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Two new electron gas models, introduced in the early 1990s, describe the energetics of metals better than the
conventional electron gas, jellium. The first, the “ideal metal,” was derived by starting with jellium at a
specified density and requiring that no forces act on the positive background when the system is cleaved. The
second, “stabilized jellium,” was derived by starting with the pseudopotential model of metals, requiring that
this model yield equilibrium at the specified average electron density and then averaging the potential seen by
the electrons to obtain an equivalent electron gas. Even though these derivations are conceptually quite dif-
ferent, their results, the ideal metal and stabilized jellium models, are very nearly identical. We explain their
great similarity by deriving both the ideal metal and stabilized jellium in a unified way from pseudojellium—a
stabilized electron gas model derived in the middle 1980s that includes the average electron-ion interaction,
while maintaining the uniform ground state and computational simplicity of jellium. This derivation explains
the near identity of the ideal metal and stabilized jellium and allows us to understand the small differences
between them[S0163-182809)00816-4

[. INTRODUCTION modul?® of the simple metals. At the same time, they main-
tain the previous good qualitative agreement with the
The electron gagjellium) has been one of the most pro- excited-state properties of the simple metals. Surprisingly,
ductive models in physics. However, it has many limitations.the basic connections between pseudojellium, the ideal
Perhaps the most obvious is that the positive background isetal, and stabilized jellium have not been completely elu-
held in place by unphysical external forces. If these externatidated up to the present time. This is the task we address in
forces were removed, jellium would always collapse tothis paper.
roughly the density of sodium. That is, the jellia that are used The common feature of pseudojellium, the ideal metal,
to simulate most metals have electrons under high pressurand stabilized jellium is that each introduces a new electron
If the positive background were broken up into pieces ofpotential v that represents the difference in the binding of
atomic size, such systems would expand in order to loweelectrons in the metal compared to jellium. This step-
their average electron density. The root of the problem is thaunction potential—defined to be constant everywhere inside
the attraction of the electrons to the ion cores is much stronthe positive background and zero in the vacuum—is the ba-
ger in most real metals than can be accounted for by jelliumsic new construct that distinguishes the new electron gas
Pseudojelliunt, an electron gas model of metals developedmodels from jellium. The three models determinén dif-
during the 1980s, simulates the extra electron-ion interactioferent ways. Pseudojellium defines the height of the potential
while maintaining the uniform ground state and computa-stepvp;to be the difference between the chemical potential
tional simplicity of jellium. Pseudojellium almost, but not of the real met&®and jellium. That is, the Fermi energy of
guite completely, removes the high electronic pressurepseudojellium is shifted byp;so that it will be the same as
found in jellium and consequently improves the descriptionin the real metal. For the ideal metal the stgp is deter-
of the ground-state properties of metals. However, the immined by the condition that if the bulk ideal metal is cleaved
proved physical properties of pseudojellium come at the costito two half-spaces, the energy should be stationary for zero
of an additional input parameter for each metal to beseparation of the pieces; i.e., no forces should act on the
modeled—its chemical potential. positive background when it is cleaved. In the rest of this
In the early 1990s, Perdew, Tran, and Srigind inde-  paper, we will use the terrideal to describe any jelliumlike
pendently the present authdfsleveloped new models of the model with this property: zero force at zero separation. For
electron gas that preserved pseudojellium’s improved destabilized jellium the strength of the step-function potential
scription of the ground state of metals. Strikingly, these newvs;is determined by requiring that a simple Ashcroft pseudo-
models do not necessarily require any input beyond the awpotential model of the methshould be in equilibrium at the
erage electron densitythe chemical potential of the metal is specified volume per atom. Then;is the spatially averaged
not an input Rather, these new models determine the chemiHartree potential due to the pseudopotential and electrons.
cal potential directly from equilibrium conditions intrinsic to We will call a jelliumlike modelstable if an underlying
the models themselves. These new models—the “idegbseudopotential results in minimum energy at the desired
metal”>® and “stabilized jellium”?>—reproduce qualita- density. We emphasize that teguilibrium conditionsfor
tively the cohesive energié$, surface energies® and bulk  the ideal metal and stabilized jellium are established using
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physically inequivalent models. The ideal metal starts withThird, can the ideal metal be cast as a pseudopotential
jellium and the equilibrium condition results in a uniform theory? Finally, to what degree are the ideal metal and sta-
positive background. Stabilized jellium finds the equilibrium bilized jellium identical? We will derive both the ideal metal
condition for an array of Ashcroft pseudopotentials—with aand stabilized jellium from pseudojellium. This allows us to
clearly nonuniform positive background. Nonetheless, the reexplain the great similarity of the two approaches, as well as
sulting electron gas model for stabilized jellium is essentiallytheir apparent differences.
identical to the ideal metal model. The structure of this paper is as follows. In Sec. II, we
Surprisingly, the strengths of the confining potentials forfirst introduce the pseudojellium model. Next, we show how
the ideal metal and stabilized jellium, determined in thesehe ideal metal is a particular realization of pseudojellium
two quite different ways, are exactly the same, gy, whose chemical potential is determined by the condition that

