 thermodynamics of one-dimensional quantu
systems,4 etc. The DMRG and matrix product states5–10have
proven to be computationally very efficient and to determ
properties of many systems with unusually high accurac

This paper aims at a better understanding of the unde
ing structure and the fundamental limitations of the DMR
It has been reported that the DMRG is less accurate for g
less systems than for gapped systems.2,11,12 This has moti-
vated us to analyze the DMRG of gapless systems in m
detail, which we do in two steps: first, we investigate t
correlation functions~which pertain to the wave function!,
and second, we study the excitation spectrum. We have
sen to study free fermions on a one-dimensional lattice a
paradigm of gapless systems.

In this work, we show that the DMRG of a gapless syst
converges, for each choice of the number of kept states,
fixed point. The corresponding correlation functions are c
culated by using an eigenvalue technique,13,14and the results
show that this fixed point describes with increasing accur
the exact system. In particular, we address the questio
how the DMRG handles algebraic correlations~infinite cor-
relation lengths!, which is characteristic of gapless system
in contrast to gapped systems having finite correlat
lengths and determine a scaling formula for how the DMR
correlation length depends on the number of kept states
DMRG applications, this scaling formula may serve as
guide for how many states that are necessary to keep in o
to accurately calculate correlations. We perform calculati
for the particle-hole and the density-density correlation fu
tions. In addition, we derive conditions for which types
operators that can give truly long-range DMRG correlatio
By introducing a gap, we also investigate how the DMR
PRB 590163-1829/99/59~16!/10493~11!/$15.00
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correlation lengths change as the critical point~free fermi-
ons! is approached.

A matrix product Bloch-wave ansatz has been propo
for describing the excited states13,14 of a system. In this pa-
per, we have used the Bloch-wave ansatz to calculate
excitation spectrum. In particular, we look at the spectr
close to the Fermi points, where the gap closes. Furtherm
it was recently shown15 that many half-integer spin system
have the symmetryE(k)5E(p2k). We prove that this
symmetry is inherent also in the Bloch-wave ansatz.

In DMRG calculations, it is important to check conve
gence with respect to the only source of error~except from
round off errors!, namely the truncation of the Hilbert spac
A commonly used measure of the truncation error is the tr
cation of the density matrix.1,2 However, that measure is a
gorithm dependent and therefore not universal. It would
desirable to instead calculate and use the overlap betw
states from different DMRG calculations as a measure. T
problem is then that the states will refer to differently reno
malized Hilbert spaces. In this work, we demonstrate h
the matrix product formalism can be used to handle t
problem.

The organization of the paper is as follows: the system
have studied is defined in Sec. II A; a brief introduction
matrix product states and the Bloch-wave ansatz is give
Sec. II B; we describe how we calculate correlation functio
and overlaps in Secs. II C and II D; computational metho
are outlined in Sec. II E. The results are presented and
cussed in Sec. III: convergence of the projection operator~to
a fixed point! and of the ground state is demonstrated in S
III A; correlation functions and the scaling formula a
treated in Sec. III B; Appendix A contains an important r
sult for the determination of correlation lengths in a ferm
onic system; conditions for true long-range correlations
derived in Appendix B; the excitation spectra is presented
Sec. III C and a proof of the symmetry of the spectra is giv
in Appendix C. Finally, the results and conclusions are su
marized in Sec. IV.

II. METHODOLOGY

A. Hamiltonian

We have studied a system of noninteracting spinless
mions on a one-dimensional lattice. The Hamiltonian is
10 493 ©1999 The American Physical Society
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H52
t

2(
j 51

N

@cj
†cj 111H.c.#1e(

j 51

N

~21! j cj
†cj , ~1!

whereN is the size of the lattice,cj
† creates a fermion on sit

j, and t is the hopping amplitude16 (t52 throughout this
work!. We have added a staggered on-site potentiale to the
lattice since we want to compare DMRG of the gapless s
tem (e50) to that of gapped systems (eÞ0). The simple
Hamiltonian gives us the advantage of having access to e
solutions when evaluating the DMRG. In the remaining p
of this section, we will state exact results used in our ana
sis.

The Hamiltonian is particle-number conserving and is
variant under the transformationcj→(21) j cj 11

† for all e. In
addition, whene50, the Hamiltonian has particle-hole sym
metry, i.e., it is invariant under the transformation

cj→~21! j cj
† .

We will only consider chains of lengthN54n12 in or-
der to have a unique ground state, which corresponds
half-filled system.17 The gap between the valence band a
the conduction band at the Fermi points is 2ueu. The corre-
lation functionsC( l ) decay algebraically for the gapless sy
tem and exponentially for a gapped system. Whene50 we
have

Cph~ l !5^cj
†cj 1 l&5

1

p l
sinp l /2, ~2!

and

Cdd~ l !5^njnj 1 l&2^nj&^nj 1 l&52
1

p2l 2
sin2p l /2 ~3!

for the particle-hole and density-density correlation functio
respectively, wherenj5cj

†cj .
When eÞ0, the correlation length for the ground-sta

particle-hole correlation function can be calculat
analytically18 to be

jph~ t,e!5
1

ln@e/t1A11~e/t !2#
. ~4!

Similarly, the exact density-density correlation length
given byjdd5jph/2.

Finally, we note that there is a well known connection
spin systems. We associate a spin-1/2 with each site in
lattice and consider an occupied site as spin up and an em
site as spin down. Using the spin raising and lowering
erators we may rewrite the Hamiltonian~after a Jordan-
Wigner transformation! as

H52
t

2(
j 51

N

@Sj
1Sj 11

2 1H.c.#1e(
j 51

N

~21! j~Sj
z11/2!

