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Improved stability regions for ground states of the extended Hubbard model
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The ground-state phase diagram of the extended Hubbard model containing nearest- and next-to-nearest-
neighbor interactions is investigated in the thermodynamic limit using an exact method. It is found that taking
into account local correlations and adding next-to-nearest-neighbor interactions both have significant effects on
the position of the phase boundaries. Improved stability domains fomtpairing state and for the fully
saturated ferromagnetic state at half-filling have been constructed. The results show that these states are the
ground states for model Hamiltonians with realistic values of the interaction parameters.
[S0163-18299)12015-0

I. INTRODUCTION mentum P becomes the exact ground state of the Hamil-
tonian.

Exact solutions in physics are of great importance, since The basic idea of the OGS method is to diagonalize a
in some cases the errors introduced by the approximationspecially chosen local Hamiltonian and to tune all the model
may dominate the results to such an extent that one mighgarameters in such a way that all local eigenstates that are
end up with an incorrect description of the studied phenomneeded to the construction of a given global ground state are
enon. When applying an analytic, but nonexact, approachlso local ground states. This means that, on one hand, the
one has to know to what extent the approximation is valid. Incorresponding eigenvalues of the local Hamiltonians should
case of perturbative methods a well-defirsedall parameter  be all equal in magnitude and, on the other hand, this com-
can ensure that the higher-order terms are indeed negligibl&1on value should be the lowest eigenvalue of the local prob-
Often, it is hard to find such a small parameter due to the fadem. Following this method, one can obtain different regions
that the given phenomenon itself has strong-coupling charll the parameter space of the model defined by inequalities.
acteristics, i.e., the associated correlation effects are ndi"ese inequalities meaufficientconditions for a state to be
small at all. This is especially true by the investigation ofthe ground state inside a special region. Outside the derived

strongly correlated electron systems. Ferromagnetism is aff9ion the state under study may or may not be the ground

example for theintermediate-to-strongcoupling phenom- state of the model.

enon, where one has to be very cautious to apply perturbative There are basically two d!ffere.nt ways to enlarge the re-
approaches gion of guaranteed stability: taking a larger local Hamil-

L . . tonian or incorporating next-to-nearest-neighbor interactions.

. Cor_13|der|ng the exact results with respect to the d'menAs far as the first approach is concerned, it is obvious that
sionality D, we can see that most of them have been deriveghq oytent of local correlations that are taken into account is
in two limiting cases: eitheD=1 or D=c. For example, conirolled by the size of the local Hamiltonian to be diago-
the exact solution of the Hubbard model was givenDn  najized exactly. Therefore, using local Hamiltonians defined
=1 dimension by means of the Bethe ansatz by Lieb angn larger clusters of the lattice should typically lead to better
Wu.! The other class of exact solutions belongs to the othegonstraints(i.e., extended stability regionseven if purely
limiting case, i.e.,D=0%, when the dynamical mean-field nearest-neighbor interactions are present.

approximation becomes exdct. The situation, however, It is also well known that next-to-nearest-neighbor hop-
gets more complicated as physically interesting, lowerping has important effects. For instance, it was shown rigor-
dimensional casee.g., systems D=2 or D=3 dimen-  ously by Tasakf" that the pure Hubbard model characterized
siong are considered > 1 rules out the applicability of the by hopping of electrons between nearest- and next-to-
well-established Bethe-ansatz approach, while mean-fieldaearest-neighboring sites with dispersive bands exhibits fer-
like descriptions lead to qualitatively or quantitatively incor- romagnetism for finite Coulomb interaction at zero tempera-
rect conclusions, because the effects of spatial fluctuationtsire. Recent projection quantum Monte Carlo studies by
are not taken properly into accotf. Hlubina, Sorella, and Guin&aconfirmed this fact for finite

In recent years, some exaatpnperturbativemethods temperatures, too. Beside the consequences of longer-range

have been developed to investigate the ground state of Huliropping, the importance of nearest and next-to-nearest-
bard and Hubbard-like models in large parametemeighbor off-site interactions(both diagonal and off-
regimes" 23 In the present work we focus on the so-calleddiagonal has also been emphasized both from
optimum ground-state methd®GS established by de Boer experimentaf and from theoretic4f'®!!1"18sides. These
and Schadschneid&t Using this method one can obtain rig- extra termsdensity-density type interaction, correlated hop-
orous constraints on the model parameters which define rging of electrons, hopping of electron pairs, and the ex-
gions where, e.g., the charge-density wave, thelNthe change coupling all originate from the spin-independent
fully saturated ferromagnetic, or the-pairing state of mo- Coulomb interaction of electrons. Nevertheless, the values of
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these longer-range interactionge.g., between next-to- would requirehy,se=H. The tractable cluster size is, how-

nearest-neighboring sitesare known neither theoretically ever, limited by the feasibility of the necessary exact diago-

nor experimentally because of the complicated nature ofalizations.

screening processes in solids. However, it is obvious that Setting up the local Hamiltonian and choosing a suitable

these interactions are present in real materials. Their strengtbcal basis, the eigenvalue problem

decreases with increasing interatomic distances on the lattice

and they can have important effects on the characteristics of Nelustel Peluster = Eclustel Peluster 2

strongly correlated electron systems. Hence, it is a challeng- . )

ing task to incorporate and to treat them in an exact way o§an be solved exactly. Thus the full spectru g, (i

the level of the model Hamiltonian. =1,... dim(Neysted) Of Neuster CAN be obtained. Since the
The aim of the present paper is twofold. First, we wouldclusters of deco_mposmon are equivalent, the exact ground-

like to extend the previous calculations of Ref. 12 by choosState energfgs is bounded from below by the relation

ing a larger local Hamiltonian that is defined on elementary o

plaquettes consisting of four lattice sites of the Elower= Nclustem'“fc|uste§ Ecs: (©)

