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Pseudojellium, ideal metals, and stabilized jellium
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Two new electron gas models, introduced in the early 1990s, describe the energetics of metals better than the
conventional electron gas, jellium. The first, the ‘‘ideal metal,’’ was derived by starting with jellium at a
specified density and requiring that no forces act on the positive background when the system is cleaved. The
second, ‘‘stabilized jellium,’’ was derived by starting with the pseudopotential model of metals, requiring that
this model yield equilibrium at the specified average electron density and then averaging the potential seen by
the electrons to obtain an equivalent electron gas. Even though these derivations are conceptually quite dif-
ferent, their results, the ideal metal and stabilized jellium models, are very nearly identical. We explain their
great similarity by deriving both the ideal metal and stabilized jellium in a unified way from pseudojellium—a
stabilized electron gas model derived in the middle 1980s that includes the average electron-ion interaction,
while maintaining the uniform ground state and computational simplicity of jellium. This derivation explains
the near identity of the ideal metal and stabilized jellium and allows us to understand the small differences
between them.@S0163-1829~99!00816-4#
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I. INTRODUCTION

The electron gas~jellium! has been one of the most pro
ductive models in physics. However, it has many limitatio
Perhaps the most obvious is that the positive backgroun
held in place by unphysical external forces. If these exter
forces were removed, jellium would always collapse
roughly the density of sodium. That is, the jellia that are us
to simulate most metals have electrons under high press
If the positive background were broken up into pieces
atomic size, such systems would expand in order to lo
their average electron density. The root of the problem is
the attraction of the electrons to the ion cores is much str
ger in most real metals than can be accounted for by jelliu
Pseudojellium,1 an electron gas model of metals develop
during the 1980s, simulates the extra electron-ion interac
while maintaining the uniform ground state and compu
tional simplicity of jellium. Pseudojellium almost, but no
quite completely, removes the high electronic pressu
found in jellium and consequently improves the descript
of the ground-state properties of metals. However, the
proved physical properties of pseudojellium come at the c
of an additional input parameter for each metal to
modeled—its chemical potential.

In the early 1990s, Perdew, Tran, and Smith2 and inde-
pendently the present authors3,4 developed new models of th
electron gas that preserved pseudojellium’s improved
scription of the ground state of metals. Strikingly, these n
models do not necessarily require any input beyond the
erage electron density—the chemical potential of the metal
not an input. Rather, these new models determine the che
cal potential directly from equilibrium conditions intrinsic t
the models themselves. These new models—the ‘‘id
metal’’ 3,5 and ‘‘stabilized jellium’’2—reproduce qualita-
tively the cohesive energies,2,4 surface energies,2,3 and bulk
PRB 590163-1829/99/59~16!/10485~8!/$15.00
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moduli2,5 of the simple metals. At the same time, they ma
tain the previous good qualitative agreement with t
excited-state properties of the simple metals. Surprisin
the basic connections between pseudojellium, the id
metal, and stabilized jellium have not been completely e
cidated up to the present time. This is the task we addres
this paper.

The common feature of pseudojellium, the ideal me
and stabilized jellium is that each introduces a new elect
potential n that represents the difference in the binding
electrons in the metal compared to jellium. This ste
function potential—defined to be constant everywhere ins
the positive background and zero in the vacuum—is the
sic new construct that distinguishes the new electron
models from jellium. The three models determinen in dif-
ferent ways. Pseudojellium defines the height of the poten
stepnPJ to be the difference between the chemical poten
of the real metal6–8 and jellium. That is, the Fermi energy o
pseudojellium is shifted bynPJ so that it will be the same a
in the real metal. For the ideal metal the stepn IM is deter-
mined by the condition that if the bulk ideal metal is cleav
into two half-spaces, the energy should be stationary for z
separation of the pieces; i.e., no forces should act on
positive background when it is cleaved. In the rest of t
paper, we will use the termideal to describe any jelliumlike
model with this property: zero force at zero separation. F
stabilized jellium the strength of the step-function potent
nSJ is determined by requiring that a simple Ashcroft pseud
potential model of the metal9 should be in equilibrium at the
specified volume per atom. ThennSJ is the spatially averaged
Hartree potential due to the pseudopotential and electr
We will call a jelliumlike model stable if an underlying
pseudopotential results in minimum energy at the des
density. We emphasize that theequilibrium conditionsfor
the ideal metal and stabilized jellium are established us
10 485 ©1999 The American Physical Society
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physically inequivalent models. The ideal metal starts w
jellium and the equilibrium condition results in a unifor
positive background. Stabilized jellium finds the equilibriu
condition for an array of Ashcroft pseudopotentials—with
clearly nonuniform positive background. Nonetheless, the
sulting electron gas model for stabilized jellium is essentia
identical to the ideal metal model.