52t(
j 51

N

@Sj
xSj 11

x 1Sj
ySj 11

y #1e(
j 51

N

~21! j~Sj
z11/2!,

~5!
s-

ct
t
-

-

a
d

s

he
ty
-

where as usualS65Sx6 iSy. The number operatornj in
fermionic terminology is identified asSj

z11/2 in the spin
terminology.

B. Matrix product states

We refer to previous work13,14 for a derivation of the an-
satz and for details concerning the calculations in this s
tion. A general matrix product state takes the form

uQ)N5(
$sj %

tr~QA@sN#•••A@s1# !3usN•••s1&, ~6!

whereQ is anm3m matrix containing the boundary cond
tions on the chain,A@s# is an m3m projection matrix ob-
tained either from a DMRG calculation or variationally, an
sj is the quantum number associated with sitej. The projec-
tion matrix A contains the information about which states
keep when the lattice is augmented with one site. The nu
ber of degrees of freedom inA is reduced by preservation o
orthonormal bases:(sA@s#A†@s#51. Further reduction of
the number of free parameters is possible by exploiting sy
metries of the system. In our variational calculations we ha
used particle-hole symmetry and conservation of the num
of particles. Generally, the projection matrixA@s# is built up
from states that form irreducible representations of the sy
metry group of the Hamiltonian.

In terms of the spin Hamiltonian Eq.~5!, each factorA@s#
in Eq. ~6! adds a spin-1/2, hence taking a half-integer~hi!
total spin into an integer i total spin and vice versa. Th
implies that we can define our projection matrixA with an
off-diagonal block structure

A@s#5S 0 Ahi→i@s#

Ai→hi@s# 0 D . ~7!

It is convenient to introduce the following mapping, d
notedˆ, from a locals3s matrix M to anm23m2 matrix M̂ :

M̂5(
s8,s

Ms8,sA* @s8# ^ A@s#. ~8!

Just using the block structure ofA@s#, one can show19 that
the eigenvalues of an operatorM̂ appear in pairs6l. We
will frequently interpret the eigenvectors ofM̂ ~of length
m2) as matrices of sizem3m.

The matrix 1̂, i.e., the ˆ image of the identity matrix,
plays an important role in the theory. Since 1ˆ is guaranteed
to have an eigenvalue of 1, due to the orthonormalizat
condition, there also exists an eigenvalue21. The block
structure of the projection matrix also implies that there m
occur eigenvalues due to mixing of the integer and ha
integer representations. However, these eigenvalues are
rious ~unphysical!, in the sense that they do not affect th
correlation functions, and can be removed simply by wo
ing with two different A matrices formed of the two off-
diagonal blocks in Eq.~7!. For this reason we leave thes
spurious eigenvalues aside in the subsequent discussion

For a translationally invariant system Eq.~6! can be gen-
eralized to a Bloch-wave ansatz:
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uQ,k)N5 (
j ,$s%

ei jk tr~A@sN#•••A@sj 11#Q•••A@s1# !

3usN•••s1&, ~9!

wherek is the momentum.
The ground state of our model is translationally invaria

This implies that the matrixQ in Eq. ~6! should satisfy
†Q,A@s#‡50 for all s, or equivalently,Q must be a general
ized right eigenvector20 of 1̂ with corresponding eigenvalu
1. Provided that this eigenvalue is nondegenerate, this m
thatQ;1m and hence our ground-state ansatz takes the f

u1)N5(
$sj %

tr~A@sN#•••A@s1# !3usN•••s1&. ~10!

Note that if we use a different sign convention in t
Hamiltonian16 the ground state would have momentump
and hence we would have to choose aQ that anticommutes
with A@s#,$Q,A@s#%50 for all s. From this it follows that
we must chooseQ as the generalized~right! eigenvector cor-
responding to the eigenvalue21 of 1̂. Let us denote this
generalized eigenvector byR for future purposes. This indi
cates thatR is associated with momentump. Further evi-
dence for this is given in connection to the discussion of
single-particle excitation spectrum, see Sec. III C.

C. Correlation functions

Suppose we want to compute the ground-state correla
function C( l ) between two local operatorsM j

1 and M j 1 l
2

acting on sitesj and j 1 l , respectively. Since we are workin
with a fermionic model it is necessary to distinguish betwe
local operators depending on whether they commute or a
commute on different sites. We refer to these operators
bosonic and fermionic, respectively. For example,
density-density correlation is expressed in terms of t
bosonic operators, while the particle-hole correlation is
pressed in terms of two fermionic operators. We will use
superscriptsB andF to denote bosonic and fermionic oper
tors, respectively. For bosonic operators the correlation fu
tion is given by

C~ l !5^M j
B1M j 1 l

B2 &5~1u1!21tr@M̂B11̂l 21M̂B21̂N2 l 21#.
~11!

If we instead are interested in a correlation function betw
fermionic operators, we have to keep track of the numbe
fermions between the sitesj and j 1 l in order to get the
phases correct. DefiningF as the diagonal matrix

F5S 21 0

0 1D , ~12!

we find the expression to be

C~ l !5^M j
F1M j 1 l

F2 &5~1u1!21tr@M̂F1F̂ l 21M̂F21̂N2 l 21#.
~13!

