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Quadratic electronic response of a two-dimensional electron gas
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The electronic response of a two-dimensiofi) electron system represents a key quantity in discussing
one-electron properties of electrons in semiconductor heterojunctions, on the surface of liquid helium and in
copper-oxide planes of high-temperature superconductors. We here report an evaluation of the wave-vector and
frequency dependent dynamical quadratic density-response function of a 2D electr@Dg43, within a
self-consistent field approximation. We use this result to finde]e:orrection to the stopping power of a
2DEG for charged particles moving at a fixed distance from the plane of the 2D Zhdming the projectile
charge. We reproduce, in the high-density limit, previous full nonlinear calculations of the stopping power of
a 2DEG for slow antiprotons, and we go further to calculateZlfeorrection to the stopping power of a 2DEG
for a wide range of projectile velocities. Our results indicate that linear-response calculations are, for all
projectile velocities, less reliable in two dimensions than in three dimendi80463-18209)00711-0

[. INTRODUCTION Also, much effort has gone into studying the ground-state
energy! and the excitation spectrum of a 2DE&The stop-
Since the pioneering work of Bohm and Pirtethie con-  ping power for a fast particle moving parallel to a 2DEG was
duction electrons in a metal have been described as a threfirst evaluated in the RPA, within linear response theory, by
dimensional(3D) gas of electrons in a neutralizing uniform Horing et al,*® and the effect on this quantity of finite
positive charge. The dynamical linear density-response fundemperature;’ local field corrections? and recoit® has also
tion of a 3D electron gas(3DEG) was evaluated by been considered. Nonlinear calculations of the stopping
Lindhard in the so-called random-phase approximationPower for slow protons and antiprotons have been performed
(RPA), in which each electron is assumed to move in thednly very recently”*® on the basis of a scattering theory
external field plus the induced field of all electrons. The@pproach, the scattering cross sections being calculated for a
wave-vector and frequency dependent dynamical quadratitatically screened potential. .
density-response function of a 3DEG has also been In this paper we present results for the dynamical qua-
evaluated, by going beyond linear response theory. Thedratic electronic density-response of a 2DEG to longitudinal
knowledge of this quantity has been proved to be of grea{external fields of arbitrary wave vector and frequency, which
importance in discussing the properties of electrons in a vaWe evaluate on the same level of approximation as the RPA
riety of 3D system$, and, in particular, in explaining the linear density-response function of Stéfrin order to illgs—
experimentally observed difference between the electronifate the usefulness of the knowledge of this quantity, we
energy losses of protons and antiprotons moving through gonsider, as an example, the stopping power of a 2DEG, and
solid>® we use the quadratic density-response function to evaluate
The suggested existence of two-dimensional electron laythe Z3 nonlinear correction to the stopping power of a 2DEG
ers in metal-insulator semiconductor structures and on thér particles of charge,e moving at a fixed distance from
surface of liquid helium led several years ago to a greathe 2D plasma.
activity in the study of a two-dimensional electron das,
where_the ele_ctrons.a_re cor.n‘_ined to a plane and neutralized II. DYNAMICAL ELECTRONIC RESPONSE
by an inert uniform rigid positive plane background. The 2D
electron system has also been considered in discussing the We consider a uniform electron system of densityat
physics of new-class materials such as copper-oxide plangero temperature. Linear and quadratic density-response
of high-temperature superconductdis.has been found that functions of this systemy(x,x") and Y(x,x’,x"), with x
electrons confined to a 2D layer show sometimes interestingr (r,t), may be introduced in connection with the response
properties not shared by a 3D electron system. For instanctg the presence of a time-varying external influence, after an
for a 2D metal the plasma frequency goes to zero in theexpansion of the induced electron density in powers of the
long-wavelength limit, in contrast to the 3D situatidn. external potentiaV/(x). According to time-dependent pertur-
Stert® evaluated the dynamical linear density-responsebation theory, the induced electron density is given, up to
function of a 2DEG in the RPA, and calculated the plasmorsecond order in/(x), by (we use atomic units throughout,
dispersion and the asymptotic screened Coulomb potentiale., e=#%=m,=1)
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FIG. 1. Diagrammatic interpretation of the RPA integral Egs.

