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Atomistic theory of the critical field for intrinsic spin reversal in transition metals
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A method to estimate the critical field for intrinsic spin reversal in transition metals is proposed within the
framework of itinerant-electron magnetism. By studying the transverse magnetic susceptibility under a Hartree-
Fock approximation, the dispersion relations of the spin wave excitations are obtained, which possess a
positive gap induced by the anisotropically coupled spin-orbit interaction when the magnetization is along the
easy axis. When a magnetic field applied opposite to the magnetization is strong enough to overcome the
excitation gap, a spin reversal transition takes place which defines the critical field. To illustrate the present
method, transition-metal magnetic monolayers and microclusters have been examined. Comparisons show that
the method can be applied to capture effects missed in the classical Stoner treatment.
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I. INTRODUCTION

The phenomenon of magnetic hysteresis has been kn
for more than a century, and its application in magnetic
cording has resulted in great economic achievements.
important quantity in a recording system is the critical fie
at which intrinsic spin reversal~ISR! takes place.1 To deter-
mine this field, Stoner and Wolfarth established a class
treatment — they first proposed a phenomenological mo
including the anisotropy energy, then used a second o
variation method to determine the critical field.2 This idea
had been proven useful in presenting a qualitative desc
tion of macroscopic magnetic systems.3 In recent decades, in
order to enlarge the memory density, the size of each rec
ing unit has become smaller and smaller and the struc
more and more complicated. Therefore, the Stoner-
theory2,3 is becoming inadequate for the following reason
First, to use Stoner-like theory, one has to find out the
isotropy energy function with respect to the spin directio
However, this is only possible for systems with very hi
symmetry ~for example, the magnetic thin film!. Second,
Stoner’s approach assumes that the spin reversal is a uni
mode and the magnetization maintains unchanged in the
versal process. Again, this requirement is not generally
isfied, for example, in inhomogeneous systems such as
croclusters and magnetic multilayers. Finally, all quant
effects have been neglected in Stoner-like theory.

Recently, based on the local magnetic moment model,
proposed a quantum method to calculate the critical field
ISR in a magnetic system.4 The key point is to study the
quantum spin wave excitations rather than varying the s
moments classically. It is found that the anisotropy induce
gap to the elementary excitations which can help the sys
to maintain metastability. Thus, only when a negative field
strong enough to overcome the gap, does the spin turn o
PRB 590163-1829/99/59~2!/1028~8!/$15.00
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which in turn, determines the critical field.4 This approach
has been applied to study various kinds of inhomogene
systems5 and had been extended to incorporate therm
fluctuations.6 However, since practical recording systems a
usually made of transition metals which cannot be well d
scribed by the local magnetic moment model, the the
cannot be applied naively to study such systems.

On the other hand, the itinerant electron model has b
very succesful in the description of the magnetism of tran
tion metals. Many efforts have been devoted to the aniso
pies of ultrathin magnetic films and microclusters both fro
first-principles calculations7–9 and model calculations.10–14

The spin-orbit~SO! interaction is believed to be mainly re
sponsible for the anisotropies in metallic systems, and
cause of the reduced symmetry and lacking neighbors
some cases, a large anisotropy is expected. Although t
have been many authors investigating the anisotropies
the anisotropy is reallyclosely relatedto the critical fields
for ISR, a theory which can be used directly to estimate
critical field still does not exist to our knowledge.

In the present work, we establish the atomistic theory
the critical field for ISR in transition-metal magnetic sy
tems. We assume that the magnetic systems concerne
small enough so that no domain wall motion needs to
considered. As a reasonable approximation, the Hubb
model with SO interaction is used to describe a transit
metal as in Refs. 10–14 while the magnetostatic interactio15

is neglected in the present paper. The low-lying spin-wa
excitations are obtained under a Hartree-Fock mean-field
proximation with the SO interaction treated self-consisten
rather than perturbatively.12 When the magnetization is
pointing along the easy axis, the anisotropic SO interact
induces a positive excitation gap even though a field is
plied opposite to the magnetization. The field which is stro
enough to overcome the gap is the critical field for ISR, sin
1028 ©1999 The American Physical Society
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the previous spin state cannot maintain metastability du
large fluctuations at this field.4 Free-standing transition-meta
monolayers and small magnetic microclusters have b
studied to illustrate the main ideas of the present meth
Since the possible hybridization effects with the substra
have been neglected in the present idealized models, the
culated results seem less realistic. However, the aim of
present work is to describe how a quantum-mechanical
culation can be performed to study the spin wave excitati
so as to determine the critical field for ISR in itineran
electron systems. Special attention will be paid to the co
parisons with the classical Stoner theory.

