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Improved stability regions for ground states of the extended Hubbard model
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The ground-state phase diagram of the extended Hubbard model containing nearest- and next-to-nearest-
neighbor interactions is investigated in the thermodynamic limit using an exact method. It is found that taking
into account local correlations and adding next-to-nearest-neighbor interactions both have significant effects on
the position of the phase boundaries. Improved stability domains for theh-pairing state and for the fully
saturated ferromagnetic state at half-filling have been constructed. The results show that these states are the
ground states for model Hamiltonians with realistic values of the interaction parameters.
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I. INTRODUCTION

Exact solutions in physics are of great importance, si
in some cases the errors introduced by the approximat
may dominate the results to such an extent that one m
end up with an incorrect description of the studied pheno
enon. When applying an analytic, but nonexact, appro
one has to know to what extent the approximation is valid
case of perturbative methods a well-definedsmall parameter
can ensure that the higher-order terms are indeed neglig
Often, it is hard to find such a small parameter due to the
that the given phenomenon itself has strong-coupling ch
acteristics, i.e., the associated correlation effects are
small at all. This is especially true by the investigation
strongly correlated electron systems. Ferromagnetism is
example for theintermediate-to-strongcoupling phenom-
enon, where one has to be very cautious to apply perturba
approaches.

Considering the exact results with respect to the dim
sionalityD, we can see that most of them have been deri
in two limiting cases: eitherD51 or D5`. For example,
the exact solution of the Hubbard model was given inD
51 dimension by means of the Bethe ansatz by Lieb
Wu.1 The other class of exact solutions belongs to the ot
limiting case, i.e.,D5`, when the dynamical mean-fiel
approximation becomes exact.2,3 The situation, however
gets more complicated as physically interesting, low
dimensional cases~e.g., systems inD52 or D53 dimen-
sions! are considered.D.1 rules out the applicability of the
well-established Bethe-ansatz approach, while mean-fi
like descriptions lead to qualitatively or quantitatively inco
rect conclusions, because the effects of spatial fluctuat
are not taken properly into account.4,5

In recent years, some exact,nonperturbativemethods
have been developed to investigate the ground state of H
bard and Hubbard-like models in large parame
regimes.6–13 In the present work we focus on the so-call
optimum ground-state method~OGS! established by de Boe
and Schadschneider.12 Using this method one can obtain rig
orous constraints on the model parameters which define
gions where, e.g., the charge-density wave, the Ne´el, the
fully saturated ferromagnetic, or theh-pairing state of mo-
PRB 590163-1829/99/59~15!/10007~11!/$15.00
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mentum P becomes the exact ground state of the Ham
tonian.

The basic idea of the OGS method is to diagonalize
specially chosen local Hamiltonian and to tune all the mo
parameters in such a way that all local eigenstates that
needed to the construction of a given global ground state
also local ground states. This means that, on one hand
corresponding eigenvalues of the local Hamiltonians sho
be all equal in magnitude and, on the other hand, this co
mon value should be the lowest eigenvalue of the local pr
lem. Following this method, one can obtain different regio
in the parameter space of the model defined by inequalit
These inequalities meansufficientconditions for a state to be
the ground state inside a special region. Outside the der
region the state under study may or may not be the gro
state of the model.

There are basically two different ways to enlarge the
gion of guaranteed stability: taking a larger local Ham
tonian or incorporating next-to-nearest-neighbor interactio
As far as the first approach is concerned, it is obvious t
the extent of local correlations that are taken into accoun
controlled by the size of the local Hamiltonian to be diag
nalized exactly. Therefore, using local Hamiltonians defin
on larger clusters of the lattice should typically lead to bet
constraints~i.e., extended stability regions!, even if purely
nearest-neighbor interactions are present.

It is also well known that next-to-nearest-neighbor ho
ping has important effects. For instance, it was shown rig
ously by Tasaki14 that the pure Hubbard model characteriz
by hopping of electrons between nearest- and next
nearest-neighboring sites with dispersive bands exhibits
romagnetism for finite Coulomb interaction at zero tempe
ture. Recent projection quantum Monte Carlo studies
Hlubina, Sorella, and Guinea15 confirmed this fact for finite
temperatures, too. Beside the consequences of longer-r
hopping, the importance of nearest and next-to-near
neighbor off-site interactions~both diagonal and off-
diagonal! has also been emphasized both fro
experimental16 and from theoretical4,10,11,17,18sides. These
extra terms~density-density type interaction, correlated ho
ping of electrons, hopping of electron pairs, and the
change coupling! all originate from the spin-independen
Coulomb interaction of electrons. Nevertheless, the value
10 007 ©1999 The American Physical Society
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10 008 PRB 59ZSOLT SZABÓ
these longer-range interactions~e.g., between next-to
nearest-neighboring sites! are known neither theoreticall
nor experimentally because of the complicated nature
screening processes in solids. However, it is obvious
these interactions are present in real materials. Their stre
decreases with increasing interatomic distances on the la
and they can have important effects on the characteristic
strongly correlated electron systems. Hence, it is a challe
ing task to incorporate and to treat them in an exact way
the level of the model Hamiltonian.