X(Wol{pr(X),pu(X")].pu(X")}Wo)/2 (2.6) and (2.7) for (a) linear and(b) quadratic density-response

+O(t—t"O(t" —t") functions, respectively. Electron-hole empty and full bubbles repre-
sent noninteracting and interacting linear density-response func-

X(‘POH[PH(X),PH(X")],PH(X')H‘I’OVZ- tions, respectively. Empty and full triangles represent noninteract-

ing and interacting quadratic density-response functions,
2.3 respectively. The interacting RPA quadratic density-response func-
. ~ . tion is obtained by summing over the infinite set of diagrams that
Here|¥,> denotes the no~rmaI|Azed ground staig, Is the  combine three strings of empty bubbldsvo-electron loops
density fluctuation operatgsy=py—ng, Wherepy is the  through an empty three-electron loop. Dashed lines represent the
exact Heisenberg density operator in the unperturbed systeralectron-electron bare Coulomb interaction.
and 0O (x) is the Heaviside step function accounting for cau-

sality. Y(Xq,X2,X3)

In a self-consistent field or random-phase approximation
(RPA), itis assqmed that the electron density induced by an  _ dxéf AX5YO(Xy X} X5V K (X} Xo) K (X}, X3)
external potential can be replaced by the electron density

induced in a noninteracting electron gas by the sum of the

external potentialV(x), and the potential created by the +f dxif dXZXO(Xl.Xi)v(Xi.X'{)Y(X'{,Xz,Xa),

induced electron density itsel¥/"%(x). Hence, in this ap-

proximation, (2.7
whereK(x,x") is the so-called inverse dielectric function:

nind(x):f dX,XO(Xix,)[V(X,)_i_vind(xr)] K(X,X’):5(X_X,)+f dX”U(X,X”)X(X”,X,). (28)

+j dx’f dx"YO(x,x" , x")[V(x")+V"9(x")] The integral Eqs(2.6) and(2.7) have, within many-body
perturbation theory, the simple diagrammatic interpretation
X[V(X")+VMd(x")]. (2.9 shown in Fig. 1, where empty and full bubbles represent

o o noninteracting and interacting linear density-response func-
! ! n L H 1 H . . . .
Here x"(x,x’) and Y°(x,x’,x") are “free-particle” linear  tions x°(x;,x,) and x(x;,x,), respectively. Similarly,

and quadratic density-response functions, and empty and full triangles represent noninteracting and inter-
acting quadratic density-response functioft®(x; ,x,X3)
vind(x :J dx’'v(x,x’ )nind(x’), 2 and Y(xl,X2,>_<3), res_pectlvely, and dashed_ lines represent
(x) o ) 29 the Coulomb interaction(x,x"). Thus, RPA linear and qua-

whereu(x,x’) represents the instantaneous Coulomb inter_dratic density-response functions are represented diagram-
action. Introducing Eq(2.5) into Eq. (2.4) and keeping in matically by summing over the infinite set of diagrams con-

Eq. (2.4) only terms up to second order Wi(x), one finds taining ong{see Fig. 1)] and thred see Fig. 1)] strings of

S ; . ._empty bubbles, respectively.
the fqllowmg integral equauons for RPA linear and quadratic In the case of a homogeneous 2DEG, the electrons are
density-response functions:

free to move in two spatial dimensions, having their motion
constrained in the third dimension. Thus, assuming time in-

_ .0
X(X1,X2) = X7 (X1, X2) variance, we define the Fourier transforms

+ dx’jdx’ O(xq, X1 ) v (X}, X5) x (X5, X .
J ! X (X0 X)X 0z %) Xq:f dzl‘lf dtye T (el (1) t)5r,,t))
(2.6) (2.9
and and
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Yq q :f derJ dtlJ dzrzf dtze—i[ql'(71—72)—wl(tl—tz)]e—i[(Q1+Q2)'(72—73)—(w1+w2)(t2—ts)]y(rl,tl;rz,tz;rs,tg),
1.2
(2.10

wherer,r,, andr; represent two-dimensional position vectors in the 2D plane gaadhe trimomentung=(q,q°). Hence
within the RPA we find

Xa=Xg+ XaUaXa (211
and
quql:Ygfqququfql“Lngquﬁqlv (219
where
Kq=1+vgxq (2.13
andv,=2m7/|q].

