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Density-matrix renormalization group for a gapless system of free fermions
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We investigate convergence of the density-matrix renormalization gfdMRG) in the thermodynamic
limit for gapless systems. Although the DMRG correlations always decay exponentially in the thermodynamic
limit, the correlation length at the DMRG fixed-point scalestasm' wherem is the number of kept states,
indicating the existence of algebraic order for the exact system. The single-particle excitation spectrum is
calculated, using a Bloch-wave ansatz, and we prove that the Bloch-wave ansatz leads to the symmetry
E(k)=E(m7—k) for translationally invariant half-integer spin-systems with local interactions. Finally, we
provide a method to compute overlaps between ground states obtained from different DMRG calculations.
[S0163-182699)05315-1

[. INTRODUCTION correlation lengths change as the critical pdiinee fermi-
ons is approached.
Since White constructed the density-matrix renormaliza- A matrix product Bloch-wave ansatz has been proposed
tion group (DMRG) technique about five years agdnu-  for describing the excited statés® of a system. In this pa-
merical renormalization techniques have become very usefuP®, We have used the Bloch-wave ansatz to calculate the

The DMRG has by now been applied to a wide range Oiexcitation spectrum. In particular, we look at the spectrum

different problems bevond guantum Spin svstems. where ﬁlose to the Fermi points, where the gap closes. Furthermore,
P y q pin sy ’ it was recently showh? that many half-integer spin systems

was originally use_d. Today, pe_ople use it to Co_mpute, _forhave the symmetryE(k)=E(m—k). We prove that this
instance, properties of two-dimensional classical lattic&symmetry is inherent also in the Bloch-wave ansatz.
systems, thermodynamics of one-dimensional quantum " |n DMRG calculations, it is important to check conver-
systems etc. The DMRG and matrix product state€have  gence with respect to the only source of erfexcept from
proven to be computationally very efficient and to determineround off error$, namely the truncation of the Hilbert space.
properties of many systems with unusually high accuracy. A commonly used measure of the truncation error is the trun-
This paper aims at a better understanding of the underlycation of the density matrik? However, that measure is al-

ing structure and the fundamental limitations of the DMRG.90rithm dependent and therefore not universal. It would be

It has been reported that the DMRG is less accurate for gaﬁj_esirable to instead calculate and use the overlap between

less systems than for gapped systéisi2 This has moti- states from different DMRG calculations as a measure. The

vated us to analvze the DMRG of gapless svstems in mor roblem is then that the states will refer to differently renor-
y 9ap y alized Hilbert spaces. In this work, we demonstrate how

detail, which we do in two steps: first, we investigate théhe matrix product formalism can be used to handle this
correlation functionsgwhich pertain to the wave function  proplem.

and second, we study the excitation spectrum. We have cho- The organization of the paper is as follows: the system we
sen to study free fermions on a one-dimensional lattice as Bave studied is defined in Sec. Il A; a brief introduction to
paradigm of gapless systems. matrix product states and the Bloch-wave ansatz is given in
In this work, we show that the DMRG of a gapless systemSec. Il B; we describe how we calculate correlation functions
converges, for each choice of the number of kept states, to@nd overlaps in Secs. II C and Il D; computational methods
fixed point. The corresponding correlation functions are cal&re outlined in Sec. Il E. The results are presented and dis-
culated by using an eigenvalue techniddi&*and the results  €uSSed in Sec. lII: convergence of the projection opertor
show that this fixed point describes with increasing accuracy?1 f'x_ed poin} ?”d of the_ground state is demonstrated in Sec.
the exact system. In particular, we address the question E A cqrrelauon functions a_md the s_callng .formula are
how the DMRG héndles aIgebr,aic correlatigirgfinite cor- Heated in Sec. Il B; Appendix A contains an important re-

. S gy sult for the determination of correlation lengths in a fermi-
relation lengths which is characteristic of gapless systems,,ic system; conditions for true long-range correlations are
in contrast to gapped systems having finite correlationyerived in Appendix B: the excitation spectra is presented in
lengths and determine a scaling formula for how the DMRGgec_ || C and a proof of the symmetry of the spectra is given
correlation length depends on the number of kept states. Iihy Appendix C. Finally, the results and conclusions are sum-
DMRG applications, this scaling formula may serve as amarized in Sec. IV.
guide for how many states that are necessary to keep in order
to accurately calculate correlations. We perform calculations Il. METHODOLOGY
for the particle-hole and the density-density correlation func-
tions. In addition, we derive conditions for which types of
operators that can give truly long-range DMRG correlations. We have studied a system of noninteracting spinless fer-
By introducing a gap, we also investigate how the DMRGmions on a one-dimensional lattice. The Hamiltonian is

A. Hamiltonian
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t N N _ where as usuab™=S‘*iS’. The number operaton; in
H:_EEl [c;rcj+l+ H.C.]+621 (—1)JCJ-ch, (@8] fermionic terminology is identified a§j2+ 1/2 in the spin
i= i=

terminology.
whereN is the size of the Iattic<-:c;jT creates a fermion on site _
j, andt is the hopping amplitudé (t=2 throughout this B. Matrix product states
work). We have added a staggered on-site potestial the We refer to previous worR**for a derivation of the an-

lattice since we want to compare DMRG of the gapless syssatz and for details concerning the calculations in this sec-

tem (e=0) to that of gapped system&+0). The simple tjon. A general matrix product state takes the form
Hamiltonian gives us the advantage of having access to exact

solutions when evaluating the DMRG. In the remaining part
of this section, we will state exact results used in our analy- |Q)N:{§} tr(QA[sy]- - -Alsi D) X[sy - +sp),  (6)
sis. :

