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Oscillator model for vacuum Rabi splitting in microcavities
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The vacuum-field Rabi splitting of an optical mode in a cavity interacting with a systelhed{citations
(atomic or electronicrepresented by harmonic oscillators is obtained quantum mechanically both without and
with coupling to dissipation. The optical lineshapes and the scaling of the Rabi splitting with the number of
oscillators and its dependence on the damping parameters are given. Corresponding results are given for a
classical treatment of the oscillators, and it is shown that to the leading order in the dissipation, the quantum
mechanical results for absorption are the same as the classical 80&63-182¢09)09515-9

I. INTRODUCTION magnetic modé? and results have been given for the Rabi
splitting of N classical oscillators in the presence of
The couplings between electronic excitations and opticadissipationz. A detailed quantum-mechanical study of a
modes have been of considerable interest in connection bogingle-harmonic oscillator representing the electromagnetic
with atoms in optical cavities and also with optically active mode coupled to dissipation has been given.
semiconductors in semiconductor microcavities. The emis- To date, however, to our knowledge a quantum-
sion and reflection spectra of atoms in optical cavities arénechanical treatment of the vacuum-field Rabi splittingNof
known to exhibit splittings due the coupling of their dipole harmonic oscillators with damping has not been given. We
transitions with the excitations of the vacuum-radiationgive such a treatment here. The dependence of the optical
field}? These coupled modes are called the vacuum-fieldineshape on the number of oscillatd¥sand on the dissipa-
Rabi oscillations, and the splittings between them are th&ion is presented. A derivation of the classidédharmonic-
vacuum-field Rabi splittings. In the case of semiconductoscillator model is also given, and we find that to leading
microcavities the optical modes are coupled to exciton®rder in the friction the quantum mechanical and classical
whose modes are relatively sharp, and exciton-photon moddgsults are the same.

are often called cavity polaritoré. These couplings are im-  In Sec. Il results are given for a model df classical
portant for understanding such effects as optical bistabilityscillators with dissipation. A quantum-mechanical treat-
and laser action. ment for N oscillators with dissipation is given in Sec. IIl.

Theoretical studies of these coupled modes often havAn outline of the quantum-mechanical treatment for one os-
been made using a two-level spin model to represent theillator with dissipatiofl is given in the Appendix.
electronic excitations of the atoms or of the solid. In this
representation the higher_-lying states of the excitation aré || | ASSICAL OSCILLATOR WITH FRICTION
neglected. The difference in energy between the two levels is
taken to be the excitation energy between the lowest two We begin by considering a system Nfoscillators with
states of the atonhw=AE,, or the excitation energy of an frequenciesn; representing electronic excitations coupled to
exciton in a semiconductof,w=Ey—Ey,, whereEy is the  one oscillator of frequency, representing a single mode of
band-gap energy anH, is the exciton binding energy. A the radiation field. In the absence of dissipation the system is
single two-level system coupled to an electromagnetic moddescribed by the Lagrangian
both without and with dissipatioh’ has been studied. Dis-
sipation represents, for example, the fineof the cavity, 1 1 N 1 1 N
which could be due to leakage of the electromagnetic modes | =T-V= —'xS+ —2 xiz— —ngg— —z wfxf
from the cavity. Systems witN two-level systems have also 2 2i=1 2 251

been studiedwhere it has been shown that the Rabi splitting N
is proportional toy/N, and the correlation functions giving Fad, XoXi. (1)
lineshapes have been studied. i=1