The aim of the present paper is twofold. First, we wou
like to extend the previous calculations of Ref. 12 by cho
ing a larger local Hamiltonian that is defined on element
plaquettes consisting of four lattice sites of t
D-dimensional hypercubic lattice. Using these local Ham
tonians and a simple, numerically exact method we h
constructed the stability domains for theh-pairing states of
momentumP50,p and for the fully saturated ferromagnet
state in the parameter space of an extended Hubbard m
with a half-filled band. Given the size of the local Ham
tonian, the diagonalization is done numerically. The stabi
regions are deduced from the equality of the lowest eig
value of the chosen local Hamiltonian and of an upper bo
derived appropriately from the variational principle of qua
tum mechanics. Second, the present choice of the larger
Hamiltonian gives us a simple way to incorporate next-
nearest-neighbor interactions, to treat them exactly, an
investigate their effects on stability.

The paper is organized as follows: in Sec. II we introdu
the method. In Sec. III the global Hamiltonian and the c
responding local Hamiltonian are defined. Sections IV A a
IV B contain the stability domains inD52,3 for the
h-pairing states of momentumP and for the fully saturated
ferromagnetic case, respectively. Finally a short summ
and discussion closes the presentation in Sec. V.

II. METHOD

Let us consider a model Hamiltonian defined on a discr
lattice. This ~so-called global! Hamiltonian can be decom
posed into the sum of equivalent local Hamiltonianshcluster
defined on identical clusters of lattice sites, the union
which covers the lattice. In other words,

H5 (
all clusters

hcluster. ~1!

If only on-site interactions are considered, each cluster m
consist of a single lattice point andhcluster is simply a Hamil-
tonian defined on the individual lattice points. If intersi
interactions are also present, the cluster has to consist o~at
least! two lattice sites~in case of only nearest-neighbor in
teractions! and the properminimal local Hamiltonian is ac-
tually a Hamiltonian defined on a bond joining two~in the
simplest case nearest neighboring! sites. Nevertheless, th
incorporation of longer and longer range interactions, or
more and more spatial correlations, requires the enlargem
of the minimal cluster and hence the corresponding lo
Hamiltonianhcluster. In principle, even infinite-range interac
tions and correlations can be taken into account, but
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would requirehcluster5H. The tractable cluster size is, how
ever, limited by the feasibility of the necessary exact diag
nalizations.

Setting up the local Hamiltonian and choosing a suita
local basis, the eigenvalue problem

hclusterufcluster&5eclusterufcluster& ~2!

can be solved exactly. Thus the full spectrumecluster
i

„i
51, . . . ,dim(hcluster)… of hcluster can be obtained. Since th
clusters of decomposition are equivalent, the exact grou
state energyEGS is bounded from below by the relation

Elower5Nclustermin
i

ecluster
i <EGS, ~3!

where the number of clusters on the considered lattice ca
written asNcluster5 f L. Here f represents a simple combina
torical factor depending on the dimension and structure
the underlying lattice andL stands for the number of lattic
sites.

The variational principle of quantum mechanics provid
an upper bound forEGS, namely,

EGS<
^C trialuHuC trial&

^C trialuC trial&
5Eupper, ~4!

whereuC trial& stands for an arbitrary trial wave function. I
our caseuC trial& is an exact eigenstate of the global Ham
tonian for a certain set of model parameters.

Combining now Eqs.~3! and ~4! yields

Elower<EGS<Eupper. ~5!

Exploiting that bothElower and Eupper are analytic functions
of the couplings of the global Hamiltonian, after careful
adjusting the coupling constants one can satisfy the equ

Elower5Eupper[EGS, ~6!

which means that for a certain set of model parameters~in a
special sector of the ground-state phase diagram! the exact
ground-state energyEGS is found. Furthermore, if the groun
state has no degeneracy, the exact ground stateuCGS& of the
global Hamiltonian is also found. In our case the nondeg
eracy is provided by the fact that the states we consider~see
Sec. IV! can be built up simply by using the lowest-ener
eigenstate of the local Hamiltonian. As an example let
consider the case of theD51-dimensional half-filled chain
with bonds as clusters. For certain values of the coupl
constants it can be concluded that the nondegenerate lo
eigenvalue of the local Hamiltonian belongs to the para
orientation of spins included on the bond. Since the bo
are equivalent, all the bonds along the chain contain para
oriented spins with the same local energy for the given se
model parameters. This fact yields the long-range orde
spins ~here ferromagnetism! and also the nondegeneracy
the global ground state~apart from the spin degeneracy!.
Similar arguments hold for the nondegeneracy of the gro
state in higher dimensions, too.

