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Quadratic electronic response of a two-dimensional electron gas
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~Received 5 October 1998!

The electronic response of a two-dimensional~2D! electron system represents a key quantity in discussing
one-electron properties of electrons in semiconductor heterojunctions, on the surface of liquid helium and in
copper-oxide planes of high-temperature superconductors. We here report an evaluation of the wave-vector and
frequency dependent dynamical quadratic density-response function of a 2D electron gas~2DEG!, within a
self-consistent field approximation. We use this result to find theZ1

3 correction to the stopping power of a
2DEG for charged particles moving at a fixed distance from the plane of the 2D sheet,Z1 being the projectile
charge. We reproduce, in the high-density limit, previous full nonlinear calculations of the stopping power of
a 2DEG for slow antiprotons, and we go further to calculate theZ1

3 correction to the stopping power of a 2DEG
for a wide range of projectile velocities. Our results indicate that linear-response calculations are, for all
projectile velocities, less reliable in two dimensions than in three dimensions.@S0163-1829~99!00711-0#
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I. INTRODUCTION

Since the pioneering work of Bohm and Pines,1 the con-
duction electrons in a metal have been described as a th
dimensional~3D! gas of electrons in a neutralizing uniform
positive charge. The dynamical linear density-response fu
tion of a 3D electron gas~3DEG! was evaluated by
Lindhard2 in the so-called random-phase approximati
~RPA!, in which each electron is assumed to move in
external field plus the induced field of all electrons. T
wave-vector and frequency dependent dynamical quad
density-response function of a 3DEG has also b
evaluated,3 by going beyond linear response theory. T
knowledge of this quantity has been proved to be of gr
importance in discussing the properties of electrons in a
riety of 3D systems,4 and, in particular, in explaining the
experimentally observed difference between the electro
energy losses of protons and antiprotons moving throug
solid.5,6

The suggested existence of two-dimensional electron
ers in metal-insulator semiconductor structures and on
surface of liquid helium led several years ago to a gr
activity in the study of a two-dimensional electron ga7

where the electrons are confined to a plane and neutra
by an inert uniform rigid positive plane background. The 2
electron system has also been considered in discussing
physics of new-class materials such as copper-oxide pla
of high-temperature superconductors.8 It has been found tha
electrons confined to a 2D layer show sometimes interes
properties not shared by a 3D electron system. For insta
for a 2D metal the plasma frequency goes to zero in
long-wavelength limit, in contrast to the 3D situation9

Stern10 evaluated the dynamical linear density-respon
function of a 2DEG in the RPA, and calculated the plasm
dispersion and the asymptotic screened Coulomb poten
PRB 590163-1829/99/59~15!/10145~7!/$15.00
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Also, much effort has gone into studying the ground-st
energy11 and the excitation spectrum of a 2DEG.12 The stop-
ping power for a fast particle moving parallel to a 2DEG w
first evaluated in the RPA, within linear response theory,
Horing et al.,13 and the effect on this quantity of finite
temperature,14 local field corrections,15 and recoil16 has also
been considered. Nonlinear calculations of the stopp
power for slow protons and antiprotons have been perform
only very recently17,18 on the basis of a scattering theo
approach, the scattering cross sections being calculated
statically screened potential.

In this paper we present results for the dynamical q
dratic electronic density-response of a 2DEG to longitudi
external fields of arbitrary wave vector and frequency, wh
we evaluate on the same level of approximation as the R
linear density-response function of Stern.10 In order to illus-
trate the usefulness of the knowledge of this quantity,
consider, as an example, the stopping power of a 2DEG,
we use the quadratic density-response function to eval
theZ1

3 nonlinear correction to the stopping power of a 2DE
for particles of chargeZ1e moving at a fixed distance from
the 2D plasma.

II. DYNAMICAL ELECTRONIC RESPONSE

We consider a uniform electron system of densityn0 at
zero temperature. Linear and quadratic density-respo
functions of this system,x(x,x8) and Y(x,x8,x9), with x
5(r ,t), may be introduced in connection with the respon
to the presence of a time-varying external influence, after
expansion of the induced electron density in powers of
external potentialV(x). According to time-dependent pertu
bation theory, the induced electron density is given, up
second order inV(x), by ~we use atomic units throughou
i.e., e25\5me51)
10 145 ©1999 The American Physical Society



te
u

io
a
s
th
e

te

tic

ion
ent
nc-

ter-

ent
-
ram-
n-

are
on
in-

s.
e
re-
nc-

act-
ns,
nc-

hat

t the

10 146 PRB 59A. BERGARA, J. M. PITARKE, AND P. M. ECHENIQUE
nind~x!5E dx8x~x,x8!V~x8!