The Hamiltonian is particle-number conserving and is in-whereQ is anmx m matrix containing the boundary condi-
variant under the transformaticmp—>(—1)'ch+l forall e. In  tions on the chainA[s] is anmXm projection matrix ob-
addition, whene=0, the Hamiltonian has particle-hole sym- tained either from a DMRG calculation or variationally, and

metry, i.e., it is invariant under the transformation s;j is the quantum number associated with git€he projec-
_ tion matrix A contains the information about which states to
c,-—>(—1)lch. keep when the lattice is augmented with one site. The num-

ber of degrees of freedom #is reduced by preservation of
We will only consider chains of lengtN=4n+2 in or-  orthonormal bases2 A[s]A"[s]=1. Further reduction of

der to have a unique ground state, which corresponds to the number of free parameters is possible by exploiting sym-
half-filled systemt’ The gap between the valence band andmetries of the system. In our variational calculations we have
the conduction band at the Fermi points ig|2 The corre- used particle-hole symmetry and conservation of the number
lation functionsC(l) decay algebraically for the gapless sys- of particles. Generally, the projection matéks] is built up
tem and exponentially for a gapped system. WkerD we  from states that form irreducible representations of the sym-
have metry group of the Hamiltonian.

In terms of the spin Hamiltonian E€G), each factoi\[ s]

1 . in Eq. (6) adds a spin-1/2, hence taking a half-integei)
— /et - '
Con(1)=(c;Cj+1)= _ysinml/2, @ total spin into an integer i total spin and vice versa. This
implies that we can define our projection matAxwith an
and off-diagonal block structure
C.)= — —_ 1 ieal2 (3 0 Ani—ils]
da(D =) —(n)nj)= ST ) Alsl=| A_,[s] 0 7)

for the particle-hole and density-density correlation functions ) ) ) ) )
respectively, where]j:chcj _ It is convenient to introduce the following mapping, de-

When e+0, the correlation length for the ground-state hoted , from a localsx s matrix M to anm?®x m?® matrix M:
particle-hole correlation function can be calculated

. 8 R
analytically’® to be M= M, A*[s'|9A(S]. ®
s',s
1 .
Epn(t €)= . (4) Just using the block structureAm[s], one can shot that
Inf e/t+V1+(et)?] the eigenvalues of an operatbt appear in pairstA. We
Similarly, the exact density-density correlation length isWill frequently interpret the eigenvectors & (of length
given by &gq= &pn/2. m?) as matrices of sizenxm.

Finally, we note that there is a well known connection to The matrix 7 i.e. the image of the identity matrix,

spin systems. We associate a spin-1/2 with each site in thelays an important role in the theory. Sincdslguaranteed
lattice and consider an occupied site as spin up and an empfy have an eigenvalue of 1, due to the orthonormalization
site as spin down. Using the spin raising and lowering opgondition, there also exists an eigenvaluel. The block
erators we may rewrite the Hamiltonia@fter a Jordan- structure of the projection matrix also implies that there may
Wigner transformationas occur eigenvalues due to mixing of the integer and half-
integer representations. However, these eigenvalues are spu-
rious (unphysical, in the sense that they do not affect the
correlation functions, and can be removed simply by work-
ing with two different A matrices formed of the two off-

N _ diagonal blocks in Eq(7). For this reason we leave these
=t [S'S,1+5/9, ]+e> (—1)(S+1/2), spurious eigenvalues aside in the subsequent discussion.

=1 =1 For a translationally invariant system E) can be gen-
(5) eralized to a Bloch-wave ansatz:

N N
t .
H=-22 [S/Sj,+Hel+eX (-1)/(S[+1/2)
=1 =1

N
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_ ij m? )\i I
|Q!k)N_j%} e tr(Alsy]- - - Alsj11Q- - -Als]) C(I):i:E]_ ai(m) exd —1/&], (14)

X|sn: - -s1), ©) . A a
where & = —1/In]\;|, and\; are the eigenvalues of &r F,
wherek is the momentum. depending on the statistics of the operators. Bhs are
The ground state of our model is translationally invariant.coefficients that depend on the operators in the correlation
This implies that the matriXQ in Eq. (6) should satisfy function. Thus, the eigenvalues, determine the possible
[Q,A[s]]=0 for all s, or equivalentlyQ must be a general- correlation lengths in the system and it is therefore important
ized right eigenvectdf of 1 with corresponding eigenvalue to investigate the spectrum of and F. Eigenvalues that
1. Provided that this eigenvalue is nondegenerate, this meafdlfill |[\;|=1 can potentially give rise to true long-range
thatQ~1y, and hence our ground-state ansatz takes the formgrder. Due to normalization, Is guaranteed to have eigen-
values= 1, which potentially could give long-range order in
|1)N:E tr(Alsn]- - -AlSy]) X |sy- - - 1) (10) the bosonic correIaAtior_l functions. In Aependix A we show
{s;} that the spectrum df differs from that of lonly by a factor
i. Hence, fermionic and bosonic operators have the same set
of possible correlation lengths, which means thahas ei-
genvaluesti and these can give rise to true long-range order
in the fermionic correlation functions. Finally, we note that
negative and imaginary eigenvalues correspond to oscillating
correlation functions.

