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Vorticity reversal in curved electron waveguides

E. Smanek
147 Oliver Road, Santa Barbara, California 93109
(Received 6 October 1998

The switching of vorticity sign taking place in a curved electron waveguide, at the energy of the reflection
resonance, is studied analytically. We consider a planar strip with a localized bend and obtain a formula for the
vorticity in the transmission region. The vorticity reversal is shown to originate from the sudden change of the
phase of the transmission matrix as the electron energy passes through the resonance. The alternating sign of
rotation in the vortex street along the center curve of the waveguide is also explained. An exponential decay of
vortex strength with the distance from the bend is predidt®86163-1829)00215-5

I. INTRODUCTION for the vorticity the magnitude of which is a topological
invariant whereas its chirality depends upon the phases of the
Vortices induced by ballistic transport past an obstacle ifransmission matrix. This result is in agreement with the re-
a quantum waveguide are the subject of increasingorted numerically obtained vortex patterns near the reflec-
interest*~® It was reported by Hirschfelder and Tdnthat  tion resonance?’
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vortices in anL-shaped channel suddenly change the sign of
rotation(chirality) as the energy passes through the reflection Il. THE WAVE EQUATION
resonance. In a more recent study, Berggren ahaepbrted
similar behavior of the vortex pattern induced by electron Following Ref. 6, the wave equation, subject to Dirichlet
transport in a Waveguide with a circular bend. The results Opoundary Condltlon, IS rewritten In na.tural CUrV|||near coor-
Refs. 1 and 3 are based on solving the Sdimger equation dinates given by the coordinagealong the referenceguid-
by matching the wave-function amplitudes and derivatives athg) curve of the waveguide, and the transverse coordinate
the boundaries separating the incident, transmission, and ti#ong the normal to this curvésee Fig. 1 Expressed in
corner(or bend region. It should be interesting to have an these coordinates, the Hamiltonian of an electron of mass
analytic alternative to these numerical calculations so that &
deeper insight into this intriguing effect is gained.

In this paper, we consider electron transport in a planar 21 a(1a) 19 J
strip of fixed width containing a localized befid.Our goal - 2mg|J 9s\J s + Jau ‘JE
is to derive an expression for the vorticity in the transmission
region. Scattering by a localized bend was considered bwhere J=1+uy(s) is the Jacobian of the transformation
Goldstone and Jaffewithin the single channel approxima- from (x,y) to (s,u, andy(s) is the curvature of the reference
tion. Since wave functions containing nodal points in thecurve. It is convenient to introduce the rescaled Hamiltonian
strip are necessary for seeding of vortiteke second trans-
verse channel must be included in the scattering problem._ _ 2
The case of one propagating mode and one evanescent moble= J¥2HJ Y%= —
in the presence of a-function scatterer was studied by
Bagwell® We find his general approach useful for finding the
transmission amplitudes in the presence of a localized bend.
However, it is necessary to take into account the fact that the
dependence of the scattering potential on the transverse co-
ordinate is more complicated in our case. Actually, an ex-
plicit form of the scattering potential can be deduced by re-
writing the Hamiltonian of the electron in a strip into the
natural curvilinear coordinatés. The effective Schrdinger
equation thus obtained contains not only the curvature-
induced attractive potential but also the contribution coming
from the effect of the curvature on the kinetic energy opera- refereﬁ/ce i '
tor. It is the latter contribution which is essential for the 5,(n) s,(n+1)
coupling of the propagating to the evanescent méske curve
Refs. 9 and 10 for related applications of this operatos- FIG. 1. Section of a curved waveguide containing vortices of
ing this approach, we obtain the wave function in the transopposite chirality at the adjacent nodal points in the transmission
mission region as a linear combination of the propagatingegion. The curve drawn along the nodal lise sy(n) represents
and the evanescent waves. Expanding the wave function inte function < 1)"y,(u). According to Eq{(43), this function gen-
Taylor series about the nodal points, we obtain an expressiogrates the reversal of chirality as-n+ 1.