1E dx8E dx9Y~x,x8,x9!V~x8!V~x9!,

~2.1!

where

x~x,x8!52 i Q~ t2t8!^C0u@ r̃H~x!,r̃H~x8!#uC0&
~2.2!

and

Y~x,x8,x9!5Q~ t2t8!Q~ t82t9!

3^C0u$@ r̃H~x!,r̃H~x8!#,r̃H~x9!%uC0&/2

1Q~ t2t9!Q~ t92t8!

3^C0u$@ r̃H~x!,r̃H~x9!#,r̃H~x8!%uC0&/2.

~2.3!

Here uC0. denotes the normalized ground state,r̃H is the
density fluctuation operatorr̃H5 r̂H2n0 , where r̂H is the
exact Heisenberg density operator in the unperturbed sys
andQ(x) is the Heaviside step function accounting for ca
sality.

In a self-consistent field or random-phase approximat
~RPA!, it is assumed that the electron density induced by
external potential can be replaced by the electron den
induced in a noninteracting electron gas by the sum of
external potential,V(x), and the potential created by th
induced electron density itself,Vind(x). Hence, in this ap-
proximation,

nind~x!5E dx8x0~x,x8!@V~x8!1Vind~x8!#

1E dx8E dx9Y0~x,x8,x9!@V~x8!1Vind~x8!#

3@V~x9!1Vind~x9!#. ~2.4!

Here x0(x,x8) and Y0(x,x8,x9) are ‘‘free-particle’’ linear
and quadratic density-response functions, and

Vind~x!5E dx8v~x,x8!nind~x8!, ~2.5!

wherev(x,x8) represents the instantaneous Coulomb in
action. Introducing Eq.~2.5! into Eq. ~2.4! and keeping in
Eq. ~2.4! only terms up to second order inV(x), one finds
the following integral equations for RPA linear and quadra
density-response functions:

x~x1 ,x2!5x0~x1 ,x2!

1E dx18E dx28x
0~x1 ,x18!v~x18 ,x28!x~x28 ,x2!

~2.6!

and
m,
-

n
n

ity
e

r-

Y~x1 ,x2 ,x3!

5E dx28E dx38Y
0~x1 ,x28 ,x38!K~x28 ,x2!K~x38 ,x3!

1E dx18E dx19x
0~x1 ,x18!v~x18 ,x19!Y~x19 ,x2 ,x3!,

~2.7!
whereK(x,x8) is the so-called inverse dielectric function:

K~x,x8!5d~x2x8!1E dx9v~x,x9!x~x9,x8!. ~2.8!

The integral Eqs.~2.6! and~2.7! have, within many-body
perturbation theory, the simple diagrammatic interpretat
shown in Fig. 1, where empty and full bubbles repres
noninteracting and interacting linear density-response fu
tions x0(x1 ,x2) and x(x1 ,x2), respectively. Similarly,
empty and full triangles represent noninteracting and in
acting quadratic density-response functionsY0(x1 ,x2 ,x3)
and Y(x1 ,x2 ,x3), respectively, and dashed lines repres
the Coulomb interactionv(x,x8). Thus, RPA linear and qua
dratic density-response functions are represented diag
matically by summing over the infinite set of diagrams co
taining one@see Fig. 1~a!# and three@see Fig. 1~b!# strings of
empty bubbles, respectively.

In the case of a homogeneous 2DEG, the electrons
free to move in two spatial dimensions, having their moti
constrained in the third dimension. Thus, assuming time
variance, we define the Fourier transforms

xq5E d2r1E dt1e2 i [q•~r12r2!2v~ t12t2!]x~r1 ,t1 ;r2 ,t2!