This paper is outlined as follows. The next section is d
voted to the description of the theory and Sec. III applies
theory to monolayers and microclusters. Finally, the conc
sions are summarized in the last section.

II. THEORY

The Hamiltonian describing a transition-metal magne
system should contain the following terms:

H5(
i j

(
a,b,s

t i j
abCias

1 Cj bs1
1

2(i
FUn̂i n̂i2

J

mB
2
m̂ im̂ i G

1j (
i ,ab

(
s1s2

Sab
s1s2Cias1

1 Cibs2
2(

i
hmBsCias

1 Cias .

~1!

The first term is the electronic hopping interaction whereab
denote the 3d(xy,yz,zx,x22y2,3z22r 2) and 4s wave chan-
nels, ands is the spin index. The second term describes
Hubbard-like intra-atomic electron-electron (e-e) interac-
tions, whereU5U↑↑1U↓↓ is the direct Coulomb interaction
andJ5U↑↓2U↑↑ the exchange interaction,13 and n̂i and m̂ i

are defined byn̂i5(asCias
1 Cias , m̂ i5mB(assCias

1 Cias ,
respectively. The third term is the SO interaction which h
been given explicitly in Ref. 11. Finally, an external field
applied along the magnetized direction. In a Hartee-Fock
proximation~HFA!, thee-e interaction can be decoupled a

Hee.2
1

2(i
S Uni

22
J

mB
2

m i
2D

1(
ias

S Uni2
Js

mB
m i DCias

1 Cias , ~2!

where ni5^n̂i& and m i5^m̂ i& should be determined self
consistently.

Diagonalizing Hamiltonian~1! under the HFA~2! with
the help of the following transformation:

5
Cias

1 5(
$ l %

Pias,$ l %
* C̃$ l %

1 ,

Cias5(
$ l %

Pias,$ l %C̃$ l % ,
~3!

we can find the eigenvalues~energy bands! of the system:
to

n
d.
s
al-
e
l-
s

-

-
e
-

c

e

s

p-

H52
1

2(i
S Uni

22
J

mB
2

m i
2D 1(

$ l %
E$ l %C̃$ l %

1 C̃$ l % , ~4!

where$l% denote a set of quantum number$ j bs8%, andE$ l %
are the eigenvalues of the Hamiltonian matrix wi
$P$m%,$ l % ,m51, . . .% as corresponding eigenvectors. Th
the self-consistent equations should be

5
ni5(

as
(
$ l %

uPias,$ l %u
2Q~Ef2E$ l %!,

m i5(
as

(
$ l %

suPias,$ l %u
2Q~Ef2E$ l %!

~5!

in which Ef is the Fermi energy.
What are theelementary excitationsin such systems?

Similar to the Heisenberg model, theelementary excitations
~or the spin waves! should be smalltransversevariations of
the magnetization, which can be determined by studying
transverse magnetic susceptibility function.16,17 Suppose
some disturbing field (hx,hy) is applied perpendicular to th
magnetization, the perturbation energy is

dH52mB(
i

~hi
xSi

x1hi
ySi

y!eivt

5mB(
i

~hi
1Si

21hi
2Si

1!eivt, ~6!

where

H hj
65hj

x6 ih j
y ,

Sj
65Sj

x6 iSj
y ~7!

and the spin operators are defined by

5
Si

15(
a

Cia↑
1 Cia↓ ,

Si
25(

a
Cia↓

1 Cia↑ .
~8!

According to the Kubo’s formulas,18 the induced magnetiza
tion is given by

5
2mB^Si

1&eivt5F(
j

x i j
12~v!hj

11(
j

x i j
11~v!hj

2Geivt,

2mB^Si
2&eivt5F(

j
x i j

21~v!hj
21(

j
x i j

22~v!hj
1Geivt,

~9!

where the magnetic susceptibilties are defined by some
correlation functions:18

x i j
66~ t !522mB

2^^Si
6~ t !uSj

6&&52mB
2 i\^0u@Si

6~ t !,Sj
6#u0&,

~10!

x i j
66~v!5E

2`

`

x i j
66~ t !eivt. ~11!
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According to the standard equations of motion for t
Green’s functions, we have the following equations to eva
ate those spin correlation functions:

v^^Si
6uSj

6&&v5^0u@Si
6 ,Sj

6#u0&1^^@Si
6 ,H#uSj

6&&v .
~12!