Surprisingly, the strengths of the confining potentials
the ideal metal and stabilized jellium, determined in the
two quite different ways, are exactly the same, i.e.,n IM
5nSJ5n0 , where

n052n0

]ej

]n U
n0

. ~1!

Here,n0 is the density of the uniform electron gas andej is
the energy per electron in jellium; i.e.,ej (n)5ts(n)
1exc(n), the sum of kinetic and exchange-correlation en
gies for the uniform electron gas. We note that the poten
stepnPJfor pseudojellium is numerically close ton0 for most
metals.

The ideal metal, stabilized jellium, or pseudojelliu
should be preferred to jellium in all applications. These s
bilized electron gas models are especially valuable for m
eling inhomogeneous metals, since the externally impo
forces that occur in the jellium are then particularly proble
atic. Important results have been obtained from these mo
for many properties of inhomogeneous metals. An inco
plete list includes the surface energy and work functions
the elemental metals,10–16 adhesive energies,17 the structure
of the surface excitations of metals, esp. plasmons,18 Van der
Waals forces at surfaces,19 modeling of fullerines,20 the be-
havior of metallic clusters,21–27and the energetics of voids i
metals.28,29The common feature for these calculations is t
a step in the potential~of strengthn0) appears at the interfac
between the metal and vacuum. Results derived from
ideal metal and stabilized jellium are identical for these
homogeneous systems. The new electron gas models
also been applied with good results to the calculation of
cohesive energies, chemical potentials, and bulk modul
homogeneous elemental metals.30–33The ideal metal and sta
bilized jellium will be shown to give the same answers f
bulk metals—if electron relaxation is ignored.

Note that the atomic properties of the metal such as
lence or cell volume do not appear in the expression forn0 ,
Eq. ~1!. This is not surprising from the point of view of th
ideal metal, since no atomic model was introduced in
derivation ofn IM . However, the derivation of stabilized je
lium appears to depend essentially on the Ashcroft pseu
potential and it is far from obvious why neither of its param
eters~the valence or the ion core radius,r c) appears in the
expression fornSJ.

We will attempt to elucidate the connection between
three of the new electron gas models. To this end, we
deal with a series of questions. First, why isn0 the same in
stabilized jellium and the ideal metal, or equivalently, w
are both models not onlystablebut also ideal? We will see
that, in fact, the conditionnSJ5n0 depends on replacing th
polyhedral Wigner-Seitz cell by an equivalent sphere a
thus ignoring cell-cell interactions in the pseudopotential c
culation. Second, what is the role of the pseudopotent
h
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Third, can the ideal metal be cast as a pseudopoten
theory? Finally, to what degree are the ideal metal and
bilized jellium identical? We will derive both the ideal met
and stabilized jellium from pseudojellium. This allows us
explain the great similarity of the two approaches, as wel
their apparent differences.

The structure of this paper is as follows. In Sec. II, w
first introduce the pseudojellium model. Next, we show h
the ideal metal is a particular realization of pseudojelliu
whose chemical potential is determined by the condition t
no forcesact on the positive background when the electr
gas is cleaved. Finally, we show that stabilized jellium is
different realization of the pseudojellium model, where t
chemical potential is derived from Ashcroft pseudopoten
perturbation theory. In Sec. III, we generalize the stabiliz
jellium model by calculating the step potentialn or the shift
in the chemical potential due to a pseudopotential, includ
lattice effects and electrostatic cell-cell interactions. We fi
results that areindependent of the form of the pseudopote
tial for a very wide class of pseudopotentials—there is no
ing special about the use of the Ashcroft pseudopoten
We then examine the consequences of the spherical cel
proximation and show that the ideal metal can be deriv
from a limiting case of this same class of pseudopotenti
This connection makes clear why the two models give id
tical results for physical quantities such as the bulk modu
when calculated to first order. We show that the energy a
function of volume, the equation of state, the bulk modul
and the chemical potential are all given by simple univer
formulas in this approach. We then discuss the changes
troduced into the pseudopotential description of the t
models by going beyond the spherical cell approximati
Finally, the paper concludes with a brief discussion and su
mary.

II. PSEUDOJELLIUM, IDEAL METAL,
AND STABILIZED JELLIUM

We commence this section with a brief discussion
pseudojellium and the problem in the physics of metals t
it solves. We point out the key role that the concept of t
chemical potential plays in the formulation of the pseudoj
lium model. Finally, we show how the ideal metal and s
bilized jellium can be derived simply from pseudojellium b
introducing different ways of estimating the chemical pote
tial.