Note that if we use a different sign convention in the
Hamiltoniart® the ground state would have momentum
and hence we would have to choos@adhat anticommutes
with A[s],{Q,A[s]}=0 for all s. From this it follows that
we must choos€) as the generalize@ight) eigenvector cor-

responding to the eigenvaluel of 1. Let us denote this

generalized _eigenve(_:tor l:Fjrf_or future purposes. This in_di- D. Overlap of DMRG states

cates thalR is associated with momentum. Further evi- ] )
dence for this is given in connection to the discussion of the Suppose we perform two different DMRG calculations,

single-particle excitation spectrum, see Sec. Il C. keeping m and m’ states, respectively. The overlap
N(Iml1m)n, Where|l,,)y is the normalized ground state

C. Correlation functions obtained by keepingn’ states etc., can be computed as fol-

lows:
Suppose we want to compute the ground-state correlation
function C(l) between two local operatorsl} and M?, N mim/ \
acting on siteg andj +1, respectively. Since we are working Nl I )n=t 1 1= 21 AP, (19
|:

with a fermionic model it is necessary to distinguish between

local operators depending on whether they commute or antivhere we have defined the mixeth(n') X (mm'’) matrix
commute on different sites. We refer to these operators ag .o

bosonic and fermionic, respectively. For example, the ™™
density-density correlation is expressed in terms of two ~
bosonic operators, while the particle-hole correlation is ex- Inm =2 Als]®@An(s], (16)
pressed in terms of two fermionic operators. We will use the s

superscript8 andF to denote bosonic and fermionic opera- and the\'s are the eigenvalues of the matrix, 1, . Note

tors, respectively. For bosonic operators the correlation fun(:[hat this overlap would be difficult to compute without the

tion is given by matrix product formalism since we have no mapping be-
BB e B l— 1t Ba N1 tween the different basis states of the two DMRG calcula-
C(H=(M;*M;Z)=(1[1) " tr[MP11" M= ]. tions due to renormalization. In contrast, all matrix product
(11)  states are formulated in terms of the fixgdy- - -s;)} basis
rgrather than renormalized basis 3etgith the projection ma-
%rix just providing the amplitudes.
Using Eq.(15), we find that for large chain length§ the

If we instead are interested in a correlation function betwee
fermionic operators, we have to keep track of the number o
fermions between the sitgsand j+I in order to get the

phases correct. Defining as the diagonal matrix overlap is
-1 0 N(lmllm’)N:)\N: (17)
F:( 0 1)7 12 where \ is the (in absolute valugleading eigenvalue of
_ . im,m, . The overlap between DMRG states for different num-
we find the expression to be ber of kept states gives a measure of the gain in accuracy
o obtained by increasing the number of kept states. So far, this
C(I)z(MjFleFj|>=(1|1)*1tr[MFlF'*lMF21N*'*1]. gain in accuracy has often been described by the weight of

(13)  the truncated density matrix, gg.1—trp. is then inter-
preted as the error introduced in a single DMRG iteration,
Equations(11) and(13) imply** that in general a correla- while (trpg)" is considered a measure of the accumulated
tion function takes the analytical form weight afterN iterations. We note that the structure of this
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accumulated weight is identical to that of the overlap in Eqg.

(17), and that 1\ is the loss in overlap due to the trunca- ﬁ?@.

tion in a single iteration. hi 1 hi
One advantage of using-I\ rather than *trp, as a

measure of the error is that the overlap measure has a well- VR

defined reference state, whereas the truncation error of the @I. A}' Q

density matrix is computed with respect to an approximate hi i hi

target state obtained in terms of states from the previous

. . FIG. 1. The figure shows the four projection matrices needed to
iteration.

M ider the—1\ to b . describe the system. Filled disks denote sites with positive on-site
oreover, we consiaer the measure 1o be more uni- potential and circles denote sites with negative on-site potential; hi

versal than the truncation of the density matrix; ttpe.  yenotes half-integer representations anenotes integer represen-
First, the truncation error of the density matrix is algorithm aiion.

dependent. For example, the error estimatetrlp, can be

made equal to zerbdespite the fact that an exact calculation yrices in order to completely describe the system, see Fig. 1.

is not performed, simply by using a superblock configurationeyom these four matrices we form two projection operators
A* and A~ taking us from positive to negative on-site po-

. tential and vice versa. Explicitly:
n
In contrast, the +\ measure depends only on the states A 0 AcLs]
themselves, and not on the methathorithm used to obtain A'ls]= AJ[s] 0
the states.

Second, the truncation error of the density matrix is pecuypq
liar to the DMRG, whereas the overlap can be calculated by
other methods. This allows, in principle, for a direct com- 0 Al[s]
parison of the DMRG with other methods. A [s]=| a-

However, we would like to emphasize that the overlap is Az [s] 0
not as easy to compute as the ordinary truncation error, since
it is not a by-product of the calculation. In each DMRG iteration we update either the-hior thei

—hi matrices. When we talk about the number of kept states,
E. Computational methods what we mean is the sum of the number of kept states in the
R integer and half-integer representations.
Due to the large dimensions of,},, namely fnm’)
X (mn'), it becomes necessary to use iterative eigenvalue IIl. RESULTS AND DISCUSSION
routines that require no explicit construction or storage of

1 - Moreover, 4, v is nonsymmetric. We have used the
Arnoldi algorithnf! to handle these problems. In this section we will discuss the convergence of the
Furthermore, the computations become much more effibMRG. First, we demonstrate that the DMRG projection

cient if we rewrite the operation of,1,, on an (nm’) vec-  operator of the critical system converges to a fixed point, and

tor v as a matrix product withy interpreted as amxm’  thus, justifying the matrix product ansatz when studying the
matrix: thermodynamic limit of the DMRG. Second, we check the

convergence of the ground state with respect to the number
R of kept states by using the overlap measure.
1m’m,v=2 A;[s]vA,Tn,[s]. The fundamental assumption of the matrix product ap-
s proach is that the projection matrix converges to a fixed
point with respect td\, i.e., limy_,.An[S]=A[S]. In order
to show this, we define the matrix noff||,,. via

A. Convergence of the DMRG

In this way we only need to operate withx m’ matrices,

and the eigenvalues 6fmlm, can easily be obtained. More-
over, by representing the projection operator as a sparse ma- 1Al max=maxA; [s]]- (18)

trix, it is possible to compute eigenvalues Aq;',;, where a ij.s

large number of states have been kept. . . .