Unfortunately, because of the many-particles effect int
duced by thee-e interaction, the correlation functions cann
in
ti

c-

o-

th
-

-

-

be calculated exactly so that some approximations~say, the
random phase approximation17! are necessary. Here we fo
low essentially the arguments made by Friedel16 to first de-
termine theHartree-Fock susceptibility in which thedy-
namic correlation correctionsare neglected. By putting
Hamiltonian~1! under the HFA~2! into Eq.~12! directly, the
Hartree-Focksusceptibility functions are found exactly a
follows:
x i , j
120~v!522mB

2(
ab

(
$ l %$m%

Pia↑,$ l %* Pj b↑,$ l %Pj b↓,$m%
* Pia↓,$m%

v2~E$m%2E$ l %!
@Q~Ef2E$ l %!2Q~Ef2E$m%!#, ~13!

x i , j
210~v!522mB

2(
ab

(
$ l %$m%

Pia↓,$ l %* Pj b↓,$ l %Pj b↑,$m%
* Pia↑,$m%

v2~E$m%2E$ l %!
@Q~Ef2E$ l %!2Q~Ef2E$m%!#, ~14!

x i , j
110~v!522mB

2(
ab

(
$ l %$m%

Pia↑,$ l %* Pj b↓,$ l %Pj b↑,$m%
* Pia↓,$m%

v2~E$m%2E$ l %!
@Q~Ef2E$ l %!2Q~Ef2E$m%!#, ~15!

x i , j
220~v!522mB

2(
ab

(
$ l %$m%

Pia↓,$ l %* Pj b↑,$ l %Pj b↓,$m%
* Pia↑,$m%

v2~E$m%2E$ l %!
@Q~Ef2E$ l %!2Q~Ef2E$m%!#. ~16!
eti-

in
p-
pti-
ed

or-
ave

dif-

to
Substituting the above functions into Eq.~9!, we find that the
normal modes of the elementary excitations can be obta
by diagonalizing the following Hermitian magnetic suscep
bility matrix:

S x i , j
120~v! x i , j

110~v!

x i , j
220~v! x i , j

210~v!D . ~17!

Thus, Eq.~9! becomes

2mB^S̃n
6&eivt5xn

60~v!h̃n
6eivt, ~18!

where

S̃n
65(

i
~Qin

66!* Si
61(

i
~Qin

67!* Si
7 , ~19!

h̃n
65(

i
~Qin

66!* hi
61(

i
~Qin

67!* hi
7 , ~20!

in which xn
60(v) are the eigenvalues of the matrix~17!, and

matrices$Qin
66 ,Qin

67% contain the corresponding eigenve
tors.

Now we try to incorporate thedynamic correlation cor-
rections. According to Hamiltonian~1!, the e-e interactions
contribute effectively an internal magnetic field which is pr
portional to the magnetization:

hW eff5
J

mB
2
mW . ~21!

Since the variations of the magnetization are small and
frequency is low~we only consider the low-lying excita
tions!, we expect thatFriedel’s argument16 is valid, namely
ed
-

e

the internal field can followinstantaneouslyany change of
the magnetization. Thus, the transversely induced magn
zation can be determined by

DmW eivt5x~v!•hW eivt5x0~v!~hW 1hW eff!e
ivt

5x0~v!S hW 1
J

mB
2

DmW D eivt, ~22!

whereDmW denotes every normal excitation mode obtained
Eq. ~18!, andx0(v) the corresponding Hartree-Fock susce
tibility. So, based on this argument, the magnetic susce
bility containing the dynamic correlation can be calculat
by

1

xn
6~v!

5
1

xn
60~v!

2
J

mB
2

. ~23!

Since the poles of the magnetic susceptibility function c
respond to the elementary excitation energies, we thus h
the following equations:

J

mB
2

xn
60~v!51 ~24!

to fix the elementary excitation spectrumvn(h) as a function
of the external field.