Pseudojellium corrects for jellium’s misestimate of th
metal’s electron-ion interaction in the simplest possible w
Namely, while retaining the features of jellium, it adds
attractive~repulsive! potential that is a constantnPJ inside the
positive background and zero outside—as shown in Fig
This additional potential increases~decreases! the electron’s
binding to pseudojellium and provides an improved simu
tion of the actual electron-ion interaction found in meta
The strength of the additional potentialnPJ is determined
from the difference in the chemical potentials of jellium a
the actual metal. The strengthnPJ is chosen so that pseudoje
lium has the same chemical potential as the metal

nPJ[mm2m j . ~2!
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Consequently, the Fermi energy of pseudojellium would
identical with that of the actual metal if we could determi
the chemical potentials of jellium and the metal exactly.
practice, the chemical potentials of the metals were ta
from the compilation of Weinert and Watson.8

The ideal metal is a pseudojellium model but with a d
ferent prescription for obtainingn0 . The strength of the step
function potential is chosen so that there is no net force
the positive background for infinitesimal separation. T
strengthn0 is given by Eq.~1!, as can be shown by evalua
ing the energy change exactly, upon initial separation of
two half-spaces using first-order perturbation theory. T
value of n0 does not depend on the shape of the cleav
surface, which may be arbitrary—one can divide the id
metal up however one likes. Details of the derivation of E
~1! for the ideal metal can be found in Refs. 3 and 4.

The ideal metal is characterized completely by a sin
parameter, the equilibrium electron density,n0 . It is often
useful to elaborate a more detailed model, based on the i
metal, which takes account of the atomic character of r
metals. For example, the cohesive energy and bulk mod
depend on the size of the atoms, and thus a model tha
corporates the volume per atom~or equivalently the valence
Z[V0n0) is required to model them.4 This more elaborate
model is defined as follows. First, choose a ghost lattice
points that correspond to the nuclei in the real uniform b
metal. Second, divide the uniform positive background i
space-filling rigid pieces with each piece filling one Wigne
Seitz cell of the ghost lattice~since the ideal metal can b
cleaved in any arbitrary way, it can, in particular, be sp
into Wigner-Seitz cells!. Third, let the confining potential be
proportional to the positive background density. For the
deformed metal the density isn0 and the potential isn0 . If
the metal is deformed, different Wigner-Seitz cells will ove
lap or be separated by the deformation. At any point wh
the cells overlap, the positive background density and
confining potential are taken to be the sum of the backgro
densities and potentials of the individual overlapping cells
that point. At a point where the Wigner-Seitz cells separa
the density of positive charge and the confining potential
identically zero in the interstitial region. This extended ve
sion of the ideal metal is characterized by the volume of
equilibrium Wigner-Seitz cell,V0 , in addition ton0 .

As in jellium, the electrostatic energy of the undeform
ideal metal due to the uniform positive background and

FIG. 1. The additional confining potential that appears
pseudojellium, the ideal metal, and stabilized jellium is pictur
The potential has strengthnPJ inside the background and zero ou
side.
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electrons is zero, since the net charge density is everyw
zero. This implies that the positive chargewithin a single
Wigner-Seitz cellis allowed to interact with itself. One could
imagine subtracting off this intracell self repulsion of th
positive background, but this isnot done in defining the idea
metal, which, like jellium, includes the intracell sel
interaction energy. As discussed in Sec. III B, one can
clude or not include this term as one chooses; the value
physical quantities calculated from the model, which depe
only on energydifferences, are independent of the choice.

Stabilized jellium2 is perhaps more nearly a realization
pseudojellium than is the ideal metal. Namely, the total
ergy and chemical potential are computed from a sim
model of the metal and the values so obtained are then
signed to a uniform electron gas model. In this computati
the quantities are calculated for a system of electrons in
potential of a regular lattice of Ashcroft pseudopotentia
The calculation is greatly simplified by ignoring ban
structure effects, i.e., by constraining the electron density
remain uniform and by evaluating electrostatic potentials a
energies in a spherical cell approximation. The parameter
the pseudopotential are chosen to have~i! the proper valence
and ~ii ! the correct cell volume at equilibrium. These tw
quantities,Z andV0 , then characterize the model. The sh
in chemical potential with respect to that of jellium is th
average potential seen by the electrons—the average o
pseudopotential plus the electrostatic potential of the elec
cloud. As stressed earlier, the strength of the confining
tential determined in this way isn0—the same as was foun
for the ideal metal. Thus, we have the remarkable result
requiring the simple pseudopotential model of the meta
bestableat densityn0 implies that the resulting electron ga
model is alsoideal. In Sec. III A we will show that this
second condition depends on the spherical cell approxi
tion and the consequent lack of ion-ion interactions. Stabi
does not imply ideality if the electrostatic energy and pote
tial are calculated using the actual polyhedral Wigner-Se
cells. We note that for stabilized jellium the interaction of t
electrons with the ionic cores is described by a potent
rather than by a positive background charge density as in
ideal metal. A consequence is that there is no intracell s
interaction energy for stabilized jellium, unlike the ide
metal. As stated earlier, this distinction between stabiliz
jellium and the ideal metal is inconsequential.