An harmonic oscillator can also be used to represent the
atomic excitations, and this representation offers considerHere the dots represent time derivatives, anmépresents the
ably greater ease of mathematical treatment than does tlwupling between the oscillators and the radiation field,
spin representation. In this case the higher-lying states amghich is proportional to the oscillator strength of the elec-
represented only approximately by the evenly spaced statémonic transition:®
of the oscillator. It has been shown that the oscillator exhibits In order to represent dissipation we introduce a general
vacuum-field Rabi oscillations when coupled to an electro{riction matrix
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1 N damped-harmonic oscillators whose frequencies are sepa-
F=—= 2 X,F”X] . (2) rated by
2iiZo
The equations of motion are given as ustialy 2N 1
AQ=0,-Q0=\/—5— = (71— 70)% 8
d /L (3’L+(9F_0 o1 \ ; 1 0 w% 4(7’1 Yo) (8)
a ¢9_X| 69_)(| (?_'Xi_ , 1=0,1,...N. (3

This is equivalent to the result obtained in Ref. 2. If the
widths y, and y; are both zero, we obtain the same result as
that obtained in the model using two-level systeéms()
~ aN/w, where the Rabi splitting is proportional tN.

It is straightforward to generalize the result in E§) to
the case where the couplings are all different from one
another. The corresponding term in the Lagrangian(Eqgs

For simplicity we choose the friction matrix to be diagonal
Fii:’yi 5“ with Yi= Yo for i=0 and Yi= Y1 for i
=1,...N.

We look for solutions of Eq(3) in the form of linear
combinations of harmonice'?' with frequencies that are
given by the determinental equation

defV;; _QZT”. +iQF;|=0. (4) =N aixiXo, and neglecting dissipation
This equation factorizes to givd—1 degenerate solutions I
with complex frequencies N
2 i
.71 Y1
Qd: | ? + w%— Z (5)

where(a?)=1INZNa?.
and two solutions satisfying Within the classical model discussed in this section, the
absorption lineshape can be obtained from the energy-
(05— Q% +iyQ)(wi—0Q%+iyQ)—a®N=0. (6) dissipation rate of oscillators when the system is driven by
an applied-harmonic forcgt) = f, coswt, acting on oscilla-
tors representing atomior excitonig dipolesn=1. The re-
sulting system of linear equations can be solved simply, and
w1 1 the rate of dissipation is obtained from the friction fdfrin
O ~wi+i > (Yot y)75 VANG? = 03(yo— y1)>. Eq. (2) averaged over one period 6t) in the limit of large
7 times. Assuming the resonance conditiog~ w4, and omit-
ting terms that are resonant at negative frequencies, we ob-
For |y, — yo|>2«a \/N/w1 the solutions are overdamped. For tain the following dependence of the dissipation rate on the
|y1— 70|<2ayN/w;, on the other hand, the solutions are frequency of applied force:

Near resonance «;~wy) and taking y;/w;<1 and
a\JN/w;<1 this equation has two solutions

— fSN y1(@—w1)?+ yoa®N/4+ 7173
2F(w)=7-5

w3 [(0—01)?—a®N/A— yoy1 /412 + (yo+ y1) (0 — w1)?/4’

(10

wherea= al/w. This spectrum has two peaks whose separalators representing the electronic excitations coupled to an
tion is the Rabi splitting in the absorption as represented iroptical mode in the case where both thescillators and the
the classical oscillator model. The splittidgg is different  optical mode are coupled to a dissipative-loss mechanism.
from the difference of the resonance frequencies given in EqThe present paper generalizes that of Ref. 9, which treated
(8). The maxima of the absorption can be found from thethe case of a single oscillator coupled to an optical mode
zeros of 9F/dw. For example, wheny, and y, are small With dissipation. For clarity we outline the results for the

compared tow/w,, the distance between peaks can be apcase of one oscillator in the Appendix. In this paper the
proximated as source of dissipation is represented in a general way by a

mechanism with closely spaced energy levels like that of a
\/_2 1 > > heat bath. Physically the dissipation could represent, for ex-
Ars=\/ a"N— 2 Yo(v1~ 70) +O(¥%o71), 11 ample, photon leakage from the cavity and exciton scattering

. ) . from phonons.
and the full widths at half maximum of the coupled oscilla-  The Hamiltonian for a set afl harmonic oscillators each

tors are given in terms of the widths of the uncoupled modeg g pled linearly to one oscillator representing the optical
by y=~1/2(yo+ v1). mode is