One may check that whenever Eq.~24! has a solutionv
5v0 , there must exist another solutionv52v0 . Which
one is the excitation energy? Generally, there are three
ferent cases shown schematically in Fig. 1. In case~a!, there
are no real solutions of 1/x(v)50 so that the excitation
energy, if at all definable, must be imaginary. Both cases~b!
and ~c! have two real solutions, however, by comparing
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the Lehmann representation21 of the magnetic susceptibility
function, we find that~c! corresponds to a positive excitatio
while ~b! to a negative excitation.

The minimum excitation energy is the energy gap wh
is a function of the external field:D(h)5Min@\vn(h)#. Ac-
cording to Ref. 4, the gap of the elementary excitation is
order parameter which indicates the metastability of a gi
state: if the gap is positive, such a state is either stable
metastable because any fluctuation must raise the energ
the other hand, when an external field is applied opposit
the magnetization and it is strong enough to make the
negative or imaginary, the state must be unstable since s
‘‘soft modes’’ of the excitations will destroy the present sp

FIG. 1. Schematic illustration of three cases of the excitat
energy:~a! imaginary,~b! negative,~c! positive.
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configuration. In the latter case, a spin reversal transition
take place. Thus the critical fieldhc is determined by the
condition

D~hc!50. ~25!

For a system with translation-invariant symmetry, a Fo
rier transformation is helpful to greatly simplify the abov
formulas. In the case that there is only one atom per unit c
there is no charge transfer and the magnetization should
uniform. Thus, the Hamiltonian~1! under the HFA becomes

H5(
k

(
ab;ss8

F S eab~k!2
Jms

mB
2hmBs D dss8

1jSab
ss8~k!GCas

1 ~k!Cbs8~k!1N
Jm2

2mB
2

, ~26!

and the self-consistent equation is

m5
1

N(
k

(
as

(
bs8

suPas,bs8~k!u2Q@Ef2Ebs8~k!#,

~27!

where matrixPas,bs8(k) is used to diagonalize the Hami
tonian matrix in subspace ofk whose form has been show
in Eq. ~26!. The effect of the direct Coulomb interactionU
has been absorbed into the hopping parameters.

The magnetic susceptibility matrix~17! now turns to a
collection of N independent 232 submatrixes in the sub
space ofq:

S x120~v,q!, x110~v,q!

x220~v,q!, x210~v,q!D , ~28!

where

n

x120~v,q!52
2mB

2

N (
ab

(
$ l %$m%

(
k

Pa↑,$ l %* ~k2q!Pb↑,$ l %~k2q!Pb↓,$m%
* ~k!Pa↓,$m%~k!

v2@E$m%~k!2E$ l %~k2q# !

3$Q@Ef2E$ l %~k2q!#2Q@Ef2E$m%~k!#%, ~29!
late

-

lds
the
re-
ave
and the other matrix elements are given by similar expr
sions. After diagonalizing sub-matrices~28!, one can use Eq
~24! to get the spin wave dispersion relationsv(q,h) and the
spin excitation gap:D(h)5min@\v(q,h)#, and use Eq.~25!
to determine the critical field for ISR.

In order to compare with the classical Stoner theory,
important equations in such a theory will be summariz
here. Based on the perturbation theory, the anisotropy en
of a magnetic thin film is found to be12

H5U02K2cos2u2hW •MW 1o~j4!, ~30!

whereu50 corresponds to the perpendicular axis. Here,K2
is the energy difference between the in-plane polariza
and the perpendicular polarization states which can be ca
lated according to Eq.~4!. If K2.0 which means that thez
axis is the easy axis, the critical field is
s-

e
d
gy

n
u-

h̃c52K2 /M . ~31!

On the other hand, if thez axis is the hard axis (K2,0),
fourth order contributions should be considered to calcu
the critical field.

The uniaxial anisotropy model~30! has also been as
sumed for microcluster systems.22 The critical fields can thus
be calculated similarly by Eq.~31! in Stoner theory.

III. APPLICATIONS

A. Transition-metal monolayers

Experimentally, it has been shown that the coercive fie
of magnetic thin films might be much larger than those of
bulk materials, making them candidates for high-density
cording systems. To illustrate the present approach, we h
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examined the critical fields of Fe, Co, and Ni monolaye
with lattice structures matching various substrates.