0163-1829/99/5@.5)/101526)/$15.00 PRB 59 10152 ©1999 The American Physical Society



PRB 59 VORTICITY REVERSAL IN CURVED ELECTRON WAVEGUIDES 10 153

where V(s,u) is the curvature-induced attractive potential and

[see Eq(3.1b of Ref. 6]. The corresponding rescaled wave )
function is given byg=J"2y, wherey is the original wave :J .
function. It satisfies the Schiinger equation Umn= | Xm(Wuxp(u)du. (12

ﬁ¢(s,u)=E¢(s,u). 3 In the limit | -0, the functiony(s) goes over to as

N : function. We note that this limiting process allows us to re-
The advantage of the rescaling is tlfais normalized on the duce the solution of Eqs(7) to a system of algebraic

i~ 6
St”X‘S long as the curvature radius is large compared to théaquationé. The idea is to integrate E@7) over the interval
—1/2<s<l1/2, and subsequently ldt—0. In this way, we

width d of the strip, the Hamiltoniaki can be approximated 5piain with the use of Eql)

as
_ dcm(s)‘ dcm(s)‘
H=Ho+Hy, 4 - =2 lmn, (13
_ ot @ ds |, o ds |, w0
where Hg is the Hamiltonian for a straight strip obtained where
from Eq. (1) by settingJ=1. H, represents the curvature-
induced perturbation of the form SmnCn(0)  2unn| dc, dc,
2 2 2 2 lmn= "~ 4] * | |ds|_ ., ds|__ |
) _ﬁ u Jd N dy ¢ hcy(s) 5 s=0 s=0 14
(s,u)= m. Y(S)E dsos Bm, 5 (14

T ve th tioid h & Equations(13) are to be solved with the boundary condition
0 solve the wave equatiof3), we use the ansatz ensuring the continuity of the wave functionst 0,

B(S,U)= 2 Col(S)xn(U), ) Cr(5=07)=Cp(s=07). (19)

A remark concerning the validity of the limlit—0 for the
where y,(u) satisfies the Schdinger equation for an elec- bent waveguide is in order. If the wave function varies
tron moving in the transverse direction in an infinite squareslowly over the interval-1/2<s<I/2, the limiting process
well potential of widthd. The corresponding energy eigen- leading to Eq.(13)—(15) is valid. In what follows, we con-
value isE,=#%2m?n%(2md?). Inserting the ansat) into  sider a propagating mode with the eneigsE,. The cor-
the wave equatiof2), multiplying both sides by, (u), and  responding wave vectd, is, according to Eq(9), of the
integrating overu, we obtain the following coupled system order of 14. In deriving Egs.(4) and(5), we assumed that
of equations for the functions,(s): the length of the bend exceeds the width of the strip, which
implies k;1>1 and the limiting process is not valid. The
finite length of the potential wellthe last term of Eq(5)] is
responsible for transmission resonances which are washed
out in the limit|—0. Since our main concern is the trans-
where mission zero, this error is of no qualitative consequence. As

g for the evanescent mode, the corresponding wave vegctor
= 2 *(H. ) >k, so that the limiting process is acceptable.
Frr(s) = (2me /A )fo Xm(UHa(8Wxn(du. (8 For propagating modes incident on the left of the bend,
the amplitudec,(S) is, for s<0, a superposition of the inci-
dent and reflected waves

d%c,,
3358) +kr?ncm(s):; Cmn(s)ca(s), 7)

The wave vectok, is given by

2 _ _ 2 . .
km—Zme(E Em)/h . (9) Cm(s):Ame|kmS+ Bmeflkms' (16)

IIl. TRANSMISSION AMPLITUDES For s>0, we have a transmitted wave

We now consider a planar strip with a bend localized at Cm(S) =Cpe'r. (17)
s=0. The bend has a characteristic lengtihich is of the
order of the radius of the curvatuf&@he curvaturey(s), for
such a localized bend, can be approximated by a constant An+B,=Cp. (18)
value 1I over the interval-1/2<s</2, and by zero outside
this interval. Using this approximation in E¢8), we obtain  The evanescent mode is obtained from ELp) by setting
kn=ixny, and A,=0. Taking into account conditiofil8),
we have for all values of