Changing now the trial wave function and following th
procedure discussed above a new ground state in a diffe
region of the phase diagram can be found. Furthermore,



n
th

a

r
-

-
o

n

c-
c-
-
l

o

re

gs
rest-

ely
il-

(

rgy

n-

est-
rs

el-
the

ric

n

est-
-to-
this

PRB 59 10 009IMPROVED STABILITY REGIONS FOR GROUND . . .
peating the method with more and more trial wave functio
a large portion of the ground-state phase diagram of
model can be explored.

III. GLOBAL AND LOCAL HAMILTONIAN

Let us define now our global Hamiltonian on
D-dimensional hypercubic lattice (D.1) in the following
form:

Hglob5UÛ1(
i , j

@2t i j t̂ i j 1Xi j X̂i j 1Vi j V̂i j 1Yi j Ŷi j 1Ji j Ĵi j #

2mm̂, ~7!

where

Û5(
i

ni↑ni↓ ,

t̂ i j 5(
s

cis
† cj s ,

X̂i j 5(
s

cis
† cj s~ni ,2s1nj ,2s!,

V̂i j 5
1
2 (

s,s8
nisnj s8 ,

Ŷi j 5ci↑
† ci↓

† cj↓cj↑ ,

Ĵi j 5
1
2 D i j

XY~Si
1Sj

21Sj
1Si

2!1D i j
Z Si

zSj
z ,

m̂5(
i ,s

nis .

Here the fermion operatorscis
† (cis) create~annihilate!

electrons with spins in the single tight-binding Wannie
orbital associated with sitei . nis is the particle number op
erator of electrons with spins, andni5ni↑1ni↓ . Further-
more, the spin operators are given bySi

15ci↑
† ci↓ , Si

2

5ci↓
† ci↑, andSi

z5 1
2 (ni↑2ni↓). The above Hamiltonian con

tains a term corresponding to the familiar Hubbard term
doubly occupied sites (U), the hopping of a single electro
~characterized byt i j ), a density dependent~or correlated!
hopping term (Xi j ), an intersite density-density type intera
tion of electrons (Vi j ), a term describing the hopping of ele
tron pairs (Yi j ), for D i j

XY5D i j
Z 51 a Heisenberg-type ex

change interaction of spins (Ji j ), and a chemical potentia
term (m). We note thatD i j

XY50 and D i j
Z 51 represents an

Ising-type coupling of electron spins, while the case
D i j

XY51 andD i j
Z 50 corresponds to anXY-type interaction.

Ji j .0 (Ji j ,0) means antiferromagnetic~ferromagnetic!
type of exchange. The relevance of the present model for
materials is discussed, e.g., in Refs. 4 and 20.
s
e

f

f

al

In the rest of the paper we investigate only couplin
between on-site, nearest-neighbor, and next-to-nea
neighbor electrons. Incorporating this restriction into Eq.~7!
and using the conventionAl5Ai j ( l 51,2 for i , j being
nearest- and next-to-nearest-neighboring sites, respectiv!
for the intersite couplings, one can rewrite the global Ham
tonian as

Hglob5U(
i 51

L

~ni↑2
1
2 !~ni↓2

1
2 !1(

l 51

2

(̂
i j & l

3H 1
2 (

s
@Xl~ni ,2s1nj ,2s!2t l #~cis

† cj s1cj s
† cis!

1 1
2 Vl~ni21!~nj21!1 1

2 Yl~ci↑
† ci↓

† cj↓cj↑

1cj↑
† cj↓

† ci↓ci↑!1 1
2 Jxy

~ l !~Si
1Sj

21Sj
1Si

2!1Jz
~ l !Si

zSj
zJ

2mm̂2E0 . ~8!

Here (^ i j & l
means a summation over nearest-neighboringl

51) and next-to-nearest neighboring (l 52) sites. The new
notationsJxy

( l )5D l
XYJl and Jz

( l )5D l
ZJl are also used. In the

special case ofD l
XY5D l

Z51, however, theJl[Jxy
( l )5Jz

( l ) no-
tation will be kept for the sake of clarity.E0 represents a
numerical constant that shifts the zero point of the ene
scale. We remark that during the reformulation of Eq.~7! to
Eq. ~8! the chemical potential is also shifted by some co
stant.

Because we have only nearest- and next-to-near
neighbor interactions, the fully symmetric minimal cluste
are the two-dimensional elementary plaquettes of theD52-
dimensional square lattice, as depicted in Fig. 1. AllD.2-
dimensional hypercubic lattices can be covered with the
ementary plaquettes; however, in those cases
D-dimensional hypercubes would be the fully symmet
minimal clusters.

Following the method of Sec. II the global Hamiltonia
can be rewritten in terms of such plaquettes ((@ i , j ,l ,m# means
a summation over the plaquettes! as

Hglob5 (
[ i , j ,l ,m]

hi j lm ~9!

with

FIG. 1. An elementary plaquette of theD52-dimensional
square lattice. Solid lines represent different types of near
neighbor couplings while dashed lines symbolize the next
nearest-neighbor ones. The local Hamiltonian is defined on
cluster.
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hi j lm5
U

z2
(

aPA0

~na↑2
1
2 !~na↓2

1
2 !1

X1

4 f 1
(

~a,b!PAN
(
s

~ca,s
† cb,s1cb,s

† ca,s!~na,2s1nb,2s!