In order to calculate the projection operatdis], we In addition, we make a consistent enu_merat(lmth respect
have performed standard DMRG calculations by using a sut-0 guantum nhumbeysand use a_ﬁxed sign convention of the
erblock of the form states in the system blocks. It is then easy to study the con-
P vergence of the projection operator by measuring the quan-

tity 1(N)=([An+1=Anllmaxt [AN—An-1llman/2, whereN
(B |+« [ B ] is the number of DMRG iterations. In Fig. 2 we have shown
- - results from such calculations. From the figure we see that
the convergence of the projection operator seems to be ex-
the infinite lattice algorithm, and by adding a single site perponential with respect to the number of DMRG iterations
iteration to each block. When we have an on-site poteitial and that the convergence rate decreases when the number of
present in the problem we have to keep four projection makept states is increased. We have also found that the ground-
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dynamic limit are given by Eq(14) and the correlation
lengths are determined by the eigenvalues ¢fhe correla-
tion lengths obtained fronk are identical. An analysis of

the spectrum of Is therefore pivotal.

We have found that the eigenvalugsl are nondegener-
ate, and that all the other eigenvalues fulfil|<1. Only the
eigenvaluest 1 can give rise to infinite correlations lengths.
However, it turns out that the density-density and the
particle-hole operators are orthogonal to the corresponding
eigenvectors, and hence the correlation lengths will be deter-
mined by other eigenvalues.

An interesting question is which local operatdvs that
potentially can give true long-range order in the correlation

100 200 functions Egs(11) and (13). We show in Appendix B that
DMRG iterations, N true long-range order for bosonic operators is not possible if
FIG. 2. The nom r(N)=(Ans1—Anlmaxt|Ax tf MB]=0. For fermionic operators we find that true long-

—An-1lman/2 is shown as a function of the number of DMRG range order is not possible for off-diagonal operators. This
iterations,N, for the gapless case. It is clear from the figure that theexplains why there is no true long-range order in the density-
DMRG projection operator converges with respeciNioFurther-  density and particle-hole correlation functions. The proof ex-
more, the convergence seems to be exponential with respéct to ploits that the Hamiltonian conserves the number of particles
The peaks in the 68 curve indicate that either the DMRG hasand that it is particle-hole symmetric. If we break the

changed the states kept in the Hilbert space basis or our sign-fixingarticle-hole symmetry, we are only guaranteed that the
procedure of the states has failed. particle-hole correlation function cannot be truly long range.
Thus, the DMRG will approximate infinite correlation

state energy per site converges much faster than the projeffe_ngths by finite, and it is interesting to investigate how the

I/Iv%ltrzg?tgfisotingx; ;Z?r:tefﬁgi br;o;na;eggﬁgd.mdlcator onDMRG correlation lengths depend on the number of kept
In Table | we have presented the eigenvalues that goveritat€s and on the gap of the system.

the overlap in the thermodynamic limit between ground FlrsE of all we need to identify the leading eigenvalues of
states obtained by keeping different numbers of states. Wk and 1governing the particle-hole and density-density cor-
have chosen to write outd\ instead of\ since this gives a relations respectively. These eigenvalues can be identified
more direct measure of the error. One way to use such a tabldther by a matrix product calculation of the respective cor-
is to focus on the change in the wave function due to theelation function, or by measuring the correlation length di-
addition of extra states. For example, using the table, we se®ctly in the DMRG calculation. Degeneracies in the spec-
that comparing the wave functions obtained by keeping 1rum are also instrumental in identifying the leading
and 24 states, respectively, the differenceXlis 0.00231, ejgenvalue. For instance, if we want to compute the particle-
this being a measure of the change in the wave function dugole correlation function, we expect this correlation to
to the additional 14 states. Moving on by comparing we segquple to an eigenvalue that is twofold degenerate since the
that the change when going from 24 to 41 states is 0.000 27{s|e_particle correlation function has an equal correlation
and so on. The relevant information here is the change in the,ngih The density-density correlation function, on the other
wave function per added state. Computing this quantity for 54 will couple to a nondegenerate eigenvalue since there

large number of d'fferef““ values, it m]ght be possible to fit is no symmetry related correlation function that demand an
these values to a functional form, which can then be used tgqual eigenvalue

predict how many states are needed to obtain a certain accu- Using the analytical result for the correlation length given

racy. However, since this lies beyond the scope of this ar- 9 ytical X gth g

ticle, we will not deal with this question here. by Eq. (4) together withx =ex{—1/£], we find that the
exact expression for the eigenvalue dominating the particle-

hole correlation is

% _ 62 €
)\ph(t,(:‘)— 1+ [_z_f

is used to indicate that this is an exact value. The
expression will be used as a reference when we evaluate our
numerical data.

