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Oscillator model for vacuum Rabi splitting in microcavities
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The vacuum-field Rabi splitting of an optical mode in a cavity interacting with a system ofN excitations
~atomic or electronic! represented by harmonic oscillators is obtained quantum mechanically both without and
with coupling to dissipation. The optical lineshapes and the scaling of the Rabi splitting with the number of
oscillators and its dependence on the damping parameters are given. Corresponding results are given for a
classical treatment of the oscillators, and it is shown that to the leading order in the dissipation, the quantum
mechanical results for absorption are the same as the classical ones.@S0163-1829~99!09515-6#
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I. INTRODUCTION

The couplings between electronic excitations and opt
modes have been of considerable interest in connection
with atoms in optical cavities and also with optically acti
semiconductors in semiconductor microcavities. The em
sion and reflection spectra of atoms in optical cavities
known to exhibit splittings due the coupling of their dipo
transitions with the excitations of the vacuum-radiati
field.1,2 These coupled modes are called the vacuum-fi
Rabi oscillations, and the splittings between them are
vacuum-field Rabi splittings. In the case of semiconduc
microcavities the optical modes are coupled to excito
whose modes are relatively sharp, and exciton-photon mo
are often called cavity polaritons.3,4 These couplings are im
portant for understanding such effects as optical bistab
and laser action.

Theoretical studies of these coupled modes often h
been made using a two-level spin model to represent
electronic excitations of the atoms or of the solid. In th
representation the higher-lying states of the excitation
neglected. The difference in energy between the two leve
taken to be the excitation energy between the lowest
states of the atom,\v5DEa , or the excitation energy of an
exciton in a semiconductor,\v5Eg2Eb , whereEg is the
band-gap energy andEb is the exciton binding energy. A
single two-level system coupled to an electromagnetic m
both without5 and with dissipation6,7 has been studied. Dis
sipation represents, for example, the finiteQ of the cavity,
which could be due to leakage of the electromagnetic mo
from the cavity. Systems withN two-level systems have als
been studied,6 where it has been shown that the Rabi splitti
is proportional toAN, and the correlation functions givin
lineshapes have been studied.

An harmonic oscillator can also be used to represent
atomic excitations, and this representation offers consid
ably greater ease of mathematical treatment than does
spin representation. In this case the higher-lying states
represented only approximately by the evenly spaced st
of the oscillator. It has been shown that the oscillator exhib
vacuum-field Rabi oscillations when coupled to an elect
PRB 590163-1829/99/59~15!/10227~7!/$15.00
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magnetic mode,1,8 and results have been given for the Ra
splitting of N classical oscillators in the presence
dissipation.2 A detailed quantum-mechanical study of
single-harmonic oscillator representing the electromagn
mode coupled to dissipation has been given.9

To date, however, to our knowledge a quantu
mechanical treatment of the vacuum-field Rabi splitting oN
harmonic oscillators with damping has not been given. W
give such a treatment here. The dependence of the op
lineshape on the number of oscillatorsN and on the dissipa-
tion is presented. A derivation of the classicalN harmonic-
oscillator model is also given, and we find that to leadi
order in the friction the quantum mechanical and class
results are the same.

In Sec. II results are given for a model ofN classical
oscillators with dissipation. A quantum-mechanical tre
ment for N oscillators with dissipation is given in Sec. II
An outline of the quantum-mechanical treatment for one
cillator with dissipation9 is given in the Appendix.

II. CLASSICAL OSCILLATOR WITH FRICTION

We begin by considering a system ofN oscillators with
frequenciesv1 representing electronic excitations coupled
one oscillator of frequencyv0 representing a single mode o
the radiation field. In the absence of dissipation the system
described by the Lagrangian

L5T2V5
1

2
ẋ0

21
1

2 (
i 51

N

ẋi
22

1

2
v0

2x0
22

1

2 (
i 51

N

v i
2xi

2

1a(
i 51

N

x0xi . ~1!

Here the dots represent time derivatives, anda represents the
coupling between the oscillators and the radiation fie
which is proportional to the oscillator strength of the ele
tronic transition.10

In order to represent dissipation we introduce a gene
friction matrix
10 227 ©1999 The American Physical Society
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F5
1

2 (
i , j 50

N

ẋiFi j ẋ j . ~2!