IIl. QUANTUM OSCILLATORS WITH DISSIPATION DS 2 1

N N
Yo » 2, 2.2
, . Hose 5 + 5 Xot+ 5 Tt oiX)— a2, XpXi.
Here we derive the modes and also the correlation func- osc 2 270 2;1 (Pi + 01X7) ,21 0%
tions of a system oN quantum-mechanical harmonic oscil- (12
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The coupling to the “0” oscillator can be included either N

through the coordinate or the momentum operators. In the Z =0 (18
resonant approximatiotf,which is sufficient forw, close to -

w1, the Hamiltonian is given in terms of creation and anni-which follows from [b,b;]=0, j=0and 1,i=2,... N,
hilation operators as and orthonormality

HOSC:thaga0+i§::|_hwlaiJrai_72 3 ai—i_aiJraO) 2 |Aji|2:1 and 2 AjiAjriZO for J%é],
= = i=1 i=1
+Cy, (13)  The transformed position and momentum operators are de-

noted byQ andP, and they are related to operatird™ in

where a=alVwowy, Co=fl2(wotNwi), and &  the Heisenberg representation in the usual way

= \/w0/2ﬁxj+i/\/2ﬁw]-pj .

In the absence of dissipation the spectrum is found easily Q, i
by a linear transformation which diagonalizeg,.: ba(H) =\ 57 Qn(t)+ \/Tﬂn Pn(t). (19
b= Aja;, (149  Then the Hamiltonian is
1 1 1 1
N H=§2 Ph+ §Q§Q§+ 591Qi+ ZZZ wiQf +H,
&> hQbby, (14b) B B
=1 N

where energy is measured relative @. Then using the +nZO Pal'n, (20

relation [b,HJ]=%Q,b,, we obtain from this quantum-

mechanical treatment the same results that we found in thehere

classical case, viz. that there d¥e-1 degenerate frequen- 1o N

cies() = w; and two nondegenerate frequencies given by 7= @o o w1 2 r 21
0o— 20 Jol o 2NQ g1 < n» ( 3)

1 0 0 n=1
Q0,1— (wot w1)+ \/(wo w1)*+a*N, (15 N w0 |12 w, |12
so that at resonance the Rabi frequencyAif)=a\N 1 1 n=
= a+/N/w, and it is again proportional tgN. and for
In order to describe the effects of dissipation that give rise
to nonzero linewidths of the coupled transitions, we couple ~ N
each of the oscillators linearly to a loss mechanism m=2, szglzl Amnl s - (219

N Equation(20) was obtained by inverting Eq148 and using

H:HOSC+H'+90p0F0+;1 91Pnl'n- (16) (A™1);=A; where we have chosen alj; to be real.
We now derive equations of motion for operatdes,

Here we have taken the oscillators=0,1,...N to be Q,, n=0,...N, using approximations similar to those used
coupled to some operator coordinalgsof the loss mecha-  for the single oscillator in the Appendix. The couplings are
nism, andH, is the unspecified Hamiltonian of the loss thought to be turned on at=0. The uncoupled operators
mechanism. It does not matter whether the coupling is vig(9)(t) are taken to have zero diagonal elements and to have
the coordinates or the momenta. The loss mechanism is dghe following form fort>0:
scribed by a diagonal density matrix in E@3).