In Fig. 3 our results for the particle-hole correlation length

B. The spectrum of 1 and correlation lengths

Since the DMRG projection operator converges to a fixed

point, the correlation functions of the DMRG in the thermo- (19)

TABLE I. Leading eigenvalues 4\, governing the overlap
between different DMRG ground-state wave functions. The numbelrl-he *
m is the sum of the number of kept states in the integer and half
integer representations.

m 10 24 4 68 are shown. It is clear that as we increase the number of kept
10 0 0.002 31 0.003 28 0.00381  states in our truncated Hilbert space, the accuracy of the
24 0.002 31 0 0.000 277 0.000644 correlation length increases. For the case0 we see that

41 0.00328 0.000 277 0 0.000134 the eigenvalué)\phl approaches the exact value 1, i.e., an
68 0.00381 0.000 644 0.000 134 0 infinite correlation length, as the number of states is in-

creased. The convergence|af,,| towards 1 is more clearly
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FIG. 3. The eigenvalues i governing the particle-hole corre-

FIG. 5. Single-particle energy dispersion relatigk). The

lation length vse for different numbers of kept states. The solid line Bloch-wave result deviates from the exact result only close to the
corresponds to the exact result from Ef9). From the bottom to  Fermi points. The number of kept statesnir= 8.

the top, the point sets correspond to the following humbers of kept

states: 10,24,41,68. Due to numerical problems with the eigenvalue o . .

routines, we cannot continue the set with- 24 to largere values. | any realistic DMRG computation, the correlation func-
Instead, in these cases we have computed the correlation lengtf@n Will be given by a sum of éinite (even if large number
directly from the DMRG correlation functions. Data points com- Of exponentially decaying functions according to Ei).
puted using the eigenvalue methods are indicated by diamond¥eeping only a few states, we have seen that the correlation
while those obtained from the correlation functions are indicated byfunction approximates the true power lq. (2)] for short

squares. correlations, but as we increabwe eventually end up with

seen in Fig. 4, where we consider the gapless case and pI%E1 exponential deca){. Increa;ing the pumber of kept states
1— [\ versus the number of kept states, Thus, we con- will make the corrglatlon function look like a power law for
clude that the DMRG gives exponentially decaying correlafather largel, but in the end, wher—ce, it will always
tion functions in the gapless case, but as the number of stat@§have as an exponentially decaying function with correla-
is increased the correlation length grows towards infinity. tion length given by Eq(20).

We can actually make this conclusion more quantitative.
As is seen in Fig. 4, the eigenvallie,,| behaves ah |

=~1—km~%. Thus the correlation length behaves as C. The single-particle excitation spectrum

In order to study the single particle excitation spectrum,
we have used the Bloch-wave ansatz of &).and the pole-
expansion techniqdéto calculate the spectrum. The result is
shown in Fig. 5. The curve shows a pair of excitations cor-
responding to a single particle/holer spin S*==*1). We
can see that the dispersion relation obtained from the Bloch-
wave ansatz is in good agreement with the exact dispersion
E(k) = sink, except close to the Fermi points, where the gap
closes. Instead of having a linear form, the calculated disper-
. sion relation has the fornE(k)=A,+v3k? close tok=0.

. Furthermore, our excitations have negative energies close to
. | the Fermi points, a consequence of a defect ground state.
Such a negative energy gap was also fddnd appear for
the biquadratic spin-1 chain somewhere between the Heisen-
berg point and the Takhtajan-Babujian point. We have inves-
tigated how the size of this negative energy gap depends on
w the number of kept states in the truncated Hilbert space.
" These calculations are computationally demanding and also
sensitive to numerical errors. However, the results we have
indicate that the size of the negative energy gap decreases as

=—-m (20
Inj1—km~#| K

That is, the correlation length scales as a powemofVe
find the exponenB=1.3 andk=0.45. The density-density
correlation function gives similar results.
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the number of states is increased, but the numerical control
was poor form>12.
A possible explanation of this defect ground state could

be that the DMRG has an instability of some sort. We have
investigated whether the DMRG at=0 is unstable against
breaking the translational symmetry of ground state by start-

FIG. 4. Convergence of the eigenvalyeof F governing the
particle-hole correlation length. In the figure we show A | versus
the number of kept states), in the gapless{=0) case.
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ing the DMRG calculation with a nonzero staggered on-sitaesult. The finite correlation length of the DMRG particle-
potential and then, after about 20 iterations, turning the pohole correlation function scales &s-m'® wherem is the
tential off. We then let the projection operator converge anchumber of kept states. In addition, we have derived condi-
compare it with the projection operator obtained by a DMRGtions for whether a general operator potentially can give rise
calculation with the on-site potential turned off all the time. to truly long-range correlations or not. These conditions are
However, the two converge to the same linitithin the  found to be determined by symmetries of the Hamiltonian.
numerical accuragywith only one exception. If we keep We have demonstrated that the matrix product formalism
three states in the integer representation and six states in tlkan be used to calculate overlaps between differently renor-
half-integer representation, we find that the DMRG is actu-malized states. This makes it possible to directly compare
ally unstable and we obtain an energetically more favorablstates obtained from DMRG calculations, using different
state by breaking the translational symmetry. However, it imumbers of kept states. We propose this overlap as a crite-
sufficient to add a single state in the integer representation irion of convergence of DMRG states.
order to remove this instability. In addition, we have also From the matrix-product ansatz we obtain accurate values
performed variational calculations allowing for a groundfor the ground-state energy. Furthermore, using a Bloch-
state with periodicity two, but the energetically lowest statewave ansatz, we find a dispersion relation for the excitations
turns out to be translationally invariant. Thus, it seems likethat is close to the exact result. Despite this, close to the
the DMRG is stable against forming a ground state that is noFermi points, where the gap closes, our excitations have
translationally invariant. negative energies, indicating that the ground state is defec-