1
X2

f 2
(

~a,b!PANN
(
s

~ca,s
† cb,s1cb,s

† ca,s!~na,2s1nb,2s!2
t1

4 f 1
(

~a,b!PAN
(
s

~ca,s
† cb,s1cb,s

† ca,s!

2
t2

f 2
(

~a,b!PANN
(
s

~ca,s
† cb,s1cb,s

† ca,s!1
V1

4 f 1
(

~a,b!PAN

~na21!~nb21!1
V2

f 2
(

~a,b!PANN

~na21!~nb21!

1
Y1

4 f 1
(

~a,b!PAN

~ca↑
† ca↓

† cb↓cb↑1cb↑
† cb↓

† ca↓ca↑!1
Y2

f 2
(

~a,b!PANN

~ca↑
† ca↓

† cb↓cb↑1cb↑
† cb↓

† ca↓ca↑!

1
Jxy

~1!

4 f 1
(

~a,b!PAN

~Sa
1Sb

21Sb
1Sa

2!1
Jxy

~2!

f 2
(

~a,b!PANN

~Sa
1Sb

21Sb
1Sa

2!1
Jz

~1!

2 f 1
(

~a,b!PAN

Sa
z Sb

z 1Jz
~2! (

~a,b!PANN

Sa
z Sb

z

2
m

z2
(

aPA0

na . ~10!
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Here f 15z2 /z1 and f 252 are numerical constants@z1

52D andz254(2
D) are the number of nearest- and next-

nearest-neighboring sites, respectively, on theD-dimensional
hypercubic lattice#. They are needed to avoid double
higher counting of intersite interactions during the plaque
summation. Furthermore,t1 ,X1 ,V1 ,Y1 are the values of
single-electron hopping, correlated hopping, density-den
type interaction, and pair-hopping between nearest neigh
ing sites, respectively, whilet2 ,X2 ,V2 ,Y2 indicate the analo-
gous processes between next-to-nearest-neighboring sitU
is the Hubbard interaction that can either be positive or ne
tive in our model. To mimic real systems, however, it shou
be repulsive. In addition, spin interactions with exchan
couplings Jxy

(1) , Jxy
(2) , Jz

(1) , and Jz
(2) are included on the

plaquette. Further notations:A05$ i , j ,l ,m% means the set o
individual lattice points,AN5$( i , j ),( j ,l ),(l ,m),(m,i )% rep-
resents the set of nearest-neighboring sites, andANN
5$( i ,l ),( j ,m)% indicates the set of next-to-neares
neighboring sites on the plaquette~see Fig. 1!. The possibil-
ity of anisotropies can be naturally incorporated into the
cal ~and also global! Hamiltonian via the nonequivalence o
the orthogonal directions of the plaquette. The effects, h
ever, are not discussed in the present paper.

To apply Eq.~6! the connection between the number
lattice sites L and the number of clustersNcluster ~here
plaquettes! is also needed. Combinatoric considerations g
the following simple result for this quantity on
D-dimensional hypercubic lattice,

Ncluster5
1
2 D~D21!L. ~11!

IV. RESULTS

As an illustration of the method described in Sec. II w
consider a few physically interesting states, theh-pairing
states of momentumP ~Sec. IV A!, which show off-diagonal
long-range order and are hence superconducting, and
fully saturated ferromagnetic state~Sec. IV B!. We deter-
mine under what conditions these states are the ground s
of the global HamiltonianHglob. All the calculations pre-
-
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r-

.
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tes

sented are done at half-filling. Except theh-pairing state of
momentumP50, it is not possible to express the results in
compact analytic form as has been done earlier in Ref.
Therefore, and for the sake of visualization, we have
stricted ourselves to special cuts of the parameter spac
illustrating the effects of the larger local Hamiltonians and
next-to-nearest-neighbor couplings. The cuts are chose
such a way that the corresponding ground-state phase
grams can easily be compared with the previously publis
rigorous results of Strack and Vollhardt,11 de Boer and
co-workers,12,21 and Montorsi and Campbell.22 In principle,
one can also investigate the role of each nearest- and n
to-nearest-neighbor interactions separately, one by one
ing our method.

A. h-pairing states of momentumP

The definition of theh-pairing operator of momentumP
is given by the relation

hP
†5(

j 51

L

eiP jcj↓
† cj↑

† . ~12!

Using this operator anh-pairing state of momentumP and of
pairsN can be constructed as

uCh~N,P!&5K~hP
†!Nu0&, ~13!

where K5$@(L2N)! #/L!N! %1/2 is a normalization factor.
For further details about theh-pairing states the reader i
referred to the literature.21–25 Since we would like theh-
pairing states to be the ground state of our model, it is
structive to calculate the commutator of theh operator with
the global HamiltonianHglob. One finds that

@H,hP
†#5 (

k51

2 F 1
2 ~Xk2tk! (

^ j l &k

~eiP j1eiPl !~cj↓
† cl↑

† 1cl↓
† cj↑

† !