D-dimensional hypercubic lattice. Using these local Hamil- '

tonians and a simple, numerically exact method we havyhere the number of clusters on the considered lattice can be

constructed the stability domains for thepairing states of  written asN = fL. Heref represents a simple combina-

momentumP = 0,7 and for the fully saturated ferromagnetic torical factor depending on the dimension and structure of

state in the parameter space of an extended Hubbard modgle underlying lattice antl stands for the number of lattice

with a half-filled band. Given the size of the local Hamil- sjtes,

tonian, the diagonalization is done numerically. The stability The variational principle of quantum mechanics provides

regions are deduced from the equality of the lowest eigenan upper bound foEgs, namely,

value of the chosen local Hamiltonian and of an upper bound

derived appropriately from the variational principle of quan- (¥ yial H P i)

tum mechanics. Second, the present choice of the larger local Egs= W = Euppen (4)

Hamiltonian gives us a simple way to incorporate next-to- triall = trial

nearest-neighbor interactions, to treat them exactly, and twhere|¥;y) stands for an arbitrary trial wave function. In

investigate their effects on stability. our caselVi,) is an exact eigenstate of the global Hamil-
The paper is organized as follows: in Sec. Il we introducetonian for a certain set of model parameters.

the method. In Sec. Il the global Hamiltonian and the cor- Combining now Eqs(3) and (4) yields

responding local Hamiltonian are defined. Sections IV A and

IV B contain the stability domains inD=2,3 for the Elower= Egs=Eypper 5)

n-pairing states of momentum® and for the fully saturated » ] )

ferromagnetic case, respectively. Finally a short summarfFXPloiting that bothE,q,er and E jpper are analytic functions

and discussion closes the presentation in Sec. V. of the couplings of the global Hamiltonian, after carefully
adjusting the coupling constants one can satisfy the equality

Il. METHOD Etower= Euppe™ Eas: (6)

Let us consider a model Hamiltonian defined on a discretevhich means that for a certain set of model parameiara
lattice. This(so-called global Hamiltonian can be decom- special sector of the ground-state phase diagrt® exact
posed into the sum of equivalent local Hamiltonidngse,  ground-state enerdysgis found. Furthermore, if the ground
defined on identical clusters of lattice sites, the union ofstate has no degeneracy, the exact ground piage) of the
which covers the lattice. In other words, global Hamiltonian is also found. In our case the nondegen-

eracy is provided by the fact that the states we congisls
Sec. IV) can be built up simply by using the lowest-energy
H= > hguster (1) eigenstate of the local Hamiltonian. As an example let us
all clusters consider the case of the=1-dimensional half-filled chain
with bonds as clusters. For certain values of the coupling
If only on-site interactions are considered, each cluster mightonstants it can be concluded that the nondegenerate lowest
consist of a single lattice point arid,,s(iS Simply a Hamil-  eigenvalue of the local Hamiltonian belongs to the parallel
tonian defined on the individual lattice points. If intersite orientation of spins included on the bond. Since the bonds
interactions are also present, the cluster has to consigtt of are equivalent, all the bonds along the chain contain parallel-
leas} two lattice sites(in case of only nearest-neighbor in- oriented spins with the same local energy for the given set of
teraction$ and the propeminimal local Hamiltonian is ac- model parameters. This fact yields the long-range order of
tually a Hamiltonian defined on a bond joining twim the  spins(here ferromagnetisjrand also the nondegeneracy of
simplest case nearest neighbojirgites. Nevertheless, the the global ground statéapart from the spin degeneracy
incorporation of longer and longer range interactions, or ofSimilar arguments hold for the nondegeneracy of the ground
more and more spatial correlations, requires the enlargemestate in higher dimensions, too.
of the minimal cluster and hence the corresponding local Changing now the trial wave function and following the
Hamiltonianhger- IN principle, even infinite-range interac- procedure discussed above a new ground state in a different
tions and correlations can be taken into account, but thisegion of the phase diagram can be found. Furthermore, re-
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peating the method with more and more trial wave functions m
a large portion of the ground-state phase diagram of the
model can be explored.

Ill. GLOBAL AND LOCAL HAMILTONIAN

Let us define now our global Hamiltonian on a
D-dimensional hypercubic latticeD(>1) in the following
form: (A

FIG. 1. An elementary plaquette of thB=2-dimensional
Hglob:U0+2 [_tij,t\ij+Xij5(ij+vijvij+Yinij+Jij‘]ij] square lattice. Solid lines represent different types of nearest-
0] neighbor couplings while dashed lines symbolize the next-to-
~ nearest-neighbor ones. The local Hamiltonian is defined on this
— L, (7 cluster.
where In the rest of the paper we investigate only couplings
between on-site, nearest-neighbor, and next-to-nearest-
neighbor electrons. Incorporating this restriction into Egj.
and using the conventiod=A;; (I=1,2 fori, j being
nearest- and next-to-nearest-neighboring sites, respegtively
for the intersite couplings, one can rewrite the global Hamil-

T t tonian as
tI]_E Cia'Cjo'v
g

Ozzi niTnil,

L
Hglob:Uizl (niT_%)(ﬂil—%)—f—lZl(z)
~ 2 2 &
Xijzz CFO'CJ.(T(ni,—(T-i_nj’_O-),

e [Xl(ni,—a+nj,—(r)_t|](C?aCjo+C}gCi(r)
\“/ij:%E, NioNjor +3Vi(ni—1)(nj— 1)+ 3Y(clcf ¢ ¢4