For a noninteracting Fermi gas, the ground state is obtained by filling all the plane-wave states inside the Fermi sphere of
radiusqe= \/2/r 5,1 being the average interelectronic distanog {=7r2). As in the case of a 3DE,we find noninter-
acting linear and quadratic density-response functions i be

d2k n(1—n 1-nyn
XgZZJ' J _ k( k+q) . O( ) Nk+q . (2.14
(2m2 Q°— (0xq= @) +in  — @ (0= o) —i7
and
v J ok | M(1= M g) (1= Mg (1= MM gy
4 (ZW)Zl(q0+wk_wk+q+i77)(q2+wk_wk+ql+i77) (q0+wk_wk+q+i77)(q2+wk_wk+ql+i77)

Nictq(1 =N (1= Nsgq,)
+

. 0 .
(_q0+wk+q_wk_| 77)(_q0+q1+wk+q_wk+ql_| 7)

(1Nt q) NNk

(_qo'i_wk+q_wk_i 77)(_q0+q2+wk+q_wk+ql_i77)

Ni+q, (1= M) (1= Nyt ) (1N q ) NNk q

(—ag+ Wk g, Ok 7)(a°—qf+ Wkt q,~ Ok+qT17) (—ag+ Wkt q,~ O W)(qo_qg+wk+ql_wk+q+i 7)

+(Q1—’q_Q1)], (2.19

wheren,=0(ge—1q|), wx=k%2, andy is a positive infinitesimal.
Analytical evaluation of Eq(2.14 results in the noninteracting linear density-response function of $teks. for the
noninteracting quadratic density-response function, we first sum occupation numbers(t1Bgto find

o [ dk
Yqqul_—J’ (2’7T)2nk

1 1
Tt o — 0 —+(01—~9—01) |- (2.16
01t 0= Okiq, 17 (g _q1)+wk_wkf(q—ql)+|77

1 1 1 1
+

0 0 : 0 : 0_0 -
O+ o= @krqTi7 Gt o= o tig  —0+og— ok =i —(0°—0y) + o= wxig-q, 17

For the real part, we firfd
0 _ ’ ’ '
Rd:Yq,fql]__[(Iq,q1+|q,ql)+(|7q,7q+ql+|7q,—q+ql)+(|7q1,q7q1_|7q1,q—q1)]1 (217)

where
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(2.18
and

—_— Zsifx—G ! 2.1
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Here A=q%|q|—|dl/2, A;=0q%/|as|—[al/2, and G
= JA?—2AA, cosy+A], x being the angle between and
Q1

0

9.—q, We definé® the func-
a0

As for the imaginary part oY
tion H

in Ref. 6. We find

0 —
Im[Yq,fql]_Hq,ql"Fqu,q*' Ho—q,.—ap (2.20

wheré?!

Hgq,= %[fq,ql_f—q,—qwl"' (a1—q-ay)] (2.2
and
1
2|qllay| siny

A, —Acosy+siny gz —A?
A;—Acosy—siny\qz—A?

In particular, at low frequencies an expansiori—t){ql in

fa.q,= O (AE—A?)