=vg5= vg, Where no forcesact on the positive background when the electron
gas is cleaved. Finally, we show that stabilized jellium is a

J€; different realization of the pseudojellium model, where the

Vo= ~Nozn - @D chemical potential is derived from Ashcroft pseudopotential

Mo perturbation theory. In Sec. lll, we generalize the stabilized

the energy per electron in jellium; i.eg(n)=ty(n) in the chemical potential due to a pseudopotential, including

+e,(n), the sum of kinetic and exchange-correlation enerJattice effects and electrostatic cell-cell interactions. We find

gies for the uniform electron gas. We note that the potentiaf€Sults that aréndependent of the form of the pseudopoten-

stepvp,for pseudojellium is numerically close ig, for most f[ial fora very wide class of pseudopotentials—there is not'h-
metals. ing special about the use of the Ashcroft pseudopotential.

The ideal metal, stabilized jellium, or pseudojellium We t_hen_examine the consequences of the spherical ce_II ap-
should be preferred to jellium in all applications. These staProximation and show that the ideal metal can be derived

bilized electron gas models are especially valuable for modffom @ limiting case of this same class of pseudopotentials.
eling inhomogeneous metals, since the externally imposedhis connection makes clear why the two models give iden-

forces that occur in the jellium are then particularly problem-“cal results for phys!cal quantities such as the bulk modulus
atic. Important results have been obtained from these modeghen calculated to first order. We show that the energy as a
for many properties of inhomogeneous metals. An incomfunction of vol.ume, the e_quat|on of _state, the. bulk mo_dulus,

plete list includes the surface energy and work functions oftnd the chemical potential are all given by simple universal

the elemental metal 26 adhesive energiég,the structure formulas in this approach. We then discuss the changes in-
of the surface excitations of metals, esp. plasnilﬁr\ﬁan der troduced mto_the pseudopotential _descrlptlon of 'ghe _two

Waals forces at surfacé®modeling of fullerine< the be- Models by going beyond the spherical cell approximation.

havior of metallic clusterél~2”and the energetics of voids in Finally, the paper concludes with a brief discussion and sum-
metals?®2° The common feature for these calculations is thafhary-

a step in the potentidbf strengthyy) appears at the interface

between the metal and vacuum. Results derived from the Il. PSEUDOJELLIUM. IDEAL METAL

ideal metal and stabilized jellium are identical for these in- AND STABILIZéD JELLIUM '

homogeneous systems. The new electron gas models have
also been applied with good results to the calculation of the

cohesive energies, chemical potentials, and bulk moduli of we commence this sect|on_W|th a b”_ef discussion of
homogeneous elemental met¥s®3The ideal metal and sta- pseudojellium and the problem in the physics of metals that

o S : . it solves. We point out the key role that the concept of the
bilized jellium will be shown to give the same answers for chemical potential plays in the formulation of the pseudojel-
bulk metals—if electron relaxation is ignored, lium modgl Finall pwi/a show how the ideal metaFI) and tha—

Note that the atomic properties of the metal such as vab T Y, . . o
; . ilized jellium can be derived simply from pseudojellium by
lence or cell volume do not appear in the expressiorvfgr . ; . L ;
. s . . introducing different ways of estimating the chemical poten-
Eq. (1). This is not surprising from the point of view of the tial
ideal metal, since no atomic model was introduced in the o T . .
derivation ofv,,, . However, the derivation of stabilized jel- Pseudolelhum. corrects fpr nghum S misestimate of the

. M- ' ; metal’s electron-ion interaction in the simplest possible way.

lium appears to depend essentially on the Ashcroft pseud

' o : ; . amely, while retaining the features of jellium, it adds an
potential and it is far from obvious why neither of its param- : . . . S
: d . attractive(repulsive potential that is a constamp;jinside the
eters(the valence or the ion core radiusg) appears in the

expression fom po;itive packground a_md. zero outside—as shown in Fig. 1.
We will atterﬁbt to elucidate the connection between a”T.h|s.add|t|onaI pot_en_t lal mcreas@gcrease);the eIectrqn S
three of the new electron gas models. To this end, we wil _mdmg to pseudojellium an_d pr_owdes an |mprov_ed simula-
deal with a series of questions. First Whyﬂ@the sar’ne in ion of the actual electro_n--|0n mteracpon found in metals.