In our calculations, the Slater-Koster hoppin
parameters19 are taken from Ref. 20, and a crystal-field p
rameterd50.5 eV, which is the energy difference betwe
the orbitals pointing outside the plane (yz,zx,3z22r 2) and
those lying in the plane (xy,x22y2), is adopted according to
Ref. 12 in order to take account of the reduced symmetr
monolayers compared to the bulk system. Five 3d and one
4s orbitals are considered so that thes-d hybridization ef-
fects are incorporated. By comparing to the spontane
magnetization obtained by the first principles calculations
Fe, Co, Ni monolayers with lattice structures matching
Ag~001! substrate,23 we fix the exchange parameterJ to 0.24
eV ~for Fe!, 0.28 eV~for Co!, and 0.36 eV~for Ni!, respec-
tively ~see the spin polarization listed in Tables I–III!. The
SO interaction parameterj is chosen to be 0.05 eV, and ov
104 k points in the first irreducible Brillouin zone are con
sidered in the numerical calculations. Using the above
rameters, the critical fields for ISR in Fe, Co, and Ni mon
layers with lattice structures matching Ag~001!, Ag~111!,
Pd~001!, and Pd~111! substrates are calculated and the
sults are listed in Tables I–III, together with the calculat
anisotropy energyK2 , the spin polarizationM and the criti-
cal fieldsh̃c estimated by the Stoner theory according to E
~31!.

It is shown that the easy axes of Fe monolayers are
pendicular to the plane except for Fe/Pd~111!, while those
for Co and Ni series are all lying in the plane (y axis refers
to an axis connecting two nearest neighbor sites in
plane!. The calculated anisotropy energies and easy axes
Fe and Ni monolayers matching Ag~001! substrate are quali
tatively consistent with the first principles calculations
Gay and Ritcher.7

From Tables I–III it is very interesting to find that~1!
when thez axis is the easy axis,hc is in fairly good agree-

TABLE I. Critical fieldshc of free standing Fe monolayers wit

lattice constants matching different substrates, compared withh̃c

which is estimated with Stoner theory.

Matching substrates Ag~001! Ag~111! Pd~001! Pd~111!

easy axis z z z y
hcmB ~meV! 0.718 0.0712 0.360 0.0193
K2 ~meV! 1.171 0.116 0.585 20.0333
M (mB) 3.200 2.897 3.044 2.812

h̃cmB ~meV! 0.781 0.0800 0.384 o(j4)

TABLE II. Critical fields hc of free standing Co monolayer
with lattice constants matching different substrates, compared

h̃c which is estimated with Stoner theory.

Matching substrates Ag~001! Ag~111! Pd~001! Pd~111!

easy axis y y y y
hcmB ~meV! 0.522 1.041 0.499 1.039
K2 ~meV! 22.846 24.093 23.557 24.053
M (mB) 2.160 1.873 1.996 1.800

h̃cmB ~meV! o(j4) o(j4) o(j4) o(j4)
s

in

us
r
e

a-
-

-

.

r-

e
or

ment with h̃c, although it is always a little smaller thanh̃c,
~2! when thez axis is the hard axis, it is expected that th
critical fields should be very small@o(j4)# since the anisot-
ropy within thex-y plane is at least the fourth order inj.
However, we see from Tables II,III that the in-plane critic
fields of Co and Ni series are not very small. Similar resu
can also be found in the first-principle calculations by G
and Ritcher,7 where the in-plane anisotropy of Ni monolay
has the same order as the perpendicular anisotropy o
monolayer. This fact indicates that although the in-plane
ercivity carries a factor ofj4, its value is not necessary ver
small because of distinct band structures in different mat
als.

Some discussions are helpful to understand the res
listed in Table I–III. According to Eq.~19!, suppose the spin
wave mode with the lowest excitation energy is of the f
lowing form:

S̃q
1eivt5ASq

1eivt1BSq
2eivt

5~A1B!Sq
xeivt1 i ~A2B!Sq

yeivt. ~32!