Equations~11! and~13! imply14 that in general a correla
tion function takes the analytical form
.
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C~ l !5(
i 51

m2

a i S l i

ul i u
D l

exp@2 l /j i #, ~14!

wherej i521/lnuliu, andl i are the eigenvalues of 1ˆ or F̂,
depending on the statistics of the operators. Thea i ’s are
coefficients that depend on the operators in the correla
function. Thus, the eigenvaluesl i determine the possible
correlation lengths in the system and it is therefore import
to investigate the spectrum of 1ˆ and F̂. Eigenvalues that
fulfill ul i u51 can potentially give rise to true long-rang
order. Due to normalization, 1ˆ is guaranteed to have eigen
values61, which potentially could give long-range order
the bosonic correlation functions. In Appendix A we sho
that the spectrum ofF̂ differs from that of 1ˆ only by a factor
i. Hence, fermionic and bosonic operators have the same
of possible correlation lengths, which means thatF̂ has ei-
genvalues6 i and these can give rise to true long-range or
in the fermionic correlation functions. Finally, we note th
negative and imaginary eigenvalues correspond to oscilla
correlation functions.

D. Overlap of DMRG states

Suppose we perform two different DMRG calculation
keeping m and m8 states, respectively. The overla
N(1mu1m8)N , where u1m8)N is the normalized ground stat
obtained by keepingm8 states etc., can be computed as f
lows:

N~1mu1m8!N5tr@ 1̂m,m8
N

#5 (
i 51

mm8

l i
N , ~15!

where we have defined the mixed (mm8)3(mm8) matrix
1̂m,m8 as

1̂m,m85(
s

Am* @s# ^ Am8@s#, ~16!

and thel i ’s are the eigenvalues of the matrix 1ˆ
m,m8 . Note

that this overlap would be difficult to compute without th
matrix product formalism since we have no mapping b
tween the different basis states of the two DMRG calcu
tions due to renormalization. In contrast, all matrix produ
states are formulated in terms of the fixed$usN•••s1&% basis
~rather than renormalized basis sets!, with the projection ma-
trix just providing the amplitudes.

Using Eq.~15!, we find that for large chain lengthsN, the
overlap is

N~1mu1m8!N.lN, ~17!

where l is the ~in absolute value! leading eigenvalue of
1̂m,m8 . The overlap between DMRG states for different nu
ber of kept states gives a measure of the gain in accu
obtained by increasing the number of kept states. So far,
gain in accuracy has often been described by the weigh
the truncated density matrix, trre .12tr re is then inter-
preted as the error introduced in a single DMRG iteratio
while (trre)

N is considered a measure of the accumula
weight afterN iterations. We note that the structure of th
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accumulated weight is identical to that of the overlap in E
~17!, and that 12l is the loss in overlap due to the trunc
tion in a single iteration.

One advantage of using 12l rather than 12tr re as a
measure of the error is that the overlap measure has a w
defined reference state, whereas the truncation error of
density matrix is computed with respect to an approxim
target state obtained in terms of states from the previ
iteration.

Moreover, we consider the 12l measure to be more un
versal than the truncation of the density matrix, 12tr re .
First, the truncation error of the density matrix is algorith
dependent. For example, the error estimate 12tr re can be
made equal to zero,2 despite the fact that an exact calculati
is not performed, simply by using a superblock configurat

In contrast, the 12l measure depends only on the sta
themselves, and not on the method~algorithm! used to obtain
the states.

Second, the truncation error of the density matrix is pe
liar to the DMRG, whereas the overlap can be calculated
other methods. This allows, in principle, for a direct com
parison of the DMRG with other methods.

However, we would like to emphasize that the overlap
not as easy to compute as the ordinary truncation error, s
it is not a by-product of the calculation.

E. Computational methods

Due to the large dimensions of 1ˆ
m,m8 , namely (mm8)

3(mm8), it becomes necessary to use iterative eigenva
routines that require no explicit construction or storage
1̂m,m8 . Moreover, 1ˆ m,m8 is nonsymmetric. We have used th
Arnoldi algorithm21 to handle these problems.

Furthermore, the computations become much more e
cient if we rewrite the operation of 1ˆ

m,m8 on an (mm8) vec-
tor v as a matrix product withv interpreted as anm3m8
matrix:

1̂m,m8v5(
s

Am* @s#vAm8
T

@s#.

In this way we only need to operate withm3m8 matrices,
and the eigenvalues of 1ˆ

m,m8 can easily be obtained. More
over, by representing the projection operator as a sparse
trix, it is possible to compute eigenvalues of 1ˆ

m,m8 where a
large number of states have been kept.

In order to calculate the projection operatorsA@s#, we
have performed standard DMRG calculations by using a
perblock of the form

the infinite lattice algorithm, and by adding a single site p
iteration to each block. When we have an on-site potentiae
present in the problem we have to keep four projection m
.
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trices in order to completely describe the system, see Fig
From these four matrices we form two projection operat
A1 and A2 taking us from positive to negative on-site p
tential and vice versa. Explicitly:

A1@s#5S 0 A1
1@s#

A2
1@s# 0 D

and

A2@s#5S 0 A1
2@s#

A2
2@s# 0 D .

In each DMRG iteration we update either the hi→i or the i
→hi matrices. When we talk about the number of kept sta
what we mean is the sum of the number of kept states in
integer and half-integer representations.

III. RESULTS AND DISCUSSION

A. Convergence of the DMRG

In this section we will discuss the convergence of t
DMRG. First, we demonstrate that the DMRG projecti
operator of the critical system converges to a fixed point, a
thus, justifying the matrix product ansatz when studying
thermodynamic limit of the DMRG. Second, we check t
convergence of the ground state with respect to the num
of kept states by using the overlap measure.

The fundamental assumption of the matrix product a
proach is that the projection matrix converges to a fix
point with respect toN, i.e., limN→`AN@s#5A@s#. In order
to show this, we define the matrix normi•imax via

iAimax5max
i , j ,s

uAi , j@s#u. ~18!