stabilized jellium and the ideal.meta'l or equivalently whyThe strength of thg add|t|onallpotent|a|33_ 1S det_errmned
are both models not onlgtablebut alsé ideal? We will ,see from the difference in the chemlcal potentials of jellium _and
that, in fact, the condition'sy= v, depends on replacing the the actual metal. The strengis;is chosen so that pseudojel-

polyhedral Wigner-Seitz cell by an equivalent sphere anc"um has the same chemical potential as the metal
thus ignoring cell-cell interactions in the pseudopotential cal-
culation. Second, what is the role of the pseudopotential? VP Mm™ M - (2
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electrons is zero, since the net charge density is everywhere
zero. This implies that the positive chargéthin a single
Wigner-Seitz celis allowed to interact with itself. One could
Ro imagine subtracting off this intracell self repulsion of the
positive background, but this iotdone in defining the ideal
metal, which, like jellium, includes the intracell self-
interaction energy. As discussed in Sec. IlIB, one can in-
— clude or not include this term as one chooses; the values of
VPJI physical quantities calculated from the model, which depend
only on energyifferencesare independent of the choice.
Stabilized jelliunt is perhaps more nearly a realization of

FIG. 1. The additional confining potential that appears in - . . i
pseudojellium, the ideal metal, and stabilized jellium is pictured.pseudojeIIIum than is the ideal metal. Namely, the total en

The potential has strengthy; inside the background and zero out- ergy and chemical potential are Computeq from a simple
side. model of the metal and the values so obtained are then as-
signed to a uniform electron gas model. In this computation,

_ Lo the quantities are calculated for a system of electrons in the
Consequently, the Fermi energy of pseudojellium would b&stential of a regular lattice of Ashcroft pseudopotentials.

identical with that of the actual metal if we could determineThe calculation is greatly simplified by ignoring band-
the chemical potentials of jellium and the metal exactly. Instrycture effects, i.e., by constraining the electron density to
practice, the chemical potentials of the metals were takefemain uniform and by evaluating electrostatic potentials and
from the compilation of Weinert and Wats8n. _ _ energies in a spherical cell approximation. The parameters of
The ideal metal is a pseudojellium model but with a dif- the pseudopotential are chosen to héyéhe proper valence
ferent prescription for obtaining,. The strength of the step-  anq (i) the correct cell volume at equilibrium. These two
function potential is chosen so that there is no net force ORyuantities,Z and(),, then characterize the model. The shift
the positive background for infinitesimal separation. Thejn chemical potential with respect to that of jellium is the
strengthw, is given by Eq.(1), as can be shown by evaluat- ayerage potential seen by the electrons—the average of the
ing the energy change exactly, upon initial separation of thgyseudopotential plus the electrostatic potential of the electron
two half-spaces using first-order perturbation theory. Thejoud. As stressed earlier, the strength of the confining po-
value of vy does not depend on the shape of the cleavaggential determined in this way is,—the same as was found
surface, which may be arbitrary—one can divide the ideafor the ideal metal. Thus, we have the remarkable result that
metal up h-Owever one likes. Details -Of the derivation of Eq.requiring the Simp|e pseudopotentia| model of the metal to
(1) for the ideal metal can be found in Refs. 3 and 4. be stableat densityn, implies that the resulting electron gas
The ideal metal is characterized completely by a singlénodel is alsoideal. In Sec. IIA we will show that this
parameter, the equilibrium electron density,. It is often  second condition depends on the spherical cell approxima-
useful to elaborate a more detailed model, based on the ideghn and the consequent lack of ion-ion interactions. Stability
metal, which takes account of 'Fhe atomic character of rea}iges not imply ideality if the electrostatic energy and poten-
metals. For example, the cohesive energy and bulk moduluga| are calculated using the actual polyhedral Wigner-Seitz
depend on the size of the atoms, and thus a model that iRse||s. We note that for stabilized jellium the interaction of the
corporates the volume per atdir equivalently the valence, electrons with the ionic cores is described by a potential,
Z=Qqny) is required to model thethThis more elaborate yather than by a positive background charge density as in the
model is defined as follows. First, choose a ghost lattice ofgeal metal. A consequence is that there is no intracell self-
points that correspond to the nuclei in the real uniform bulkinteraction energy for stabilized jellium, unlike the ideal
metal. Second, divide the uniform positive background intometal. As stated earlier, this distinction between stabilized

space-filling rigid pieces with each piece filling one Wigner- je|ium and the ideal metal is inconsequential.
Seitz cell of the ghost latticésince the ideal metal can be