There is an interesting symmetry concerning the dispertive. We have not yet been able to trace the origin of these
sion relation in Fig. 5. We find that the dispersion relationnegative energy excitations, although our calculations indi-
has the symmetnE(7—k)=E(k) in the thermodynamic cate that the magnitude of this negative energy gap decreases
limit. This is in fact a consequence of the block structure ofas the number of kept states is increased. In addition, we
A[s], and should therefore be a characteristic feature ohave shown that the Bloch-wave ansatz for the excitation
many half-integer spin systems. To prove this we useRhe spectrum exhibits the symmetB(k) = E(7—k) for transla-
matrix to explicitly construct a Bloch state of momentlm tionally invariant half-integer spin systems with local inter-
+ 7 from a state of momenturk and show that these two actions.
states have equal energy. Thus, we have shown Efla}
=E(k+ ), but this also proves_thﬁ(k) =E(7—Kk) since ACKNOWLEDGMENTS
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P R
E(k)—E(—k)—E(7—k), (22)

whereP is a parity transformation, an exact symmetry of our )

model. The details of the proof can be found in Appendix C. APPENDIX A: SPECTRUM OF F

This symmetry is true in general for translationally invariant . . . ) )

half-integer spin systems with local interactions. As a test, iNceF determines the possible correlation lengths of fer-
we have checked numerically that it is true also for the ispIMionic operators, it is important to understand the eigenvalue

tropic antiferromagnetic spin-1/2 Heisenberg chain. FurtherSPectrum of this operator. We will in this appendix show that
more, calculations on the spin-1 chain, as expected, lack thige eigenvalues of are related to those of fy a factori.
symmetry. The symmetry has recently been studied on mor&hat is,\g=i\1. To show this, we will start by constructing
general grounds by Kladk, without any reference to the an eigenvector of with eigenvaluei. This construction is
Bloch-wave ansatz. Similarly to our proof for the Bloch- similar to the one used by Romat al?? We denote a block
wave ansatz, Kladko explicitly constructs a state with mo-state by|y,m), wherem is the particle number measured
mentumk+7 from a state with momentunk and then from half-filling and y is an integer labeling particle-hole
shows that these states have equal energy. representations. Usin§[s,s']=ds¢i°"! [see Eq.(12)],

we may write the matrix elements of the operafoas

IV. CONCLUSIONS
} ] ) ﬁ(yé,mé)(yi,mi),(yz,mz)(n,ml)
We have investigated fundamental properties of the

DMRG when applied to a gapless system of free fermions.
We find that the DMRG projection operator converges to a
fixed point. This convergence means that states of a matrix-
product form are identical to the DMRG states in the ther-
modynamic limit. By using the matrix-product formalism,

we have found that DMRG calculations give qualitatively

= 2 i2(mé*m2)+1A()’éymé)(ﬁ’zymz)[S]A(‘)’ivmi)()’lvml)[s],
S

where we have used that the elemaft ™) (»™[s] is zero

. ) L
wrong particle-hole and density-density correlation func-unlessm =mt+s, since the projection operator conserves
the particle number. Next, we define the vector

tions: the DMRG correlations decay exponentially, while the, =\ > 7 " ) © om :
true correlations decay algebraically. However, for short disJuF> 2= 5*/2#15'“2"*11' >. We will now show
tances, the DMRG correlation function agrees with the exacthat|ug) is an eigenvector ofF with eigenvalue. We have
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(ﬁ|UF>)(7é,mé)(yi,mi) Let us start by relating different expectation values. We
have
= > jaAmrm A m)(r2m)[g] (RIA[s]®A[s']|R)

Y1,Y2 Mp.,My,S

— T Tra/7) — T Tr

XA(yi,mi)('yl,ml)[S]i2m25m m257 ' —tl’(RLA[S]RA [S ])— tr(R,_RA[S]A [S ])
1 1

= —tr(1JA[S]AT[s']) = —(1|A[S]®A[s]|1),

—ij2m; E A(Vé'mé)(yl'ml)[s]AWi~mi)(71~m1)[s]

and similarly,
Y1.Mq,S

—ii2ms ., S5, (RIA[S]®A[S']|1)=—(1|A[s]®A[Ss']|R).
My M 72"

The indices ofA[ s] correspond to different states and we
will label these states d3,m), wheremis the particle num-
which proves the claim. In the third line we have used thePer measured from half-filling angt is an integer labeling
identity SA[s]AT[s]=1. Let us now show that the entire Particle-hole representations. The transformation of the state
eigenvalue spectrum & is related to that of by a factori. | v,m) under a particle-hole transformatidhis
First of all we note thatdeug|=1, which implies that the

=i UF>()'§ mo)(y.mp)

inverseur ! exists. In facus*=u{, i.e., ur is unitary. Fur- Blym)=¢(y.mly.~m), (B1)
thermore,ur satisfies the equation where ¢(y,m)==*1. That is, the statéy,m) transforms
) within the y representation of the particle-hole symmetry
iugAls]=F[s,s]A[s]uE, (A1) group. Note also thaB?=1, which implies thatp is inde-

L i 2 = —
since this equation is equivalent Eug) =i|ug), as can be pendent ofm, smch [7:m) ‘ﬁ(y;f"n)qffﬁj;m .m)|y,m>.
seen by simply multiplying EqiA1) by A'[s] and summing We are now going to show th” ™ (™ is zero unless
overs. Define the unitary operataf=(ug®1) and consider m’=m. To see this we write the equatigd|=(1|1 as

igi{r:i(u;@ﬂ)(z A[S]@A[S])(UE@D Jlf_yl’ml)’(yz'mz)zz E l(Lysvm3)v(74rm4)

S Y3:Y4,M3,My

. XA(73,m3),(71,m1) s A(74,m4)'()’2vm2) s].
i3 (urAs]ub)@Als] [s] (5]

s Using the fact thalA conserves the particle numbgee Ap-
pendix A), we conclude thatn;—m,=mz;—m,. Since the

difference between thervalues of]l(Lyl‘ml)’(yz'mZ) is con-

R served under the action of, we can writel, =1°+1{°S"
=F. wherel? only has nonzero matrix elements between states of
equal particle number anf®'is the remainder, mixing par-
ticle numbers. This decomposition will not be mixed under

= F[s,s]A[s]®A[s](usuL®1)

This implies thatF has exactly the same spectrum ids
which was our claim. In the third line we have used Eg.