In addition, we make a consistent enumeration~with respect
to quantum numbers! and use a fixed sign convention of th
states in the system blocks. It is then easy to study the c
vergence of the projection operator by measuring the qu
tity r (N)5(iAN112ANimax1iAN2AN21imax)/2, whereN
is the number of DMRG iterations. In Fig. 2 we have show
results from such calculations. From the figure we see
the convergence of the projection operator seems to be
ponential with respect to the number of DMRG iteratio
and that the convergence rate decreases when the numb
kept states is increased. We have also found that the gro

FIG. 1. The figure shows the four projection matrices needed
describe the system. Filled disks denote sites with positive on-
potential and circles denote sites with negative on-site potentia
denotes half-integer representations andi denotes integer represen
tation.
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state energy per site converges much faster than the pr
tion matrices and is therefore not a good indicator
whether or not a fixed point has been reached.

In Table I we have presented the eigenvalues that gov
the overlap in the thermodynamic limit between grou
states obtained by keeping different numbers of states.
have chosen to write out 12l instead ofl since this gives a
more direct measure of the error. One way to use such a t
is to focus on the change in the wave function due to
addition of extra states. For example, using the table, we
that comparing the wave functions obtained by keeping
and 24 states, respectively, the difference 12l is 0.002 31,
this being a measure of the change in the wave function
to the additional 14 states. Moving on by comparing we
that the change when going from 24 to 41 states is 0.000
and so on. The relevant information here is the change in
wave function per added state. Computing this quantity fo
large number of differentm values, it might be possible to fi
these values to a functional form, which can then be use
predict how many states are needed to obtain a certain a
racy. However, since this lies beyond the scope of this
ticle, we will not deal with this question here.

B. The spectrum of 1̂ and correlation lengths

Since the DMRG projection operator converges to a fix
point, the correlation functions of the DMRG in the therm

TABLE I. Leading eigenvalues 12l, governing the overlap
between different DMRG ground-state wave functions. The num
m is the sum of the number of kept states in the integer and h
integer representations.

m 10 24 41 68

10 0 0.002 31 0.003 28 0.003 81
24 0.002 31 0 0.000 277 0.000 644
41 0.003 28 0.000 277 0 0.000 134
68 0.003 81 0.000 644 0.000 134 0

FIG. 2. The norm r (N)5(iAN112ANimax1iAN

2AN21imax)/2 is shown as a function of the number of DMR
iterations,N, for the gapless case. It is clear from the figure that
DMRG projection operator converges with respect toN. Further-
more, the convergence seems to be exponential with respectN.
The peaks in the 68 curve indicate that either the DMRG
changed the states kept in the Hilbert space basis or our sign-fi
procedure of the states has failed.
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dynamic limit are given by Eq.~14! and the correlation
lengths are determined by the eigenvalues of 1ˆ ~the correla-
tion lengths obtained fromF̂ are identical!. An analysis of
the spectrum of 1ˆ is therefore pivotal.

We have found that the eigenvalues61 are nondegener
ate, and that all the other eigenvalues fulfillulu,1. Only the
eigenvalues61 can give rise to infinite correlations length
However, it turns out that the density-density and t
particle-hole operators are orthogonal to the correspond
eigenvectors, and hence the correlation lengths will be de
mined by other eigenvalues.

An interesting question is which local operatorsM that
potentially can give true long-range order in the correlat
functions Eqs.~11! and ~13!. We show in Appendix B that
true long-range order for bosonic operators is not possibl
tr@MB#50. For fermionic operators we find that true lon
range order is not possible for off-diagonal operators. T
explains why there is no true long-range order in the dens
density and particle-hole correlation functions. The proof e
ploits that the Hamiltonian conserves the number of partic
and that it is particle-hole symmetric. If we break th
particle-hole symmetry, we are only guaranteed that
particle-hole correlation function cannot be truly long rang

Thus, the DMRG will approximate infinite correlatio
lengths by finite, and it is interesting to investigate how t
DMRG correlation lengths depend on the number of k
states and on the gap of the system.

First of all we need to identify the leading eigenvalues
F̂ and 1̂governing the particle-hole and density-density c
relations respectively. These eigenvalues can be ident
either by a matrix product calculation of the respective c
relation function, or by measuring the correlation length
rectly in the DMRG calculation. Degeneracies in the sp
trum are also instrumental in identifying the leadin
eigenvalue. For instance, if we want to compute the partic
hole correlation function, we expect this correlation
couple to an eigenvalue that is twofold degenerate since
hole-particle correlation function has an equal correlat
length. The density-density correlation function, on the ot
hand, will couple to a nondegenerate eigenvalue since th
is no symmetry related correlation function that demand
equal eigenvalue.

Using the analytical result for the correlation length giv
by Eq. ~4! together withl5exp@21/j#, we find that the
exact expression for the eigenvalue dominating the parti
hole correlation is

lph* ~ t,e!5A11
e2

t2
2

e

t
. ~19!

The * is used to indicate that this is an exact value. T
expression will be used as a reference when we evaluate
numerical data.

In Fig. 3 our results for the particle-hole correlation leng
are shown. It is clear that as we increase the number of k
states in our truncated Hilbert space, the accuracy of
correlation length increases. For the casee50 we see that
the eigenvalueulphu approaches the exact value 1, i.e.,
infinite correlation length, as the number of states is
creased. The convergence ofulphu towards 1 is more clearly
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seen in Fig. 4, where we consider the gapless case and
12ulphu versus the number of kept states,m. Thus, we con-
clude that the DMRG gives exponentially decaying corre
tion functions in the gapless case, but as the number of s
is increased the correlation length grows towards infinity

We can actually make this conclusion more quantitati
As is seen in Fig. 4, the eigenvalueulphu behaves asulphu
.12km2b. Thus the correlation length behaves as

jph.2
1

lnu12km2bu
.

1

k
mb. ~20!