) +clicficici)+330)(STS +S ) +IYVSIS
Yij=clielie ey,
—up—E. ®)
J=3A8(STS +S S)+AfSS, Here = ;j, means a summation over nearest-neighboring (
=1) and next-to-nearest neighboring=2) sites. The new
. notationsJ{)=A7"J; and 3= AfJ, are also used. In the
“:% Nig - special case of["Y=Af=1, however, the)=J%)=J{ no-
tation will be kept for the sake of clarityg, represents a
Here the fermion operators’ (c;,) create(annihilat¢ ~ numerical constant that shifts the zero point of the energy

electrons with spinc in the single tight-binding Wannier Scale. We remark that during the reformulation of £d).to
orbital associated with site n;, is the particle number op- EU- (8) the chemical potential is also shifted by some con-

erator of electrons with spipr, andn;=n;,+n;, . Further- Stant
more, the spin operators are given W=CiTTCuv s Because we have only nearest- and next-to-nearest-

~c 6y, andS'~3(n, ). The above Hamitorian con- TeOROr nefactons the Ll symmetic g osters
tains a term corresponding to the familiar Hubbard term o y plag

doubly occupied sitesW), the hopping of a single electron d!mens?onal square Ia_ttice, as depicted in Fig. 1-'2_”*2'
(characterized by;;), a density dependeripr correlated dimensional hypercubic lattices can be covered with the el-

hopping term K;;), an intersite density-density type interac- ementary plaguettes; however, in those —cases the
1opping s Isity y byp D-dimensional hypercubes would be the fully symmetric
tion of electrons ;;), a term describing the hopping of elec-

: XY AZ . minimal clusters.
tron pairs {fy), for Ajj'=Aj;=1 a Heisenberg-type ex- Following the method of Sec. Il the global Hamiltonian

change interaction of spngs]i(), and aZ chemical potential ... he rewritten in terms of such plaquettss; (| n means
term (u). We note thatAj;"=0 andA{j=1 represents an 5 g mmation over the plaquettes

Ising-type coupling of electron spins, while the case of

A}i'=1 andA{=0 corresponds to aXY-type interaction.

Jij>0 (J;;<0) means antiferromagneti¢ferromagnetic Hglob:[i J.Elm] Bijim ©)
type of exchange. The relevance of the present model for real o

materials is discussed, e.g., in Refs. 4 and 20. with
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hijim=— Ngi— )Ny — )+ — ¢l vCaatCh Cao)(Ny otng
ijlm Z, an.Ao ( al 2)( al 2) 4fl (a,[;EAN ; ( a,0”B,0 B,o a,o’)( a,— 0 B, o—)
é E (Cl‘[ g-CB 0’+C;3 a-Ca U)(nafa'_}—nﬂ 70')_t_1 2 (CZ( g—CB 0’+C; o-ca o')
fo (afleaw @ e o ’ ’ Af 1 (wpreay o 7R T
ts 1 Vs,
- 2 (ChoCootChoCar)t g 2 (N~ DNg=D+ = X (ng—1)(ng—1)
2 (a,B)e AyN O 1 (a,B)e Ay 2 (a,B)e A\N
+ REL > (ChiChiCaiCa T ChiCh CatCat) + A > (CliCh CaCatChCh CalCar)
Af 1 (wpreay f2 (af)e gy
J 12 @
X — — X — — z
+25 X (SIS+SiS)+ == X (SiSs+SiS)H 5 X SISEHIP X SISy
Aty (apreAy f2 (af)eagy 2f1 (wpredy (a.f) e Ann
)7
-2 2, n,. (10)
ae 0

Here f1=2z,/z; and f,=2 are numerical constantszy  sented are done at half-filling. Except thepairing state of
=2D andz,=4(3) are the number of nearest- and next-to-momentumP =0, it is not possible to express the results in a
nearest-neighboring sites, respectively, onDhdimensional ~compact analytic form as has been done earlier in Ref. 12.
hypercubic latticg They are needed to avoid double or Th_erefore, and for the sake of visualization, we have re-
higher counting of intersite interactions during the plaquetteStricted ourselves to special cuts of the parameter space in
summation. Furthermoret;,X;,V;,Y; are the values of illustrating the effects of the larger local Hamiltonians and of
single-electron hopping, correlated hopping, density_densityext—to—nearest—nelghbor couplmgs. The cuts are chosen in
type interaction, and pair-hopping between nearest neighbogtch a way that the corresponding ground-state phase dia-
ing sites, respectively, while, X,,V,,Y, indicate the analo- 9rams can easily be compared with the previously published
gous processes between next-to-nearest-neighboring Wites.gorous reggllts of Strack and Vollhartlt,de Boer and

is the Hubbard interaction that can either be positive or negat0-Workers,>*' and Montorsi and Campbeff.In principle,

tive in our model. To mimic real systems, however, it should®n€ can also investigate the role of each nearest- and next-
be repulsive. In addition, spin interactions with exchangd©-nearest-neighbor interactions separately, one by one, us-

couplings J$), I, IV, and J?) are included on the M9 0Ur method.
plaquette. Further notationgty={i,j,I,m} means the set of
individual lattice points,Ay={(i,j),(j,l),(I,m),(m,i)} rep-
resents the set of nearest-neighboring sites, atgh The definition of thex-pairing operator of momentur
={(i,),(j,m)} indicates the set of next-to-nearest- IS given by the relation
neighboring sites on the plaquetiee Fig. 1. The possibil-
ity of anisotropies can be naturally incorporated into the lo-
cal (and also globalHamiltonian via the nonequivalence of
the orthogonal directions of the plaquette. The effects, how-U
ever, are not discussed in the present paper. :
To apply Eq.(6) the connection between the number of pairsN can be constructed as
lattice sitesL and the number of clusterdlyser (here

| ol e number of clusterbloyse (here |¥,(N.P))=K(7H)N0), (13
plaguettesis also needed. Combinatoric considerations give : N

the following simple result for this quantity on a where K={[(L—N)!J/LIN!}*** is a normalization factor.
D-dimensional hypercubic lattice For further details about the-pairing states the reader is

referred to the literature:2° Since we would like they-
pairing states to be the ground state of our model, it is in-
structive to calculate the commutator of theoperator with
the global HamiltoniarH 4,,. One finds that