The boundary conditioil5) implies

#? dy 9

Omn¥(S)
YS) ot g oo

Fon(s)=— 4l +2Unn

Crm(S)=Cpye ™ *ml¥, (19)
where y(s) can be written as a difference of unit step func-

tions where

y(s)=[ 6(s+1/2)— 8(s—1/2)]/1, (11) K= 2Mg(Ep—E)/A2. (20
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For one propagating and one evanescent mode with wave IV. VORTICITY
vectorsk; andi«,, respectively, the coupled equatiofiss)

become, with the use of Eq&l4)—(19), We focus on the transmission regiosi>0, where the

wave function is, according to Eqe), (17), and(19),
(2ikq+1M)Cy+4(Ug/l) k,Co= 20K, Ay, B _ B
P(s,u)=L" Yt ey (U) +t e "2y (w)], (3D
Aiky(Usa/)Cyt (20— 1) Co=diky(Urp/DA; . (21) whereL is the length of the strip in the direction, and
Defining the transmission amplitudeés;=C4/A; and tq,
=C,/A,, Egs.(21) yield V2. qu
xa(w=\g] sin,
_2|kl+ 16ik1K2(U12/|)2/(2K2_1/|)

M ik, — 10+ 16Ky (Ul )2 (25— 1)

2 1/2

_ 2mu
Xz(U)=<a

SIHT. (32)

Ak (ugp/1)(1—tyy)
b=

(22)
The position of the nodess{,up), of the wave function
is obtained by setting both the real and the imaginary parts of

According to Eq(22), the numerator of;; vanishes when ) .
910 Eq(22) 1 Eq. (31) equal to zero. In this way, we obtain

ko[ 1—4(ugp/1)?]=1/(21). (23
_ , , so(nN) =Ky *(\3—\;+nm) (33
Using Eq.(20), we obtain from Eq(23) the energy at which
t11=0. This is the quasi-bound-state energy and
ﬁz n+1 K9S,
_ — 1)ty ex2%
Ev=E2~ g2 (24 o _ S u
8mlr J 27m+cos [ , (39

where wheren in Eq. (33) andm in Eq. (34) are any positive or

r=1-4(up/)2 (25)  negative integerSWhen the energy is close to the reflec-

tion resonance, Eq9) yields k;~v3#/d. Using this result

Of particular importance for the study of vorticity in the jp Eq. (33), we see that the nodal poinfgortex centersare
neighborhood oE, turns out to be the phase defined by  spaced equally by/v3 along thes direction. In the neigh-
borhood of the transmission zerfi (| =0), Eq.(34) shows

— in
ty=|ty e (26) thatuy~d/2 (see Fig. 1 This implies that the vortex street
From Eq.(22) we find, expanding abolE,,, runs close to the center curve of the waveguide. The stream-
lines reported in Refs. 1 and 3 are in agreement with these
. T predictions.
Ay =tan E,—E|’ (27 Expanding the wave functio(81) about the nodal point,
(s0.Uo), to first order, we have
where
ﬁzduiz ¢(s,u)=a(u—ug)+ib(s—sy), (35
N=—. 28
2v3m,|5r3 (28 where

Sincel is positive, we see from Eq27) that \; changes
suddenly fromn/2 to —n/2 as the energy passes through a=
from below. We note that an expression similar to E2y)

also describes the phase shift at the transmission resofiance.

2 1/2t Ug Kiso. ot 27Uy —pso| T
X 11C0S—~€ 12C0S——€ I

. . 21/2 . mUg . ) _2’7TUO_
This is in accord with the fact that a change of phase shift by p=| — KytqySin——e'*1%0+j k,t;,sin e <25
 is generally expected at resonance scattefing. Ld d

From Eq.(22), we see that;, has a pole at the energy (36)

2 The vorticityq is defined as a circulation of the velocity

— -1
On comparing this result with Eq24), we see thatE, q=(2m) ﬁc)v' ds, (37)
>E,, the difference being
whereC is a closed curve surrounding the nodal pdint.
ﬁzuf2 Expressing the wave functigf35) in the form
EO_ Eb% W, (30)
e

_ p(s,u)=|p(s,u)le' ">V (39
where we assumed,,/|<1. There is no sudden change of

the phase of1,,\,, as the energy passes through. the velocityv becomes
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h h ay(u—ug) +by(s—sp) i dp*
=—Vg= — 1 = -
v meVH meV tan ar(U—Ug)—D,(5—5g) | Js(Sp,U) o, ¢ Pt