~2.9!

and

FIG. 1. Diagrammatic interpretation of the RPA integral Eq
~2.6! and ~2.7! for ~a! linear and ~b! quadratic density-respons
functions, respectively. Electron-hole empty and full bubbles rep
sent noninteracting and interacting linear density-response fu
tions, respectively. Empty and full triangles represent noninter
ing and interacting quadratic density-response functio
respectively. The interacting RPA quadratic density-response fu
tion is obtained by summing over the infinite set of diagrams t
combine three strings of empty bubbles~two-electron loops!
through an empty three-electron loop. Dashed lines represen
electron-electron bare Coulomb interaction.
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Yq1 ,q2
5E d2r1E dt1E d2r2E dt2e2 i [q1•~r12r2!2v1~ t12t2!]e2 i[ ~q11q2!•~r22r3!2~v11v2!~ t22t3!]Y~r1 ,t1 ;r2 ,t2 ;r3 ,t3!,

~2.10!

wherer1 ,r2 , andr3 represent two-dimensional position vectors in the 2D plane, andq is the trimomentumq5(q,q0). Hence
within the RPA we find

xq5xq
01xq

0vqxq ~2.11!

and

Yq,2q1
5Yq,2q1

0 Kq1
Kq2q1

1xq
0vqYq,2q1

, ~2.12!

where

Kq511vqxq ~2.13!

andvq52p/uqu.
For a noninteracting Fermi gas, the ground state is obtained by filling all the plane-wave states inside the Fermi s

radiusqF5A2/r s ,r s being the average interelectronic distance (n0
215pr s

2). As in the case of a 3DEG,19 we find noninter-
acting linear and quadratic density-response functions to be20

xq
052E d2k

~2p!2F nk~12nk1q!

q02~vk1q2vk!1 ih
1

~12nk!nk1q

2q02~vk2vk1q!2 ih
G ~2.14!

and

Yq,2q1

0 52E d2k

~2p!2F nk~12nk1q!~12nk1q1
!

~q01vk2vk1q1 ih!~q1
01vk2vk1q1

1 ih!
2

~12nk!nk1qnk1q1

~q01vk2vk1q1 ih!~q1
01vk2vk1q1

1 ih!

1
nk1q~12nk!~12nk1q1

!

~2q01vk1q2vk2 ih!~2q01q1
01vk1q2vk1q1

2 ih!

2
~12nk1q!nknk1q1

~2q01vk1q2vk2 ih!~2q01q1
01vk1q2vk1q1

2 ih!

1
nk1q1

~12nk!~12nk1q!

~2q1
01vk1q1

2vk2 ih!~q02q1
01vk1q1

2vk1q1 ih!
2

~12nk1q1
!nknk1q

~2q1
01vk1q1

2vk2 ih!~q02q1
01vk1q1

2vk1q1 ih!

1~q1→q2q1!G , ~2.15!

wherenq5Q(qF2uqu), vk5k2/2, andh is a positive infinitesimal.
Analytical evaluation of Eq.~2.14! results in the noninteracting linear density-response function of Stern.10 As for the

noninteracting quadratic density-response function, we first sum occupation numbers in Eq.~2.15! to find

Yq,2q1

0 52E d2k

~2p!2
nkF 1

q01vk2vk1q1 ih

1

q1
01vk2vk1q1

1 ih
1

1

2q01vk2vk1q2 ih

1

2~q02q1
0!1vk2vk1q2q1

2 ih

1
1

2q1
01vk2vk1q1

2 ih

1

~q02q1
0!1vk2vk2~q2q1!1 ih

1~q1→q2q1!G . ~2.16!

For the real part, we find21

Re@Yq,2q1

0 #52@~ I q,q1
1I q,q1

8 !1~ I 2q,2q1q1
1I 2q,2q1q1

8 !1~ I 2q1 ,q2q1
2I 2q1 ,q2q1

8 !#, ~2.17!

where
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I q,q1
5

1

2puquuq1u sinxH arctanF A sinx

A12A cosxG
2sgnA arctanFsinxAA22qF

2

A12A cosx
GQ~A22qF

2 !

1arctanF A1 sinx

A2A1 cosxG
2sgnA1arctanFsinxAA1

22qF
2

A2A1 cosx
GQ~A22qF

2 !J
~2.18!

and

I q,q1
8 52Q~qF

2 sin2x2G!
1

4uquuq1u sinx
. ~2.19!

Here A5q0/uqu2uqu/2, A15q1
0/uq1u2uq1u/2, and G

5AA222AA1 cosx1A1
2, x being the angle betweenq and

q1 .
As for the imaginary part ofYq,2q1

0 we define5,6 the func-

tion Hq,q1
, which can be represented in terms of a sum o

hole and particle states and gives the second-order cont
tion to the so-called absorption probability, as demonstra
in Ref. 6. We find

Im@Yq,2q1

0 #5Hq,q1
1Hq1 ,q1Hq2q1 ,2q1

, ~2.20!

where21

Hq,q1
5

1

2
@ f q,q1

2 f 2q,2q1q1
1~q1→q2q1!# ~2.21!

and

f q,q1
5Q~qF

22A2!
1

2puquuq1u sinx

3 ln UA12A cosx1sinxAqF
22A2

A12A cosx2sinxAqF
22A2

U . ~2.22!