III. IDEAL METAL AND STABILIZED JELLIUM
FROM PSEUDOPOTENTIAL THEORY

In this section the step-function potential, for both sta
lized jellium and the ideal metal, will be obtained from firs
order pseudopotential perturbation theory~i.e., the electron
density remains uniform and thus band-structure effects
ignored!. By treating the difference between stabilized je
lium and the ideal metal as primarily a difference in t
choice of pseudopotential, the connection between the
will be clarified. Briefly, one adjusts the pseudopotential
that the calculated energy is a minimum for the specifi
uniform electron density,n0 . Next, one calculates the chem
cal potential using this pseudopotential. Then this chem
potential is inserted into pseudojellium to yield either sta

.
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10 488 PRB 59HERBERT B. SHORE AND JAMES H. ROSE
lized jellium or the ideal metal, depending on the choice
the pseudopotential.

In Sec. III A we carry out the above program for a gene
class of pseudopotentials on a cubic lattice. In Sec. III B
replace the polyhedral Wigner-Seitz cell of the actual latt
with a sphere. We show that, in this approximation, the A
croft pseudopotential and the pseudopotential appropriat
the ideal metal yield identically the same equilibrium chem
cal potentials, energies, and bulk moduli. In Sec. III C
examine the differences between the two models that ari
one goes beyond the spherical cell approximation to incl
the full symmetry of the lattice.

A. The electron gas and first-order pseudopotential
perturbation theory

We will obtain the condition for stability and the resultin
chemical potential for a large class of pseudopotentials
rayed on a cubic lattice. These pseudopotentials,w(r ), are
defined to be spherically symmetric and have the form2Z/r
outside some ‘‘ion-core’’ radius that is less than or equa
the radius of the sphere that inscribes the unit cell. HerZ
denotes the valence, i.e., the number of electrons per
cell. Furthermore, these pseudopotentials are chosen to m
mize the energy for the chosen equilibrium densityn0 when
the energy is calculated in first-order pseudopotential per
bation theory~keeping the electron density uniform!. The
calculations in this section are conceptually similar to tha
Perdewet al.,2 and where possible we use similar notatio

We start by calculating the equilibrium energy of a un
form space of an elemental metal, where the metal is divi
into polyhedral Wigner-Seitz unit cells of volumeV on a
regular lattice. The volume will also be specified in terms
the ‘‘Wigner-Seitz radius’’R ~equilibrium radiusR0) of a
sphere with equal volume, i.e.,V54pR3/3. The total
energy—assuming a uniform electron densityn—of a system
with N unit cells of volumeV, each containingZ electrons, is
given by

E5(
i
E d3r nw~r2Ri !1Uee1Uii 1NZej~n!. ~3!

Herew(r2Ri) is the pseudopotential of the ion at lattice s
Ri , the sum is over all sites, whileej is the energy per
electron of jellium. The ion-ion interaction energyUii is the
same as the interaction of point charges at the lattice s
since we have assumed that the spherically symmetric
cores do not overlap. That is,

Uii 5
1

2(iÞ j

Z2

uRi2Rj u
. ~4!

Similarly, the electron-electron Coulomb energy is

Uee5
1

2E d3rE d3r 8
nn

ur2r 8u
. ~5!

These terms are individually divergent, but their sum is fin
and well defined. If we add and subtract the potential o
point charge at the center of each cell, Eq.~3! becomes
f
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E5(
i
E d3r nFw~r2Ri !1

Z

ur2Ri u
G1NZej~n!

1H Uee1Uii 2(
i
E d3r n

Z

ur2Ri uJ . ~6!

The terms inside the curly brackets represent the electros
energyUM of the Wigner solid, i.e., the energy of a lattice
point charges immersed in a compensating uniform ba
ground. We define the term in square brackets by the shi
pseudopotentialw̃(r )5w(r )1Z/r , which has no Coulomb
tail and is identically zero outside the ion-core radius. Eq
tion ~6! is rewritten

E5NE
V

d3r nw̃~r !1NZej~n!1UM , ~7!

where the integral is now over one unit cell.
The Wigner solid’s contribution,eM5UM /NZ, to the en-

ergy per electron has been extensively studied34,35and can be
expressed conveniently as

eM52
9

10

Z

R
aL . ~8!

If the unit cell is approximated by a sphere—resulting in
compensating uniform density ball of electrons with a po
charge at the center—one findsaL51. For the cubic lattices
sc, bcc, and fcc, the values ofaL are, respectively, 0.9778
0.9955, and 0.9954.