That is, the correlation length scales as a power ofm. We
find the exponentb.1.3 andk.0.45. The density-density
correlation function gives similar results.

FIG. 3. The eigenvalues ofF̂ governing the particle-hole corre
lation length vse for different numbers of kept states. The solid lin
corresponds to the exact result from Eq.~19!. From the bottom to
the top, the point sets correspond to the following numbers of k
states: 10,24,41,68. Due to numerical problems with the eigenv
routines, we cannot continue the set withm.24 to largere values.
Instead, in these cases we have computed the correlation len
directly from the DMRG correlation functions. Data points com
puted using the eigenvalue methods are indicated by diamo
while those obtained from the correlation functions are indicated
squares.

FIG. 4. Convergence of the eigenvaluel of F̂ governing the
particle-hole correlation length. In the figure we show 12ulu versus
the number of kept states,m, in the gapless (e50) case.
lot

-
tes

.

In any realistic DMRG computation, the correlation fun
tion will be given by a sum of afinite ~even if large! number
of exponentially decaying functions according to Eq.~14!.
Keeping only a few states, we have seen that the correla
function approximates the true power law@Eq. ~2!# for short
correlations, but as we increasel we eventually end up with
an exponential decay. Increasing the number of kept st
will make the correlation function look like a power law fo
rather largel, but in the end, whenl→`, it will always
behave as an exponentially decaying function with corre
tion length given by Eq.~20!.

C. The single-particle excitation spectrum

In order to study the single particle excitation spectru
we have used the Bloch-wave ansatz of Eq.~9! and the pole-
expansion technique14 to calculate the spectrum. The result
shown in Fig. 5. The curve shows a pair of excitations c
responding to a single particle/hole~or spin Sz561). We
can see that the dispersion relation obtained from the Blo
wave ansatz is in good agreement with the exact disper
E(k)5sink, except close to the Fermi points, where the g
closes. Instead of having a linear form, the calculated disp
sion relation has the formE(k).D01v0

2k2 close tok50.
Furthermore, our excitations have negative energies clos
the Fermi points, a consequence of a defect ground s
Such a negative energy gap was also found13 to appear for
the biquadratic spin-1 chain somewhere between the Hei
berg point and the Takhtajan-Babujian point. We have inv
tigated how the size of this negative energy gap depend
the number of kept states in the truncated Hilbert spa
These calculations are computationally demanding and
sensitive to numerical errors. However, the results we h
indicate that the size of the negative energy gap decreas
the number of states is increased, but the numerical con
was poor form.12.

A possible explanation of this defect ground state co
be that the DMRG has an instability of some sort. We ha
investigated whether the DMRG ate50 is unstable agains
breaking the translational symmetry of ground state by st

pt
ue

ths

s,
y

FIG. 5. Single-particle energy dispersion relationE(k). The
Bloch-wave result deviates from the exact result only close to
Fermi points. The number of kept states inm58.
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ing the DMRG calculation with a nonzero staggered on-s
potential and then, after about 20 iterations, turning the
tential off. We then let the projection operator converge a
compare it with the projection operator obtained by a DMR
calculation with the on-site potential turned off all the tim
However, the two converge to the same limit~within the
numerical accuracy! with only one exception. If we keep
three states in the integer representation and six states i
half-integer representation, we find that the DMRG is ac
ally unstable and we obtain an energetically more favora
state by breaking the translational symmetry. However, i
sufficient to add a single state in the integer representatio
order to remove this instability. In addition, we have al
performed variational calculations allowing for a grou
state with periodicity two, but the energetically lowest sta
turns out to be translationally invariant. Thus, it seems l
the DMRG is stable against forming a ground state that is
translationally invariant.

There is an interesting symmetry concerning the disp
sion relation in Fig. 5. We find that the dispersion relati
has the symmetryE(p2k)5E(k) in the thermodynamic
limit. This is in fact a consequence of the block structure
A@s#, and should therefore be a characteristic feature
many half-integer spin systems. To prove this we use thR
matrix to explicitly construct a Bloch state of momentumk
1p from a state of momentumk and show that these tw
states have equal energy. Thus, we have shown thatE(k)
5E(k1p), but this also proves thatE(k)5E(p2k) since
we have the sequence of mappings

E~k!→
P

E~2k!→
R

E~p2k!, ~21!

whereP is a parity transformation, an exact symmetry of o
model. The details of the proof can be found in Appendix
This symmetry is true in general for translationally invaria
half-integer spin systems with local interactions. As a te
we have checked numerically that it is true also for the i
tropic antiferromagnetic spin-1/2 Heisenberg chain. Furth
more, calculations on the spin-1 chain, as expected, lack
symmetry. The symmetry has recently been studied on m
general grounds by Kladko,15 without any reference to the
Bloch-wave ansatz. Similarly to our proof for the Bloc
wave ansatz, Kladko explicitly constructs a state with m
mentum k1p from a state with momentumk and then
shows that these states have equal energy.

IV. CONCLUSIONS

We have investigated fundamental properties of
DMRG when applied to a gapless system of free fermio
We find that the DMRG projection operator converges to
fixed point. This convergence means that states of a ma
product form are identical to the DMRG states in the th
modynamic limit. By using the matrix-product formalism
we have found that DMRG calculations give qualitative
wrong particle-hole and density-density correlation fun
tions: the DMRG correlations decay exponentially, while t
true correlations decay algebraically. However, for short d
tances, the DMRG correlation function agrees with the ex
e
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result. The finite correlation length of the DMRG particl
hole correlation function scales asj;m1.3, wherem is the
number of kept states. In addition, we have derived con
tions for whether a general operator potentially can give r
to truly long-range correlations or not. These conditions
found to be determined by symmetries of the Hamiltonia

We have demonstrated that the matrix product formali
can be used to calculate overlaps between differently re
malized states. This makes it possible to directly comp
states obtained from DMRG calculations, using differe
numbers of kept states. We propose this overlap as a c
rion of convergence of DMRG states.