A. m-pairing states of momentumP

L
= 121 ePicl cf,. (12)

sing this operator afy-pairing state of momentuf and of

Ncluster:%D(D_l)L- (11

IV. RESULTS

As an illustration of the method described in Sec. Il we [H

consider a few physically interesting states, thepairing
states of momenturR (Sec. IV A), which show off-diagonal
long-range order and are hence superconducting, and the
fully saturated ferromagnetic statSec. IV B. We deter-
mine under what conditions these states are the ground states
of the global HamiltonianH4,;,. All the calculations pre-

2
'mg]zkzl %(xk—tk);> (ePi+eP(c ¢l +cf el
= 1k

+ %sz (ein_eiPI)
(i

T AT T At
X[y =njeg cjy+(n —njp)cj eyl
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1.5
1 iPj_ iPh(n. — tet e bond diagonalization
+ (J'|E>k {( 2 Yke U k€ )(nJ 1)C| TCU — plaquette diagonalization
1.0
+(3Ye®' - U P (= 1)cf el } | —2unt.
05r¢

(14

Calculating now the quantityH g,ob,(n,ﬁ)’\‘]|0>, onecaneas-
ily deduce the parameters where thepairing states of mo- =
mentumP are the ground state of the starting model; for
momentumP =0 one arrives at the requiremerXs=t; and
Yi=2V; (i=1,2), while for momentuni? = 7 the conditions
X,=t, and Y;=(—-1)'2V; (i=1,2) must be satisfied. One
would also look fory-pairing states of momentu+0 or -1.0}
P+# . These, however, represent the ground states of the

global Hamiltonian in Eq.(7), where X;=t; (i=1,2), U

=—4t; and all the other interaction constants are Z8r3. 18 e e o5 oo o5 7o s
Using the »-pairing states as trial wave functions, the Jot

upper bound in the thermodynamic limit for the ground-state Xy

energy per lattice site is

FIG. 2. Exact stability region of-pairing state of momentum
- P=0 (7o) at half-filling. The shaded region represents the enlarge-
upper 1 1 ment of the stability domain due to the choice of local Hamiltonian

L - 1(U+2,Vi+2,V5) +3n(zn—1) defined on elementary plaquett@ge Fig. 1 of the lattice. All the

) ) next-to-nearest-neighbor interactions are kept zero.
X > zVi+in(1-3n)> zY,co8P— i i i lity cri
e aVvi an( 2n)|:1 zY|co pn. From Fig. 2 one can immediately read off the stability crite-
ria for the 5, state to be the ground state Hfy,,. In the
(15 absence of next-to-nearest-neighbor interactidns., t,

=X.=Vo=Y,=J,= =< _
Exploiting the constraints between the amplitudes of pair- Xp=V,=Y,=J,=0) for V;<0 values of nearest

hopping Y; and that of density-density type interactidf neighbor density-density type interaction

one gets for the half-filled casen€ 1) that V,<0,
2 ~ 'j 2
Eggper:‘l‘l‘ U+|lelvl —ul. (16) —lSt—ZS—Z(% +1. (18
1 1

Despite the fact that the upper bounds for theairing ~ This is a considerable improvement over tMe<0, —1
states of momentur®=0 andP= 7 are identical, there is a <3J,/t;<—2[J,,/t,|+1 criteria derived following Ref. 12
characteristic difference between the two sets of wave funcasing bond Hamiltonians.
tions; the stat¢\lf,7(N,P=7r)> remains an exact eigenstate of  If now next-to-nearest-neighbor interactions are turned
the global HamiltoniarH g, even if X; #t;. on, i.e., nonzero values &f, (and henceY,) are considered,

As mentioned earlier, it is possible to include more spatiakhe criteria of Eq(18) remains valid in an improved form. In
correlations using local Hamiltonians defined on larger clusthis case there is a need for the proper change of the scaling
ters of the lattice. This leads to the extension of the stabilityfactor A, which now depends also explicitly on next-to-
of the chosen state and means an improvement on the phasearest-neighbor interactions. The new value of the scaling
boundaries. For the-pairing state of momentur@=0 this  factor is
effect is depicted in Fig. 2, where til&,-J, cut of the cou-
pling constants’ space is chosen. The inner triangle corre- A(U,V;,V,)= 22 2—U+V ny
sponds to the stability domain of thg-state determined by L2 70z, 12
the OGS method of de Boer and Schadschn&desing
bond Hamiltonians with purely nearest-neighbor interac- In real systems th&;=t; requirement does not hold in
tions. The shaded regions give the improvements of thgeneral. However, the strengths of the corresponding two
boundaries applying our method with plaguette Hamiltoniangnteractions are of the same magnitude. Kge#t; only the

containing only nearest-neighbor interactions. The akes 7-Pairing state of momentunP = represents an exact
:ng)A(val) (a=xy,2) represent the rescaled values of eigenstate of the model Hamiltoniddy,,. Figure 3 shows

nearest-neighbor exchange interactions with the scaling fadh€ Stability regions of they,, state for two different sets of
tor of model parameters expressed in units of eV inhg plane.