The energy per electron follows directly from Eq.~6! and
is given by

e5ej1w̄R1eM . ~9!

Here, the bar denotes the volume average, i.e.,

w̄R5V21E
V

d3r w̃~r !. ~10!

Equation~9! corresponds to Eq.~4! of Perdewet al.,2 but
calculated for a general pseudopotential and without
spherical cell approximation.

The pseudopotential is to be defined so that the energ
a minimum forn5n0 , i.e.,]e/]V50. The derivative is eas
ily calculated using the identities]w̄R /]V52w̄R /V,
]ej /]V52(n/V)]ej /]n, ]R21/]V52(3RV)21. The
first of these follows from the fact that the integral in E
~10! is independent of cell volume—assuming no overlap
ion cores. Hence, for the energy to be a minimum atn
5n0 , it is necessary that the pseudopotential satisfy the c
straint

w̄R5
3

10

Z

R0
aL2n0

]ej

]n U
n0

, ~11!

which follows from Eqs.~8!–~10!. That is, any pseudopoten
tial whose volume average is given by Eq.~11!, and that is
otherwise in the class defined above, yields a metal with
predefined equilibrium density. We will henceforth refer
Eq. ~11! as the equilibrium condition.

The chemical potential,m, is the change in electron en
ergy with respect to electron number at constant volume,
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m5](ne)/]nuV5V0
. Here,ne is the energy density, which

can be obtained from Eq.~6! by dividing E by the total
volumeNV. This can be written

E

NV
5nej~n!1

1

NV E d3r n(
i

w̃~r2Ri !1
1

NV
UM .

~12!

Differentiating with respect ton while holding V constant
gives

m5m j1
1

NV E d3r dn~r !, ~13!

where

dn~r !5(
i

w̃~r2Ri !2(
i

Z

ur2Ri u
1E d3r

n

ur2r 8u
.

~14!

We recognizedn~r ! as the potential seen by the electron
Thus,m2m j is the average electron potential:

m2m j5w̄R1nM , ~15!

wherenM is the average potential of the Wigner solid.
The quantitynM must be calculated with some care. T

two right-hand terms of Eq.~14!, representing, respectively
the electron potential due to the point charges and that du
the other electrons, are individually divergent. The sum
these two terms is finite, but the value depends on the wa
which the terms are combined, or equivalently, on
boundary conditions at the surface of the crystal. If there
dipole layer at the surface, this will shift the potential in t
interior, so the potential at pointr does not necessarily de
pend only on charges in the vicinity ofr . There has been
considerable controversy in the literature as to whether
even possible to define a unique ‘‘average electron po
tial’’ in a crystal.36–38 The value ofnM is well defined, and
there is no contribution from the surface, if we require th
all cells, including those at the surface, have the same
form electron density as those in the interior. For cubic l
tices with the point charge at the center of the cell,
Wigner-Seitz cell has no net charge, dipole moment,
quadrupole moment. In this casenM should be close to the
spherical cell value23Z/10R; the average potential in a ce
will be primarily due to the charges within that cell, wit
small corrections from neighboring cells. The averagenM is
given by the Callaway-Glasser formula39,40 for the average
potential of a Wigner solid:

nM52
2pZ

3V2 E
V

r 2d3r52
3

10

Z

R
bL . ~16!

In the spherical cell approximationbL51. For the cubic lat-
tices, the integral over the cell volume can be evalua
exactly,41 yielding

bL5S 4p

3 D 2/3 5

12
51.0827 for sc, ~17a!

bL5S p

3 D 2/395

96
51.0205 for bcc, ~17b!
.

to
f
in
e
a

is
n-

t
i-
-
e
r

d

bL5S 2p

3 D 2/35

8
51.0231 for fcc. ~17c!

The correction to the average potential due to the lattice i
least 2%—much greater than the corresponding correctio
the energy.

For pseudojellium, the strength of the confining potent
is defined to be the difference between the actual chem
potential of the metal and the chemical potential of jelliu
With the chemical potential from Eq.~15!, we obtain a con-
fining potentialñ0 :

ñ0[m2m j5w̄R2
3

10

Z

R
bL . ~18!

Insertingw̄R from Eq. ~11!, we have

ñ052n
]ej

]nU
n0

1
3

10

Z

R0
~aL2bL!. ~19!

Thusñ0 differs from the famous formula forn0 in Eq. ~1!
as a result of including lattice effects. This result forñ0
depends only on the lattice type and does not depend on
specific form of the pseudopotential, as long as the pseu
potential belongs to the class specified at the beginning
this section. However,ñ05n0 if the unit cell is replaced by a
sphere, which has the effect of settingaL5bL51. Thus, an
implementation of pseudojellium using a pseudopotential
longing to the specified class, such as the Ashcroft pseu
potential, isstable, but not exactlyideal. The differenceñ0
2n0 can be estimated from the magnitude of the seco
term of Eq. ~19!, by replacingZ/R by Z2/3/r s . For alumi-
num, withZ53 andr s'2, the correction is about20.2 eV.
It would be somewhat more for the transition metals~and
Be! and somewhat less for the other simple metals.