(39

s=0

fiky 2 2
. . L [Itaa“x1(u)
where subscripts 1 and 2 indicate the real and the imaginary melL

parts, respectively. Inserting this result into E§7), and k

performing the integration witlC being a circle centered at +(= 1) 20ty [ty xa(U) xa(W)]. (43
the nodal point, we obtaifsee Sec. 1 of the Appendix The first term on the right-hand side of E@3) represents
the current transmitted in the first transverse mode. Since it is
symmetric about the center curve=d/2, it does not con-

f(ab* +a*b) d -
0= ——5—51- (400 tribute to the vorticity of a vortex located 8§, up~d/2. The
me|ab* +a*b| second term is due to the mixing of the propagating and the
evanescent mode. Its dependence up@ncontrolled by the
Using Egs.(33), (34), and(36), we obtain product y1(u) xo(u). This product is an odd function af

about the center poiniy=d/2. Hence, it contributes to the
vorticity. As the integern changes by one, this product
switches sigr(see Fig. 1 According to Eq(33), this can be
achieved by shiftingsg(n) to sgp(n*1), or by changing the

(41 phase\; by = Expanding Eq(43) aboutu=u,, to first
order, we find

8k 7u
ab*+a*b= Ldzl (—1)" Lty |t,] e v2% sinTO.

From this result we see that the sign of the vortiajtin Eq.

(40) is determined by the factor(1)""1. Thus, we obtain =5 (ab* +a*b)(u—up). (44)
e
% In a similar way, we find
q=— (-1 (42)
me

Ju=-— (ab* +a*b)(s—sp). (45

2mg
To apply the present theory to the vortgx patterr_ls obywye see that it is the same factab* +a*b, which deter-

served in Refs. 1 and 3, we need to consider @) in  mines hoth the vorticitfsee Eq(40)] and the local current

conjunction with Eq(33). Let us first consider the case of a gensity near the vortex center. The latter can be used to

fixed energyE~E,,. Then the quantitiek,, A;, and\; aré  eqimate the vortex strengihy defined as the circulation of
fixed and Eq.(33) describes a series of equidistant vorticesine probability current density

spaced along the coordinate by a distance/k; . A shift of

sp by this spacing amounts to a change of the integby 1 hA
: 3€ J-ds=——(ab* +a*b), (46)
(©)

e

(see Fig. 1. Equation(42) implies that a change of the sign I'=
of the vorticity is associated with this shift. This explains the
alternation of the rotation sign of the vortices reported inwhere we used Eq$44) and(45). HereA stands for the area
Refs. 1 and 3. enclosed by the conto@. The dependence of EG6) on A
Next, we focus on a given sitg, and ask about the is contrary to the expectation that the vortex strength is a
changes of the vorticity as the enerBypasses through the topologically invariant quantity. The problem is that the first-
reflection resonance. According to H&7), the quantityn,  order expansions about the nodal point, used in Eg8.and
changes suddenly by 7 as E moves througtE,, from be-  (45), do not correctly describe the asymptotic long-range be-
low. Since\, does not change, argj is fixed, we see from havior of the current. Rather, they are appropriate for the
Eq. (33) that a change ofi—n— 1 takes place. With the use inner regionr<¢, wherer is the distance from the nodal
of Eq. (42), a change of the vorticity sign is obtained at the point and¢ is the characteristic length. We can determine

site sy in agreement with the numerical results. this length by proceeding in analogy with the nonlinear
Schralinger equatior’®> We note that the nonlinearity does

not influence the characteristic length scale of this equation,
V. CURRENTS AND VORTEX STRENGTH rather it determines the normalization of the wave function.
Applying this analogy to Eq(3), we see that the character-

A somewhat less formal way of understanding these efigiic scale at which the expansiof®) and (45) break down
fects is to consider, instead uf the probability current den- o given by

sity J. This quantity has the same properties as far as the
vortex chirality is concerned. Moreover, it determines the A2 Y2
vortex strength, for example, through the vortex-induced §:[2m E}

; i i o e
magnetic moment.To illustrate the mechanism of chirality
switching, we consider the componehtat a fixed position SinceE~E,, we obtain from Eq(43) é~d/(27). We can
sg as a function ofu. Assuming thats, lies in the straight identify this distance with the approximate size of the vortex
section of the waveguidey=0), and using Eq(31), we core. It follows that Eq.46) holds only if the integration
have contourC lies within the core region. Outside the core re-