At resonance the matriA in Eq. (13) can be approxi- [Tt =y e BB %], (22
mated byA,=A(we= w,) giving .
where y(" are real andE;} is the energy spectrum of the

1 1 1 1 uncoupled loss mechanishf, .
— We assume that',,I',, for n¥m do not have nonzero
2 V2N 2N V2N matrix elements in the same subspace of the Hilbert space of
1 1 1 1 H|(0). Then
A= 2 2N 2N NZINI R PP = Sl 7|2, 23)
0 Ay Ay .. Any

This property permits a separation of the coupled equations
. . C e for Py,P4,...Py into two coupled equations fd?,,P; and
0 A A A uncoupled _equation_s fae,,...Py. o _
NL - TN2 NN Let us first consider the Hamiltonian in E(L6) in the
Here A,q,...Ayn Can be chosen to be real. They satisfy theabsence of coupling between the oscillators and the optical
conditions: mode, «=0. H then separates inthl+1 commuting parts
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each representing a damped-harmonic oscillator. We assunire the Appendix[Egs. (A13)]. Equation(27) and (28) are

that the eigenvalues of dissipation sourde are closely

coupled linear-differential equations with initial conditions

spaced, and we replace the summations by energy integréor the Heisenberg operators given by the corresponding

tions and defingé

Bn(w)=fo dEp(E+hw)p(E)e¥ Ty (E+Aw,E)

X Y"(E+fo,E), (24

wherep(E) is the density of states of the spectrfify}, and
the damping coefficients are

Bn=0%0nZ *Bp(w,)[1—e"n'keT], (25)

whereZ is the partition function in Eq(A3), with w,=w,
=---wy. In the present model it follows th@,=B,="---

= Bn, and then there are only two different damping coeffi-

cients By and B; .

Returning to thex# 0 case, we note that the equations of

motion for the transformed operatdeg,P,,...Py in general
are coupled because in the generalization of &8) we
obtain diagonal-matrix elements of

(It [T (1) H (1) 1D

:222;4 hokyi v coswi(ts —to), (26)

where wj = (E;—Ey)/A. In view of Eq. (23) for the I'’s,
these matrix elements are nonzero onlp# m. Then using

this property withl’s from Eqgs.(21) and the orthonormality
properties ofA we obtain

Po+Q3Po+ BodP1+ BorP2 ™ _ngéo)(t), (27)

|51+Q§P1+,310P1+,311P2:_Q{f‘(lo)(t), (28)

Pot 02Pp+ BanPn=— 0 TO(t), n=2, (29)

where
ﬁnn: ﬂl! n22 ’

woBot w11

00— 20, )

:woﬁo+ w181

i :wlﬁl_woﬁo
P,

Thus, at resonanc@qyy~ B11~1/2(B8o+ B1) and B1o= Bo1
~1/2(B1— Bo) to O(aN/w;). In the equation forQq(t)
the right-hand side in Eq(27) is replaced byI'{(t)
+ Bool O(t) + Boal V(1) and similarly forQ(t).

Schralinger operators. They describe coupled driven
damped oscillators and can be solved by Laplace transforma-
tion. The resonant frequencies are given by the solutions of

<92—93+iﬁooﬂ><92—ﬂi+iﬂnﬂ>+ﬁmﬂmﬂz=%m

where )y and Q); are given in Eqg.(15). Near resonance
wo~w;, and to order(3?,a?) the solutions of Eq(30)
can be written

- 2
i 1
Q:Q(?%iwo_@;@—_

72
2 " Zwg  2wg Na®— 05801810

(313

- 2
iBun_Bn 1 5

[ I —
2 +4(1)1 - 2(1)0 Na w1[301,310.

(31b)

Expressions foP(t) and Q(t) are obtained straightfor-
wardly by inverse Laplace transforms in the complex plane.
The resulting expressions are rather lengthy and will not be
given hereP andQ are found to oscillate with frequencies

1
W= W1+ 5 —

2 n2
Nal— w ,
207 1B

(32

where we have seby= w,. The terms inP andQ have the
form A;e "2'cosit+¢) and involve time integrals of
Fﬁo)(t). The Rabi frequency, defined as the difference be-
tween two resonant frequencies of the interacting system, is
given by

N\/aZN 1 )
Aw~ w_i_Z(IBO_Bl)- (33

The Rabi splitting, on the other hand, is obtained from the
position of the peaks in the optical spectrum and in general
will be different from Aw in Eq. (33). We define a dipole
operator for our model ad(t) =x;(t) +--- +xy(t). The lin-
ear response is given by the dipole-dipole correlation func-
tion

G(7)=lim(t—)(i/A){[d(t+ 7),d(1)]), (34

and the absorption spectrum is obtained as an imaginary part
of the susceptibilit§ y"(») where x(w)=[5d7G(7)e'“".