B. Spherical cell approximation

The comparison of the ideal metal and stabilized jelliu
can be simplified and other useful results can be obtaine
we approximate the Wigner-Seitz cell by a sphere of eq
volume, which setsaL5bL51. First, we note that the equi
librium condition of Eq.~11! refers to the average of th
shiftedpseudopotentialw̃(r ). Since the average ofZ/r over
a sphere is just 3Z/2R0 , we can rewrite the equilibrium con
dition in terms of the averagew̄ of the unshiftedw(r ):

w̄5n02
6

5

Z

R0
. ~20!

The Ashcroft pseudopotential with the core radiusr c given
by Eq. ~26! of Ref. 2 satisfies this condition.

The ideal metal can be described by a pseudopotentia

wIM~r ![n IMQ~r !2n0E
V0

d3r 8
1

ur2r 8u
. ~21!

Here, Q~r ! is defined to be 1 ifr lies within the unit cell
centered at the origin and zero otherwise. The second t
on the right-hand side corresponds to the electrostatic po
tial due to a positive chargeZ uniformly distributed on a
sphere of volumeV0 , while the first term is just the confin
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ing potential stepn IM . Outside of the spherewIM falls off as
2Z/r , so that~within the spherical cell approximation! wIM
can be regarded as belonging to the class of pseudopote
of Sec. III A. The volume average of the ideal metal pseu
potential is w̄IM5n IM26Z/5R0 . It follows from Eq. ~20!
that n IM5n0 . Thus, both stabilized jellium and the ide
metal can be derived from different pseudopotentials. Ho
ever, because both pseudopotentials satisfy the same eq
rium condition, these models have exactly the same stre
for the confining potentialn0 .

We caution that the above argument relies heavily on
spherical cell approximation. In Eq.~21!, which defines the
ideal metal pseudopotential, the positive charge density
tends beyond the boundary of the inscribing sphere. He
these pseudopotentials would violate the condition that
cores should not overlap if they were arrayed on a cu
lattice. In the next section we will nevertheless show that
relation n IM5n0 is exact, and can be obtained from
pseudopotential model for the ideal metal.

Remaining within the spherical cell approximation a
first-order perturbation theory, we obtain several useful
sults that apply equally to both the ideal metal and stabili
jellium. The equilibrium energy per electron follows from
Eq. ~9! and Eq.~11!,

e~n0!5ej~n0!1n02
3Z

5R0
. ~22!

This result corresponds to Eq.~31! of Perdewet al.2 and
represents the energy per electron of stabilized jellium.
the ideal metal, we add to this the positive energy per e
tron 13Z/5R0 due to self-interaction of the positive bac
ground, which cancels the corresponding negative term
Eq. ~22!. Thus, the energy per electron of the ideal meta

eIM5ej~n0!1n0 . ~23!

It is important to note that the self-interaction energy of t
positive background is a constant independent of cell s
Since only energy differences enter in the calculation
physical quantities, the ideal metal and stabilized jellium
equivalent when used to model bulk metals to first order;
only difference is one of bookkeeping. For example the
ergy per electron to assemble the system from separ
electrons and pseudopotentials is given by Eq.~22! in both
models.

The equilibrium bulk modulus is obtained by evaluati
the second derivative of the total energy, Eq.~9!, with re-
spect toV, using the rules following Eq.~10! to simplify,
and then eliminatingv̄R using Eq.~11!. We find

B[V
]2~Ze!

]V2 5n0
3 ]2ej

]n2 1n0

Z

5R0
. ~24!

No details of the pseudopotential appear in the formulas
either the equilibrium energy or the bulk modulus—thanks
the equilibrium condition. The values for the bulk modu
calculated using the ideal metal and reported in Ref. 4 di
from the values calculated using stabilized jellium and
ported in Ref. 2. This apparently led to some speculation
the ideal metal and stabilized jellium differed essentia
when used to evaluate bulk properties of the elemental m
ials
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als. Actually, this is not the case. The differences in t
reported bulk moduli come about because the results in R
2 were calculated to first order in the pseudopotential, a
Eq. ~24!, while those in Ref. 4 were calculated to seco
order, i.e., electron relaxation was accounted for. We
peated the calculations of Ref. 4 keeping the electron den
uniform, and found values forB that were very nearly those
of the universal predictions of Eq.~24!. There were some
small differences that arose because our calculations use
actual Wigner-Seitz cells appropriate to the lattice rather t
approximating them by spheres.

