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Atomistic theory of the critical field for intrinsic spin reversal in transition metals
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A method to estimate the critical field for intrinsic spin reversal in transition metals is proposed within the
framework of itinerant-electron magnetism. By studying the transverse magnetic susceptibility under a Hartree-
Fock approximation, the dispersion relations of the spin wave excitations are obtained, which possess a
positive gap induced by the anisotropically coupled spin-orbit interaction when the magnetization is along the
easy axis. When a magnetic field applied opposite to the magnetization is strong enough to overcome the
excitation gap, a spin reversal transition takes place which defines the critical field. To illustrate the present
method, transition-metal magnetic monolayers and microclusters have been examined. Comparisons show that
the method can be applied to capture effects missed in the classical Stoner treatment.
[S0163-182699)10101-7

I. INTRODUCTION which in turn, determines the critical fiefdThis approach
has been applied to study various kinds of inhomogeneous
The phenomenon of magnetic hysteresis has been knowsystems and had been extended to incorporate thermal
for more than a century, and its application in magnetic refluctuations® However, since practical recording systems are
cording has resulted in great economic achievements. Agsually made of transition metals which cannot be well de-
important quantity in a recording system is the critical fieldscribed by the local magnetic moment model, the theory
at which intrinsic spin reversdlSR) takes placé.To deter-  cannot be applied naively to study such systems.
mine this field, Stoner and Wolfarth established a classical On the other hand, the itinerant electron model has been
treatment — they first proposed a phenomenological modetery succesful in the description of the magnetism of transi-
including the anisotropy energy, then used a second ordéion metals. Many efforts have been devoted to the anisotro-
variation method to determine the critical fiéldhis idea  pies of ultrathin magnetic films and microclusters both from
had been proven useful in presenting a qualitative descrigfirst-principles calculatiorls® and model calculation¥14
tion of macroscopic magnetic systefhis recent decades, in The spin-orbit(SO) interaction is believed to be mainly re-
order to enlarge the memory density, the size of each recorgponsible for the anisotropies in metallic systems, and be-
ing unit has become smaller and smaller and the structureause of the reduced symmetry and lacking neighbors, in
more and more complicated. Therefore, the Stoner-likesome cases, a large anisotropy is expected. Although there
theory*® is becoming inadequate for the following reasons.have been many authors investigating the anisotropies and
First, to use Stoner-like theory, one has to find out the anthe anisotropy is reallglosely relatedto the critical fields
isotropy energy function with respect to the spin direction.for ISR, a theory which can be used directly to estimate the
However, this is only possible for systems with very high critical field still does not exist to our knowledge.
symmetry (for example, the magnetic thin film Second, In the present work, we establish the atomistic theory of
Stoner’s approach assumes that the spin reversal is a uniforthe critical field for ISR in transition-metal magnetic sys-
mode and the magnetization maintains unchanged in the réems. We assume that the magnetic systems concerned are
versal process. Again, this requirement is not generally sasmall enough so that no domain wall motion needs to be
isfied, for example, in inhomogeneous systems such as meonsidered. As a reasonable approximation, the Hubbard
croclusters and magnetic multilayers. Finally, all quantummodel with SO interaction is used to describe a transition
effects have been neglected in Stoner-like theory. metal as in Refs. 10—14 while the magnetostatic interattion
Recently, based on the local magnetic moment model, wes neglected in the present paper. The low-lying spin-wave
proposed a quantum method to calculate the critical field foexcitations are obtained under a Hartree-Fock mean-field ap-
ISR in a magnetic systethThe key point is to study the proximation with the SO interaction treated self-consistently
quantum spin wave excitations rather than varying the spimather than perturbativefi¥. When the magnetization is
moments classically. It is found that the anisotropy induces @ointing along the easy axis, the anisotropic SO interaction
gap to the elementary excitations which can help the systenmduces a positive excitation gap even though a field is ap-
to maintain metastability. Thus, only when a negative field isplied opposite to the magnetization. The field which is strong
strong enough to overcome the gap, does the spin turn oveenough to overcome the gap is the critical field for ISR, since
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the previous spin state cannot maintain metastability due to 1 J
large fluctuations at this fiefiFree-standing transition-metal H=— 52 un?— —ZMZ
monolayers and small magnetic microclusters have been ! M

studied to illustrate the main ideas of the present method, |, -
: ) S i ere{l} denote a set of quantum num , andE
Since the possible hybridization effects with the substrate re tr{1e} eigenvalues 0(? the Hamilthc{)%;?az } matrix{l}vvith

have been neglected in the present idealized models, the C%—‘ iy M=1, . 2\ as corresponding eigenvectors. Thus