Dotted lines represent the boundary for stability regions cor-
-1 responding to bond Hamiltonians, while solid lines are the
(17) boundaries calculated with plaquette Hamiltonians in the ab-

-1
(19

2U
A(U,Vl):|:2‘_+vl
Z;
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1.0 4.0 — . : , :
(a) >>>>>>> bond diagonalization I 1 Xty =0.0
— plaquette diagonalization 3.5 — X/, =05
0.98 : i — X4ty = 1.
30H ¢
] H
0.96 I‘
S\ ‘_2.5 -||
2 - [
094 Naotl & N
5 >
0.92 R
Vo
1.0
0.9
0.5}
0.88
-0.6 -04 -02 o.? (evo).z 04 06 08 00  os 10 15 20 25 3.0
1 Y/t
1.01 i ; i
N bond diagonalization ) FIG. 4 Effects of_ qorrelated hoppirk, and peﬂr hopping’, on
— plaquette diagonalization the stability of »-pairing state of momentunP== (7,). Each
10 next-to-nearest-neighbor interaction is turned off. We note that be-
: yond a well-defined value of ; the phase boundaries for the cases
X1#1t, andX,;=t, coincide.
<°0.99 . . -
> Schadschneid& and exist for all positive values &f;. The
5 relationY,;=—2V, is also satisfied because the state has
S 0.98 to be an exact eigenstate of the model. Therefore, the posi-
Ne tivity of Y, implies that the nearest-neighbor density-density
type interactiorVV, has to be always negative, i.e., attractive,
0.97 in order to find any,, ground state.
As the 5-pairing states consist of local pairs of electrons,
0.96 it is of interest to investigate the effect of on-site Coulomb
T-0.6 -0.4 -0.2 o.? ( Vc;.z 0.4 06 038 repulsion, characterized hy, on the stability of these pairs.
1 (€

To do this theV,-V, plane is chosen at various valueslbf

FIG. 3. Exact stability domains af-pairing state of momentum
P=mx (7,) at half-filling for two different sets of nearest-neighbor
couplings in the absence of next-to-nearest-neighbor interactio

As can be seen in Fig. 5 the local pairs are stable even in the
presence of relatively large positive values Wf This re-
guires, however, an attraction in the nearest-neighbor

[(@ X,=0.1 eV,V,;=—2, eV andJ;=0.05 eV;(b) X,=0.1 eV,

Vi=-2eV,J0)=-0.02 eV, and){’ = -0.015 eV]. The shaded 0
regions represent the enlargement of the stability domain due to the
choice of local Hamiltonian defined on plaquettes instead of bonds. 0.0
sence of next-to-nearest-neighbor interactions. The shadec -1or
regions clearly show the extension of stability regimes due to -
the choice of larger local Hamiltonians. <207
We now consider the phase diagrams inth&'; (Fig. 4)
andV,-V; (Fig. 5 planes for fixed values of the other inter- -3.01
actions. In Fig. 4 the exchange interaction has been fixed by
the relationJ;= —2Y;. This insures that the global Hamil- —a0!
tonian of Sec. lll coincides with the model Hamiltonian of
Ref. 25, where the authors, using the method of positive _5.0
semidefinite operatofsi®!! derived rigorous bounds for the ~4.0 -3.0 -2.0 -1.0 0.0 1.0
7, State. Comparing Fig. 4 with Fig. 1 in Ref. 25 two basic Valty

differences can be noticed. First, the boundary of the stability FIG. 5. Stability domains ofy-pairing state of momenturf
region, even for the special case )OI:tl_’ varies with n- — 7 (n,) in D=3 in the presence of various on-site Coulomb
creasing values of nearest-neighbor pair-hopping amplitudg,,isions (U) and intersite density-density type interactions

Y, and has a maximum at;~1.33;, instead of having a (v, v,). The remaining parameters of E() are chosen as fol-
constant value. Second, the value of this maximum.,  lows: t,

~= 0.333t, is independent oK. Fu_rtherm(_)re, the stability = —1t, andX,=J,=J,=0. Note thaiX,, Y;, andY, are uniquely
regions for all values ofX;/t; derived with the present fixed via the rigorous restrictions derived earlier in order that Eq.

method are always larger than the corresponding ones prét3) be an exact eigenstate. IB=2 similar stability regions
dicted by Montorsi and Campbé&ll and de Boer and emerge.
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density-density interaction channel. It should also be noted 3.0 :
that the same type of interaction between next-to-nearest (a) TR gﬂg:::gi:::ﬁifzem
neighbors, denoted by,, can either be attractive or moder- 25}
ately repulsive. These findings lead us to the conclusion that
the »-pairing state of momenturR= 7 remains the ground __ 2.0}
states of Eq(7) even for positive values of the on-site Cou- %
lomb interaction. Hence superconductivity can exist in the ~~ 1,5}
extended Hubbard model with local repulsiod % 0), if a N
sufficiently strong nearest-neighbor attractiow;€£0) is =
present. Mo
The inclusion of next-to-nearest-neighbor interactions in- 45|
creases remarkably the number of model parameters anc
hence the number of possible cuts of the parameter space .
Therefore, we illustrate only some special, overall effects of =25 -2.0 -1.5 -1.0 -0.5 00 05 1.0 15 20 25
these interactions. In order to model real systems all next-to- t (eV
nearest-neighbor interactions are chosen to be smaller in 29 )
magnitude than the corresponding nearest-neighbor ones (b) TN upings are zero
pling

Nevertheless, the ratio of nearest to next-to-nearest-neighbor 4 gl

interactions can be very different—it depends on the mate-
rial. In Fig. 6 three plots are shown for different values of the

couplings. These belong to the case®f2. The corre- % 1.2¢

S

sponding three-dimensional plots display qualitatively the

same features, except for the parameters of Hg). @he g 08l

guantitative discrepancy between the plots takerDia 2

and inD=3 is due to the fact that the number of next-to-
nearest neighbors, is much larger inD =3 spatial dimen- 0.4
sions than irD =2 on a hypercubic lattice. This suggests that

in the framework of the present model the effects of next-to- 49

nearest-neighbor interactions are stronger in higher dimen-  ~!5% -1.0 -05 00 °~5V 0 15 20 25
sions. t (eV)