cleaved in any arbitrary way, it can, in particular, be split
into Wigner-Seitz cells Third, let the confining potential be
proportional to the positive background density. For the un-
deformed metal the density iy, and the potential igg. If
the metal is deformed, different Wigner-Seitz cells will over-  In this section the step-function potential, for both stabi-
lap or be separated by the deformation. At any point wherdized jellium and the ideal metal, will be obtained from first-
the cells overlap, the positive background density and therder pseudopotential perturbation thedre., the electron
confining potential are taken to be the sum of the backgroundensity remains uniform and thus band-structure effects are
densities and potentials of the individual overlapping cells atignored. By treating the difference between stabilized jel-
that point. At a point where the Wigner-Seitz cells separatelium and the ideal metal as primarily a difference in the
the density of positive charge and the confining potential arehoice of pseudopotential, the connection between the two
identically zero in the interstitial region. This extended ver-will be clarified. Briefly, one adjusts the pseudopotential so
sion of the ideal metal is characterized by the volume of thehat the calculated energy is a minimum for the specified
equilibrium Wigner-Seitz cell(),, in addition ton,. uniform electron densityn,. Next, one calculates the chemi-
As in jellium, the electrostatic energy of the undeformedcal potential using this pseudopotential. Then this chemical
ideal metal due to the uniform positive background and theotential is inserted into pseudojellium to yield either stabi-

Ill. IDEAL METAL AND STABILIZED JELLIUM
FROM PSEUDOPOTENTIAL THEORY
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lized jellium or the ideal metal, depending on the choice of

the pseudopotential. E=> fd3r n
In Sec. lll A we carry out the above program for a general !

class of pseudopotentials on a cubic lattice. In Sec. 11l B we

replace the polyhedral Wigner-Seitz cell of the actual lattice +

with a sphere. We show that, in this approximation, the Ash-

croft pseudopotential and the pseudopotential appropriate t©he terms inside the curly brackets represent the electrostatic

the ideal metal yield identically the same equilibrium chemi-energyU, of the Wigner solid, i.e., the energy of a lattice of

cal potentials, energies, and bulk moduli. In Sec. IllC wepoint charges immersed in a compensating uniform back-

examine the differences between the two models that arise ground. We define the term in square brackets by the shifted

one goes beyond the spherical cell approximation to includgseudopotentiafv(r) =w(r) + Z/r, which has no Coulomb

the full symmetry of the lattice. tail and is identically zero outside the ion-core radius. Equa-

tion (6) is rewritten

w(r—R;)+ ﬁ +NZg(n)

Z
Uee+U“—§i: fd3rn|r_Ri|}. (6)

A. The electron gas and first-order pseudopotential
perturbation theory E= NJ' d3r nW(r)+ NZg(n)+Uy, @)
Q

We will obtain the condition for stability and the resulting
chemical potential for a large class of pseudopotentials amwhere the integral is now over one unit cell.
rayed on a cubic lattice. These pseudopotentials), are The Wigner solid’s contributiorngy,, =U, /NZ, to the en-
defined to be spherically symmetric and have the fer@/r  ergy per electron has been extensively stutfiétand can be
outside some “jon-core” radius that is less than or equal toexpressed conveniently as
the radius of the sphere that inscribes the unit cell. Here
denotes the valence, i.e., the number of electrons per unit
cell. Furthermore, these pseudopotentials are chosen to mini-
mize the energy for the <_:ho_sen equilibrium densugy\{vhen If the unit cell is approximated by a sphere—resulting in a
the_energy 'S Calcul_ated in first-order pseL_JdopoFentlaI pertur<':0mpensating uniform density ball of electrons with a point
bation t.heory(kegpmg _the electron density yn!fo}mThe fcharge at the center—one finds = 1. For the cubic lattices
calculations in this section are conceptually similar to that o S

Perdewet al.? and where possible we use similar notation. océgbgg’ ::g écgééze values ef are, respectively, 0.9778,

We start by calculating the equilibrium energy of a uni-
form space of an elemental metal, where the metal is divide%
into polyhedral Wigner-Seitz unit cells of voluni@ on a
regular lattice. The volume will also be specified in terms of e=ej+Wg+ey. (9)
the “Wigner-Seitz radius”R (equilibrium radiusRy) of a
sphere with equal volume, i.eQ=47R%3. The total
energy—assuming a uniform electron densityof a system
with N unit cells of volume(), each containing electrons, is Wstrlf d3r W(r). (10
given by Q

97Z g
em= T0R* (8

The energy per electron follows directly from E) and
given by

Here, the bar denotes the volume average, i.e.,

Equation(9) corresponds to Eq4) of Perdewet al,? but
calculated for a general pseudopotential and without the
spherical cell approximation.