In particular, at low frequencies an expansion ofHq,q1
in

powers of the frequencyq0 gives, after retaining only the
first-order terms,

Hq,q1

L 5Q~4qF
22uqu2!

3
4~ uqu cosx2uq1u!

puquuq1u@ uq2q1u224qF
2 sin2x#A4qF

22uqu2
q0.

~2.23!

In the static limit (q0→0) both first- and second-order con
tributions to the absorption probability Imxq and Hq,q1

are

proportional to the frequencyq0, as in the case of a 3DEG

III. ELECTRONIC STOPPING POWER

We consider an ion of chargeZ1 moving with constant
velocity v at a fixed distanceh from a 2DEG of densityn0 .
r
u-
d

The Coulomb potential of this moving particle has the fo

V~r ,z;t !5Z1ur2vt1~z2h!k̂u21, ~3.1!

where r represents, as in Eqs.~2.9! and ~2.10!, a two-
dimensional position vector in the 2D plane, andz denotes
the coordinate normal to the 2DEG which we consider to
located atz50. Hence, in order to obtain the induced pote
tial, we introduce this time-varying external potential in
Eq. ~2.1!, and Eq.~2.1! into Eq. ~2.5!. We note that density-
response functions of a 2DEG have theirz arguments local-
ized to the 2D plane by positionald functions, we Fourier
transform, and find, up to second order inZ1 ,

Vind~r ,z;t !5Z1E d2q

~2p!2
ei ~q•r2vt !2uqu~ uzu1h!vqxq,vvq

1Z1
2E d2q

~2p!2E d2q1

~2p!2

3ei ~q•r2vt !2[ uquuzu1~ uq1u1uq2q1u!h]

3vqYq,v;2q1 ,2v1
vq1

vq2q1
, ~3.2!

wherev5q•v andv15q1•v.
The stopping power of the 2DEG is simply the retardi

force that the polarization charge distribution in the vicin
of the projectile exerts on the projectile itself,22 and is given
by

S5
Z1

v E d2rE dzd~r2vt !d~z2h!¹Vind~r ,z;t !•v.

~3.3!

Substituting Eq.~3.2! into Eq. ~3.3!, we have23

S52
Z1

2

v E d2q

~2p!2
ve22uquhvq Im@xq,v#vq

2
Z1

3

v E d2q

~2p!2
vE d2q1

~2p!2
e2~ uqu1uq1u1uq2q1u!hvq

3Im@Yq,v;2q1 ,2v1
#vq1

vq2q1
. ~3.4!

In the RPA,xq andYq,2q1
are obtained from Eqs.~2.11!

and ~2.12! or, equivalently, from

vqxq5Kq21 ~3.5!

and

Yq,2q1
5KqYq,2q1

0 Kq1
Kq2q1

, ~3.6!

where

Kq5~12xq
0vq!21. ~3.7!

The linear contribution to the stopping power of Eq.~3.4!,
which is proportional toZ1

2 , was evaluated in the RPA b
Horing et al.13 at T50, and similar calculations were pre
sented by Bret and Deutsch14 at finite temperature. On the
other hand, the quadratic contribution to the stopping pow
of Eq. ~3.4! is, in the RPA and for a geometry with th
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ion-beam in plane within the 2D electron layer (h50),
equivalent to the result derived in Ref. 6, within many-bo
perturbation theory, as the energy loss per unit path lengt
the projectile, the integration space being now in two dim
sions instead of three dimensions. This contribution to
stopping power, which is proportional toZ1

3 , discriminates
between the energy loss of a proton and that of an antipro
and appears as a consequence of losses to one- and two
electronic excitations generated by both linearly and q
dratically screened ion potentials, as discussed in Ref. 6

In the case of slow intruders (v→0), only the low-
frequency form of the response enters in the evaluation
Eq. ~3.4!. At zero frequencies both linear and quadra
density-response functions are real, Im@xq

0# andHq,q1
being

at low frequencies proportional to the frequencyq0. Thus
retaining only the first-order terms in the frequencies, b
Z1

2 andZ1
3 contributions to the stopping power are found

be proportional to the velocity of the projectile, as in
3DEG. For the RPA quadratic contribution to the stoppi
power we find, after insertion of Eq.~2.23! into Eq.~3.4!, the
following result:

@SL#~3!58vZ1
3E

0

` duqu

A4qF
22uqu2

E
0

`

duq1u

3E
0

p

dxe2~ uqu1uq1u1uq2q1u!h
f 1

L1 f 2
L

uq2q1u
, ~3.8!

where

f 1
L5Q~2qF2uqu!Kq,0

2 Kq1,0Kq2q1,0Yq,0;q1,0
0 ~3.9!

and

f 2
L52Q~2qF2uqu!

