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Vorticity reversal in curved electron waveguides

E. S̆imánek
147 Oliver Road, Santa Barbara, California 93109

~Received 6 October 1998!

The switching of vorticity sign taking place in a curved electron waveguide, at the energy of the reflection
resonance, is studied analytically. We consider a planar strip with a localized bend and obtain a formula for the
vorticity in the transmission region. The vorticity reversal is shown to originate from the sudden change of the
phase of the transmission matrix as the electron energy passes through the resonance. The alternating sign of
rotation in the vortex street along the center curve of the waveguide is also explained. An exponential decay of
vortex strength with the distance from the bend is predicted.@S0163-1829~99!00215-5#
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I. INTRODUCTION

Vortices induced by ballistic transport past an obstacle
a quantum waveguide are the subject of increas
interest.1–5 It was reported by Hirschfelder and Tang1 that
vortices in anL-shaped channel suddenly change the sign
rotation~chirality! as the energy passes through the reflect
resonance. In a more recent study, Berggren and Ji3 reported
similar behavior of the vortex pattern induced by electr
transport in a waveguide with a circular bend. The results
Refs. 1 and 3 are based on solving the Schro¨dinger equation
by matching the wave-function amplitudes and derivative
the boundaries separating the incident, transmission, and
corner~or bend! region. It should be interesting to have a
analytic alternative to these numerical calculations so th
deeper insight into this intriguing effect is gained.

In this paper, we consider electron transport in a pla
strip of fixed width containing a localized bend.6,7 Our goal
is to derive an expression for the vorticity in the transmiss
region. Scattering by a localized bend was considered
Goldstone and Jaffe7 within the single channel approxima
tion. Since wave functions containing nodal points in t
strip are necessary for seeding of vortices,1 the second trans
verse channel must be included in the scattering probl
The case of one propagating mode and one evanescent
in the presence of ad-function scatterer was studied b
Bagwell.8 We find his general approach useful for finding t
transmission amplitudes in the presence of a localized b
However, it is necessary to take into account the fact that
dependence of the scattering potential on the transverse
ordinate is more complicated in our case. Actually, an
plicit form of the scattering potential can be deduced by
writing the Hamiltonian of the electron in a strip into th
natural curvilinear coordinates.6,7 The effective Schro¨dinger
equation thus obtained contains not only the curvatu
induced attractive potential but also the contribution com
from the effect of the curvature on the kinetic energy ope
tor. It is the latter contribution which is essential for th
coupling of the propagating to the evanescent mode~see
Refs. 9 and 10 for related applications of this operator!. Us-
ing this approach, we obtain the wave function in the tra
mission region as a linear combination of the propagat
and the evanescent waves. Expanding the wave function
Taylor series about the nodal points, we obtain an expres
PRB 590163-1829/99/59~15!/10152~6!/$15.00
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for the vorticity the magnitude of which is a topologic
invariant whereas its chirality depends upon the phases o
transmission matrix. This result is in agreement with the
ported numerically obtained vortex patterns near the refl
tion resonance.1,3

II. THE WAVE EQUATION

Following Ref. 6, the wave equation, subject to Dirichl
boundary condition, is rewritten in natural curvilinear coo
dinates given by the coordinates along the reference~guid-
ing! curve of the waveguide, and the transverse coordinau
along the normal to this curve~see Fig. 1!. Expressed in
these coordinates, the Hamiltonian of an electron of massme
is

H̃52
\2

2me
F1

J

]

]s S 1

J

]

]sD1
1

J

]

]u S J
]

]uD G , ~1!

where J511ug(s) is the Jacobian of the transformatio
from ~x,y! to ~s,u!, andg(s) is the curvature of the referenc
curve. It is convenient to introduce the rescaled Hamilton

H̄5J1/2H̃J21/252
\2

2me
F ]

]s
~11ug!22

]

]s
1

]2

]u2G1V~s,u!,

~2!

FIG. 1. Section of a curved waveguide containing vortices
opposite chirality at the adjacent nodal points in the transmiss
region. The curve drawn along the nodal lines5s0(n) represents
the function (21)nx2(u). According to Eq.~43!, this function gen-
erates the reversal of chirality asn→n11.
10 152 ©1999 The American Physical Society



ia
e

th

d
-

-
re
n-

a

ta

c-

e-

n

es

t
ich
e

hed
s-
As

r

nd,
-
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where V(s,u) is the curvature-induced attractive potent
@see Eq.~3.1b! of Ref. 6#. The corresponding rescaled wav
function is given byf5J1/2c, wherec is the original wave
function. It satisfies the Schro¨dinger equation

H̄f~s,u!5Ef~s,u!. ~3!