1 1
2 Xk(

^ j l &k

~eiP j2eiPl !

3@~nl↑2nj↓!cl↓
† cj↑

† 1~nl↓2nj↑!cj↓
† cl↑

† #
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1 (
^ j l &k

$~ 1
2 Yke

iP j2Uke
iPl !~nj21!cl↑

† cl↓
†

1~ 1
2 Yke

iPl2Uke
iP j !~nl21!cj↑

† cj↓
† %G22mhP

† .

~14!

Calculating now the quantity@Hglob,(hP
†)N#u0&, one can eas-

ily deduce the parameters where theh-pairing states of mo-
mentumP are the ground state of the starting model;
momentumP50 one arrives at the requirementsXi5t i and
Yi52Vi ( i 51,2), while for momentumP5p the conditions
X25t2 and Yi5(21)i2Vi ( i 51,2) must be satisfied. On
would also look forh-pairing states of momentumPÞ0 or
PÞp. These, however, represent the ground states of
global Hamiltonian in Eq.~7!, where Xi5t i ( i 51,2), U
<24t1 and all the other interaction constants are zero.26,27

Using the h-pairing states as trial wave functions, th
upper bound in the thermodynamic limit for the ground-st
energy per lattice siteL is

Eupper
hP

L
5 1

4 ~U1z1V11z2V2!1 1
2 n~ 1

2 n21!

3(
l 51

2

zlVl1
1
4 n~12 1

2 n!(
l 51

2

zlYlcosl P2mn.

~15!

Exploiting the constraints between the amplitudes of p
hopping Yi and that of density-density type interactionVi
one gets for the half-filled case (n51) that

Eupper
hP 5 1

4 LS U1(
l 51

2

zlVl D 2mL. ~16!

Despite the fact that the upper bounds for theh-pairing
states of momentumP50 andP5p are identical, there is a
characteristic difference between the two sets of wave fu
tions; the stateuCh(N,P5p )& remains an exact eigenstate
the global HamiltonianHglob even if X1Þt1.

As mentioned earlier, it is possible to include more spa
correlations using local Hamiltonians defined on larger cl
ters of the lattice. This leads to the extension of the stab
of the chosen state and means an improvement on the p
boundaries. For theh-pairing state of momentumP50 this
effect is depicted in Fig. 2, where theJ̃xy-J̃z cut of the cou-
pling constants’ space is chosen. The inner triangle co
sponds to the stability domain of theh0-state determined by
the OGS method of de Boer and Schadschneider12 using
bond Hamiltonians with purely nearest-neighbor inter
tions. The shaded regions give the improvements of
boundaries applying our method with plaquette Hamiltonia
containing only nearest-neighbor interactions. The axesJ̃a

5Ja
(1)A(U,V1) ~a5xy,z! represent the rescaled values

nearest-neighbor exchange interactions with the scaling
tor of

A~U,V1!5F2U2U
1V1UG21

. ~17!

z1
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he
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-
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l
-
y
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e-

-
e
s
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From Fig. 2 one can immediately read off the stability crit
ria for the h0 state to be the ground state ofHglob. In the
absence of next-to-nearest-neighbor interactions~i.e., t2
5X25V25Y25J250) for V1<0 values of nearest
neighbor density-density type interaction

V1<0,

21<
J̃z

t1
<22S J̃xy

t1
D 2

11. ~18!

This is a considerable improvement over theV1<0, 21
< J̃z /t1<22uJ̃xy /t1u11 criteria derived following Ref. 12
using bond Hamiltonians.

If now next-to-nearest-neighbor interactions are turn
on, i.e., nonzero values ofV2 ~and henceY2) are considered,
the criteria of Eq.~18! remains valid in an improved form. In
this case there is a need for the proper change of the sca
factor A, which now depends also explicitly on next-to
nearest-neighbor interactions. The new value of the sca
factor is

A~U,V1 ,V2!5F2
z2

z1
U2U

z2
1V11V2UG21

. ~19!

In real systems theX15t1 requirement does not hold in
general. However, the strengths of the corresponding
interactions are of the same magnitude. ForX1Þt1 only the
h-pairing state of momentumP5p represents an exac
eigenstate of the model HamiltonianHglob. Figure 3 shows
the stability regions of thehp state for two different sets o
model parameters expressed in units of eV in theU-t1 plane.
Dotted lines represent the boundary for stability regions c
responding to bond Hamiltonians, while solid lines are t
boundaries calculated with plaquette Hamiltonians in the

FIG. 2. Exact stability region ofh-pairing state of momentum
P50 (h0) at half-filling. The shaded region represents the enlar
ment of the stability domain due to the choice of local Hamiltoni
defined on elementary plaquettes~see Fig. 1! of the lattice. All the
next-to-nearest-neighbor interactions are kept zero.
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sence of next-to-nearest-neighbor interactions. The sha
regions clearly show the extension of stability regimes due
the choice of larger local Hamiltonians.