XIn

(2.22

powers of the frequency® gives, after retaining only the

first-order terms,

HS . =0 (402 —[q/?)

q.91
" 4(|q| cosy—|qy|) 0
alal|ayl[|a— a2 — 49 sirx]1v4q2 - |q|2
(2.23

In the static limit @°—0) both first- and second-order con-

tributions to the absorption probability I, and Hgqq, are
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0.0y which can be represented in terms of a sum over

hole and particle states and gives the second-order contripN€re@=g-v andw, =d,-v.

tion to the so-called absorption probability, as demonstrategOr
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The Coulomb potential of this moving particle has the form

V(r,z;t)=Z4|r—vt+(z—h)k| %, (3.0

where r represents, as in Eq$2.9 and (2.10, a two-
dimensional position vector in the 2D plane, andenotes
the coordinate normal to the 2DEG which we consider to be
located az=0. Hence, in order to obtain the induced poten-
tial, we introduce this time-varying external potential into
Eqg. (2.1, and Eq.(2.1) into Eq.(2.5. We note that density-
response functions of a 2DEG have the@rguments local-
ized to the 2D plane by positiond functions, we Fourier
transform, and find, up to second order4p,

ind . d*q i(a-r—wt)—|q|(|z]+h)
V"e(r,z;t)=2, (277)28 UgXq,wVq
d2 d2
+Z§J q ql
(2m)?) (2m)?

x el (@-r—ot)=[lallzl+ (sl +[a—as))h]

XvqYqw;-ay, -0,V Va-qp» 3.2

The stopping power of the 2DEG is simply the retarding
ce that the polarization charge distribution in the vicinity
of the projectile exerts on the projectile itséffand is given

by

o= %f erJ dz8(r—vt) 8(z— ) WV(r, z:t) .

(3.3
Substituting Eq(3.2) into Eq. (3.3), we havé®
Z2 ¢ d%q
-1 —2qlh
5 (277)2(»9 vqIM[Xg,0lvg
3. 2
_ 4 dd “’J 9% g1+ fay/+la-ashm,
o) (2m? ) (2m)? !
XIM[Yq,0:-qy,~ w1V g,V g—qy- (3.9

In the RPA, xq andYq'_ql are obtained from Eq$2.11)

and (2.12 or, equivalently, from

UVgXq=Kg—1 (3.5
and
— 0
Yq’_ql—Kqu’_qququ_ql, (36)
where
Kq=(1—)(qu)7l. 3.7

The linear contribution to the stopping power of £g.4),

proportional to the frequency®, as in the case of a 3DEG. I : ) )
which is proportional taZ7, was evaluated in the RPA by

Horing et al!® at T=0, and similar calculations were pre-
sented by Bret and Deutséhat finite temperature. On the
other hand, the quadratic contribution to the stopping power
of Eqg. (3.4 is, in the RPA and for a geometry with the

Ill. ELECTRONIC STOPPING POWER

We consider an ion of chargé; moving with constant
velocity v at a fixed distancé from a 2DEG of densityn,.
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ion-beam in plane within the 2D electron layeh=0),
equivalent to the result derived in Ref. 6, within many-body
perturbation theory, as the energy loss per unit path length of
the projectile, the integration space being now in two dimen-
sions instead of three dimensions. This contribution to the
stopping power, which is proportional @, discriminates
between the energy loss of a proton and that of an antiproton, §
and appears as a consequence of losses to one- and two-ste3
electronic excitations generated by both linearly and qua-
dratically screened ion potentials, as discussed in Ref. 6.

In the case of slow intrudersv0), only the low-
frequency form of the response enters in the evaluation of? o
Eq. (3.4). At zero frequencies both linear and quadratic
density-response functions are real[}gﬁ] and Ha.q, being T

at low frequencies proportional to the frequengd: Thus Y 1 2 3 4
retaining only the first-order terms in the frequencies, both rs (arb. units)

Zf and Zf contributions to the stopping power are found to
be proportional to the velocity of the projectile, as in a
3DEG. For the RPA quadratic contribution to the stopping
power we find, after insertion of EQR.23) into Eq.(3.4), the
following result:

4

0

/ Vv (arb. units)