The advantage of the rescaling is thatf is normalized on the
strip.6

As long as the curvature radius is large compared to
width d of the strip, the HamiltonianH̄ can be approximated
as

H̄5H̄01H̄1 , ~4!

where H̄0 is the Hamiltonian for a straight strip obtaine
from Eq. ~1! by settingJ51. H̄1 represents the curvature
induced perturbation of the form

H̄1~s,u!5
\2u

me
Fg~s!

]2

]s2 1
dg

ds

]

]sG2
\2g~s!2

8me
. ~5!

To solve the wave equation~3!, we use the ansatz8

f~s,u!5(
n

cn~s!xn~u!, ~6!

wherexn(u) satisfies the Schro¨dinger equation for an elec
tron moving in the transverse direction in an infinite squa
well potential of widthd. The corresponding energy eige
value isEn5\2p2n2/(2med

2). Inserting the ansatz~6! into
the wave equation~2!, multiplying both sides byxm* (u), and
integrating overu, we obtain the following coupled system
of equations for the functionscm(s):

d2cm~s!

ds2 1km
2 cm~s!5(

n
Gmn~s!cn~s!, ~7!

where

Gmn~s!5~2me /\2!E
0

d

xm* ~u!H̄1~s,u!xn~u!du. ~8!

The wave vectorkm is given by

km
2 52me~E2Em!/\2. ~9!

III. TRANSMISSION AMPLITUDES

We now consider a planar strip with a bend localized
s50. The bend has a characteristic lengthl which is of the
order of the radius of the curvature.7 The curvatureg(s), for
such a localized bend, can be approximated by a cons
value 1/l over the interval2 l /2,s, l /2, and by zero outside
this interval. Using this approximation in Eq.~8!, we obtain

Gmn~s!52
dmng~s!

4l
12umnFg~s!

]2

]s2 1
dg

ds

]

]sG , ~10!

whereg(s) can be written as a difference of unit step fun
tions,

g~s!5@u~s1 l /2!2u~s2 l /2!#/ l , ~11!
l

e

-

t

nt

and

umn5E
0

d

xm* ~u!uxn~u!du. ~12!

In the limit l→0, the functiong(s) goes over to ad
function. We note that this limiting process allows us to r
duce the solution of Eqs.~7! to a system of algebraic
equations.8 The idea is to integrate Eq.~7! over the interval
2 l /2,s, l /2, and subsequently letl→0. In this way, we
obtain with the use of Eq.~11!

dcm~s!

ds U
s501

2
dcm~s!

ds U
s502

5(
n

I mn , ~13!

where

I mn52
dmncn~0!

4l
1

2umn

l Fdcn

dsU
s501

2
dcn

dsU
s502

G .

~14!

Equations~13! are to be solved with the boundary conditio
ensuring the continuity of the wave function ats50,

cm~s501!5cm~s502!. ~15!

A remark concerning the validity of the limitl→0 for the
bent waveguide is in order. If the wave function vari
slowly over the interval2 l /2,s, l /2, the limiting process
leading to Eq.~13!–~15! is valid. In what follows, we con-
sider a propagating mode with the energyE'E2 . The cor-
responding wave vectork1 is, according to Eq.~9!, of the
order of 1/d. In deriving Eqs.~4! and ~5!, we assumed tha
the length of the bend exceeds the width of the strip, wh
implies k1l @1 and the limiting process is not valid. Th
finite length of the potential well@the last term of Eq.~5!# is
responsible for transmission resonances which are was
out in the limit l→0. Since our main concern is the tran
mission zero, this error is of no qualitative consequence.
for the evanescent mode, the corresponding wave vectok2
@k1 so that the limiting process is acceptable.

For propagating modes incident on the left of the be
the amplitudecm(s) is, for s,0, a superposition of the inci
dent and reflected waves

cm~s!5Ameikms1Bme2 ikms. ~16!

For s.0, we have a transmitted wave

cm~s!5Cmeikms. ~17!

The boundary condition~15! implies

Am1Bm5Cm . ~18!

The evanescent mode is obtained from Eq.~16! by setting
km5 ikm , and Am50. Taking into account condition~18!,
we have for all values ofs

cm~s!5Cme2kmusu, ~19!

where

km
2 52me~Em2E!/\2. ~20!
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For one propagating and one evanescent mode with w
vectorsk1 and ik2 , respectively, the coupled equations~13!
become, with the use of Eqs.~14!–~19!,

~2ik111/l !C114~u12/ l !k2C252ik1A1 ,

4ik1~u12/ l !C11~2k221/l !C254ik1~u12/ l !A1 . ~21!