The equations of motion are given as usual11 by

d

dt S ]L

] ẋi
D2

]L

]xi
1

]F

] ẋi
50, i 50,1, . . .N. ~3!

For simplicity we choose the friction matrix to be diagon
Fii 5g id i i with g i5g0 for i 50 and g i5g1 for i
51, . . .N.

We look for solutions of Eq.~3! in the form of linear
combinations of harmonicseiVt with frequencies that are
given by the determinental equation

detuVi j 2V2Ti j 1 iVFi j u50. ~4!

This equation factorizes to giveN21 degenerate solution
with complex frequencies

Vd5 i
g1

2
1Av1

22
g1

2

4
~5!

and two solutions satisfying

~v0
22V21 ig0V!~v1

22V21 ig1V!2a2N50. ~6!

Near resonance (v1'v0) and taking g i /v i!1 and
aAN/v i!1 this equation has two solutions

V0,1
2 'v1

21 i
v1

2
~g01g1!7

1

2
A4Na22v1

2~g02g1!2.

~7!

For ug12g0u.2aAN/v1 the solutions are overdamped. F
ug12g0u,2aAN/v1 , on the other hand, the solutions a
ra

E
h

ap

a-
de

n
il-
l

damped-harmonic oscillators whose frequencies are s
rated by

DV5V12V0>Aa2N

v1
2 2

1

4
~g12g0!2. ~8!

This is equivalent to the result obtained in Ref. 2. If t
widthsg0 andg1 are both zero, we obtain the same result
that obtained in the model using two-level systems,1 DV
'aAN/v1 where the Rabi splitting is proportional toAN.

It is straightforward to generalize the result in Eq.~8! to
the case where the couplingsa i are all different from one
another. The corresponding term in the Lagrangian Eq.~1! is
( i 51

N a ixix0 , and neglecting dissipation

DV'
AN

v i
A^a i

2& ~9!

where^a i
2&51/N( i

Na i
2.

Within the classical model discussed in this section,
absorption lineshape can be obtained from the ene
dissipation rate of oscillators when the system is driven
an applied-harmonic forcef (t)5 f 0 cosvt, acting on oscilla-
tors representing atomic~or excitonic! dipolesn>1. The re-
sulting system of linear equations can be solved simply,
the rate of dissipation is obtained from the friction form11 in
Eq. ~2! averaged over one period off (t) in the limit of large
times. Assuming the resonance conditionv0'v1 , and omit-
ting terms that are resonant at negative frequencies, we
tain the following dependence of the dissipation rate on
frequency of applied force:
2F̄~v!5
f 0

2N

4v1
2

g1~v2v1!21g0ā2N/41g1g0
2

@~v2v1!22ā2N/42g0g1/4#21~g01g1!2~v2v1!2/4
, ~10!
an
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whereā5a/v. This spectrum has two peaks whose sepa
tion is the Rabi splitting in the absorption as represented
the classical oscillator model. The splittingDRS is different
from the difference of the resonance frequencies given in
~8!. The maxima of the absorption can be found from t
zeros of]F̄/]v. For example, wheng0 and g1 are small
compared toa/v1 , the distance between peaks can be
proximated as

DRS'Aā2N2
1

2
g0~g12g0!1O~g0

2g1
2!, ~11!

and the full widths at half maximum of the coupled oscill
tors are given in terms of the widths of the uncoupled mo
by g'1/2(g01g1).

III. QUANTUM OSCILLATORS WITH DISSIPATION

Here we derive the modes and also the correlation fu
tions of a system ofN quantum-mechanical harmonic osc
-
in

q.
e

-

s

c-

lators representing the electronic excitations coupled to
optical mode in the case where both theN oscillators and the
optical mode are coupled to a dissipative-loss mechani
The present paper generalizes that of Ref. 9, which trea
the case of a single oscillator coupled to an optical mo
with dissipation. For clarity we outline the results for th
case of one oscillator in the Appendix. In this paper t
source of dissipation is represented in a general way b
mechanism with closely spaced energy levels like that o
heat bath. Physically the dissipation could represent, for
ample, photon leakage from the cavity and exciton scatte
from phonons.

The Hamiltonian for a set ofN harmonic oscillators each
coupled linearly to one oscillator representing the opti
mode is

Hosc5
p0

2

2
1

v0
2

2
x0

21
1

2 (
i 51

N

~pi
21v1

2xi
2!2a(

i 51

N

x0xi .