(A1). the action of 1and hence both matrices must be eigenstates
of 1 with eigenvalue 1. This eigenvalue is, however, non-
APPENDIX B: CONDITIONS FOR TRUE LONG-RANGE degenerate, which means that eitherlbfand 1{®* is zero.
ORDER Since ti, =(1|1)=1,1, must containl? and hence[**'=0.

In thi di how h . £ the Hamil This means that, only connects states containing an equal
n this appendix, we show how symmetries of the Hamil- |, bear of particles.

tonian determine which local operators potentially can give Furthermore, sinceR, =1,R and R also conserves the

true Iong-range order chorreI_atlon functions. In order fo_r anumber of particle(it is diagona), we conclude thaR,
local bosonic operatoM® to give true long-range order it

hold th | t the followi . Iconserves the number of particles.
must hold that at Aeast one o the fo owmgAexpectatlon Val- et us now consider the following expectation value:
ues is nonzera:1|MB|1), (1|MB|R), and(R|MB|R), where

|1) and|R) denote the eigenvectors oftith eigenvalues 1 (1|A[s]®A[s']|1)=tr(1[A[s]AT[s'])

and — 1, respectively. These expectation values will be de-

termined if we can determine the expectation values of _ E (]‘ll_')(yl,ml),(yz,mz)
A*[s]®A[s'] for all combinations ofs and s’". We will {y;,m}

frequently interpret then? state vectorg1l) and|R) asm
Xm matrices denoted by and R The matrix R has the
block-form 1@ —1, which implies thatR?=1. A subscriptL X AL (73 Ma)[ g7,

on the matrix denotes that it represents the left eigenvector.

Furthermore, we will consider the projection matAks] to Using particle number conservation Afandl; we conclude
be real. that the expectation value is zero unissss’, i.e.,

><A(72,m2),(73,m3)[s]
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(1|A[S]®A[S']|1)~ S5 s - (B2)  transform with the same phase factor. Noting thahust be

o . . , block diagonal, it follows thatl 3,R]=0. Assuming B

Similarly, usingR, instead ofl, , one finds ®B)|1)=BBT=e|1) we find
<1|A[S]®A[S ]|R>~5S,S’ . (83) (B@B)|R>:BRBT:RBBT:Réel: ei0| R>

To summarize, EqgB2) and(B3) follow from the particle- Usi hi find

number conserving property of the Hamiltonian together sing this property we fin

with the uniqueness of the eigenvalue 1 of Ih the next - —_ /12 _

paragraph, we will investigate the expectation values when (lo3lR) {1lolR)=0

s=s’. Note that the Pauli matrix3 and1 form a complete and we conclude that

basis for all diagonal operatoM®, which according to the

above results are the only operators that can give true long-  (1/A[S]®A[s"]|R)=—(R|A[s]®@A[s']|1)=0. (BS8)
range order.

Recall the defining relation of the projection operator: Using the derived expressions for the expectation values,

a general bosonic operath® can couple to the eigenstates
with corresponding eigenvaluesi only if tr MB+0. In par-
ticular, the density-density correlation function cannot be
truly long range when the Hamiltonian has particle-hole
Applying the particle-hole transformation to the defining re-symmetry and conserves the number of particles.

ly my= > AU MOMsymyels). (B4

(y,m),s;

lation Eq.(B4), we find thatA has the following symmetry: Let us also investigate correlation functions between fer-
(4 m').(am) , j mionic operatorsMF, in order to be able to draw conclu-
AT s =@ (y" ) p(y)(—1) sions concerning the particle-hole correlation function. We

will only show that off-diagonal fermionic operators cannot

(y'\=m")(y,—m) _g.
XA [=s]. (BY give rise to truly long-range correlation functions. From Eq.

Let us write down the operator form @é{ s], (13) we see that true long-range order is possible only if
some expectation value of the for|S*|ug) is nonzero;
Alsl= > A MM sy m ) y,m] that is, S* must connect eigenstates ofahd F with the
(y",m"),(y,m) corresponding eigenvalues having absolute value 1. We will
Applying a particle-hole transformation &s], making use now shqw that this is impossible due to the part.icle—number
of the symmetry Eq(B5), one finds that conserving property oﬂ[s]. Note that all the important
eigenvectors are proportional &, ., . Hence, an expecta-
BA[sj]B=(—1)iA[—sj]. (B6) tion value of the above form will be

Using the definition of dwe find the transformation property

~ . . 1 AS+ u -~ 5 76 776 r_ m(s U m:0,
of 1 under particle-hole transformations, (U187 Iug)~ 22 S Bz v e, -z v S

where the second and third functions come from the
(B®B)E A[s]®A[s](B®B)=2 Al —s|®A[—s]. particle-number conserving property @f[s]. Thus we
S s cannot have true long-range order in the particle-hole corre-
lation function.
Note that we have not proved that the correlation function
between two traceless fermionic operatdike o3) cannot
- be long range. On the contrary, this is the structure of the
(BeB)os(BoB)=—o03. A string order correlation function in the spin-1 chain, which is
(1] and (1|(B®B) must both have eigenvalue 1 of 1 long range.

since 1is invariant under particle-hole transformations. Us-
ing the nondegeneracy of this eigenvalue, we conclude that ~ APPENDIX C: PROOF OF THE BLOCH-STATE
(1/(B®B)=e""%1] and similarly 3 B)|1)=¢€'?1). SYMMETRY

Let us now compute the expectation valueoqf,

That is, 1is invariant under particle-hole transformations.