We now consider the phase diagrams in theU-Y1 ~Fig. 4!
andV2-V1 ~Fig. 5! planes for fixed values of the other inte
actions. In Fig. 4 the exchange interaction has been fixed
the relationJ1522Y1. This insures that the global Hami
tonian of Sec. III coincides with the model Hamiltonian
Ref. 25, where the authors, using the method of posi
semidefinite operators,8,10,11derived rigorous bounds for th
hp state. Comparing Fig. 4 with Fig. 1 in Ref. 25 two bas
differences can be noticed. First, the boundary of the stab
region, even for the special case ofX15t1, varies with in-
creasing values of nearest-neighbor pair-hopping amplit
Y1 and has a maximum atY1'1.33t1, instead of having a
constant value. Second, the value of this maximumUmax
'20.33z1t1 is independent ofX1. Furthermore, the stability
regions for all values ofX1 /t1 derived with the presen
method are always larger than the corresponding ones
dicted by Montorsi and Campbell25 and de Boer and

FIG. 3. Exact stability domains ofh-pairing state of momentum
P5p (hp) at half-filling for two different sets of nearest-neighb
couplings in the absence of next-to-nearest-neighbor interact
@~a! X150.1 eV, V1522, eV andJ150.05 eV; ~b! X150.1 eV,
V1522 eV, Jxy

(1)520.02 eV, andJz
(1)520.015 eV#. The shaded

regions represent the enlargement of the stability domain due to
choice of local Hamiltonian defined on plaquettes instead of bon
ed
o

by

e

ty

e

re-

Schadschneider12 and exist for all positive values ofY1. The
relationY1522V1 is also satisfied because thehp state has
to be an exact eigenstate of the model. Therefore, the p
tivity of Y1 implies that the nearest-neighbor density-dens
type interactionV1 has to be always negative, i.e., attractiv
in order to find anhp ground state.

As theh-pairing states consist of local pairs of electron
it is of interest to investigate the effect of on-site Coulom
repulsion, characterized byU, on the stability of these pairs
To do this theV2-V1 plane is chosen at various values ofU.
As can be seen in Fig. 5 the local pairs are stable even in
presence of relatively large positive values ofU. This re-
quires, however, an attraction in the nearest-neighns

he
s.

FIG. 4. Effects of correlated hoppingX1 and pair hoppingY1 on
the stability of h-pairing state of momentumP5p (hp). Each
next-to-nearest-neighbor interaction is turned off. We note that
yond a well-defined value ofY1 the phase boundaries for the cas
X1Þt1 andX15t1 coincide.

FIG. 5. Stability domains ofh-pairing state of momentumP
5p (hp) in D53 in the presence of various on-site Coulom
repulsions ~U! and intersite density-density type interactio
(V1 ,V2). The remaining parameters of Eq.~7! are chosen as fol-
lows: t2

52
1
4 t1 andX15J15J250. Note thatX2 , Y1, andY2 are uniquely

fixed via the rigorous restrictions derived earlier in order that E
~13! be an exact eigenstate. InD52 similar stability regions
emerge.
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density-density interaction channel. It should also be no
that the same type of interaction between next-to-nea
neighbors, denoted byV2, can either be attractive or mode
ately repulsive. These findings lead us to the conclusion
the h-pairing state of momentumP5p remains the ground
states of Eq.~7! even for positive values of the on-site Co
lomb interaction. Hence superconductivity can exist in
extended Hubbard model with local repulsion (U.0), if a
sufficiently strong nearest-neighbor attraction (V1,0) is
present.

The inclusion of next-to-nearest-neighbor interactions
creases remarkably the number of model parameters
hence the number of possible cuts of the parameter sp
Therefore, we illustrate only some special, overall effects
these interactions. In order to model real systems all next
nearest-neighbor interactions are chosen to be smalle
magnitude than the corresponding nearest-neighbor o
Nevertheless, the ratio of nearest to next-to-nearest-neig
interactions can be very different—it depends on the ma
rial. In Fig. 6 three plots are shown for different values of t
couplings. These belong to the case ofD52. The corre-
sponding three-dimensional plots display qualitatively
same features, except for the parameters of Fig. 6~c!. The
quantitative discrepancy between the plots taken inD52
and in D53 is due to the fact that the number of next-t
nearest neighborsz2 is much larger inD53 spatial dimen-
sions than inD52 on a hypercubic lattice. This suggests th
in the framework of the present model the effects of next-
nearest-neighbor interactions are stronger in higher dim
sions.