Defining the transmission amplitudest115C1 /A1 and t12
5C2 /A1 , Eqs.~21! yield

t115
22ik1116ik1k2~u12/ l !2/~2k221/l !

22ik121/l 116ik1k2~u12/ l !2/~2k221/l !
,

t125
4ik1~u12/ l !~12t11!

2k221/l
. ~22!

According to Eq.~22!, the numerator oft11 vanishes when

k2@124~u12/ l !2#51/~2l !. ~23!

Using Eq.~20!, we obtain from Eq.~23! the energy at which
t1150. This is the quasi-bound-state energy

Eb5E22
\2

8mel
2r 2 , ~24!

where

r 5124~u12/ l !2. ~25!

Of particular importance for the study of vorticity in th
neighborhood ofEb turns out to be the phasel1 defined by

t115ut11ueil1. ~26!

From Eq.~22! we find, expanding aboutEb ,

l15tan21F G

Eb2EG , ~27!

where

G5
\2du12

2

2)mel
5r 3

. ~28!

SinceG is positive, we see from Eq.~27! that l1 changes
suddenly fromp/2 to 2p/2 as the energy passes throughEb
from below. We note that an expression similar to Eq.~27!
also describes the phase shift at the transmission resonan11

This is in accord with the fact that a change of phase shift
p is generally expected at resonance scattering.12

From Eq.~22!, we see thatt12 has a pole at the energy

E05E22
\2

8mel
2 . ~29!

On comparing this result with Eq.~24!, we see thatE0
.Eb , the difference being

E02Eb'
\2u12

2

mel
4 , ~30!

where we assumedu12/ l !1. There is no sudden change
the phase oft12,l2 , as the energy passes throughEb .
ve

e.
y

IV. VORTICITY

We focus on the transmission region,s.0, where the
wave function is, according to Eqs.~6!, ~17!, and~19!,

f~s,u!5L21/2@ t11e
ik1sx1~u!1t12e

2k2sx2~u!#, ~31!

whereL is the length of the strip in thes direction, and

x1~u!5S 2

dD 1/2

sin
pu

d
,

x2~u!5S 2

dD 1/2

sin
2pu

d
. ~32!

The position of the nodes, (s0 ,u0), of the wave function
is obtained by setting both the real and the imaginary part
Eq. ~31! equal to zero. In this way, we obtain

s0~n!5k1
21~l22l11np! ~33!

and

pu0

d
52pm1cos21F ~21!n11ut11uek2s0

2ut12u
G , ~34!

wheren in Eq. ~33! and m in Eq. ~34! are any positive or
negative integers.1 When the energyE is close to the reflec-
tion resonance, Eq.~9! yields k1')p/d. Using this result
in Eq. ~33!, we see that the nodal points~vortex centers! are
spaced equally byd/) along thes direction. In the neigh-
borhood of the transmission zero (ut11u50), Eq. ~34! shows
that u0'd/2 ~see Fig. 1!. This implies that the vortex stree
runs close to the center curve of the waveguide. The stre
lines reported in Refs. 1 and 3 are in agreement with th
predictions.

Expanding the wave function~31! about the nodal point,
(s0 ,u0), to first order, we have

f~s,u!.a~u2u0!1 ib~s2s0!, ~35!

where

a5S 2

LdD 1/2F t11cos
pu0

d
eik1s012t12cos

2pu0

d
e2k2s0G p

d
,

b5S 2

LdD 1/2Fk1t11sin
pu0

d
eik1s01 ik2t12sin

2pu0

d
e2k2s0G .

~36!

The vorticityq is defined as a circulation of the velocityv,

q5~2p!21 R
~C!

v•ds, ~37!

whereC is a closed curve surrounding the nodal point.1,5

Expressing the wave function~35! in the form

f~s,u!5uf~s,u!ueiu~s,u! ~38!

the velocityv becomes
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v5
\

me
“u5

\

me
“F tan21

a2~u2u0!1b1~s2s0!

a1~u2u0!2b2~s2s0! G ,
~39!

where subscripts 1 and 2 indicate the real and the imagin
parts, respectively. Inserting this result into Eq.~37!, and
performing the integration withC being a circle centered a
the nodal point, we obtain~see Sec. 1 of the Appendix!

q5
\~ab* 1a* b!

meuab* 1a* bu
. ~40!

Using Eqs.~33!, ~34!, and~36!, we obtain

ab* 1a* b5
8pk1

Ld2 ~21!n11ut11uut12ue2k2s0 sin
pu0

d
.