+% EnCiCu. @

culated results seem less realistic. However, the aim of thg {0\t . onsistent equations should be
present work is to describe how a quantum-mechanical cal-
culation can be performed to study the spin wave excitations
so as to determine the critical field for ISR in itinerant- ni=2 2 |Piw,{|}|2®(Ef—E{|}),
electron systems. Special attention will be paid to the com- ao {1}
parisons with the classical Stoner theory. )

This paper is outlined as follows. The next section is de- “i:% §|: |Pigg iy *O (B —Eqy)
voted to the description of the theory and Sec. Il applies the {1
theory to monolayers and microclusters. Finally, the conclu-

sions are summarized in the last section. in which Ey is the Fermi energy.
What are theelementary excitationsn such systems?

Similar to the Heisenberg model, tiedementary excitations

©)

l. THEORY (or the spin wavesshould be smaltransversevariations of
The Hamiltonian describing a transition-metal magneticth® magnetization, which can be determined by studying the
System Shou'd Contain the fo”owing terms: transverse magnet|C SUSCEpthIhty funCtI](?lJr? Suppose

some disturbing fieldi{*,hY) is applied perpendicular to the

J .. magnetization, the perturbation energy is

unini— —uimi
M

1

=3 3, ot 32

- SH=2ugY, (N'S+h'S)e't
I

€2, 2 SCl, Cigs,~ 2 N0 ClooCiao-

hep " = ('S +h; ShHe!, ©)
The first term is the electronic hopping interaction whe@  Where
2_\,2 2__ .2 -
denote the d(xy,yz,zx,x“—y*,3z°—r°) and 4 wave chan hji _ h}‘t thY,

nels, ando is the spin index. The second term describes the
Hubbard-like intra-atomic electron-electrore-€) interac- ST =S'+isY @)
. . . . . J ] J

tions, whereU=U,,+ U, is the direct Coulomb interaction

andJ=U; —U; the exchange inEeractidﬁ,and nandu;  and the spin operators are defined by
are defined by]l = 2oz(rCitm'Cicm' M= MBE aa'o-Citu)'Cia(r ’

respectively. The third term is the SO interaction which has S+=E ct c
been given explicitly in Ref. 11. Finally, an external field is ! 7 larTial
applied along the magnetized direction. In a Hartee-Fock ap- 8
proximation(HFA), the e-e interaction can be decoupled as 5(:2 CfmcmT )

1 2 2 . . .

Hee=— 52 uni—— u; According to the Kubo’s formula¥ the induced magnetiza-
' Mg tion is given by
+E(Un—JU )c* c 2
o\ pghi | Tiao e 2MB<3*>e'w‘=[2 xij (@ + 2 i " (@)hy e

where n;=(n;) and u;={(pu;) should be determined self-
consistently.

ZMB<S.‘>e‘°“=[Z Xi_j+(w)hj_+z Xi}_(w)hr}ei“",
Diagonalizing Hamiltonian(1) under the HFA(2) with J J

the help of the following transformation: ©
where the magnetic susceptibilties are defined by some spin
+ * Bt correlation functiong®
Cimr_ % Pia(r,{l}c{l} '

~ (3) Xi; T (0 =—2u5((ST(D]S"))=2u5i#(0|[S7(1),57]/0),
CiaU:% Piao,11Cypiy (10
|

xo)= | xEEnE 11
we can find the eigenvalugenergy bandsof the system: Xij (@) JfocX” ® @D
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According to the standard equations of motion for thebe calculated exactly so that some approximati@ay, the
Green'’s functions, we have the following equations to evalurandom phase approximatith are necessary. Here we fol-

ate those spin correlation functions: low essentially the arguments made by Friétie first de-
et - " . termine theHartree-Fock susceptibility in which thedy-
o((S |Si No=(0I[S" .5 1[0)+(([S =H]|SJ Do namic correlation correctionsare neglected. By putting