~12!
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The coupling to the ‘‘0’’ oscillator can be included eithe
through the coordinate or the momentum operators. In
resonant approximation,10 which is sufficient forv0 close to
v1 , the Hamiltonian is given in terms of creation and an
hilation operators as

Hosc5\v0a0
1a01(

i 51

N

\v1ai
1ai2

\ā

2 (
i 51

N

~a0
1ai1ai

1a0!

1C0 , ~13!

where ā5a/Av0v1, C05\/2(v01Nv1), and aj

5Av0/2\xj1 i /A2\v j pj .
In the absence of dissipation the spectrum is found ea

by a linear transformation which diagonalizesHosc:

bi5(
j

Ai j aj , ~14a!

Hosc5(
i 51

N

\V ibi
1bi , ~14b!

where energy is measured relative toC0 . Then using the
relation @b,Hosc#5\Vnbn , we obtain from this quantum
mechanical treatment the same results that we found in
classical case, viz. that there areN21 degenerate frequen
ciesV5v1 and two nondegenerate frequencies given by

V0,15
1

2
~v01v1!7

1

2
A~v02v1!21ā2N, ~15!

so that at resonance the Rabi frequency isDV5āAN
5aAN/v1 and it is again proportional toAN.

In order to describe the effects of dissipation that give r
to nonzero linewidths of the coupled transitions, we cou
each of the oscillators linearly to a loss mechanism

H5Hosc1Hl1g0p0G01(
i 51

N

g1pnGn . ~16!

Here we have taken the oscillatorsi 50,1, . . .N to be
coupled to some operator coordinatesG j of the loss mecha-
nism, andHl is the unspecified Hamiltonian of the los
mechanism. It does not matter whether the coupling is
the coordinates or the momenta. The loss mechanism is
scribed by a diagonal density matrix in Eq.~A3!.

At resonance the matrixA in Eq. ~13! can be approxi-
mated byAr5A(v05v1) giving

Ar5S 1

&

1

A2N

1

A2N
...

1

A2N

2
1

&

1

A2N

1

A2N
...

1

A2N

0 A21 A22 ... A2N

... ... ... ... ...

0 AN1 AN2 ... ANN

D . ~17!

HereA21,...ANN can be chosen to be real. They satisfy t
conditions:
e

-

ily

he

e
e

ia
e-

(
i 51

N

Aji 50, ~18!

which follows from @bi
1,bj #50, j 50 and 1, i 52, . . . ,N,

and orthonormality

(
i 51

N

uAji u251 and (
i 51

N

Aji Aj 8 i50 for j Þ j 8.

The transformed position and momentum operators are
noted byQ andP, and they are related to operatorsb,b1 in
the Heisenberg representation in the usual way

bn~ t !5AVn

2\
Qn~ t !1

i

A2\Vn

Pn~ t !. ~19!

Then the Hamiltonian is

H5
1

2 (
n50

N

Pn
21

1

2
V0

2Q0
21

1

2
V1Q1

21
1

2 (
i 52

N

v1
2Qi

21Hl

1 (
n50

N

PnG̃n , ~20!

where

G̃05S v0

2V0
D 1/2

g0G01S v1

2NV0
D 1/2

g1(
n51

N

Gn , ~21a!

G̃152S v0

2V1
D 1/2

g0G01S v1

2NV1
D 1/2

g1(
n51

N

Gn , ~21b!

and for

m>2, G̃m5g1(
n51

N

AmnGn . ~21c!

Equation~20! was obtained by inverting Eq.~14a! and using
(A21) ij5Aji where we have chosen allAij to be real.

We now derive equations of motion for operatorsPn ,
Qn , n50, . . .N, using approximations similar to those use
for the single oscillator in the Appendix. The couplings a
thought to be turned on att50. The uncoupled operator
Gn

(0)(t) are taken to have zero diagonal elements and to h
the following form for t.0:

@Gn
0~ t !# ij5g ij

~n!ei ~Ei2Ej !/\, iÞ j , ~22!

whereg (n) are real and$Ei% is the energy spectrum of th
uncoupled loss mechanismHl .

We assume thatGn ,Gm for nÞm do not have nonzero
matrix elements in the same subspace of the Hilbert spac
Hl

(0) . Then

g ij
~n!g ji

~m!5dnmug ij
~n!u2. ~23!