0.2

topping p

FIG. 2. Low-velocity limit of ther stopping power, as ob-
tained from Eq.(3.8) (solid line) for h=0 andZ;=1, divided by
the velocity, as a function of; the correspondin@? stopping
power is represented by a dashed line. Full nonlinear contributions
to the stopping power for antiprotonZ(= — 1) (stars and squargs
and protons Z;=1) (circles and crossg¢shave been obtained by

= d|q w subtracting RPA linear calculations from the results of Ref. 18
[SL](3)=8vfo — dlq,| (stars and circlgsand Ref. 27(with XC contributions to the DFT
0 Vage—[q[*Jo scattering potential excludgdsquares and crosgesnd dividing
L el by Z,; thus, the negative values af>1 simply mean that the full

% fﬂ'dxef(\q\ﬂql\ﬂqfqﬂ)h fi+fs (3.9 nonlinear stopping power lies, in the case of protons, below the
0 la—aa|’ linear results. The inset exhibi@; and Z3 contributions to the
stopping powerdashed and solid lines, respectivefgr h=1/q

where andz,=1.
L_ _ 2 0 and on the basis of a self-consistent pote?ﬁiaﬂbtained
fi=0(20e—[ahKqoKa,0Kq-a,0¥q000 (39 within DFT as in Ref. 26 for the 3D case.

The nonlinear calculations presented in Ref. 18 for the
and energy loss of slow protons and antiprotons are very close to
the calculations of Ref. 27 when exchange and correlation
f-=—0(2qc—|q|) (XC) contributions to Fhe DFT scattering potential_ are ex-
2 F cluded. These calculations are correct to all orde;inand
lal(|al cosxy—|aa]) they represent, therefore, a good check for our quadratic re-
2101 ([9— G P— 402 siry) Kq,0Kg,.0Kg-g,.0- sponse calculations, which should be exact in the high-
F density and/or lowZ, limits. Nevertheless, the approaches of
(3.10 Refs. 17, 18, and 27 have the limitation of being restricted to
very low ion velocities { <vg ,v¢ being the Fermi velocity
while our nonlinearz? corrections are valid for arbitrary
IV. RESULTS nonrelativistic velocities.

In the low-velocity limit (o — 0), the stopping power can The low-velocity limit of the qu_adratic stopping power, as
be evaluated to all orders id;, on the basis of a free- ©Obtained from Eq.(3.8 for an in-plane [=0) moving
electron picture, with the additional assumption of indepen<harge and divided by the velocity, is represented in Fig. 2
dent, individual, elastic electron scattering, and it is easilyPy @ solid line, as a function of the electron-density param-
found to be, in both two and three dimensions, proportionafter’s. Stars and squares represent the full nonlinear contri-
to the velocity of the projectié® By using density- bution to the stopping power for antiprotons reported in
functional theory (DFT) (Ref. 25 to calculate the self- Refs..18 and 27, respectively, mult_lphed byafactorﬁi,_ .
consistent potential generated by a static charge submerg&§owing an excellent agreement, in the high-density limit,
in a 3DEG, Echeniquet al?® evaluated the nonlinear stop- With our Z3 nonlinear contribution. Fors=2, higher-order
ping power of a 3DEG for slow ions. Nonlinear calculations corrections become important, and fiy>3, ZZ contribu-
for an in-plane projectile in 2D have been performed recentlytions (dashed ling are smaller than th&3 correction, indi-
by using a nonlinearly screened scattering potential based arating that the external potential cannot be treated, for these
the Sjdander-Stott theory’ with the use of a nonlinear ver- electron densities, as a small perturbation. In the case of a
sion of the linearized Fermi-Thomas poterifiah which the  projectile moving at a giveh distance above the 2D plasma
screening constant is determined from the Friedel sum rulehe external perturbation is obviously diminished and, in par-
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FIG. 4. Two-dimensional RPA plasmon dispersion relation
FIG. 3. Full RPAZ} stopping power, as obtained from B&.4  (solid line) and maximum energy transfenf,,,=qu) at the plas-
(solid line) for Z; =1, h=0, andr=1, as a function of the velocity mon threshold velocitydotted ling, as functions of the wave num-
of the projectile. The correspondirgj stopping power is repre- per. The electron density parameter has been takenttg=e, thus

sented by a dashed line, and the dotted line represents the lowhe plasmon threshold velocity being,=2.02 v, (v, is Bohr's
velocity limit of the Z3 term. The inset shows the same results forvelocity).