The solutions of Eq(29) for n=2 are damped oscillators In the evaluation of the commutator in E@4) we use the
with frequencyw = \w?— B2/4, and they have a damping f~ollowmg property that can be derivedfor operators
rate 8/2 which is the same as in the case of a single oscillatofi(o)(t):
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h

27w,

([T, T )~ 53— By f:dw[eiw“-t’)—e-‘w“-”], i=0,1, j=0,1, (39

where the right-hand side is understood in the operator sense in the integrals over the time. Using Laplace transformation for
([d(t+ 7),d(t)]) to the complex frequency domain and E¢34) and(35), we find

" _ Bl(w_wl)2+BoEZN/4
(@)= 8 [(0— w1)?—a®Nl4— BoB1/412+ (Bo+ B1) (0 — 1)/’

(36)

The absorption spectrum has a doublet line shape, and the APPENDIX
Rabi splitting in it is given by the separation between the

peaks. If the dissipation coefficientg are much smaller Here we derive the correlation functions that determine

. optical line shapes for a single oscillator representing the
than a\/ﬁlwl the widths of each of the two peaks are alo'electromagnetic mode of a cavity, in the presence of dissipa-

proximately (Bo+ f1)/2. By comparing the results for the tion. We follow the development given in Ref. 9 for this
Rabi frequency and the absorption spectrum with the corre:

sponding results in classical model in E¢8) and (10), we case. The Hamiltonian s written
see that the results obtained here for a quantum-mechanical _
treatment of the harmonic oscillator model withoscillators H=Hosct Hi+gPL, (AL)
is the same as that obtained using a classical approach {ghere
leading order in dissipation.

In the present paper we have considered the linewidths of Pz 1
interacting modes representing photons and excitons, each of Hose= 5+ szxz_ (A2)
which is coupled to a source of dissipation. We would like to
point out that there is an alternative model with which toP and X are the momentum and position operators of the
represent the linewidth, particularly in the case of theoscillator of frequencyw, andI is an operator representing
photon™ In it, the photon is taken to be coupled to a con-the coordinate of the loss mechanis).is the (unspecified!
tinuum of excitations? which could represent the continuum Hamiltonian of the source of the dissipation, which is pic-
of photon states into which the chosen photon state catured as having closely spaced eigenstates. It is represented
“leak.” We have also considered a model in which the pho-py a diagonal density matrix
ton is coupled to a continuum in this way and the exciton is
coupled to a source of dissipation. In this case we find that Prm=OnmZ 1~ En/keT (A3a)
the absorption spectrum lineshape has the form of(&§).
where photon linewidth3, is replaced by a term propor- Where
tional to the coupling strength to the continudfn.

Using the model considered in the present paper we then Z=E @~ En/kgT (A3b)
can obtain the emission spectrum by assuming that the pho- n |
ton oscillator is weakly coupled to the states outside the cav-
ity and considering the decay of the initial cavity photon ~ We assume that when the coupligg=0 the diagonal ele-
polariton state. For this we evaluate correlation functionments ofl are zero. _ _
<ao(7)ag(o)>_ It is found to be a sum of terms oscillating The equations of motion of the Heisenberg operators for
with frequencies given in Eq32) and damped byy,. The P andXare
spectrum is given by an expression similar to E2f), ex-

cept the numerator does not have the term depending on P=—w?X, (Ada)
—wq. Therefore, the position of the peaks is determined by
the minima of the denominator, and the Rabi splitting in the X=P+grl. (Adb)

emission spectra is then given by
They are equivalent to the integral equations

1
Ags= \/?N— 5 (Bo+ B (37) t
P(t)=P(°)(t)—wgf dt'T(t")siMw(t—t")], (A5a)
We notice that this expression can also be obtained heuristi- 0
cally from the classical oscillator model of Sec. Il if we .
assume that the energy lost by the photon oscillator is trans- X(t)zx(o)(t)+gf dt'T'(t")cosw(t—t'), (A5b)
ferred into the radiation field instead of dissipating into heat. 0

where in the interaction picture operators are labeled with the
superscript {0).” Then