We also obtain general results for the ground-state ene
per electron for densities away from equilibrium, and t
equation of state—as long as the pseudopotentials are in
general class defined above, there is no ion-core overlap
all quantities are evaluated in first-order pseudopotential p
turbation theory. The energy per electron is given by

e~n!5
3

10

Z

R0

n

n0
2

9

10

Z

R
1n0

n

n0
1ej~n!. ~25!

The equation of state~pressurep versus volume! follows
immediately from Eq.~25!:

p5n2F 3

10
ZS 1

n0R0
2

1

nRD1
n0

n0
1

]ej

]n G . ~26!

Here, R denotes the volume and radius of the compress
expanded Wigner-Seitz sphere. Equations~25! and ~26!
evaluate, respectively, to the equilibrium energy and to z
when n is set equal to the equilibrium density, i.e.,n, R
→n0 ,R0 . It should be remembered that all quantities ha
only been evaluated to first order in perturbation theory~i.e.,
the uniform electron density was not allowed to respond
the pseudoionic cores!. Hence, it is unlikely that these for
mulas will be very useful for metals other than the alkal
These expressions are equivalent to Eqs.~31! and ~33! of
Ref. 2. However, in the present formulation the energy a
equation of state are manifestly dependent only on the
lium ej (n) and its derivatives; there is no apparent dep
dence on properties of the pseudopotential.

C. Beyond the spherical cell approximation

The equalityn IM5n0 and Eq. ~23! for the ideal metal
energy per electron areexactfor a general cubic lattice. This
is somewhat surprising since the numerical factors multip
ing Z/R0 in the formulas of Sec. III B are approximation
valid only in the spherical cell approximation. Similarly
from Eq. ~19!, we see thatnSJ5 ñ0 is only approximately
equal ton0 for a general cubic lattice. Furthermore, we ca
not use the method of Sec. III A to show the exact nature
the results for the ideal metal, since the pseudopotential
responding to the polyhedral cell of the ideal metal does
have a pure2Z/r tail outside of nonoverlapping cores an
thus does not fit into the class of spherically symmet
pseudopotentials used in Secs. III A and III B. Instead
will use the method of Refs. 3–5 to obtain the desired ex
results.

What considerations are important for constructing
pseudopotential suitable for the ideal metal on a lattice? F
and foremost, we want to have an electron gas that is
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form and in equilibrium at a specified densityn0 . We start
by assuming that a pseudopotential can be constructed
a pseudocharge via Coulomb’s law. Next, we imagine
ranging the pseudoions on each site of some particular r
lar lattice that has an interatomic spacing corresponding
the densityn0 . Since an electron gas has a uniform posit
background, we require that the sum of the pseudocha
should be the uniform positive background. Consequently
arrive at our goal, we must choose a different pseudopo
tial for each different lattice symmetry. We emphasize t
the pseudopotential given below is the basic object in
theory of the ideal metal. The pseudocharge is only a p
ticularly vivid and useful way of describing the pseudop
tential.

The pseudochargerps will be constructed from two
pieces. First, the requirement of a uniform equilibrium st
with background densityn0 implies that one piece should b

rps
1 ~r !5n0Q~r !. ~27!

We remark thatrps
1 is the pseudocharge that would be app

priate for jellium. The second part of the pseudochargerps
2

should ~i! exactly cancel for the uniform equilibrium sta
and ~ii ! generate a potential that is a constantn IM inside the
unit cell and zero outside. Ad-function charge dipole at the
surface ofQ~r ! satisfies these conditions, i.e., the dipole ge
erates the appropriate step function change in the poten
while the overlapping dipoles from two adjacent cells th
just touch will exactly cancel. The dipole moment is det
mined by the condition that the potential has strengthn IM
inside the unit cell.

The pseudopotential for the ideal metal,wIM(r ), is gener-
ated fromrps via

wIM~r ![E d3r 8
rps~r 8!

ur2r 8u
. ~28!

The integral is formally over all space. However, it ne
only be evaluated over the unit cell since the pseudocharg
identically zero elsewhere. Usingrps5rps

2 1rps
1 we obtain

Eq. ~21! for the ideal metal pseudopotential, except thatQ~r !
and V0 now refer to the polyhedral cell rather than th
spherical cell.

For jellium the uniform positive background is regard
as a real charge which can interact with itself as well as w
the electrons. In contrast, for the pseudopotential theory
metals, one assumes there is no self-interaction of
pseudocharge within a cell, and neglects interactions du
the overlap of the pseudopotential cores of neighboring ce
Since, the ideal metal is an electron gas model, we will a
include the self-interaction of the uniform positive bac
ground, i.e., we allowrps

1 to interact with itself. Conse-
quently, after calculating the equilibrium energy due towIM
using pseudopotential theory, we add the self-energy of
positive background. Our construction of the ideal me
treats the pseudochargerps

2 that generates the dipole barri
differently. Its self-interaction energy and the energy of
teraction when two different dipole barriers coincide are
glected.