In Fig. 6~a! the stability region of theh-pairing state of
momentumP50 is shown for a certain set of model param
eters in the absence~solid line! and in the presence~dotted
line! of next-to-nearest-neighbor couplings. One can no
the expansion of the stability region due to the presence
next-to-nearest-neighbor interactions. Since a large valu
ut1u ~in the presence of a fixed value of the nearest-neigh
pair hoppingY1) favors the hopping of single electrons ov
the hopping of electron pairs, large values ofut1u give rise to
the breaking of local pairs. This means that the numbe
doubly occupied sites is not conserved any longer and,
result, theh0 state ceases to be the ground state ofHglob. In
Fig. 6~b! the effects of next-to-nearest-neighbor interactio
on the stability of thehp state are shown. In contrast to th
situation depicted in Fig. 6~a! no shrinking of the stability
domain with increasingut1u can be observed. This can b
explained with the different internal structure of thehp pairs.
In Fig. 6~c! we show a situation, where next-to-neare
neighbor couplings can either extend or shrink the stab
region of thehp state. As mentioned earlier, the dimensi
of the lattice plays a crucial role here. InD52 a huge por-
tion of theU-Y1 plane phase diagram is occupied by thehp

state for any ratio ofX1 /t1. In D53, however, it was found
for a wide parameter region that thehp-state is the ground
state of the model HamiltonianHglob only for the special case
of X1 /t151.

B. Fully polarized ferromagnetic state

Let us consider now the fully (z-! polarized ferromagnetic
state as the trial wave function defined as
d
st

at

e
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nd
ce.
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uCFM&5)
j 51

L

cj↑
† u0&5F̂u0&. ~20!

Calculating the commutator ofF̂ with Hglob one can see tha
this state is an exact eigenstate of the global Hamiltonian
any values of the interaction parameters. The trial wave fu

FIG. 6. Effects of next-to-nearest-neighbor~NNN! couplings on
the stability of h-pairing states of momentumP on a two-
dimensional square lattice. The values of the interaction const
are fixed as follows:~a! P50, V1523 eV, Jxy

(1)5
1

40 eV, Jz
(1)

5
1

30 eV, t25
1
3 t1 , V25

1
3 V1, and Ja

(2)5
1
3 Ja

(1) (a5xy,z); ~b! P
5p, V1522 eV, X150.5 eV, Jxy

(1)52
1

50 eV, Jz
(1)52

1
40 eV,

t252
1
3 t1 , V25

1
3 V1, and Ja

(2)5
1
3 Ja

(1) (a5xy,z); ~c! P5p, X1

5
1
2 t1 , J1522Y1 , t252

1
5 t1 , Y25

1
8 Y1, andJ25

1
8 J1.
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tion uCFM& yields in the thermodynamic limit at half-filling
the upper bound

Eupper
FM 52 1

4 UL1 1
8 L(

l 51

2

zlJz
~ l !2mL ~21!

for the ground-state energy.
In what follows, we reveal under what conditions Eq.~20!

is the ground state ofHglob. For the sake of simplicity we
concentrate on a fixed set of numerical values of near
neighbor couplings, as it has already been estimated
Hubbard28 for electrons ind bands of transition metals. Th
values of next-to-nearest-neighbor interactions are chose
be fractions of the corresponding nearest-neighbor ones.
ratio of nearest- to next-to-nearest-neighbor couplings is
to be approximately 5–8. We consider this range of ratio
be appropriate for a wide class of materials. Furthermo
this is in agreement with the work of Appel, Grodzicki, an
Paulsen,29 who also made quantitative predictions regard
the strength of nearest- and next-to-nearest-neighbor co
lated hoppingX1 and X2, respectively. Further calculation
at different sets of model parameters have also shown
the phase diagrams plotted in Figs. 7, 8, and 9 are gen
This suggests that the above choice of model parameters
tures the essential physics.

In Fig. 7 we present the changes in the stability dom
induced by using plaquette Hamiltonians. For comparis
with the corresponding result of Ref. 12 with bond Hamilt
nians, the plaquette Hamiltonians contained no next
nearest-neighbor interactions. The shaded region shows
enlargement in the stability domain of the fully saturat
ferromagnetic state. As can be seen from the figure, the
a reasonable extension with respect tot1. While in the case
of bond Hamiltonians the value of the correlated hoppingX1
should be very close in magnitude tot1 in order to reach the
boundary of the stability region atUmin'4 eV, we have a

FIG. 7. Exact stability region for the fully saturated ferroma
netic ~FM! state at half-filling on aD-dimensional hypercubic lat
tice for a certain set of model parametersX150.5 eV, V152 eV,
and Y152J15

1
40 eV in the absence of next-to-nearest-neighb

interactions. The shaded region represents the extension of the
bility of the fully saturated ferromagnetic state as the ground s
of Eq. ~7! due to the choice of local Hamiltonian defined on e
ementary plaquettes, instead of bonds, of the lattice.
t-
by

to
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much broader region for that using plaquette Hamiltonia
The broadening implies that the additionally incorporat
spatial correlations really lead to the stabilization of the
dered phase, in our case the ferromagnetism.