In Fig. 6(a) the stability region of thep-pairing state of 40 ey |- NNN couplings are zero
momentumP =0 is shown for a certain set of model param- 350 —— NNN couplings are non-zero

eters in the absendsolid line) and in the presenc@lotted
line) of next-to-nearest-neighbor couplings. One can notice

the expansion of the stability region due to the presence of ,5

next-to-nearest-neighbor interactions. Since a large value of +=

[t;] (in the presence of a fixed value of the nearest-neighbor Na2o

pair hoppingY ) favors the hopping of single electrons over
the hopping of electron pairs, large valuegtaf give rise to

the breaking of local pairs. This means that the number of 1.0;

doubly occupied sites is not conserved any longer and, as a
result, then, state ceases to be the ground stateéigf,. In

Fig. 6(b) the effects of next-to-nearest-neighbor interactions 0.9

on the stability of they,. state are shown. In contrast to the
situation depicted in Fig. (@) no shrinking of the stability

0.5

1.0

1.5
Y1t

domain with increasindt,| can be observed. This can be  FIG. 6. Effects of next-to-nearest-neighdiNN) couplings on
explained with the different internal structure of the pairs.  the stability of »-pairing states of momentun® on a two-

In Fig. 6(c) we show a situation, where next-to-nearest-dimensional square lattice. The values of the interaction constants

1

neighbor couplings can either extend or shrink the stabilityare fixed as follows(a) P=0, V;=—3 eV, J) =75 eV, J¥
region of the,, state. As mentioned earlier, the dimension=35 eV, t,=3t;, V,=3V;, and J@=33 (a=xy,z); (b) P

1 1

of the lattice plays a crucial role here. =2 a huge por- =m, V;=—2 €V, X;=05 eV, J%}:—% ev, IV=-L ev,
tion of theU-Y; plane phase diagram is occupied by the  t,=—3t;, Vo=3V;, and 3@ =33V (a=xy,2); () P=m, X,

state for any ratio oK, /t;. In D=3, however, it was found =3t;, J;=—2Y;, t,=—

for a wide parameter region that thg,-state is the ground
state of the model Hamiltonia, only for the special case
Of Xl/t]_: 1.

B. Fully polarized ferromagnetic state

%tl! Y2: %Ylv andJ2: %‘]l

|q’FM>=j1:[1 CjT¢|0>:'A:|O>- (20)

Let us consider now the fullyzf) polarized ferromagnetic
state as the trial wave function defined as

Calculating the commutator & with Hgiob ONE can see that
this state is an exact eigenstate of the global Hamiltonian for
any values of the interaction parameters. The trial wave func-
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0.9 . 0.9
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t1 (eV) t1 (eV)

FIG. 7. Exact stability region for the fully saturated ferromag-  FIG. 8. Stability regions of the fully saturated FM state for
netic (FM) state at half-filling on @-dimensional hypercubic lat- various values ofA}Y. The stability region is maximal at}Y=1
tice for a certain set of model paramets=0.5 eV,V,;=2 eV, and vanishes for vaIueAfY<—1. The numerical values of the
andY,= —J1:41—0 eV in the absence of next-to-nearest-neighborremaining couplings are the same as in Fig. 7.
interactions. The shaded region represents the extension of the sta-
bility of the fully saturated ferromagnetic state as the ground statenuch broader region for that using plaquette Hamiltonians.
of Eq. (7) due to the choice of local Hamiltonian defined on el- The broadening implies that the additionally incorporated

ementary plaquettes, instead of bonds, of the lattice. spatial correlations really lead to the stabilization of the or-
dered phase, in our case the ferromagnetism.

tion |, yields in the thermodynamic limit at half-filling The global HamiltoniarH g, containing purely nearest-

the upper bound neighbor interactions can be transformed into an effective

Heisenberg model in the larde-limit at half-filling (see,

2 e.g., Vollhardtet al3® and references thergimith the effec-

EtFu’;/lper: —sUL+ %lel 23, - uL 2D tive exchange coupling of
for the ground-state energy. _ti Xq)|? 22
In what follows, we reveal under what conditions E20) ‘Jeff_U 1_E +J1. (22

is the ground state ofly,,. For the sake of simplicity we . . o
concentrate on a fixed set of numerical values of nearestlhis favors ferromagnetism for ali<0. Neglecting in Eq.
neighbor couplings, as it has already been estimated bﬂ7) all intersite interactions but the nearest-neighbor ex-
Hubbard?® for electrons ind bands of transition metals. The ¢hange interaction, the latter equation suggests a simple per-
values of next-to-nearest-neighbor interactions are chosen #§rbative criterion for the stability of ferromagnetism in the
be fractions of the corresponding nearest-neighbor ones. THargey limit; ferromagnetism is favored over antiferromag-
ratio of nearest- to next-to-nearest-neighbor couplings is setetism for all U>U =t%/|J;| (note that in Eq.(7) J;
to be approximately 5-8. We consider this range of ratio to= —|J;|<<0 means the ferromagnetic couplingf is known
be appropriate for a wide class of materials. Furthermorethat the OGS approach using bond Hamiltonians gives the
this is in agreement with the work of Appel, Grodzicki, and criterion U/z;>U, as the stability requirement in the same
Paulserf’ who also made quantitative predictions regardingregime. Therefore it possibly underestimates the stability of
the strength of nearest- and next-to-nearest-neighbor corréhe fully polarized ferromagnetic state. Taking into account
lated hoppingX, and X,, respectively. Further calculations larger local Hamiltonians defined on elementary plaquettes
at different sets of model parameters have also shown th&f the hypercubic lattice one gets the criterioitiz,>U /2
the phase diagrams plotted in Figs. 7, 8, and 9 are generior the stability, which means more extended stability do-
This suggests that the above choice of model parameters cafain in the larged limit. Furthermore, it suggests thgat
tures the essential physics. least in the large limit) the stability criterion has the form