3
uqu~ uqu cosx2uq1u!

puq1u~ uq2q1u224qF
2 sin2x!

Kq,0Kq1,0Kq2q1,0 .

~3.10!

IV. RESULTS

In the low-velocity limit (v→0), the stopping power can
be evaluated to all orders inZ1 , on the basis of a free
electron picture, with the additional assumption of indep
dent, individual, elastic electron scattering, and it is eas
found to be, in both two and three dimensions, proportio
to the velocity of the projectile.24 By using density-
functional theory ~DFT! ~Ref. 25! to calculate the self-
consistent potential generated by a static charge subme
in a 3DEG, Echeniqueet al.26 evaluated the nonlinear stop
ping power of a 3DEG for slow ions. Nonlinear calculatio
for an in-plane projectile in 2D have been performed recen
by using a nonlinearly screened scattering potential base
the Sjölander-Stott theory,17 with the use of a nonlinear ver
sion of the linearized Fermi-Thomas potential18 in which the
screening constant is determined from the Friedel sum r
of
-
e

n,
step
-

of

h

-
y
l

ed

ly
on

e,

and on the basis of a self-consistent potential27 obtained
within DFT as in Ref. 26 for the 3D case.

The nonlinear calculations presented in Ref. 18 for
energy loss of slow protons and antiprotons are very clos
the calculations of Ref. 27 when exchange and correla
~XC! contributions to the DFT scattering potential are e
cluded. These calculations are correct to all orders inZ1 , and
they represent, therefore, a good check for our quadratic
sponse calculations, which should be exact in the hi
density and/or lowZ1 limits. Nevertheless, the approaches
Refs. 17, 18, and 27 have the limitation of being restricted
very low ion velocities (v!vF ,vF being the Fermi velocity!,
while our nonlinearZ1

3 corrections are valid for arbitrary
nonrelativistic velocities.

The low-velocity limit of the quadratic stopping power, a
obtained from Eq.~3.8! for an in-plane (h50) moving
charge and divided by the velocity, is represented in Fig
by a solid line, as a function of the electron-density para
eterr s . Stars and squares represent the full nonlinear con
bution to the stopping power for antiprotons reported
Refs. 18 and 27, respectively, multiplied by a factor of21,
showing an excellent agreement, in the high-density lim
with our Z1

3 nonlinear contribution. Forr s>2, higher-order
corrections become important, and forr s.3, Z1

2 contribu-
tions ~dashed line! are smaller than theZ1

3 correction, indi-
cating that the external potential cannot be treated, for th
electron densities, as a small perturbation. In the case
projectile moving at a givenh distance above the 2D plasm
the external perturbation is obviously diminished and, in p

FIG. 2. Low-velocity limit of theZ1
3 stopping power, as ob-

tained from Eq.~3.8! ~solid line! for h50 andZ151, divided by
the velocity, as a function ofr s ; the correspondingZ1

2 stopping
power is represented by a dashed line. Full nonlinear contribut
to the stopping power for antiprotons (Z1521) ~stars and squares!
and protons (Z151) ~circles and crosses! have been obtained by
subtracting RPA linear calculations from the results of Ref.
~stars and circles! and Ref. 27~with XC contributions to the DFT
scattering potential excluded! ~squares and crosses!, and dividing
by Z1 ; thus, the negative values atr s.1 simply mean that the full
nonlinear stopping power lies, in the case of protons, below
linear results. The inset exhibitsZ1

2 and Z1
3 contributions to the

stopping power~dashed and solid lines, respectively! for h51/qF

andZ151.
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ticular, for h51/qF the quadratic stopping power is small
than the linear one for all electron densities~see the inset of
Fig. 2!. The full nonlinear contribution to the stopping pow
for protons reported in Refs. 18 and 27 forh50 is also
represented in Fig. 2 by circles and crosses, respectiv
showing large differences with ourZ1

3 calculations for all
electron densities. These differences appear as a conseq
of perturbation theory failing to describe electronic sta
bound to the proton, which in 2D systems can be suppo
by arbitrarily weak attractive potentials.28