Generally, the motion of spins will be an ellipsoidal pola
ization mode. However, two special cases are very inter
ing: ~1! B50, circular polarization and~2! A5B, linear po-
larization. In the case that thez axis is the easy axis, the
lowest excitation mode is indeed anearly circular polariza-
tion ~in this case, we do find thatB is very small andq
→0), so that the simple argument leading to Eq.~31! is
reasonable enough to gain the main results although s
quantitative corrections may exist according to our theo
Those corrections are due to high-order contributions, s
consistent treatment of the magnetization, and quantum fl
tuations. On the other hand, when the easy-axis lies in
x-y plane, the lowest excitation mode is now anearly linear
polarization~in this case,B has the same order asA and q
→0) which describes the spin variations in the plane. In t
case, if one can determine the energy function with respec
the spin direction correct to the fourth order inj, it is still
possible to use a Stoner-like theory to analyze the crit
fields. However, much more spin directions should be c
sidered to fix the total energy function — for exampl
x̂, ẑ, x̂1 ẑ, and x̂1 ŷ spin directions should be considere
in order to fix the anisotropy energy functions for a squa
monolayer up to fourth order.7 However, by using our
theory, only one spin direction~the easy axis! needs to be
examined, and all the high-order contributions and quant
effects have been incorporated automatically into the fi
results.

TABLE III. Critical fields hc of free standing Ni monolayers
with lattice constants matching different substrates, compared

h̃c which is estimated with Stoner theory.

Matching substrates Ag~001! Ag~111! Pd~001! Pd~111!

easy axis y y y y
hcmB ~meV! 0.245 0.445 0.125 0.106
K2 ~meV! 21.936 21.740 21.256 20.898
M (mB) 1.032 0.781 0.945 0.731

h̃cmB ~meV! o(j4) o(j4) o(j4) o(j4)

th
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B. Magnetic microclusters

Recently, transition-metal magnetic microclusters have
tracted much attention both theoretically13,22,24 and
experimentally.25 Pastoret al. have studied the structure an
size dependence of the magnetic properties including the
isotropy energy for magnetic microclusters, by using
Haydock, Heine, and Kelly’s recursion method based on
same Hubbard Hamiltonian.13 In this subsection, we will ex-
amine the microclusters as another illustration of the pres
method.

Structures shown in Fig. 2 for Fe microclusters have b
studied with the help of the theoretical formulas developed
the first part of Sec. II. Taking the parameters from Ref.
we have calculated the critical fieldshc of those structures
and listed the results in Table IV together withh̃c estimated
by the Stoner theory for comparison. The anisotropy ener
leading to h̃c are consistent with Ref. 13 although we a
using the exact diagonalization method rather than the re
sion method. We have also performed a test study for
isolated Fe atom, and found that the critical field isindeed
zero.

It is very interesting to find that while in some caseshc is
very close toh̃c @see structures~c! and ~d!#, in other cases
they are completely different. In fact, even for the sa
structure, things may be different if some other factors
changed. In Fig. 3, we show the critical fieldshc and the spin
polarizationM of structure~a! with respect to variation of the
bond length, together withh̃c for comparison. It is shown
that the critical field of the microcluster depends sensitiv
on the bond length. In a definite spin polarization region,
critical field increases asd decreases. This can be explain

FIG. 2. Structures of Fe microclusters studied in this papez
and x axes are the easy axes and the hard axes of the struct
respectively. In structures~d! and ~e!, we have a52d/A3.

TABLE IV. Critical fields hc of small Fe clusters whose struc
tures are shown in Fig. 2 with interatomic bond lengthd/d051,

compared withh̃c estimated with Stoner theory.

Structures hcmB ~meV! h̃cmB ~meV! easy axis

~a! 1.727 2.711 z
~b! 2.038 3.623 z
~c! 0.184 0.185 z
~d! 0.580 0.592 z
~e! 1.656 3.226 z
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straightforwardly. When the atoms approach each other,
electronic hopping become strong so as to make the g
metrically anisotropic nature of thez axis stronger, as a re
sult, the critical field increases. In the limit ofd→`, the
microcluster becomes effectively three isolated atoms so
all the axis become equivalent and the critical field a
proaches zero. As the atoms come close to each other
effective ‘‘energy bandwidth’’ is enlarged leading to a sha
decrease of the spin polarization. It should also be noted
in a region near the spin polarization jump, thez axis is no
longer a magnetic easy axis. The most interesting thing
that in the segment ofM;3.0mB , the critical fieldshc are
much smaller that those estimated by the Stoner theoryh̃c,
while in the segment ofM;2.33mB , the critical fields are
almost exactly the same as those estimated by the St
theory ~see Fig. 3!.