From the matrix-product ansatz we obtain accurate val
for the ground-state energy. Furthermore, using a Blo
wave ansatz, we find a dispersion relation for the excitati
that is close to the exact result. Despite this, close to
Fermi points, where the gap closes, our excitations h
negative energies, indicating that the ground state is de
tive. We have not yet been able to trace the origin of th
negative energy excitations, although our calculations in
cate that the magnitude of this negative energy gap decre
as the number of kept states is increased. In addition,
have shown that the Bloch-wave ansatz for the excitat
spectrum exhibits the symmetryE(k)5E(p2k) for transla-
tionally invariant half-integer spin systems with local inte
actions.
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APPENDIX A: SPECTRUM OF F̂

SinceF̂ determines the possible correlation lengths of f
mionic operators, it is important to understand the eigenva
spectrum of this operator. We will in this appendix show th
the eigenvalues ofF̂ are related to those of 1ˆ by a factori.
That is,lF5 il1 . To show this, we will start by constructin
an eigenvector ofF̂ with eigenvaluei. This construction is
similar to the one used by Roma´n et al.22 We denote a block
state byug,m&, wherem is the particle number measure
from half-filling and g is an integer labeling particle-hol
representations. UsingF@s,s8#5ds,s8i

2s11 @see Eq.~12!#,
we may write the matrix elements of the operatorF̂ as

F̂ ~g28 ,m28!~g18 ,m18!,~g2 ,m2!~g1 ,m1!

5(
s

i 2~m282m2!11A~g28 ,m28!~g2 ,m2!@s#A~g18 ,m18!~g1 ,m1!@s#,

where we have used that the elementA(g8,m8),(g,m)@s# is zero
unlessm85m1s, since the projection operator conserv
the particle number. Next, we define the vect
uuF& (g2 ,m2)(g1 ,m1)5dg2 ,g1

dm2 ,m1
i 2m2. We will now show

that uuF& is an eigenvector ofF̂ with eigenvaluei. We have



th
e

q

il
iv
r a
t
al

de
o

to

e

e

tate

ry

s of
-
er
tes
n-

al

10 500 PRB 59MARTIN ANDERSSON, MAGNUS BOMAN, AND STELLAN ÖSTLUND
~ F̂uuF&) ~g28 ,m28!~g18 ,m18!

5 (
g1 ,g2

(
m1 ,m2 ,s

i 2~m282m2!11A~g28 ,m28!~g2 ,m2!@s#

3A~g18 ,m18!~g1 ,m1!@s# i 2m2dm1 ,m2
dg1 ,g2

5 i i 2m28 (
g1 ,m1 ,s

A~g28 ,m28!~g1 ,m1!@s#A~g18 ,m18!~g1 ,m1!@s#

5 i i 2m28dm
28 ,m

18
dg

28 ,g
18

5 i uuF&~g28 ,m28!~g18 ,m18!,

which proves the claim. In the third line we have used
identity (sA@s#AT@s#51. Let us now show that the entir
eigenvalue spectrum ofF̂ is related to that of 1ˆ by a factori.
First of all we note thatudetuFu51, which implies that the
inverseuF

21 exists. In factuF
215uF

† , i.e., uF is unitary. Fur-
thermore,uF satisfies the equation

iuFA@s#5F@s,s#A@s#uF , ~A1!

since this equation is equivalent toF̂uuF&5 i uuF&, as can be
seen by simply multiplying Eq.~A1! by A†@s# and summing
over s. Define the unitary operatorj5(uF ^ 1) and consider

i j1̂j†5 i ~uF ^ 1!S (
s

A@s# ^ A@s# D ~uF
†

^ 1!

5 i(
s

~uFA@s#uF
† ! ^ A@s#

5(
s

F@s,s#A@s# ^ A@s#~uFuF
†

^ 1!

5F̂.

This implies thatF̂ has exactly the same spectrum asi 1̂,
which was our claim. In the third line we have used E
~A1!.

APPENDIX B: CONDITIONS FOR TRUE LONG-RANGE
ORDER

In this appendix, we show how symmetries of the Ham
tonian determine which local operators potentially can g
true long-range order in correlation functions. In order fo
local bosonic operatorMB to give true long-range order i
must hold that at least one of the following expectation v
ues is nonzero:̂1uM̂Bu1&, ^1uM̂BuR&, and^RuM̂BuR&, where
u1& and uR& denote the eigenvectors of 1ˆ with eigenvalues 1
and 21, respectively. These expectation values will be
termined if we can determine the expectation values
A* @s# ^ A@s8# for all combinations ofs and s8. We will
frequently interpret them2 state vectorsu1& and uR& as m
3m matrices denoted by1 and R. The matrix R has the
block-form 1% 21, which implies thatR251. A subscriptL
on the matrix denotes that it represents the left eigenvec
Furthermore, we will consider the projection matrixA@s# to
be real.
e

.

-
e

-

-
f

r.

Let us start by relating different expectation values. W
have

^RuA@s# ^ A@s8#uR&

5tr~RL
TA@s#RAT@s8# !52tr~RL

TRA@s#AT@s8# !

52tr~1L
TA@s#AT@s8# !52^1uA@s# ^ A@s8#u1&,

and similarly,

^RuA@s# ^ A@s8#u1&52^1uA@s# ^ A@s8#uR&.