The pseudopotential is to be defined so that the energy is
Herew(r —R;) is the pseudopotential of the ion at lattice site @ Minimum forn=n,, i.e.,de/d2=0. The derivative is eas-
R;, the sum is over all sites, while; is the energy per ily calculated using the identitiesswg/d€)=—wg/(},
electron of jellium. The ion-ion interaction energy; is the  de;/dQ=—(n/Q)de;/dn, IR dQ=—(3RQ) . The
same as the interaction of point charges at the lattice sitefirst of these follows from the fact that the integral in Eq.
since we have assumed that the spherically symmetric iofi10) is independent of cell volume—assuming no overlap of

E=2i fd3rnw(r—Ri)+uee+u”+N2g(n). 3

cores do not overlap. That is, ion cores. Hence, for the energy to be a minimumnat
=ny, it is necessary that the pseudopotential satisfy the con-
1 z? straint
WR=ToR. ¥ Nogn| (11)
Similarly, the electron-electron Coulomb energy is 0 ng

which follows from Egs(8)—(10). That is, any pseudopoten-
U :EJ dgrj L ©) tial whose volume average is given by E@l), and that is
€€ 2 [r=r'|" otherwise in the class defined above, yields a metal with the
predefined equilibrium density. We will henceforth refer to
These terms are individually divergent, but their sum is finiteEq. (11) as the equilibrium condition.
and well defined. If we add and subtract the potential of a The chemical potentialy, is the change in electron en-
point charge at the center of each cell, E8). becomes ergy with respect to electron number at constant volume, i.e.,
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p=3a(ne)/dn|o_q . Here,neis the energy density, which _(277)2’35
L

—| ==1.0231 for fcc. 17
can be obtained from Eq6) by dividing E by the total 3 or fee (179

8
volumeNQ. This can be written The correction to the average potential due to the lattice is at

E 1 1 least 2%—much greater than the corresponding correction to
mznej(n)erfd?’rnz \7v(r—Ri)+mUM. the energy.
! For pseudojellium, the strength of the confining potential
(12) is defined to be the difference between the actual chemical
Differentiating with respect ta while holding Q) constant potential of the metal and the chemical potential of jellium.

gives With the chemical potential from E@15), we obtain a con-
1 fining potentialv,:
p=pitNg | @ o), (13 ~ 3z
Vo=H T Hj=WRT 7o RAL- (18
where

Insertingwg from Eq. (11), we have

Z n
5v(r)=2 W(r—Ri)—Ei |r—Ri|+fd3r|r—r’|' 3 e 3z
(14) VOZ_n&_nn +ER_O(0‘L_,8L)- (19
We recognizedi(r) as the potential seen by the electrons. °
Thus, u— u; is the average electron potential: Thus7, differs from the famous formula forg in Eq. (1)
_ as a result of including lattice effects. This result fay
m—uj=Wrt vy, (15 depends only on the lattice type and does not depend on the
where,, is the average potential of the Wigner solid. specific form of the pseudopotential, as long as the pseudo-

The quantityr must be calculated with some care. The Potential belongs to the class specified at the beginning of
two right-hand terms of Eq(14), representing, respectively, this sectlon_. Howevefy= v, if the un_lt cell is replaced by a
the electron potential due to the point charges and that due §Ph€re, which has the effect of setting=_=1. Thus, an
the other electrons, are individually divergent. The sum of MPlementation of pseudojellium using a pseudopotential be-
these two terms is finite, but the value depends on the way ilPn9ing to the specified class, such as the Ashcroft pseudo-
which the terms are combined, or equivalently, on thePotential, |sstablg but not exactlyideal The differencép,
boundary conditions at the surface of the crystal. If there is a ¥o can be estimated from the magr;gude of the second
dipole layer at the surface, this will shift the potential in the term of Eq.(19), by replacingZ/R by Z**/rs. For alumi-
interior, so the potential at poimt does not necessarily de- NUM, withZ=3 andrs~2, the correction is about0.2 eV.
pend only on charges in the vicinity of There has been It would be somewhat more for the tran5|t|on metésd
considerable controversy in the literature as to whether it i$€) and somewhat less for the other simple metals.
even possible to define a unique “average electron poten-
tial” in a crystal*®~*8The value ofyy, is well defined, and B. Spherical cell approximation

there is no contribution from the surface, if we require that ¢ comparison of the ideal metal and stabilized jellium

all cells, including those at the surface, have the same Unisa e simplified and other useful results can be obtained if

fprm elgctron den;ity as those in the interior. For cubic laty,¢ approximate the Wigner-Seitz cell by a sphere of equal
tices with the point charge at the center of the cell,

; : i thevolume, which setgy = 8, = 1. First, we note that the equi-
Wigner-Seitz cell has no net charge, dipole moment, of;

) ibrium condition of Eq.(11) refers to the average of the
quadrupole moment. In this casg should be close to the - gpitteqpseudopotentiali(r). Since the average @ir over
spherical cell value- 3Z/10R; the average potential in a cell

; oo oK - ' asphere is just3/2R,, we can rewrite the equilibrium con-
will be primarily due to the charges within that cell, with dition in terms of the average of the unshiftedw(r):
small corrections from neighboring cells. The averageis '

given by the Callaway-Glasser formdit4® for the average B 6 7
potential of a Wigner solid: W=vy— ER (20
0
2mZ r2d3r=— i E ) The Ashcroft pseudopotential with the core radiysgiven

MT T 302 a 10 R’BL' ( by Eq. (26) of Ref. 2 satisfies this condition.