Hamiltonian(1) under the HFA(2) into Eq.(12) directly, the
Unfortunately, because of the many-particles effect intro-Hartree-Fock susceptibility functions are found exactly as
duced by thes-e interaction, the correlation functions cannot follows:

PX mPisri P mPi

+-0 2 ia? {1} 181 A8l {m" il {m}

o %w)=-2 O(Ei—Ep)—O(Ei—Ermp)], 13
xif Aw)=-2up2 o —SEUTE ST v (OB~ O(E—Eqm)] (13
X'flJrO(w): _ZMZE Praly“}PJBl:{'}PIBTv{m}PIaTv{m}[@(E _E )_®(E _E )] (14)
" BB (T o= (Eym—Epy) o rome

Plar.0yPisLit Pl imyPial m)

++0 2

ST w)=—2 O(E;—E/)—O(E;—E , 15
xiw)=-2pp 2 5 o (Epy—Eqy OB Eu) = OE~Epm)] (15
~ o ) P 0yPist 1yPis1 fmiPiat fm

xij %w)=—2u3> [O(Ei—Epy) — O (Ef—Em)]. (16)

«p {Ifm) o—(Em—Epy)

Substituting the above functions into E§), we find that the  the internal field can folloninstantaneouslany change of
normal modes of the elementary excitations can be obtainetthe magnetization. Thus, the transversely induced magneti-
by diagonalizing the following Hermitian magnetic suscepti- zation can be determined by
bility matrix:

Ape*'=x(0)-he'*'=x%(w)(h+Agm)e!

xij %@) xi %)
__ . I R T
Xi,j ‘() Xi,j+0(w) ' (17) =x%w)| h+ —Au e'et, (22
M
Thus, Eq.(9) becomes whereA,& denotes every normal excitation mode obtained in
~ . ~ . 0 H
2ua(S5 Vet = =0 ) hEel et 18 Eq.(18), andx"(w) the corresponding Hartree-Fock suscep-
He(Sh )€ =xn (@)hy e (18) tibility. So, based on this argument, the magnetic suscepti-
where bility containing the dynamic correlation can be calculated
by
S =2 (Qu 'S X Qs (19 1 L

= -—. 23

Xn (@) xa%w)  wg 29

EZZ (Qﬁ_)*hi_J“zi (Qin")*hi", (200 since the poles of the magnetic susceptibility function cor-
respond to the elementary excitation energies, we thus have

in which x, °(w) are the eigenvalues of the matfik7), and  the following equations:

matrices{Q;,” ,Q;;*} contain the corresponding eigenvec-

tors. +0

Now we try to incorporate thelynamic correlation cor- —Xn (@)=1

rections According to Hamiltonian(1), the e-e interactions #B

contribute effectively an internal magnetic field which is pro- to fix the elementary excitation spectrusy(h) as a function

>l

(29)

portional to the magnetization: of the external field.
One may check that whenever E@4) has a solutions
. J . =wp, there must exist another solutian= — wy. Which
heff:ﬂ_zB/v‘- (21 one is the excitation energy? Generally, there are three dif-

ferent cases shown schematically in Fig. 1. In d@ethere
Since the variations of the magnetization are small and thare no real solutions of ¥(w)=0 so that the excitation
frequency is low(we only consider the low-lying excita- energy, if at all definable, must be imaginary. Both cases
tions), we expect thaFriedel’s argumenf is valid, namely and (c) have two real solutions, however, by comparing to
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' ' ' configuration. In the latter case, a spin reversal transition will
\/ take place. Thus the critical field® is determined by the