This property permits a separation of the coupled equati
for P0 ,P1 ,...PN into two coupled equations forP0 ,P1 and
uncoupled equations forP2 ,...PN .

Let us first consider the Hamiltonian in Eq.~16! in the
absence of coupling between the oscillators and the op
mode,a50. H then separates intoN11 commuting parts
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each representing a damped-harmonic oscillator. We ass
that the eigenvalues of dissipation sourceHl are closely
spaced, and we replace the summations by energy inte
tions and define9

Bn~v!5E
0

`

dEr~E1\v!r~E!eE/kBTg~n!~E1\v,E!

3g~n!~E1\v,E!, ~24!

wherer(E) is the density of states of the spectrum$Ei%, and
the damping coefficients are

bn5gn
2vnZ21Bn~vn!@12e\vn /kBT#, ~25!

whereZ is the partition function in Eq.~A3!, with v15v2
5•••vN . In the present model it follows thatb15b25•••
5bN , and then there are only two different damping coe
cientsb0 andb1 .

Returning to theaÞ0 case, we note that the equations
motion for the transformed operatorsP0 ,P1 ,...PN in general
are coupled because in the generalization of Eq.~A8! we
obtain diagonal-matrix elements of

~†Gn
~0!~ t1!,@Gm

~0!~ t2!,Hl
~0!~ t2!#‡! i i

52Z(
k

\vkg ik
~n!gki

~m! cosv ik~ t12t2!, ~26!

where v ik5(Ei2Ek)/\. In view of Eq. ~23! for the G’s,
these matrix elements are nonzero only ifn5m. Then using

this property withG̃ ’s from Eqs.~21! and the orthonormality
properties ofA we obtain

P̈01V0
2P01b00Ṗ11b01Ṗ272V0

2G̃0
~0!~ t !, ~27!

P̈11V1
2P11b10Ṗ11b11Ṗ252V1

2G̃1
~0!~ t !, ~28!

P̈n1v1
2Pn1bnnṖn52v1

2G̃n
~0!~ t !, n>2, ~29!

where

bnn5b1 , n>2 ,

b005
v0b01v1b1

2V0
,

b115
v0b01v1b1

2V1
,

b105b015
v1b12v0b0

2AV1V0

.

Thus, at resonanceb00'b11'1/2(b01b1) and b105b01

'1/2(b12b0) to O(aAN/v1). In the equation forQ0(t)
the right-hand side in Eq.~27! is replaced byG8 0

(0)(t)

1b00G̃0
(0)(t)1b01G̃1

(0)(t) and similarly forQ1(t).
The solutions of Eq.~29! for n>2 are damped oscillator

with frequencyÃ5Av22b1
2/4, and they have a dampin

rateb/2 which is the same as in the case of a single oscilla
me

ra-

-

f

r

in the Appendix@Eqs. ~A13!#. Equation~27! and ~28! are
coupled linear-differential equations with initial condition
for the Heisenberg operators given by the correspond
Schrödinger operators. They describe coupled driv
damped oscillators and can be solved by Laplace transfor
tion. The resonant frequencies are given by the solutions

~V22V0
21 ib00V!~V22V1

21 ib11V!1b01b10V
250,

~30!

where V0 and V1 are given in Eq.~15!. Near resonance
v0'v1 , and to ordersO(b2,a2) the solutions of Eq.~30!
can be written

V5V0
6'6v02

ib00

2
7

b00
2

4v0
7

1

2v0
ANa22v0

2b01b10,

~31a!

V5V1
6'6v12

ib11

2
7

b11
2

4v1
6

1

2v0
ANa22v1

2b01b10.

~31b!

Expressions forP(t) and Q(t) are obtained straightfor
wardly by inverse Laplace transforms in the complex pla
The resulting expressions are rather lengthy and will not
given here.P andQ are found to oscillate with frequencies

Ã0,15v17
1

2v1
ANa22v1

2b01
2 , ~32!

where we have setv05v1 . The terms inP andQ have the
form A1e2A2t cos(Ãit1f) and involve time integrals of
Gn

(0)(t). The Rabi frequency, defined as the difference
tween two resonant frequencies of the interacting system
given by

DÃ'Aa2N

v1
2 2

1

4
~b02b1!2. ~33!