In Fig. 7 we present the changes in the stability domairnof U>(z;/b)U,, whereb is the function of the size of the
induced by using plaquette Hamiltonians. For comparisortluster on which the local Hamiltonian is defined. The pos-
with the corresponding result of Ref. 12 with bond Hamilto- sible scaling behavior of the stability criterion and the con-
nians, the plaquette Hamiltonians contained no next-toerete form ofb(Ngyse) are discussed elsewhete.
nearest-neighbor interactions. The shaded region shows the Since the fully polarized ferromagnetic state at half-filling
enlargement in the stability domain of the fully saturatedis an exact eigenstate ¢fy., we have got naa priori re-
ferromagnetic state. As can be seen from the figure, there &rictions for the values of the interaction parameters. The
a reasonable extension with respecttoWhile in the case extensive calculations, however, lead to a simple restriction
of bond Hamiltonians the value of the correlated hoppiag  betweenJ{)) and JV. In order to have a ferromagnetic
should be very close in magnitudettpin order to reach the ground state of a model containing spin interactions that vary
boundary of the stability region &i,,,~4 eV, we have a continuously from a Heisenberg-type interaction to a simple
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5.0

ground-state polarization may still be macroscopic, however,
it no longer points in thez direction. This means that the
fully z-polarized ferromagnetic trial wave function becomes
unstable. We note that ER3) must hold even in the pres-
ence of next-to-nearest-neighbor couplings.

In Fig. 9 the effects of nonzero next-to-nearest-neighbor

4.0

< 3.0

o hoppingt, are illustrated for a fixed set of model parameters,
N first in theU-t; plane[(a), in units of e\ and second in the
D20 U-t, plane[(b), in units oft,]. In Fig. 9a) the dotted line

represents the phase boundary in the absence of next-to-

1.0 - :2;:1 fg? nearest-neighbor interactior_ns while solid, long-dashed,
______ W/t = 0.0 dashed, and dotted-dashed lines correspond to phase bound-
:_-:_- Eﬁ: ::g-;S aries in the presence of next-to-nearest-neighbor interactions
0.0 i for various values of,. As can be seen from the plot, next-
0.0 0.2 0.4 0.6 0.8 1.0

to-nearest-neighbor interactions can help in stabilizing ferro-
magnetism for the chosen set of model parameters as long as

7.2 t,/t; has a small, positive value. For negative or large posi-
tive values oft,/t;, however, the stability domain reduces
6.9 significantly and stronger Coulomb repulsion is needed for
the stabilization. This means, e.g., that for a reasonably nar-
6.6 row band €;~0.4 eV) with the ratio ot,/t;=0.1, the re-
quired minimal stabilizing Coulomb repulsion is about
= Unin=3 eV. The same value & att,/t;=—0.25 is about
g 6.3 Umin=30 eV, which is a magnitude larger. Nevertheless, the
above range of Coulomb interactions can be considered rea-
6.0 sonable for real materials.
In Fig. 9b) the effects of change in non-interacting dis-
5.7 persion due to the inclusion of next-to-nearest-neighbor hop-
ping are shown for a squaresolid line) and for a cubic
5.4 (dotted ling lattice. The stability domains of ferromagnetism
-0.1 0.0 0.1 0.2 0.3 depend on the dimensionality of the lattice and do not coin-
ta/ty cide. It is interesting to note that the most favorable values of

FIG. 9. Effects of next-to-nearest-neighbor couplings on the stah/t1 for which the Coulomb interaction takes its minimal

bility of the fully saturated FM state at half-filling in thig-U and valueU yj, also depend on the spatial dimension. The shapes
t,-U planes,(a and (b), respectively(a) shows the phase bound- of the stability domains are also of mtere-st: in a well-defined
aries for various ratios of,/t; choosing the numerical values of '€gion oft;/t; Upiy changes only by a slight amount but as
nearest-neighbor interactions as in Fig. 7. Next-to-nearest-neighb&00n as the edges of this region are reacbethcreases
interactions for the plot are as follow¥,=0.08 eV,V,=3v,,  drastically. This feature suggests that inside the stability re-
Y,=1Y,, andJ,=£J;. In (b) all the interaction constants are ex- 9iONS a nonzero next-to-nearest-neighbor hopping via the
pressed in units of; instead of units of eV. Above each line the @symmetric density of stat€’s’” helps (in the presence of
ground state is the fully polarized ferromagnetic state. other next-to-nearest-neighbor interactipimsstabilizing fer-

romagnetism but outside it destabilizes ferromagnetic order-
Ising-type one, the—1<AXY<1 requirement must hold. iNg- The edges are determined mainly by the dispersions
This means that the restriction (hence the shape of the particular density of sjatad tuned
further by other interactions being presentHgy,.

It is also known that the inclusion of nearest-neighbor
ferromagnetic exchange interaction in the pure Hubbard
model favors the parallel ordering of electron spins°in
Fig. 10 we considered the pure Hubbard model supple-

has to be always satisfied. In Fig. 8 the consequence of E nented  with next-to-nearest-neighbor hoppirlg and
(23) is illustrated in theU-t, cut of the parameter space at earest- and next-to-nearest-neighbor exchange interactions

Ale anngl): —|J§1)|<0 for various values 0A>1<Y. The J, and J,, respectively. All the other type of couplings are

: . o imal AY— turned off. As can be seen in the figure, the stability domain
size of the stabllltyxr$g|on IS ma)zg(mal 1 =1l andgradu- o forromagnetism extends with increasing value of the Cou-
ally decreases ad; ' reachesA; =—1. Any further de- |omp repulsion and in the limit ofJ— fills the whole

crease ofA" yields that our ferromagnetic state that is fully J,,J,<0 quarter of the phase diagram. The fully polarized
z polarized is no longer the ground state kbf,,; for ngl,) ferromagnetic state remains the ground state of (Byfor
=J§1) Hgiob IS SU2) symmetric, which implies the degen- finite values ofU only in the presence of finite values &f
eracy of the ground state with respect to(3\totations. For  andJ,. Figure 10 also shows that the required minimal val-
anisotropic exchange couplings favoring tkg plane, the ues of|J,| are about an order of magnitude less than the