condition

/\ @ AhD=0 29

@ For a system with translation-invariant symmetry, a Fou-
- 0 rier transformation is helpful to greatly simplify the above
= formulas. In the case that there is only one atom per unit cell,
» 1 there is no charge transfer and the magnetization should be
—~ | ‘ . ‘ ! w uniform. Thus, the Hamiltoniafil) under the HFA becomes
[ ] Juo
\/ H=> X || eupk)=———hugo| b,
@, 0, k aB;od’ “B
0 \ /
’ + JMZ
s (c) + €S53 (K) |Chp(K)Cppr(K) +N—, (26)
0 2up
Q)
and the self-consistent equation is
FIG. 1. Schematic illustration of three cases of the excitation 1
energy:(a) imaginary,(b) negative,(c) positive. w= N; ;f B2, 0|p(wﬁ0,(k)|2®[Ef_ Ego (K)],
the Lehmann representatfdrof the magnetic susceptibility (27)
function, we find thatc) corresponds to a positive excitation where matrixP,,,, s0(K) is used to diagonalize the Hamil-
while (b) to a negative excitation. tonian matrix in subspace & whose form has been shown

The minimum excitation energy is the energy gap whichin Eq. (26). The effect of the direct Coulomb interactidh
is a function of the external fields(h)=Min[f2w,(h)]. Ac-  has been absorbed into the hopping parameters.
cording to Ref. 4, the gap of the elementary excitation is the The magnetic susceptibility matrigl7) now turns to a
order parameter which indicates the metastability of a givercollection of N independent X2 submatrixes in the sub-
state: if the gap is positive, such a state is either stable gpace ofg:
metastable because any fluctuation must raise the energy; on +-0 140
the other hand, when an external field is applied opposite to X' e.0), x (0,0
the magnetization and it is strong enough to make the gap x %0,q9), x %wq) | (28)
negative or imaginary, the state must be unstable since some
“soft modes” of the excitations will destroy the present spin where

¢ w.q) = — 215 P (K=DPg1 1y (K= PRy 1y (K)Pay fmy(K)
N 2% (fm % o —[Efmy(k) —Eyy(k—=a])
X{O[Et—Eyy(k—=a)]=O[Et—Eqmy(K) 1}, (29
|
and the other matrix elements are given by similar expres- Re=2K,/M. (31)

sions. After diagonalizing sub-matricé€8), one can use Eq.
(24) to get the spin wave dispersion relatiang&g,h) and the

Spin exutgnon gapz}(h):.mln[hw(q,h)], and use Eq(25) fourth order contributions should be considered to calculate
to determine the critical field for ISR. the critical field

In order to compare with the classical Stoner theory, the The uniaxial anisotropy modef30) has also been as-
Important equations in SUCh. a theory wil be_ Summémze{jsumed for microcluster systerfsThe critical fields can thus
here. Based on the perturbation theory, the anisotropy energy. . iculated similarly by Eq31) in Stoner theory
of a magnetic thin film is found to B& '

On the other hand, if the axis is the hard axisK,<0),

H=Uy—K,cog6—h-M+o(&), (30) Ill. APPLICATIONS

where =0 corresponds to the perpendicular axis. H&rg, A. Transition-metal monolayers

is the energy difference between the in-plane polarization Experimentally, it has been shown that the coercive fields
and the perpendicular polarization states which can be calcwf magnetic thin films might be much larger than those of the
lated according to Eq4). If K,>0 which means that the  bulk materials, making them candidates for high-density re-

axis is the easy axis, the critical field is cording systems. To illustrate the present approach, we have
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TABLE I. Critical fields h® of free standing Fe monolayers with TABLE Ill. Critical fields h® of free standing Ni monolayers

lattice constants matching different substrates, compared With with lattice constants matching different substrates, compared with
which is estimated with Stoner theory. h® which is estimated with Stoner theory.