Let us also consider the transformationcef, whereo is a
Pauli matrix. Using exactly the same technique, we find tha

In this appendix, we prove that the energy spectrum ob-
tained from the Bloch-state ansatz exhibits the symmetry

(Llog1)=(1](Bo B)*o5(Bo B)*|1)= ~ (1] o|1), E(k)=E(m—K). Since the symmetr(k) = E( — k) follows

and thus(1|o5|1)=0. Since(1|1|1)=1 we arrive at from parity being a good quantum number, we only need to
show thatE(k) =E(k+ 7). The strategy used in the proof is
(1|A[s]®A[s']|1)= —(RIA[S]®A[S']|R) =305 s - to construct a Bloch state of momentik 7 from a state of

(B7) momentumk and to show that expectation values of these
R R two states are equal in the thermodynamic limit.
It only remains to consider expectation values @rido; Let us first recall some properties of the eigenve&af
between(1| and|R). Trivially, (1|1|R)=0, since(1| and 1. We will use the convention th&R) is anm? vector andR
|R) are eigenvectors of With different eigenvalues. Using IS anmxm matrix and similarly we will write the eigenvec-
the structure ofl1) and |R), let us show that they must tor of 1 corresponding to the eigenvalue 1|&$ or 1. Using
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the block-diagonal structure oR it follows that {(1
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In order to prove Eq(C1), we begin by writing the Bloch

®R),M}=0 and thaf (R® R),M]=0 for all local operators ~State|RQK) as

M.
We also

need the property R®R)lim,_.1"

=lim,_...1". To show this we recall that all but two eigen-
values of 1have absolute value less than one. The corre-

sponding eigenvectors will be annihilated by jim.1".
Hence we may write

lim 1"=[1)(1|+ (- 1)"|RXR].

n—o

If we let this operator act on a general stpte="3;;|i) we
obtain

im 1" )= ¢|1) +(— 1)"yr/R).

I

n—
Now, if we act on the resulting vector withR®@R), we
obtain (now we use the matrix form of the vectors

(R®R) lim 1" )= (ROR)[ 1|1)+ (— 1)"yr|R)]

=4 RIRT+(—1)"ygsRRR
=1+ (—1)"ygR
= lim 1"| ).

n—oo

Thus we have shown thaR®R)lim,,_..1" and lim,_..1"

act equally on a general state and hence the operators m

be identical.

We are now ready to show that for all local operatits

it holds that
LHS=(RQ' k|M|RQ,k)=(Q’ ,k+ 7|M|Q,k+ 7)=RHS,

[RQK)= > eltk+m
i{sit
Xtr(RAsy]- - -AlSj+1]Q- - -Als1])[sn- - - S1),

where we have usefR,A[s]}=0 to move theR to the left
side of the trace. Thus we may wrifehe left-hand side of
Eq.(C1) as

LHSZE gli (k+m) g=ij’ (k+m)

i’

xtr[(RoOR)INTI(1e Q)1 -'M1' -1 "1(Q"* e 1)1l'],
where we have assumed thatacts on the sité Now, when
we go to the thermodynamic limil—«, we will always
have a factor T somewhere in the trace. If we could move

(R®R) through the trace until it reaches thé& factor, the
(R®R) would be annihilated and we would be left with an
expression that is

E gl (k+ m)g=ij’ (ki)
I8

xt[iN I(1eQ)1"'M1'1" "4(Q'*®1)1l']=RHS
and our proof would be complete. It turns out that it is al-

ways possible to perform such a move. If the factdrid not
between the factorsl@ Q) and Q’* ®1), we just commute

Y¥@R) through the” operators until it reaches*land gets

annihilated. If the factor 1 is between (®Q) and Q'*

®1) we can make the spliR®R)=(1® R)(R®1) and move
these factors in different directions until they meet between
(1©Q) and Q'* ®1) and get annihilated byl During the
movements we will pick up a factor—(1)I"*(N=i") and

where LHS and RHS are left- and right-hand side, respecsince we are only considering chains of even length, this

tively, and the Bloch states are defined in &). If we apply

factor is equal to 1. Note that the proof works even if the

this result to the Hamiltonian operator and the normalizationoperatorM does not act on a single site, but, can easily be

we obtain the result that the statf8Q,k) and |Q,k+ )

generalized to operators describing local correlations. The

have equal energy. That is, we have a mapping from a staigportant thing is that the operator is local, so that a factor of

of momentumk to a state of momenturk+ 7 with equal
energy, which proves the symmetg(k) =E(k+ ).

1* always can be found in the trace.
This completes the proof.
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making the canonical transformaticurpa(—l)icj , We can re-
move this sign fronH.

17 L T
In the thermodynamic limiN—«, the ground-state energy per
site is given by

1 (2
Eoz—;fo Ve +t2cogkdk

which is a complete elliptic integral of the second kind.
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Assuming thatu=u,®uy is an eigenvector of1 with corre-
sponding eigenvaluga, it follows that M up,=Au, and M,u,
=\Uy. Definingu=u,® —u, we find

[ Mauy AU, ) _
Mu= = =—\U,
—Mpu, — AUy

i.e.,uis an eigenvector okl corresponding to the eigenvalue
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