This paper was supported in part by the U.S. Office of
Naval Research. PO (t)=P(0)coswt— wX(0)sinwt (A6a)
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QO(t)=Q(0)coswt + %P(O)sinwt. (A6b)

I{%(t) gives the dissipative coupling taken to have only

off-diagonal terms and is given by the matrix

Fi(jO)(t) — Fi(jO)(O)ei(Eij)t/ﬁ: ’)’ijeiwit,

with y;=0, which gives(I"(O)(t))=0. .
I'(t) can be found from the equationiZil'(t)
=[T'(t),H,(t)], whereH,(t) satisfies the equation

t
H|(t)=H|(0)+%Jdt’[H|(t’),T(t’)]P(t')- (A7)
0

I'(t) satisfies the integral equation
t ' ) ,
r(t)=F°(t)+%f dt’ft dt/eH (-t
i< Jo 0

X[F(tr)’[r(t/r)’Hl(tN)]P(t//)efthO(tft’)/ﬁ,

(A8)
which is then substituted into E¢A5a) to give an equation
for P(t).

In order to obtain a tractable resulf; and H, are
replaced by I'©® and H®, the expression

[TO(t"),[TO(t"),H(t")1]P(t") is replaced by its expectation
value averaged overin Eg. (A3), and sums are replaced by

integrals.
The following quantities are defined

B(w)= jowdEp(E+hw)p(E) Y2(E+fw,E)e E/keT,

(A9)
B(w)=2wg°Z 'mB(w)(1—e "/sT).  (A10)
Then for timest> w1, as shown in Ref. 9,
P+ B8P+ w?P=—w?gl' (1), (A11)
X+ BX+ w?X=gl%(t)+gBr O(t). (A12)
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sinwt+ X(0)coswt

X(t)= e‘ﬁ“z{ ! { P(0)+ %[;’X(O)

()

t ’
- gf dt'TO(t")ef2t=1)| cosw(t—t')
0

(A13Db)

B . :
+%smm(t—t )},

wherew= Jw?— B%/4. The resulting average of the commu-
tator of P andX over the density matrix in Ed3) is equal to

i#, and thus the corresponding creation and annihilation op-
erators

w

1/2 i
a(t)=(ﬁ> X(t)+ Wp(t) (A14)

can be evaluated. Finally, the optical spectrum is obtained
from the correlation functioris

Gi(t,7)=(a" (t+m)a(t)), (Al5a)

Gy(t,7)=(a(t)a* (t+ 1)), (A15b)

We evaluate them for times 7w, which is reasonable
for w in the range of optical frequencies. To leading order in
Blo we obtain

Gy(t,1)=e F2107 oo +e #{ (2" (0)a(0))
1
kT 1| | (Al6a
) 1
Gy(t,7)=e PN o —ponr + e~ F| (a(0)a™ (0))
1
e e |- (A16b)

These are equivalent to the equations of a damped driven

oscillator and can be solved fof and P by the Laplace
transformation. The solutions are

sinwt

1
— w2X(0)+ E,GP(O)

1
P(t)=e5t’2(—
o)

w2 t
+P(0)cosmt}——gf dt'TOt")

@ " Jo

X e B sing(t—t'), (A133)

The linear response to an applied weak perturbation is given
by a commutator correlation function

G(n)=([a(t),a’ (t+7)])=e P?"1""+O(Blw),
(AL7)

which represents a damped oscillator with wigth
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