The ideal I i ial:
In the spherical cell approximatigh,_ = 1. For the cubic lat- e ideal metal can be described by a pseudopotentia

tices, the integral over the cell volume can be evaluated

exactly?! yielding W,M(r)zV|M®(r)—n0fQ d3r’|r_r,| ) (21)
44\ %3 . . . 0. - .
BL:(—) —=1.0827 for sc, (179  Here, O(r) is defined to be 1 ifr lies within the unit cell
3/ 12 centered at the origin and zero otherwise. The second term

on the right-hand side corresponds to the electrostatic poten-
tial due to a positive chargg uniformly distributed on a

213
’BL:(§) 96 110205 for bee, (179 sphere of volumé),, while the first term is just the confin-
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ing potential step, . Outside of the sphena,,, falls off as  als. Actually, this is not the case. The differences in the
—Z/r, so that(within the spherical cell approximatipmv,, reported bulk moduli come about because the results in Ref.
can be regarded as belonging to the class of pseudopotentid@svere calculated to first order in the pseudopotential, as in
of Sec. I A. The volume average of the ideal metal pseudoEd. (24), while those in Ref. 4 were calculated to second
potential is Wy = vy —6Z/5R,. It follows from Eq. (20) order, i.e., electron relaxation was accounted for. We re-
that v,y=1vo. Thus, both stabilized jellium and the ideal pefated the calculations of Ref. 4 keeping the electron density
metal can be derived from different pseudopotentials. Howuniform, and found values fds that were very nearly those
ever, because both pseudopotentials satisfy the same equili@t the universal predictions of Eq24). There were some
rium condition, these models have exactly the same strenggmall differences that arose because our calculations used the

for the confining potentiab. actual Wigner-Seitz cells appropriate to the lattice rather than
We caution that the above argument relies heavily on th@pproximating them by spheres.
spherical cell approximation. In E¢21), which defines the We also obtain general results for the ground-state energy

ideal metal pseudopotential, the positive charge density ex@er electron for densities away from equilibrium, and the
tends beyond the boundary of the inscribing sphere. Hencgduation of state—as long as the pseudopotentials are in the
these pseudopotentials would violate the condition that th@eneral class defined above, there is no ion-core overlap and
cores should not over|ap if they were arrayed on a CUbI@” quantities are evaluated in first-order pseudopotential per-
lattice. In the next section we will nevertheless show that thdurbation theory. The energy per electron is given by
relation v,=vqy is exact, and can be obtained from a 0
pseudopotential model for the ideal metal. _ >t 2= A
Remaining within the spherical cell approximation and e(n) 10 Ry ng 10R+V°n0+el(n)' (25
first-order perturbation theory, we obtain several useful re- .
sults that apply equally to both the ideal metal and stabilize(;rhe equation of statéprgssurep versus volumg follows
jellium. The equilibrium energy per electron follows from Immediately from Eq(25):
Eqg. (9) and Eq.(12),

_ 3 (1 1) v g 26
3z P10 Ry R e Tan ) O
e(ng)=ej(ng)+rvo— =—=. (22
O IR0 BR, Here, R denotes the volume and radius of the compressed/

expanded Wigner-Seitz sphere. Equatidi2s) and (26)

This result corresponds to E¢31) of Perdewet al? and luat ively. 1o th i dt
represents the energy per electron of stabilized jellium. Fopvaluate, respectively, to the equiibrium energy and to zero
when n is set equal to the equilibrium density, i.@, R

the ideal metal, we add to this the positive energy per elec: R It should b bered th I ities h
tron +3Z/5R, due to self-interaction of the positive back- —MNo,Ro. It should be remembered that all quantities have

ground, which cancels the corresponding negative term i nly been evaluated to first order in perturbation the@sy,

; .the uniform electron density was not allowed to respond to
Eq. (22). Thus, the ener er electron of the ideal metal is L o :
a.(22 9y p the pseudoionic corgsHence, it is unlikely that these for-

ewm=ej(Ng)+ vo. (23) mulas will be very useful for metals other than the alkalis.
These expressions are equivalent to E&@4) and (33) of