Matching substrates  AQ01) Ag(11l) Pd001) Pd11)) Matching substrates ~ AQ01) Ag(111) Pd00) Pd11])

easy axis z z z y easy axis y y y y
h®ug (MeV) 0.718 0.0712 0.360 0.0193 h®ug (meV) 0.245 0.445 0.125 0.106
K, (meV) 1.171 0.116 0.585 —0.0333 K, (meV) —-1936 —1.740 —1.256 —0.898
M (uB) 3.200 2.897 3.044 2812 M (up) 1.032 0.781 0.945 0.731
RCug (MeV) 0.781  0.0800  0.384 o(&%) heug (MeV) o(£%) oY o(&)  o(&h

examined the critical fields of Fe, Co, and Ni monolayersment with ke, although it is always a little smaller thaf,
with lattice structures_matching various substrates. ~ (2) when thez axis is the hard axis, it is expected that the
Inour calculations, the Slater-Koster hopping critical fields should be very smdlb(&%)] since the anisot-
parameters are taken _from Ref. 20, and a crystal-field pa- ropy within thex-y plane is at least the fourth order &
rameter5=0.5 eV, which is the energy difference between However, we see from Tables 1,11l that the in-plane critical
the orbitals pointing outside the plangzzx,3z°~r?) and  fields of Co and Ni series are not very small. Similar results
those lying in the planexty,x>—y?), is adopted according to can also be found in the first-principie calculations by Gay
Ref. 12 in order to take account of the reduced symmetry iling Ritcher, where the in-plane anisotropy of Ni monolayer
monolayers compared to the bulk system. Fiveehd one  has the same order as the perpendicular anisotropy of Fe
4s orbitals are considered so that thel hybridization ef-  monolayer. This fact indicates that although the in-plane co-
fects are incorporated. By comparing to the spontaneougycivity carries a factor of?, its value is not necessary very
magnetization obtained by the first principles calculations folsma|| because of distinct band structures in different materi-
Fe, Co, Ni monolayers with lattice structures matching theg)s
Ag(001) substraté; we fix the exchange parametito 0.24 Some discussions are helpful to understand the results
eV (for Fe), 0.28 eV(for Co), and 0.36 eMfor Ni), respec- |isted in Table I-IIl. According to Eq(19), suppose the spin

tively (see the spin polarization listed in Tables 13lThe  wave mode with the lowest excitation energy is of the fol-
SO interaction parametéris chosen to be 0.05 eV, and over |owing form:

10* k points in the first irreducible Brillouin zone are con-

sidered in the numerical calculations. Using the above pa- ”s;eiwt:Asgeiwth Bs(;eiwt

rameters, the critical fields for ISR in Fe, Co, and Ni mono- ) ,

layers with lattice structures matching @§1), Ag(111), =(A+B)Se'“'+i(A-B)Sje'“". (32)
Pd001), and Pd111) substrates are calculated and the re-

sults are listed in Tables I-Ill, together with the calculatedgzggga&yéégéHrgscg)vnero ftvsvr()jlnsspx:glb(e:az;gseglr%ssgil irqg?erst-
anisotrop~y energ¥,, the spin polarizatio and the criti- ing: (1) B=0, circular pélarization an@®@) A=B, linear po-
cal fieldsh® estimated by the Stoner theory according to Ed.jarization. In the case that theaxis is the easy axis, the
(3D). lowest excitation mode is indeedrearly circular polariza-

It is shown that the easy axes of Fe monolayers are petion (in this case, we do find tha® is very small andq
pendicular to the plane except for Fe(Ptl), while those  _,0), so that the simple argument leading to Egl) is
for Co and Ni series are all lying in the plang &xis refers  reasonable enough to gain the main results although some
to an axis connecting two nearest neighbor sites in thgyuantitative corrections may exist according to our theory.
plang. The calculated anisotropy energies and easy axes fofhose corrections are due to high-order contributions, self-
Fe and Ni monolayers matching A1) substrate are quali- consistent treatment of the magnetization, and quantum fluc-
tatively consistent with the first principles calculations by t,ations. On the other hand, when the easy-axis lies in the
Gay and Ritchef. o _ _ _ x-y plane, the lowest excitation mode is nowearly linear

From Tables I-lll it is very interesting to find thal)  polarization(in this caseB has the same order @#sandq
when thez axis is the easy axid)® is in fairly good agree- _. () which describes the spin variations in the plane. In this
case, if one can determine the energy function with respect to
I1;|he spin direction correct to the fourth order §n it is still
possible to use a Stoner-like theory to analyze the critical
fields. However, much more spin directions should be con-
sidered to fix the total energy function — for example,

X, z, X+z, and x+y spin directions should be considered

TABLE IlI. Critical fields h® of free standing Co monolayers
with lattice constants matching different substrates, compared wit

¢ which is estimated with Stoner theory.