The indices ofA@s# correspond to different states and w
will label these states asug,m&, wherem is the particle num-
ber measured from half-filling andg is an integer labeling
particle-hole representations. The transformation of the s
ug,m& under a particle-hole transformationB is

Bug,m&5f~g,m!ug,2m&, ~B1!

where f(g,m)561. That is, the stateug,m& transforms
within the g representation of the particle-hole symmet
group. Note also thatB 251, which implies thatf is inde-
pendent ofm, sinceB 2ug,m&5f(g,m)f(g,2m)ug,m&.

We are now going to show that1L
(g8,m8),(g,m) is zero unless

m85m. To see this we write the equation^1u5^1u1̂ as

1L
~g1 ,m1!,~g2 ,m2!

5(
s

(
g3 ,g4 ,m3 ,m4

1L
~g3,m3!,~g4 ,m4!

3A~g3,m3!,~g1 ,m1!@s#A~g4 ,m4!,~g2 ,m2!@s#.

Using the fact thatA conserves the particle number~see Ap-
pendix A!, we conclude thatm12m25m32m4 . Since the
difference between them-values of 1L

(g1 ,m1),(g2 ,m2) is con-

served under the action of 1ˆ , we can write1L51L
011L

rest

where1L
0 only has nonzero matrix elements between state

equal particle number and1L
rest is the remainder, mixing par

ticle numbers. This decomposition will not be mixed und
the action of 1ˆ and hence both matrices must be eigensta
of 1̂ with eigenvalue 1. This eigenvalue is, however, no
degenerate, which means that either of1L

0 and 1L
rest is zero.

Since tr1L5^1u1&51,1L must contain1L
0 and hence1L

rest50.
This means that1L only connects states containing an equ
number of particles.

Furthermore, sinceRL51LR and R also conserves the
number of particles~it is diagonal!, we conclude thatRL
conserves the number of particles.

Let us now consider the following expectation value:

^1uA@s# ^ A@s8#u1&5tr~1L
TA@s#AT@s8# !

5 (
$g i ,mi %

~1L
T!~g1 ,m1!,~g2 ,m2!

3A~g2 ,m2!,~g3 ,m3!@s#

3A~g1 ,m1!,~g3 ,m3!@s8#.

Using particle number conservation ofA and1L we conclude
that the expectation value is zero unlesss5s8, i.e.,
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^1uA@s# ^ A@s8#u1&;ds,s8 . ~B2!

Similarly, usingRL instead of1L , one finds

^1uA@s# ^ A@s8#uR&;ds,s8 . ~B3!

To summarize, Eqs.~B2! and~B3! follow from the particle-
number conserving property of the Hamiltonian togeth
with the uniqueness of the eigenvalue 1 of 1ˆ . In the next
paragraph, we will investigate the expectation values w
s5s8. Note that the Pauli matrixs3 and1 form a complete
basis for all diagonal operatorsMB, which according to the
above results are the only operators that can give true lo
range order.

Recall the defining relation of the projection operator:

ug8,m8&5 (
~g,m!,sj

A~g8,m8!,~g,m!@sj #ug,m& ^ usj&. ~B4!

Applying the particle-hole transformation to the defining r
lation Eq.~B4!, we find thatA has the following symmetry

A~g8,m8!,~g,m!@sj #5f~g8!f~g!~21! j

3A~g8,2m8!,~g,2m!@2sj #. ~B5!

Let us write down the operator form ofA@s#,

A@sj #5 (
~g8,m8!,~g,m!

A~g8,m8!,~g,m!@sj #ug8,m8&^g,mu.

Applying a particle-hole transformation toA@s#, making use
of the symmetry Eq.~B5!, one finds that

BA@sj #B5~21! jA@2sj #. ~B6!

Using the definition of 1ˆ we find the transformation propert
of 1̂ under particle-hole transformations,

~B^B!(
s

A@s# ^ A@s#~B^B!5(
s

A@2s# ^ A@2s#.

That is, 1̂ is invariant under particle-hole transformation
Let us also consider the transformation ofŝ3 , wheres3 is a
Pauli matrix. Using exactly the same technique, we find t
(B^B)ŝ3(B^B)52ŝ3 .

^1u and ^1u(B^B) must both have eigenvalue 1 of 1ˆ ,
since 1̂ is invariant under particle-hole transformations. U
ing the nondegeneracy of this eigenvalue, we conclude
^1u(B^B)5e2 iu^1u and similarly (B^B)u1&5eiuu1&.

Let us now compute the expectation value ofŝ3 ,

^1uŝ3u1&5^1u~B^B!2ŝ3~B^B!2u1&52^1uŝ3u1&,

and thuŝ 1uŝ3u1&50. Since^1u1̂u1&51 we arrive at

^1uA@s# ^ A@s8#u1&52^RuA@s# ^ A@s8#uR&5 1
2 ds,s8 .

~B7!

It only remains to consider expectation values of 1ˆ andŝ3

between^1u and uR&. Trivially, ^1u1̂uR&50, since^1u and
uR& are eigenvectors of 1ˆ with different eigenvalues. Using
the structure ofu1& and uR&, let us show that they mus
r

n

g-

-

.

t

-
at

transform with the same phase factor. Noting thatB must be
block diagonal, it follows that@B,R#50. Assuming (B
^B)u1&5BB T5eiuu1& we find

~B^B!uR&5BRB T5RBB T5Reiu15eiuuR&.

Using this property we find

^1uŝ3uR&52^1uŝ3uR&50

and we conclude that

^1uA@s# ^ A@s8#uR&52^RuA@s# ^ A@s8#u1&50. ~B8!

Using the derived expressions for the expectation valu
a general bosonic operatorM̂B can couple to the eigenstate
with corresponding eigenvalues61 only if tr MBÞ0. In par-
ticular, the density-density correlation function cannot
truly long range when the Hamiltonian has particle-ho
symmetry and conserves the number of particles.