It is important to note that the self-interaction energy of theRef. 2. However, in the present formulation the energy and
positive background is a constant independent of cell sizeequation of state are manifestly dependent only on the jel-
Since only energy differences enter in the calculation ofium ej(n) and its derivatives; there is no apparent depen-
physical quantities, the ideal metal and stabilized jellium arelence on properties of the pseudopotential.
equivalent when used to model bulk metals to first order; the
only difference is one of bookkeeping. For example the en-
ergy per electron to assemble the system from separated ] ]
electrons and pseudopotentials is given by &9) in both The equalityvy=v, and Eq.(23) for the ideal metal
models. energy per electron aexactfor a general cubic lattice. This

The equilibrium bulk modulus is obtained by evaluating is somewhat surprising since the numerical factors multiply-
the second derivative of the total energy, E@), with re-  iNg Z/Ry in the formulas of Sec. IlIB are approximations
spect toQ), using the rules following Eq(10) to simplify, ~ Valid only in the spherical cell approximation. Similarly,

C. Beyond the spherical cell approximation

and then eliminatingog using Eq.(11). We find from Eq. (19), we see thats=7, is only approximately
equal tov, for a general cubic lattice. Furthermore, we can-
J(Ze) 0% Z not use the method of Sec. Il A to show the exact nature of
=YTo02 T n°W+n°5_IR>()' (24)  the results for the ideal metal, since the pseudopotential cor-

responding to the polyhedral cell of the ideal metal does not
No details of the pseudopotential appear in the formulas fohave a pure—Z/r tail outside of nonoverlapping cores and
either the equilibrium energy or the bulk modulus—thanks tothus does not fit into the class of spherically symmetric
the equilibrium condition. The values for the bulk moduli pseudopotentials used in Secs. IllA and IlIB. Instead we
calculated using the ideal metal and reported in Ref. 4 diffewill use the method of Refs. 3-5 to obtain the desired exact
from the values calculated using stabilized jellium and reresults.
ported in Ref. 2. This apparently led to some speculation that What considerations are important for constructing a
the ideal metal and stabilized jellium differed essentiallypseudopotential suitable for the ideal metal on a lattice? First
when used to evaluate bulk properties of the elemental metand foremost, we want to have an electron gas that is uni-
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form and in equilibrium at a specified density. We start  energy per electron is given by E@3). The argument is an
by assuming that a pseudopotential can be constructed froexact analog of the derivation in Refs. 3-5 for cleaving the
a pseudocharge via Coulomb’s law. Next, we imagine arsolid into two half-spaces. The infinite bulk metal consists of
ranging the pseudoions on each site of some particular rega lattice of Wigner-Seitz cells with the ideal metal
lar lattice that has an interatomic spacing corresponding tpseudopotential—the step potentig|, inside the cell plus
the densityn,. Since an electron gas has a uniform positivethe electrostatic potential arising from the cell's positive
background, we require that the sum of the pseudochargdmckground. In equilibrium the cells touch, the electron and
should be the uniform positive background. Consequently, tdbackground charges cancel everywhere, and therefore the
arrive at our goal, we must choose a different pseudopoterelectrons see a constant potentig), everywhere. The en-
tial for each different lattice symmetry. We emphasize thatergy per electron is therefoee=¢;+ v, . The stability con-
the pseudopotential given below is the basic object in thalition requires thave/dn=0 at the equilibrium densitp,.
theory of the ideal metal. The pseudocharge is only a parThe electrostatic energy is exactly zero in equilibrium, and
ticularly vivid and useful way of describing the pseudopo-increases asn—ng)? if the lattice is expanded or com-
tential. pressed. It therefore does not contribute to the first derivative
The pseudocharge,s will be constructed from two with respect to expansion of the lattice. The number of elec-
pieces. First, the requirement of a uniform equilibrium statetrons in a cell does not change if the cell volume changes,
with background densitgy implies that one piece should be i.e.,Z=nyQy=nQ, but the number that occurs in the poten-
tial v is nQg. To first order inn—ng the energy per cell is
pés(r)=n0®(r). (27)  therefore Ze=Qg[ngej(n)+ny)y]. Setting the derivative
1 equal to zero immediately gives,,=vy. Thus we have
We remark thap, is the pseudocharge that would be appro-shown that a pseudojellium model basedvag(r) is both
priate for jellium. The second part of the pseudochav@e stableandideal.