As the velocity of the projectile (v) and/or the distance
from the 2D plasma~h! increase, the ion potential becomes
relatively smaller perturbation and theZ1

3 contribution to the
stopping power for antiprotons may, therefore, be expec
to approximately describe the full nonlinear contribution
the stopping power for arbitrary values ofv andh, as long as
r s,2, and also for lower densities (r s>2) as the velocity
and theh distance increase. Substitution of the full RP
linear and quadratic 2DEG density-response functions
Eqs. ~3.5! and ~3.6! into Eq. ~3.4! results in the quadratic
stopping power plotted by a solid line in Fig. 3, as a functi
of the impinging projectile velocity, forr s51 andh50, and
also for r s51 and h51/qF ~see the inset of Fig. 3!. The
dotted line represents the low-velocity limit, as obtain
from Eq. ~3.8!, and dashed lines represent linear RPA co
tributions to the stopping power of Eq.~3.4!.

The quadratic contribution to the stopping power of
2DEG presents properties not shared by the 3DEG. First
range of validity of the linear velocity dependence of th
contribution to the stopping power~see Fig. 3! persists only
up to velocities much smaller than the Fermi velocity,
contrast to the 3D situation in which the linear velocity d
pendence persists up to velocities approaching the Fe
velocity.6 Second, at velocities around the plasmon thresh
velocity, for which the projectile has enough energy to exc
a plasmon,29 the ratio betweenZ1

3 andZ1
2 contributions to the

stopping power increases, again in contrast to the 3D si

FIG. 3. Full RPAZ1
3 stopping power, as obtained from Eq.~3.4!

~solid line! for Z151, h50, andr s51, as a function of the velocity
of the projectile. The correspondingZ1

2 stopping power is repre
sented by a dashed line, and the dotted line represents the
velocity limit of the Z1

3 term. The inset shows the same results
h51/qF .
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a-

tion. Furthermore, we have found that the increase of
ratio at the plasmon threshold velocity becomes dramatic
the electron density decreases. Of course, the ratio betw
quadratic and linear contributions to the stopping power
creases very rapidly withh ~see the inset of Fig. 3!, but the
relative, and for larger s dramatic, increase of this ratio at th
plasmon threshold velocity persists for all values ofh that
are not much larger than 1/qF . For a 2DEG the group veloc
ity of the plasmon wave nearly coincides with the plasm
threshold velocity of the projectile~see Fig. 4!; also, the
inclusion of short-range correlations, which are ignored
the RPA, is known to have a substantial effect on the pl
mon dispersion.30 We interpret the anomalous enhanceme
of the ratio between quadratic and linear contributions to
stopping power at the plasmon threshold velocity and sm
electron densities (r s.1) as a result of neglecting, within
the RPA, short-range correlations between the electrons
2D system, since these correlations are non-negligible fo
values ofh as long asr s is not small.

V. CONCLUSIONS

We have presented an analytical evaluation of the wa
vector and frequency dependent noninteracting quadr
density-response function of a 2DEG. We have used
result to find, within a self-consistent field approximatio
the Z1

3 correction to the stopping power of a 2DEG fo
charged recoiless particles moving at a fixed distance fr
the 2D plasma sheet. We have reproduced, in the h
density limit, previous full nonlinear calculations of the sto
ping power of a 2DEG for slow antiprotons, and we ha
gone further to calculate theZ1

3 correction to the stopping
power for a wide range of projectile velocities. We ha
found that theZ1

3 contribution to the stopping power of
2DEG presents properties not shared by the 3DEG. On
one hand, the range of validity of the linear velocity depe
dence of theZ1

3 contribution to the stopping power persis
only up to velocities much smaller than the Fermi veloci

w-
r

FIG. 4. Two-dimensional RPA plasmon dispersion relati
~solid line! and maximum energy transfer (vmax5qv) at the plas-
mon threshold velocity~dotted line!, as functions of the wave num
ber. The electron density parameter has been taken to ber s51, thus
the plasmon threshold velocity beingv th52.02 v0 (v0 is Bohr’s
velocity!.



f
op
d

, f
an

he
aila,

PRB 59 10 151QUADRATIC ELECTRONIC RESPONSE OF A TWO- . . .
and, on the other hand, an anomalous enhancement o
ratio between quadratic and linear contributions to the st
ping power at the plasmon threshold velocity is foun
within the RPA, at small electron densities (r s.1). Also,
our results indicate that linear response calculations are
all projectile velocities, less reliable in two dimensions th
in three dimensions.
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