How can we account for these differences? Let us exa
ine structures~d! and~e! in the case ofd/d051. In Fig. 4, we
show the critical fields of these two structures as functions

es,

FIG. 3. ~a! Critical fieldshc ~along thez axis! of structure~a! as
a function of the interatomic bond length whered0 is the bond
length of the bulk material, compared with those estimated with
classical Stoner theory. In the middle part of the figure, thez axis is
not the easy axis of the microcluster so that the critical fields are
shown. ~b! Spin polarization of structure~a! as a function of the
interatomic bond length.

FIG. 4. Critical fieldshc of structures~d! and~e! as a function of
j.
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the SO interaction parameterj. It is interesting to see tha
the two structures have distinctj dependence. By fitting to
polynomials, we find that for structure~d! hc54.831026

25.631024uju10.28j21•••, while for structure ~e! hc

59.23102810.036uju20.064j21•••. It is thus shown that
the first order contribution dominates in structure~e! while it
can be neglected in structure~d!. Similar first order contri-
butions are also found in structure~a! (M;3.0 segment! and
structure~b!. In such cases, the critical fields are certainly n
consistent with the results coming from Eq.~31!.

Basically, according to the nondegenerate perturba
theory, there are no first order contributions to the anisotr
energy since the diagonal elements are zero in the SO in
action. Things are different if degenerate energy levels e
at the Fermi surface. In this case, based on the pre
Hamiltonian ~1!, the SO interaction opens these degener
levels so as to make the low-energy level occupied and
high-energy level unoccupied. The contribution to the anis
ropy is thus first order inj. However, the present Hamil
tonian ~1!, although widely adopted in the literature,12–14 is
an oversimplified one in which the intra-atomice-e interac-
tion U andJ are assumed to be the same for different orb
als. If we adopt a more realistice-e interaction form

Hee5
1

2(iab
FUabn̂ian̂ib2

Jab

mB
2

m̂ iam̂ ibG ~33!

in the Hamiltonian, things may be different for such cont
butions coming from degenerate energy levels. A deta
work on this problem is now in process and will be presen
elsewhere.26

In microclusters, the spin reversal modes are not ne
sarily uniform because of the highly reduced symmetry. F
example, for structure~c!, we have the lowest spin excitatio
mode as

S̃0
1eivt5a1~S1

11S3
1!eivt1a2~S2

11S4
1!eivt

1a1~S1
21S3

2!eivt1a2~S2
21S4

2!eivt, ~34!

with a150.351,a250.356. This effect, although not ver
significant for the present example, might be serious
other microclusters. In the latter cases, the classical St
treatment is questionable. Clearly, the present theory is h
ful to obtain reasonable results.
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IV. CONCLUSIONS

To summarize, we have established an atomistic theor
determine the critical field for intrinsic spin reversal
transition-metal magnetic systems within the framework
itinerant-electron magnetism. The Hubbard model with sp
orbit interaction has been used to describe a gen
transition-metal magnetic system, and the energy levels~en-
ergy bands! have been obtained by diagonalizing the Ham
tonian under a Hartree-Fock approximation. The spin-o
interaction has been treated self-consistently on the s
footing as the hopping and the electron-electron interac
terms, rather than perturbatively. By studying the transve
magnetic susceptibility function based onFriedel’s argu-
ments, the elementary excitation spectra are found to pos
a positive gap if the spin is pointing along the easy axis. T
spin excitation gap is the order parameter which indicates
metastability of a given state. When an external field is
plied opposite to the spin direction and its strength is stro
enough to overcome the gap, the present spin state is
longer metastable so that the spin reversal transition ta
place which defines the critical field.

Fe, Co, and Ni monolayers with lattice structures mat
ing Ag~001!, Ag~111!, Pd~001!, and Pd~111! substrates have
been examined. Comparison with the classical Stoner the
shows that quantitative corrections can be obtained from
theory, and less spin directions need to be considered in
theory than in the Stoner theory.

Applications to small microclusters have also been giv
We show that the spin reversal mode needs not to be
form, so that the Stoner theory is inadequate to estimate
critical fields of intrinsic spin reversal in small microcluster
However, by using the present theory, the critical field
intrinsic spin reversal in a transition-metal magnetic syst
can always be examined.
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