should (i) exactly cancel for the uniform equilibrium state
and (ii) generate a potential that is a constap} inside the
unit cell and zero outside. &function charge dipole at the IV. DISCUSSION AND SUMMARY

surface of®(r) satis_fies these conditions, i.e., t_he dipole 9€N-  The derivation of the equilibrium energy and the equilib-
erates the appropriate step function change in the potentigly,, congition for the ideal metal using a cubic lattice is
while the overlapping dipoles from two adjacent cells thatexact—in the sense that the derivation depends neither on the

ju_st touch will exacFIy cancel. The dipolle moment is deter'approximation of a spherical Wigner-Seitz cell nor on the
mined by the condition that the potential has strengi  consiraint that the density ia priori uniform. The ideal

inside the unit cell. , _ metal pseudopotential is constructed to yield a total electron
The pseudopotential for the ideal meta|y (r), is gener-  patential that is a constant, independent of position at equi-
ated fromp, via librium. The self-consistent solution of the Sctimger
, equation then yields a uniform electron density. That is, the
=| g3 , PodT’) uniformity of the density is not an externally imposed con-
wig(r)= Py (28 ) e
[r—r’'] straint. If the lattice is expanded or contracted, the total elec-

) ) _ tron potential and thus the electron density of the ideal metal
The integral is formally over all space. However, it needwi” no longer be uniform. The change in energy will be
only be evaluated over the unit cell since the pseudocharge [§oportional to (2 — Q)2 as will the change in the electro-

: . : _ 2 1 H . . . . sy s .
identically zero elsewhere. Using,s=pystpps We obtain  gtatic contribution, and thus neither will influence the equi-

Eq. (21) for the ideal metal pseudopotential, except ®at)  |iprium condition. However, quantities such as the bulk
and )y now refer to the polyhedral cell rather than the modulus depend on energy derivatives beyond the first. Con-
spherical cell. sequently “exact” calculations of the bulk modulus for the

For jellium the uniform positive background is regardedideal metal differ slightly from the result in E¢24) due to
as a real charge which can interact with itself as well as Withattice effects, and by a much |arger amount if Computed to
the electrons. In contrast, for the pseudopotential theory oéecond order in the pseudopotenfisius including electron
metals, one assumes there is no self-interaction of thes|axation to the ion cores.
pseudocharge within a cell, and neglects interactions due to |n this paper, we have shown that stabilized jellium and
the overlap of the pseudopotential cores of neighboring cellshe ideal metal can both be interpreted as pseudopotential
Since, the ideal metal is an electron gas model, we will als@nheories. Each approach has advantages and disadvantages.
include the self-interaction of the uniform pOSitive back- The Ashcroft pseudopotentia| used in the derivation of sta-
ground, i.e., we allowpy to interact with itself. Conse- bilized jellium more closely resembles the potential of the
quently, after calculating the equilibrium energy duentg, actual ion core in a real metal, but the derivation of the major
using pseudopotential theory, we add the self-energy of theesult Eq.(1) requires the spherical cell and uniform electron
positive background. Our construction of the ideal metaldensity approximations. The ideal metal pseudopotential is
treats the pseudochargpés that generates the dipole barrier not physically realistic, in that the ion core extends over the
differently. Its self-interaction energy and the energy of in-entire cell, but Eq(1) is then an exact consequence of the
teraction when two different dipole barriers coincide are ne-{deality condition.
glected. One of the questions we had at the start of this investiga-

With this model of the ideal metal it can be shown that thetion was, can one construct a better uniform electron gas
potential v, is given by Eqg.(1) and that the equilibrium model, which would simulate the properties of real metals
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more closely, by using a different local pseudopotential? For In summary, we have shown that pseudojellium provides
example, is there some local pseudopotentigithin the a framework for deriving the ideal metal and stabilized jel-

class defined in this papethat would allow one to choose lium on the same footing. We have learned why the two

the equilibrium density and chemical potential indepen-models are so similar and why they provide exactly the same
dently? Our conclusion is that this is not possible. The vol-answer to physical questions in two cases: for inhomoge-
ume average of the pseudopotential over the cell is the onlijeous metals and for uniform bulk metals calculated to first
adjustable parameter of the pseudopotential that enters in odfder in the underlying pseudopotential. We have found in-
calculations, and once the desired densigyis chosen, the teresting first-order formulas for the energy, the chemical
value of this average is fixed by the equilibrium condition potential, the bulk modulus, and the equation of state of the

Eq. (11). _ _ _ homogeneous bulk metal that are independent of the details
In Sec. 1l1 B we obtained simple analytic formulas for the of the underlying pseudopotentials.

bulk modulus, energy versus density, and the equation of

state. We regard these results as useful improvements over
uncorrected jellium; for example, the pressure does go to

zero at the equilibrium density. However, because these re-
sults are valid only tdirst order in pseudopotential pertur- Ames Laboratory is operated by the U.S. DOE by lowa
bation theory, they cannot be expected to provide realistiState University under Contract No. W-7405-ENG-82. This
estimates of these quantities, except possibly for the alkalivork was supported, in part, by the Director, Office of Basic
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