With this model of the ideal metal it can be shown that t
potential n IM is given by Eq.~1! and that the equilibrium
m
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energy per electron is given by Eq.~23!. The argument is an
exact analog of the derivation in Refs. 3–5 for cleaving t
solid into two half-spaces. The infinite bulk metal consists
a lattice of Wigner-Seitz cells with the ideal met
pseudopotential—the step potentialn IM inside the cell plus
the electrostatic potential arising from the cell’s positi
background. In equilibrium the cells touch, the electron a
background charges cancel everywhere, and therefore
electrons see a constant potentialn IM everywhere. The en-
ergy per electron is thereforee5ej1n IM . The stability con-
dition requires that]e/]n50 at the equilibrium densityn0 .
The electrostatic energy is exactly zero in equilibrium, a
increases as (n2n0)2 if the lattice is expanded or com
pressed. It therefore does not contribute to the first deriva
with respect to expansion of the lattice. The number of el
trons in a cell does not change if the cell volume chang
i.e.,Z5n0V05nV, but the number that occurs in the pote
tial n IM is nV0 . To first order inn2n0 the energy per cell is
therefore Ze5V0@n0ej (n)1nn IM#. Setting the derivative
equal to zero immediately givesn IM5n0 . Thus we have
shown that a pseudojellium model based onwIM(r ) is both
stableand ideal.

IV. DISCUSSION AND SUMMARY

The derivation of the equilibrium energy and the equili
rium condition for the ideal metal using a cubic lattice
exact—in the sense that the derivation depends neither on
approximation of a spherical Wigner-Seitz cell nor on t
constraint that the density isa priori uniform. The ideal
metal pseudopotential is constructed to yield a total elect
potential that is a constant, independent of position at eq
librium. The self-consistent solution of the Schro¨dinger
equation then yields a uniform electron density. That is,
uniformity of the density is not an externally imposed co
straint. If the lattice is expanded or contracted, the total e
tron potential and thus the electron density of the ideal m
will no longer be uniform. The change in energy will b
proportional to (V2V0)2 as will the change in the electro
static contribution, and thus neither will influence the eq
librium condition. However, quantities such as the bu
modulus depend on energy derivatives beyond the first. C
sequently ‘‘exact’’ calculations of the bulk modulus for th
ideal metal differ slightly from the result in Eq.~24! due to
lattice effects, and by a much larger amount if computed
second order in the pseudopotential,4 thus including electron
relaxation to the ion cores.

In this paper, we have shown that stabilized jellium a
the ideal metal can both be interpreted as pseudopote
theories. Each approach has advantages and disadvan
The Ashcroft pseudopotential used in the derivation of s
bilized jellium more closely resembles the potential of t
actual ion core in a real metal, but the derivation of the ma
result Eq.~1! requires the spherical cell and uniform electr
density approximations. The ideal metal pseudopotentia
not physically realistic, in that the ion core extends over
entire cell, but Eq.~1! is then an exact consequence of t
ideality condition.

One of the questions we had at the start of this investi
tion was, can one construct a better uniform electron
model, which would simulate the properties of real met
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10 492 PRB 59HERBERT B. SHORE AND JAMES H. ROSE
more closely, by using a different local pseudopotential?
example, is there some local pseudopotential~within the
class defined in this paper! that would allow one to choos
the equilibrium density and chemical potential indepe
dently? Our conclusion is that this is not possible. The v
ume average of the pseudopotential over the cell is the o
adjustable parameter of the pseudopotential that enters in
calculations, and once the desired densityn0 is chosen, the
value of this average is fixed by the equilibrium conditi
Eq. ~11!.

In Sec. III B we obtained simple analytic formulas for th
bulk modulus, energy versus density, and the equation
state. We regard these results as useful improvements
uncorrected jellium; for example, the pressure does go
zero at the equilibrium density. However, because these
sults are valid only tofirst order in pseudopotential pertur
bation theory, they cannot be expected to provide reali
estimates of these quantities, except possibly for the al
metals.
s

r
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l-
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of
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to
e-

ic
li

In summary, we have shown that pseudojellium provid
a framework for deriving the ideal metal and stabilized j
lium on the same footing. We have learned why the t
models are so similar and why they provide exactly the sa
answer to physical questions in two cases: for inhomo
neous metals and for uniform bulk metals calculated to fi
order in the underlying pseudopotential. We have found
teresting first-order formulas for the energy, the chemi
potential, the bulk modulus, and the equation of state of
homogeneous bulk metal that are independent of the de
of the underlying pseudopotentials.
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