— 9= -3y <13) (23
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0.001 Considering the effects of more spatial correlations,
0.0 which was equivalent in our case with the choice of
"""""""""""""""""""""""""""" plaguette Hamiltonians, we have improved significantly the
=0.001 , previously derived rigorous results of Refs. 11,12,24,25.
1 . : This means, e.g., for the fully polarized ferromagnetic state
—0.003 k : that the minimal value of the Coulomb repulsion required to
2 ; stabilize ferromagnetism along reasonable values of nearest-
0004 F T § neighbor interactions is predicted to be about 6—10(igV
—0.005 \'\\ § D=3) in a relatively broad range of nearest-neighbor hop-
P \ ping (see Fig. 7. .
o u:58:] FM 4 : Another goal of the present study was to determine the
—0.007 | -~ U= 100, \ 5 overall effects of next-to-nearest-neighbor interactions on the
—0.008 222 ! : stability domains. The inclusion of next-to-nearest-neighbor
-0.6 -05 -04 -°~3:J1 /t1-°-2 6.1 00 0. interactions can be done naturally using plaquette Hamilto-

nians. To our knowledge, the effects of next-to-nearest-

FIG. 10. Stability of the fully saturated FM state in the presencen€ighbor interactions, except those of next-to-nearest-
of nearest J;) and next-to-nearestl§) -neighbor exchange cou- neighbor hopping, have not yet been considered rigorously in
pling att,=— i5t;. All the other interactions are turned off, i.e., the literature. The relative strengths of next-to-nearest-
X1=X;=V;=V,=Y;=Y,=0. neighbor interactions are much smaller than that of nearest-

neighbor interactions, the stability conditions, however,

required minimal values dfJ,|, andJ, should also be fer- strongly depend on them. Their effect in various sectors of
romagnetic in nature, i.eJ,<<0. the phase diagram is different and they result either an ex-
tension or a shrinking of the stability domain. For instance,
taking the »-pairing state of momentur® = 7 the possible
maximal value of the Coulomb repulsidh,,, up to which

In the present paper we have studied in the thermodythe 77, state remains the ground state of the extended Hub-
namic limit the ground-state phase diagram of the Hubbardpard model(i.e., the model has a superconducting ground
model supplemented by nearest- and next-to-nearesstate, is increased from 6 to 8—9 elin D=3) by the in-
neighbor interactions. The purpose of the study was telusion of relatively small next-to-nearest-neighbor interac-
clarify to what extent and in which way the inclusion of tions[Fig. 6(b)].
additional spatial correlations changes the stability of physi- It is also known that next-to-nearest-neighbor hopping of
cally interesting states, thg-pairing state of momenturR  single particles, which is characterized by the hopping am-
=0 andP=, or the fully z-polarized ferromagnetic state. plitudet,, is of importance in real materials. Our results are
The phase boundaries are extracted from the equality of aim good agreement with this fact. We showed thahas a
upper and a lower bound of the ground-state energy, henagharacteristic effect, e.g., on the stability of the fully satu-
these are exact. The additional spatial correlations are intrgated ferromagnetic state. Even a small ratid ot, i.e., a
duced via the computation of the lower bound on elementargmall amount of frustration in the dispersion, introduces a
plaguettes, instead of bonds, of tBedimensional hypercu- qualitative change into the phase diagram. The change is
bic lattice. Except the case of-pairing state of momentum mostly a shrinking of the stability domain, however, for
P=0 the exact phase boundaries cannot be given in closedgmall ratios {,/t;=<0.15) the presence @§ helps in stabi-
analytic forms. Instead, they are shown graphically in specializing ferromagnetism(Fig. 9). This is in good agreement
cuts of the parameter space of the model under study. with recent DMRG studies made on a one-dimensional tri-

The phase boundaries presented argficient phase angular lattice®® It is interesting to note that in our calcula-
boundaries. This means that outside the region defined by tH®ns the extension of ferromagnetic domain occurs always at
exact conditions a certain state might remain the ground statgositive ratios oft,/t; for fixed values of the other param-
of the model. Diagonalizing local Hamiltonians defined oneters of the model.
larger clusters of the lattice the phase boundaries might be The Hubbard model supplemented only by exchange in-
further improved. This improvement with increasing clusterteractionsJ,; andJ, has also been investigated. Our results
size addresses a further issue: does the stability domain ofae in good agreement with Ref. 34, i.e., the critical values of
given ordered phase extend further with taking larger andearest- and next-to-nearest exchange interactions to give
larger clusters, or is there a convergence regarding the locaise to ferromagnetism approach zerd.has> o in the case of
tion of its phase boundary? If the latter holds, we could dea half-filled band in any dimensions. However, at finite val-
termine the phase boundaries with a simple extrapolatiomes of the Coloumb repulsiah andJ, should also be finite,
even in the limit ofH =h e Based on preliminary results if the ground state is the fully polarized ferromagnetic state.
we believe that the further extension of stability domains In summary, we have established a simple method that
decreases rapidly with increasing cluster size. For instancellows us to incorporate and to treat the effects of next-to-
computing the lower bounds of the ground-state energy witmearest-neighbor correlations and interactions ineaact
diagonalizing local Hamiltonians defined on clusters of sixfashion. We showed that the ground state of the extended
lattice sites, the further expansion of the stability regions isHubbard model in the thermodynammic limit at half-filling
only a few percent, generally 4-5% or less. is superconducting or ferromagnetic, depending on the inter-

V. CONCLUSIONS
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