~41!

From this result we see that the sign of the vorticityq in Eq.
~40! is determined by the factor (21)n11. Thus, we obtain

q5
\

me
~21!n11. ~42!

To apply the present theory to the vortex patterns
served in Refs. 1 and 3, we need to consider Eq.~42! in
conjunction with Eq.~33!. Let us first consider the case of
fixed energyE'Eb . Then the quantitiesk1 , l1 , andl2 are
fixed and Eq.~33! describes a series of equidistant vortic
spaced along thes coordinate by a distancep/k1 . A shift of
s0 by this spacing amounts to a change of the integern by 1
~see Fig. 1!. Equation~42! implies that a change of the sig
of the vorticity is associated with this shift. This explains t
alternation of the rotation sign of the vortices reported
Refs. 1 and 3.

Next, we focus on a given sites0 and ask about the
changes of the vorticity as the energyE passes through th
reflection resonance. According to Eq.~27!, the quantityl1
changes suddenly by2p as E moves throughEb from be-
low. Sincel2 does not change, ands0 is fixed, we see from
Eq. ~33! that a change ofn→n21 takes place. With the us
of Eq. ~42!, a change of the vorticity sign is obtained at t
site s0 in agreement with the numerical results.1,3

V. CURRENTS AND VORTEX STRENGTH

A somewhat less formal way of understanding these
fects is to consider, instead ofv, the probability current den
sity J. This quantity has the same properties as far as
vortex chirality is concerned. Moreover, it determines t
vortex strength, for example, through the vortex-induc
magnetic moment.5 To illustrate the mechanism of chiralit
switching, we consider the componentJs at a fixed position
s0 as a function ofu. Assuming thats0 lies in the straight
section of the waveguide (g50), and using Eq.~31!, we
have
ry

-

f-

e

d

Js~s0 ,u!5
i\

2me
S f

]f*

]s
2c.c.D U

s50

5
\k1

meL
@ ut11u2x1

2~u!

1~21!ne2k2s0ut11uut12ux1~u!x2~u!#. ~43!

The first term on the right-hand side of Eq.~43! represents
the current transmitted in the first transverse mode. Since
symmetric about the center curve,u5d/2, it does not con-
tribute to the vorticity of a vortex located ats0 , u0'd/2. The
second term is due to the mixing of the propagating and
evanescent mode. Its dependence uponu is controlled by the
productx1(u)x2(u). This product is an odd function ofu
about the center pointu05d/2. Hence, it contributes to the
vorticity. As the integern changes by one, this produc
switches sign~see Fig. 1!. According to Eq.~33!, this can be
achieved by shiftings0(n) to s0(n61), or by changing the
phasel1 by 6p. Expanding Eq.~43! aboutu5u0 , to first
order, we find

Js5
\

2me
~ab* 1a* b!~u2u0!. ~44!

In a similar way, we find

Ju52
\

2me
~ab* 1a* b!~s2s0!. ~45!

We see that it is the same factor,ab* 1a* b, which deter-
mines both the vorticity@see Eq.~40!# and the local current
density near the vortex center. The latter can be used
estimate the vortex strengthG, defined as the circulation o
the probability current density,

G5 R
~C!

J•ds52
\A

me
~ab* 1a* b!, ~46!

where we used Eqs.~44! and~45!. HereA stands for the area
enclosed by the contourC. The dependence of Eq.~46! on A
is contrary to the expectation that the vortex strength i
topologically invariant quantity. The problem is that the firs
order expansions about the nodal point, used in Eqs.~44! and
~45!, do not correctly describe the asymptotic long-range
havior of the current. Rather, they are appropriate for
inner regionr !j, where r is the distance from the noda
point andj is the characteristic length. We can determi
this length by proceeding in analogy with the nonline
Schrödinger equation.13 We note that the nonlinearity doe
not influence the characteristic length scale of this equat
rather it determines the normalization of the wave functio
Applying this analogy to Eq.~3!, we see that the characte
istic scale at which the expansions~44! and~45! break down
is given by

j5F \2

2meE
G1/2

. ~47!

SinceE'E2 , we obtain from Eq.~43! j'd/(2p). We can
identify this distance with the approximate size of the vort
core. It follows that Eq.~46! holds only if the integration
contourC lies within the core region. Outside the core r
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gion, the expansion ofJ must be carried out beyond the fir
order. In fact, if we were to calculate the induced magn
zation density, the current density should be calculated fr
the full expression~31!.