The Rabi splitting, on the other hand, is obtained from
position of the peaks in the optical spectrum and in gene
will be different from Dv in Eq. ~33!. We define a dipole
operator for our model asd(t)5x1(t)1•••1xN(t). The lin-
ear response is given by the dipole-dipole correlation fu
tion

G~t!5 lim~ t→`!~ i /\!^@d~ t1t!,d~ t !#&, ~34!

and the absorption spectrum is obtained as an imaginary
of the susceptibility6 x9(v) where x(v)5*0

`dtG(t)eivt.
In the evaluation of the commutator in Eq.~34! we use the
following property that can be derived9 for operators

G̃ i
(0)(t):
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^@G̃ i
~0!~ t !,G̃ j

~0!~ t !#&'
\

2pv1
b i j E

0

`

dv@eiv~ t2t8!2e2 iv~ t2t8!#, i 50,1, j 50,1, ~35!

where the right-hand side is understood in the operator sense in the integrals over the time. Using Laplace transform
^@d(t1t),d(t)#& to the complex frequency domain and Eqs.~34! and ~35!, we find

x9~v!5
N

8

b1~v2v1!21b0ā2N/4

@~v2v1!22ā2N/42b0b1/4#21~b01b1!2~v2v1!2/4
. ~36!
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The absorption spectrum has a doublet line shape, and
Rabi splitting in it is given by the separation between t
peaks. If the dissipation coefficientsb i are much smaller
than aAN/v1 the widths of each of the two peaks are a
proximately (b01b1)/2. By comparing the results for th
Rabi frequency and the absorption spectrum with the co
sponding results in classical model in Eqs.~8! and ~10!, we
see that the results obtained here for a quantum-mecha
treatment of the harmonic oscillator model withN oscillators
is the same as that obtained using a classical approac
leading order in dissipation.

In the present paper we have considered the linewidth
interacting modes representing photons and excitons, eac
which is coupled to a source of dissipation. We would like
point out that there is an alternative model with which
represent the linewidth, particularly in the case of t
photon.12 In it, the photon is taken to be coupled to a co
tinuum of excitations,13 which could represent the continuu
of photon states into which the chosen photon state
‘‘leak.’’ We have also considered a model in which the ph
ton is coupled to a continuum in this way and the exciton
coupled to a source of dissipation. In this case we find t
the absorption spectrum lineshape has the form of Eq.~36!
where photon linewidthb0 is replaced by a term propor
tional to the coupling strength to the continuum.14

Using the model considered in the present paper we t
can obtain the emission spectrum by assuming that the
ton oscillator is weakly coupled to the states outside the c
ity and considering the decay of the initial cavity photon~or
polariton! state. For this we evaluate correlation functi
^a0(t)a0

1(0)&. It is found to be a sum of terms oscillatin
with frequencies given in Eq.~32! and damped byb00. The
spectrum is given by an expression similar to Eq.~36!, ex-
cept the numerator does not have the term depending ov
2v1 . Therefore, the position of the peaks is determined
the minima of the denominator, and the Rabi splitting in t
emission spectra is then given by

DRS5Aā2N2
1

2
~b0

21b1
2!. ~37!

We notice that this expression can also be obtained heu
cally from the classical oscillator model of Sec. II if w
assume that the energy lost by the photon oscillator is tra
ferred into the radiation field instead of dissipating into he
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APPENDIX

Here we derive the correlation functions that determ
optical line shapes for a single oscillator representing
electromagnetic mode of a cavity, in the presence of diss
tion. We follow the development given in Ref. 9 for th
case. The Hamiltonian is written

H5Hosc1Hl1gPG, ~A1!

where

Hosc5
P2

2
1

1

2
v2X2. ~A2!

P and X are the momentum and position operators of
oscillator of frequencyv, andG is an operator representin
the coordinate of the loss mechanism.Hl is the~unspecified!
Hamiltonian of the source of the dissipation, which is p
tured as having closely spaced eigenstates. It is represe
by a diagonal density matrix

rnm5dnmZ21e2En /kBT, ~A3a!

where

Z5(
n

e2En /kBT. ~A3b!

We assume that when the couplingg50 the diagonal ele-
ments ofG are zero.

The equations of motion of the Heisenberg operators
P andX are

Ṗ52v2X, ~A4a!