Let us also investigate correlation functions between f
mionic operators,MF, in order to be able to draw conclu
sions concerning the particle-hole correlation function. W
will only show that off-diagonal fermionic operators cann
give rise to truly long-range correlation functions. From E
~13! we see that true long-range order is possible only
some expectation value of the form̂1uŜ1uuF& is nonzero;
that is, Ŝ1 must connect eigenstates of 1ˆ and F̂ with the
corresponding eigenvalues having absolute value 1. We
now show that this is impossible due to the particle-num
conserving property ofA@s#. Note that all the important
eigenvectors are proportional todm,m8 . Hence, an expecta
tion value of the above form will be

^1uŜ1uuF&;( dm,m8dm,1/21m9dm8,21/21m-dm9,m-50,

where the second and thirdd functions come from the
particle-number conserving property ofA@s#. Thus we
cannot have true long-range order in the particle-hole co
lation function.

Note that we have not proved that the correlation funct
between two traceless fermionic operators~like s3) cannot
be long range. On the contrary, this is the structure of
string order correlation function in the spin-1 chain, which
long range.

APPENDIX C: PROOF OF THE BLOCH-STATE
SYMMETRY

In this appendix, we prove that the energy spectrum
tained from the Bloch-state ansatz exhibits the symme
E(k)5E(p2k). Since the symmetryE(k)5E(2k) follows
from parity being a good quantum number, we only need
show thatE(k)5E(k1p). The strategy used in the proof i
to construct a Bloch state of momentumk1p from a state of
momentumk and to show that expectation values of the
two states are equal in the thermodynamic limit.

Let us first recall some properties of the eigenvectorR of
1̂. We will use the convention thatuR& is anm2 vector andR
is anm3m matrix and similarly we will write the eigenvec
tor of 1̂ corresponding to the eigenvalue 1 asu1& or 1. Using
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the block-diagonal structure ofR it follows that $(1
^ R),M̂ %50 and that@(R^ R),M̂ #50 for all local operators
M.

We also need the property (R^ R)limn→`1̂n

5 limn→`1̂n. To show this we recall that all but two eigen
values of 1ˆ have absolute value less than one. The co
sponding eigenvectors will be annihilated by limn→`1̂n.
Hence we may write

lim
n→`

1̂n5u1&^1u1~21!nuR&^Ru.

If we let this operator act on a general stateuc&5( ic i u i & we
obtain

lim
n→`

1̂nuc&5c1u1&1~21!ncRuR&.

Now, if we act on the resulting vector with (R^ R), we
obtain ~now we use the matrix form of the vectors!

~R^ R! lim
n→`

1̂nuc&5~R^ R!@c1u1&1~21!ncRuR&]

5c1R1RT1~21!ncRRRRT

5c111~21!ncRR

5 lim
n→`

1̂nuc&.

Thus we have shown that (R^ R)limn→`1̂n and limn→`1̂n

act equally on a general state and hence the operators
be identical.

We are now ready to show that for all local operatorsM,
it holds that

LHS5~RQ8,kuM uRQ,k!5~Q8,k1puM uQ,k1p!5RHS,
~C1!

where LHS and RHS are left- and right-hand side, resp
tively, and the Bloch states are defined in Eq.~9!. If we apply
this result to the Hamiltonian operator and the normalizati
we obtain the result that the statesuRQ,k) and uQ,k1p)
have equal energy. That is, we have a mapping from a s
of momentumk to a state of momentumk1p with equal
energy, which proves the symmetryE(k)5E(k1p).
e

at
-

ust

c-

,

te

In order to prove Eq.~C1!, we begin by writing the Bloch
stateuRQ,k) as

uRQ,k)5 (
j ,$sj %

ei j ~k1p!

3tr~RA@sN#•••A@sj 11#Q•••A@s1# !usN•••s1&,

where we have used$R,A@s#%50 to move theR to the left
side of the trace. Thus we may write14 the left-hand side of
Eq. ~C1! as

LHS5(
j , j 8

ei j ~k1p!e2 i j 8~k1p!

3tr@~R^ R!1̂N2 j~1^ Q!1̂ j 2 l M̂ 1̂l 2 j 821~Q8* ^ 1!1̂ j 8#,

where we have assumed thatM acts on the sitel. Now, when
we go to the thermodynamic limitN→`, we will always
have a factor 1ˆ ` somewhere in the trace. If we could mov
(R^ R) through the trace until it reaches the 1ˆ ` factor, the
(R^ R) would be annihilated and we would be left with a
expression that is

(
j , j 8

ei j ~k1p!e2 i j 8~k1p!

3tr@ 1̂N2 j~1^ Q!1̂ j 2 l M̂ 1̂l 2 j 821~Q8* ^ 1!1̂ j 8#5RHS

and our proof would be complete. It turns out that it is a
ways possible to perform such a move. If the factor 1ˆ ` is not
between the factors (1^ Q) and (Q8* ^ 1), we just commute
(R^ R) through thê operators until it reaches 1ˆ ` and gets
annihilated. If the factor 1ˆ ` is between (1^ Q) and (Q8*
^ 1) we can make the split (R^ R)5(1^ R)(R^ 1) and move
these factors in different directions until they meet betwe
(1^ Q) and (Q8* ^ 1) and get annihilated by 1ˆ `. During the
movements we will pick up a factor (21) j 91(N2 j 9), and
since we are only considering chains of even length, t
factor is equal to 1. Note that the proof works even if t
operatorM does not act on a single site, but, can easily
generalized to operators describing local correlations. T
important thing is that the operator is local, so that a facto
1̂` always can be found in the trace.

This completes the proof.
ett.
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