Matching substrates ~ AG01) Ag(111) Pd001) Pd11)

easy axis y y y y in order to fix the anisotropy energy functions for a square
hug (meV) 0.522 1.041 0.499 1.039  monolayer up to fourth ordér.However, by using our
K, (meV) —2.846 —4.093 -—-3.557 —-4.053 theory, only one spin directiofthe easy axisneeds to be
M (ug) 2.160 1.873 1.996 1.800 examined, and all the high-order contributions and quantum
hCug (MeV) o(&% o(&% o(&h o(&% effects have been incorporated automatically into the final

results.
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FIG. 2. Structures of Fe microclusters studied in this paper, g 21
and x axes are the easy axes and the hard axes of the structures, E
respectively. In structure@) and (e), we have a&2d/+/3. C
& b)
B. Magnetic microclusters 0.7 08 0.9 1.0 11
Recently, transition-metal magnetic microclusters have at- d/ do

tracted much attention both theoreticd#¥*?* and

experimentally> Pastoret al. have studied the structure and ~ FIG. 3. (a) Critical fieldsh® (along thez axis) of structure(a) as
size dependence of the magnetic properties including the aifunction of the interatomic bond length whedg is the bond
isotropy energy for magnetic microclusters, by using thdength of the bulk material, compared with those estimated with the
Haydock, Heine, and Kelly’s recursion method based on th&!assical Stoner theory. In the middle part of the figure zheis is
same Hubbard Hamiltoniak.in this subsection. we will ex- Not the easy axis of the microcluster so that the critical fields are not
amine the microclusters as another illustration of the presert’Wn-(b) Spin polarization of structuréa) as a function of the
method. interatomic bond length.

Structures shown in Fig. 2 for Fe microclusters have been

studied with the help of the theoretical formulas developed ir§traightforwardly. When the atoms approach each other, the

the first part of Sec. Il. Taking the parameters from Ref. 13,electronic hopping become strong so as to make the geo-

we have calculated the critical field§ of those structures metrically anisotropic nature of theaxis stronger, as a re-

i h Its i | h HR esti sult, the critical field increases. In the limit af—«, the
and listed the results in Table IV together with estimated  icrocjuster becomes effectively three isolated atoms so that

by the Stoner theory for comparison. The anisotropy energieg) e axis become equivalent and the critical field ap-

leading toh® are consistent with Ref. 13 although we are proaches zero. As the atoms come close to each other, the

using the exact diagonalization method rather than the recugffective “energy bandwidth” is enlarged leading to a sharp

sion method. We have also performed a test study for agecrease of the spin polarization. It should also be noted that

isolated Fe atom, and found that the critical fieldrideed jn a region near the spin polarization jump, thaxis is no

Z€ero. longer a magnetic easy axis. The most interesting thing is
Itis very interesting to find that while in some cag€ds  that in the segment dfl ~3.0ug, the critical fieldsh® are

very close toh® [see structuregc) and (d)], in other cases, much smaller that those estimated by the Stoner thBbry
they are completely different. In fact, even for the samewhile in the segment oM ~2.33ug, the critical fields are
structure, things may be different if some other factors ar&imost exactly the same as those estimated by the Stoner
changed. In Fig. 3, we show the critical fiekiSand the spin theory (see Fig. 3

polarizationM of structure(a) with respect to variation of the How can we account for these differences? Let us exam-
bond length, together with® for comparison. It is shown ine structuregd) and(e) in the case ofl/dy=1. In Fig. 4, we

that the critical field of the microcluster depends sensitivelyshow the critical fields of these two structures as functions of
on the bond length. In a definite spin polarization region, the

critical field increases ad decreases. This can be explained 3
N ] = @
TABLE IV. Critical fields h® of small Fe clusters whose struc- NG
tures are shovl/n in Fig. 2 with interatomic bond lengttd,=1, %‘ 2r
compared withh® estimated with Stoner theory. g
=]
£ 1|
Structures h®ug (meV) heug (Mmev) easy axis = !
(a 1.727 2.711 z
(b) 2.038 3.623 z 800 002 004 006 008 0.0
(c 0.184 0.185 z E-'
(d) 0.580 0.592 z
(e 1.656 3.226 z FIG. 4. Critical fieldsh® of structuregd) and(e) as a function of