Ẋ5P1gG. ~A4b!

They are equivalent to the integral equations

P~ t !5P~0!~ t !2vgE
0

t

dt8G~ t8!sin@v~ t2t8!#, ~A5a!

X~ t !5X~0!~ t !1gE
0

t

dt8G~ t8!cosv~ t2t8!, ~A5b!

where in the interaction picture operators are labeled with
superscript ‘‘~0!.’’ Then

P~0!~ t !5P~0!cosvt2vX~0!sinvt ~A6a!
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Q~0!~ t !5Q~0!cosvt1
1

v
P~0!sinvt. ~A6b!

G ij
(0)(t) gives the dissipative coupling taken to have on

off-diagonal terms and is given by the matrix

G ij
~0!~ t !5G ij

~0!~0!ei ~Et2Ej !t/\5g ije
iv i t,

with g ii50, which giveŝ G (0)(t)&50.
G(t) can be found from the equationi\Ġ(t)

5@G(t),Hl(t)#, whereHl(t) satisfies the equation

Hl~ t !5Hl~0!1
g

i\ E
0

t

dt8@Hl~ t8!,G~ t8!#P~ t8!. ~A7!

G(t) satisfies the integral equation

G~ t !5G0~ t !1
g

\2 E
0

t

dt8E
0

t8
dt9eiH l

0
~ t2t8!/\

3@G~ t8!,@G~ t9!,Hl~ t9!#P~ t9!e2 iH t
0
~ t2t8!/\,

~A8!

which is then substituted into Eq.~A5a! to give an equation
for P(t).

In order to obtain a tractable result,G and Hl are
replaced by G (0) and Hl

(0) , the expression
†G0(t8),@G0(t9),Hl

0(t9)#‡P(t9) is replaced by its expectatio
value averaged overr in Eq. ~A3!, and sums are replaced b
integrals.

The following quantities are defined

B~v!5E
0

`

dEr~E1\v!r~E!g2~E1\v,E!e2E/kBT,

~A9!

b~v!52vg2Z21pB~v!~12e2\v/kBT!. ~A10!

Then for timest@v21, as shown in Ref. 9,

P̈1b Ṗ1v2P52v2gG~0!~ t !, ~A11!

Ẍ1bẊ1v2X5gĠ0~ t !1gbG~0!~ t !. ~A12!

These are equivalent to the equations of a damped dr
oscillator and can be solved forX and P by the Laplace
transformation. The solutions are

P~ t !5e2bt/2H 1

Ã F2v2X~0!1
1

2
bP~0!GsinÃt

1P~0!cosÃtJ 2
v2

Ã
gE

0

t

dt8G~0!~ t8!

3e2b/2~ t2t8! sinÃ~ t2t8!, ~A13a!
en

X~ t !5e2bt/2H 1

Ã FP~0!1
1

2
bX~0!GsinÃt1X~0!cosÃtJ

2gE
0

t

dt8G~0!~ t8!eb/2~ t2t8!FcosÃ~ t2t8!

1
b

2Ã
sinÃ~ t2t8!G , ~A13b!

whereÃ[Av22b2/4. The resulting average of the comm
tator ofP andX over the density matrix in Eq.~3! is equal to
i\, and thus the corresponding creation and annihilation
erators

a~ t !5S v

2\ D 1/2

X~ t !1
i

~2\v!1/2 P~ t ! ~A14!

can be evaluated. Finally, the optical spectrum is obtai
from the correlation functions1

G1~ t,t!5^a1~ t1t!a~ t !&, ~A15a!

G2~ t,t!5^a~ t !a1~ t1t!&, ~A15b!

We evaluate them for timest, t@v21, which is reasonable
for v in the range of optical frequencies. To leading order
b/v we obtain

G1~ t,t!5e2bt/21 iÃtF 1

e\v/kT21
1e2btS ^a1~0!a~0!&

2
1

e\v/kT21D G , ~A16a!

G2~ t,t!5e2bt/21 iÃtF 1

12e2\v/kT 1e2btS ^a~0!a1~0!&

2
1

12e2\v/kTD G . ~A16b!

The linear response to an applied weak perturbation is gi
by a commutator correlation function

G~t!5^@a~ t !,a1~ t1t!#&5e2bt/21 iÃt1O~b/v!,
~A17!

which represents a damped oscillator with widthb.
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