h=1/g¢ .
tion. Furthermore, we have found that the increase of this

ticular, for h=1/qr the quadratic stopping power is smaller ratio at the plasmon threshold velocity becomes dramatic as
than the linear one for all electron densitisge the inset of the electron density decreases. Of course, the ratio between
Fig. 2). The full nonlinear contribution to the stopping power quadratic and linear contributions to the stopping power de-
for protons reported in Refs. 18 and 27 for=0 is also  creases very rapidly with (see the inset of Fig.)3but the
represented in Fig. 2 by circles and crosses, respectivelyelative, and for large, dramatic, increase of this ratio at the
showing large differences with OLZ? calculations for all  plasmon threshold velocity persists for all valueshofhat
electron densities. These differences appear as a consequege not much larger thand¢. For a 2DEG the group veloc-
of perturbation theory failing to describe electronic statesty of the plasmon wave nearly coincides with the plasmon
bound to the proton, which in 2D systems can be supporte¢hreshold velocity of the projectilésee Fig. 4 also, the
by arbitrarily weak attractive potentiad§. inclusion of short-range correlations, which are ignored in

As the velocity of the projectiler() and/or the distance the RPA, is known to have a substantial effect on the plas-
from the 2D plasméh) increase, the ion potential becomes amon dispersiori® We interpret the anomalous enhancement
relatively smaller perturbation and t&§ contribution to the  of the ratio between quadratic and linear contributions to the
stopping power for antiprotons may, therefore, be expectedtopping power at the plasmon threshold velocity and small
to approximately describe the full nonlinear contribution toelectron densitiesr(>1) as a result of neglecting, within
the stopping power for arbitrary valueswfindh, as long as the RPA, short-range correlations between the electrons of a
r<<2, and also for lower densities £&2) as the velocity 2D system, since these correlations are non-negligible for all
and theh distance increase. Substitution of the full RPA values ofh as long as ¢ is not small.
linear and quadratic 2DEG density-response functions of

Egs. (3.5 and (3.6) into Eq. (3.4) results in the quadratic V. CONCLUSIONS
stopping power plotted by a solid line in Fig. 3, as a function _ _

also forrg=1 andh=1/qs (see the inset of Fig.)3 The vectqr and frequency_dependent noninteracting quadrat_ic
dotted line represents the low-velocity limit, as obtaineddensity-response function of a 2DEG. We have used this
from Eq. (3.8), and dashed lines represent linear RPA contesult to find, within a self-consistent field approximation,
tributions to the stopping power of E¢3.4). the Zf correction to the stopping power of a 2DEG for
The quadratic contribution to the Stopping power of acharged recoiless particles moving at a fixed distance from
2DEG presents properties not shared by the 3DEG. First, thée 2D plasma sheet. We have reproduced, in the high-
range of validity of the linear velocity dependence of thisdensity limit, previous full nonlinear calculations of the stop-
contribution to the stopping powésee Fig. 3 persists only  Ping power of a 2DEG for slow antiprotons, and we have
up to velocities much smaller than the Fermi velocity, ingone further to calculate th&] correction to the stopping
contrast to the 3D situation in which the linear velocity de-power for a wide range of projectile velocities. We have
pendence persists up to velocities approaching the Fernfibund that theZ3 contribution to the stopping power of a
velocity® Second, at velocities around the plasmon threshol®@DEG presents properties not shared by the 3DEG. On the
velocity, for which the projectile has enough energy to exciteone hand, the range of validity of the linear velocity depen-
a plasmorf? the ratio betweelzf andzf contributions to the  dence of ther contribution to the stopping power persists
stopping power increases, again in contrast to the 3D situanly up to velocities much smaller than the Fermi velocity,
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