3
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the SO interaction parametér It is interesting to see that IV. CONCLUSIONS
the two structures have distinétdependence. By fitting to
polynomials, we find that for structurel) h®=4.8x 10 °
—5.6x10 #|¢|+0.282+---, while for structure(e) h®
=9.2x10 8+0.036¢| —0.0642+ - - - . It is thus shown that
the first order contribution dominates in structgegwhile it
can be neglected in structufd). Similar first order contri-
butions are also found in structuf@ (M ~ 3.0 segmentand
structure(b). In such cases, the critical fields are certainly not
consistent with the results coming from E§1).

To summarize, we have established an atomistic theory to
determine the critical field for intrinsic spin reversal in
transition-metal magnetic systems within the framework of
itinerant-electron magnetism. The Hubbard model with spin-
orbit interaction has been used to describe a general
transition-metal magnetic system, and the energy lelegls
ergy bandshave been obtained by diagonalizing the Hamil-
tonian under a Hartree-Fock approximation. The spin-orbit
._interaction has been treated self-consistently on the same

. oS ) [Footing as the hopping and the electron-electron interacting
theory, there are no first order contributions to the amsotrop)(erms, rather than perturbatively. By studying the transverse

energy sin_ce the dia_gonal ellements are zero in the SO int.eFﬁagnetic susceptibility function based dtiedel's argu-

atCt't?]n' 1';h|ng.s aref dlfferlenttg degenerag)te er&ergy ![(re]vels ex'sﬁgents, the elementary excitation spectra are found to possess

Z .T’t emyl)SLf[Lacseb 'nt IS tpase, aseth on d € Pfes“t"a positive gap if the spin is pointing along the easy axis. The
amritoman{.), the interaction opens these degenera %pin excitation gap is the order parameter which indicates the

EVEIS S0 as Ito rr|1ake the I_ovc\j/-?rr;]ergy I(;:\_/gl t(.)CCLt’p'tehd anq ﬂt]FnetastabiIity of a given state. When an external field is ap-
Igh-energy level unoccupied. The contribution to the aniso plied opposite to the spin direction and its strength is strong

ropy is thus first order iré. However, the present Hamil- enough to overcome the gap, the present spin state is no

tonian (1).’ a|mp légh qulelyha.\dr(])%ed_lrtl thetllte_rat. t, IS longer metastable so that the spin reversal transition takes
an oversimplified one in which the intra-atonmgee interac- place which defines the critical field.

tion U andJ are assumed to be the same for different orbit- Fe, Co, and Ni monolayers with lattice structures match-

als. If we adopt a more realistese interaction form ing Ag(001), Ag(111), Pd001), and Pd111) substrates have
been examined. Comparison with the classical Stoner theory

1 J o ) | .

A ~ D(B" ~
Hee=§2 U agMialip— —5 Miakip (33  shows that quantitative corrections can be obtained from this
iap ME theory, and less spin directions need to be considered in our

theory than in the Stoner theory.

Applications to small microclusters have also been given.
e show that the spin reversal mode needs not to be uni-
rm, so that the Stoner theory is inadequate to estimate the
critical fields of intrinsic spin reversal in small microclusters.
Jowever, by using the present theory, the critical field of
ntrinsic spin reversal in a transition-metal magnetic system
can always be examined.

in the Hamiltonian, things may be different for such contri-
butions coming from degenerate energy levels. A detaile
work on this problem is now in process and will be presente(?N
elsewhere® °

In microclusters, the spin reversal modes are not nece
sarily uniform because of the highly reduced symmetry. Fori
example, for structuréc), we have the lowest spin excitation
mode as
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