(47)
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gion, the expansion af must be carried out beyond the first fi(ab* +a*b) x dy—y dx

order. In fact, if we were to calculate the induced magneti- q= A7m jg lay+ibx[? (A1)

zation density, the current density should be calculated from € ©

the full expressior(31). Assuming thaC is a circle centered at=0, y=0, and going
Nevertheless, some qualitative conclusions can be drawgver to polar coordinatesy («), Eq. (A1) becomes

from Eq. (46). From the proportionality of" to ab* +a*b,

we see that the vortex strength exhibits not only the chirality

switching[factor (—1)"], but also an exponential decay rep- - fi(ab*+a*b) fzr da (A2)

resented by the fact@ ¥2%. The streamlines shown in Refs. a 4mme o |asina+ib cosal®’
1 and 3 do not extend sufficiently far into the transmission
region to show this decay of vortex strength.

The calculation of the vorticity, shown in Sec. 1 of the W
Appendix, is also based on the first-order expangi@s).
Strictly speaking, this imposes a restriction on the radius of

The angular integral is evaluated in the compigpiane.
e setz=€'%, and obtain from Eq(A2)

the circle, chosen for the integration contour in EAL). B if

However, this radius cancels out on going to E&R), yield- a= mme(a—b)(a* +b*)

ing a topologically invariant result. This is related to the

definition, Eq.(39), of the velocity in terms oV 6. The vor- % é zdz (A3)
ticity (37) is thus proportional to the circulation &6 which 12/=1(Z2—Z21)(2— 2,)(2— 23)(Z2— 24)’

is equal to=27. Hence, our conclusions about vortex chiral-

ity are not affected by the approximati¢85). where

VI. SUMMARY

A simple model of an electron waveguide containing a
localized bend is used to study, analytically, the vorticity in
the transmission region. The coupling of the propagating and 25 4= (2" )1 (Ad)
the evanescent modes by the curvature-induced perturbation 4\
is found essential for the formation of vortices. For energies S o R
near the reflection resonance, the vortices form a street ruf@nly the pole which lies within the unit disk in theplane
ning close to the center of the waveguide. An expression fofontributes to the integrdA3). From Eq.(A4), we have
the vorticity is derived which explains the alternation of
chirality along the street, and the overall reversal of the vor- , |a|2+ |b|?+ (a* b+ab*)
ticity as the energy passes through the reflection resonance |Zldz:|a|2+|b|2—(a*b+ab*)' (A5)
(effects previously seen in numerical studi€3 The sudden
change of the phase of the transmission amplitude at the ) .
resonance is found responsible for this effect. AssociatedVe See that the poles , contribute only ifa*b-+ab* <0.
with this is the change of the sign of the admixture of the!n this case, the polez; , lie outside the unit disk, and for-
evanescent mode. Calculation of the current density alonglula(A3) yieldsq=—#/m.
the nodal lines as a function of the transverse coordinate On the other hand, i&*b+ab*>0, only the poleszz,
confirms that this sign change produces a reversal of thgontribute, yieldingg=7/m,.
current circulating about the nodal point. The vortex
strength, obtained with this current density, exhibits an ex-
ponential decay with the distance from the bend. 2. Derivation of Eq. (41)

With the use of Eq(36), we obtain
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APPENDIX

X (ty} e+ c.c)l. (A6)

1. Derivation of Eq. (40)

For nodal points situated in the straight transmission reyye note that cross terms, proportional 49, cancel out

gion, the evaluation of the velocity circulation is simplified owing to the identityobtained with the use of EG33)]
by setting y=0. Consequently, we replace the curvilinear

coordinates in Eq(39) by rectangular oness( sy)—x and . ks \
(u—ug)—Yy. Using Eq.(39) in Eq. (37), we obtain tyat 148" 1%0=tyq [t (—1)" (A7)
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Using this identity in the second term of EA6), we
have

A7k, . wug mUg
* *y— i 2 -
ab*+a*b gz SNy t14]° cos .

_ 27TUO
+ 2|ty |ty e *2%(—1)" cos |
(A8)

From Eq.(34), we obtain
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TUg |tqq] 2%
cos— =(—-1)"——F (A9)
d ( 2]ty
and
2mwUg  |tqq]?e?<2%
coSs 0= [tad —-1. (A10)

d 2ty

Inserting Eqs(A9) and (A10) into Eq.(A8) and noting can-
cellation of the terms proportional &%, we arrive at Eq.
(41).
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