Nevertheless, some qualitative conclusions can be dr
from Eq. ~46!. From the proportionality ofG to ab* 1a* b,
we see that the vortex strength exhibits not only the chira
switching@factor (21)n], but also an exponential decay re
resented by the factore2k2s0. The streamlines shown in Ref
1 and 3 do not extend sufficiently far into the transmiss
region to show this decay of vortex strength.

The calculation of the vorticity, shown in Sec. 1 of th
Appendix, is also based on the first-order expansion~35!.
Strictly speaking, this imposes a restriction on the radius
the circle, chosen for the integration contour in Eq.~A1!.
However, this radius cancels out on going to Eq.~A2!, yield-
ing a topologically invariant result. This is related to th
definition, Eq.~39!, of the velocity in terms of“u. The vor-
ticity ~37! is thus proportional to the circulation of“u which
is equal to62p. Hence, our conclusions about vortex chira
ity are not affected by the approximation~35!.

VI. SUMMARY

A simple model of an electron waveguide containing
localized bend is used to study, analytically, the vorticity
the transmission region. The coupling of the propagating
the evanescent modes by the curvature-induced perturb
is found essential for the formation of vortices. For energ
near the reflection resonance, the vortices form a street
ning close to the center of the waveguide. An expression
the vorticity is derived which explains the alternation
chirality along the street, and the overall reversal of the v
ticity as the energy passes through the reflection reson
~effects previously seen in numerical studies!.1,3 The sudden
change of the phase of the transmission amplitude at
resonance is found responsible for this effect. Associa
with this is the change of the sign of the admixture of t
evanescent mode. Calculation of the current density al
the nodal lines as a function of the transverse coordin
confirms that this sign change produces a reversal of
current circulating about the nodal point. The vort
strength, obtained with this current density, exhibits an
ponential decay with the distance from the bend.
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APPENDIX

1. Derivation of Eq. „40…

For nodal points situated in the straight transmission
gion, the evaluation of the velocity circulation is simplifie
by settingg50. Consequently, we replace the curviline
coordinates in Eq.~39! by rectangular ones: (s2s0)→x and
(u2u0)→y. Using Eq.~39! in Eq. ~37!, we obtain
i-
m

n

y

n

f

d
ion
s
n-
r

r-
ce

e
d

g
te
e

-

g

-

q5
\~ab* 1a* b!

4pme
R

~C!

x dy2y dx

uay1 ibxu2 . ~A1!

Assuming thatC is a circle centered atx50, y50, and going
over to polar coordinates, (r ,a), Eq. ~A1! becomes

q5
\~ab* 1a* b!

4pme
E

0

2p da

ua sina1 ib cosau2 . ~A2!

The angular integral is evaluated in the complexz plane.
We setz5eia, and obtain from Eq.~A2!

q5
i\

pme~a2b!~a* 1b* !

3 R
uzu51

z dz

~z2z1!~z2z2!~z2z3!~z2z4!
, ~A3!

where

z1,256S a1b

a2bD 1/2

,

z3,45~z1,2* !21. ~A4!

Only the pole which lies within the unit disk in thez plane
contributes to the integral~A3!. From Eq.~A4!, we have

uz1,2
2 u25

uau21ubu21~a* b1ab* !

uau21ubu22~a* b1ab* !
. ~A5!

We see that the polesz1,2 contribute only ifa* b1ab* ,0.
In this case, the polesz3,4 lie outside the unit disk, and for
mula ~A3! yields q52\/me .

On the other hand, ifa* b1ab* .0, only the polesz3,4
contribute, yieldingq5\/me .

2. Derivation of Eq. „41…

With the use of Eq.~36!, we obtain

ab* 1a* b5
2pk1

Ld2 F ut11u2 sin
2pu0

d

12 cos
2pu0

d
sin

pu0

d
e2k2s0

3~ t12t11* eik1s01c.c.!G . ~A6!

We note that cross terms, proportional tok2 , cancel out
owing to the identity@obtained with the use of Eq.~33!#

t12t11* eik1s05ut11uut12u~21!n. ~A7!
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Using this identity in the second term of Eq.~A6!, we
have

ab* 1a* b5
4pk1

Ld2 sin
pu0

d F ut11u2 cos
pu0

d

12ut11uut12ue2k2s0~21!n cos
2pu0

d G .
~A8!

From Eq.~34!, we obtain
s.
cos
pu0

d
5~21!n

ut11uek2s0

2ut12u
~A9!

and

cos
2pu0

d
5

ut11u2e2k2s0

2ut12u2
21. ~A10!

Inserting Eqs.~A9! and~A10! into Eq. ~A8! and noting can-
cellation of the terms proportional toek2s0, we arrive at Eq.
~41!.
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