The global HamiltonianHglob containing purely nearest
neighbor interactions can be transformed into an effec
Heisenberg model in the large-U limit at half-filling ~see,
e.g., Vollhardtet al.30 and references therein! with the effec-
tive exchange coupling of

Jeff5
t1
2

US 12
X1

t1
D 2

1J1 . ~22!

This favors ferromagnetism for allJeff,0. Neglecting in Eq.
~7! all intersite interactions but the nearest-neighbor
change interaction, the latter equation suggests a simple
turbative criterion for the stability of ferromagnetism in th
large-U limit; ferromagnetism is favored over antiferroma
netism for all U.Uc5t1

2/uJ1u ~note that in Eq.~7! J1

52uJ1u,0 means the ferromagnetic coupling!. It is known
that the OGS approach using bond Hamiltonians gives
criterion U/z1.Uc as the stability requirement in the sam
regime. Therefore it possibly underestimates the stability
the fully polarized ferromagnetic state. Taking into accou
larger local Hamiltonians defined on elementary plaque
of the hypercubic lattice one gets the criterionU/z1.Uc/2
for the stability, which means more extended stability d
main in the large-U limit. Furthermore, it suggests that~at
least in the large-U limit ! the stability criterion has the form
of U.(z1 /b)Uc , whereb is the function of the size of the
cluster on which the local Hamiltonian is defined. The po
sible scaling behavior of the stability criterion and the co
crete form ofb(Ncluster) are discussed elsewhere.31

Since the fully polarized ferromagnetic state at half-fillin
is an exact eigenstate ofHglob we have got noa priori re-
strictions for the values of the interaction parameters. T
extensive calculations, however, lead to a simple restric
betweenJxy

(1) and Jz
(1) . In order to have a ferromagneti

ground state of a model containing spin interactions that v
continuously from a Heisenberg-type interaction to a sim

r
ta-

te

FIG. 8. Stability regions of the fully saturated FM state f
various values ofD1

XY . The stability region is maximal atD1
XY51

and vanishes for valuesD1
XY,21. The numerical values of the

remaining couplings are the same as in Fig. 7.
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Ising-type one, the21,D1
XY<1 requirement must hold

This means that the restriction

2uJz
~1!u<2Jxy

~1!,uJz
~1!u ~23!

has to be always satisfied. In Fig. 8 the consequence of
~23! is illustrated in theU-t1 cut of the parameter space
D1

Z51 andJz
(1)52uJz

(1)u,0 for various values ofD1
XY . The

size of the stability region is maximal atD1
XY51 and gradu-

ally decreases asD1
XY reachesD1

XY521. Any further de-
crease ofD1

XY yields that our ferromagnetic state that is ful
z polarized is no longer the ground state ofHglob; for Jxy

(1)

5Jz
(1) Hglob is SU~2! symmetric, which implies the degen

eracy of the ground state with respect to SU~2! rotations. For
anisotropic exchange couplings favoring thexy plane, the

FIG. 9. Effects of next-to-nearest-neighbor couplings on the
bility of the fully saturated FM state at half-filling in thet1-U and
t2-U planes,~a! and ~b!, respectively.~a! shows the phase bound
aries for various ratios oft2 /t1 choosing the numerical values o
nearest-neighbor interactions as in Fig. 7. Next-to-nearest-neig
interactions for the plot are as follows:X250.08 eV, V25

1
8 V1 ,

Y25
1
5 Y1, andJ25

1
5 J1. In ~b! all the interaction constants are e

pressed in units oft1 instead of units of eV. Above each line th
ground state is the fully polarized ferromagnetic state.
q.

ground-state polarization may still be macroscopic, howev
it no longer points in thez direction. This means that th
fully z-polarized ferromagnetic trial wave function becom
unstable. We note that Eq.~23! must hold even in the pres
ence of next-to-nearest-neighbor couplings.

In Fig. 9 the effects of nonzero next-to-nearest-neigh
hoppingt2 are illustrated for a fixed set of model paramete
first in theU-t1 plane@~a!, in units of eV# and second in the
U-t2 plane @~b!, in units of t1#. In Fig. 9~a! the dotted line
represents the phase boundary in the absence of nex
nearest-neighbor interactions while solid, long-dash
dashed, and dotted-dashed lines correspond to phase bo
aries in the presence of next-to-nearest-neighbor interact
for various values oft2. As can be seen from the plot, nex
to-nearest-neighbor interactions can help in stabilizing fer
magnetism for the chosen set of model parameters as lon
t2 /t1 has a small, positive value. For negative or large po
tive values oft2 /t1, however, the stability domain reduce
significantly and stronger Coulomb repulsion is needed
the stabilization. This means, e.g., that for a reasonably
row band (t1'0.4 eV) with the ratio oft2 /t150.1, the re-
quired minimal stabilizing Coulomb repulsion is abo
Umin'3 eV. The same value ofU at t2 /t1520.25 is about
Umin'30 eV, which is a magnitude larger. Nevertheless,
above range of Coulomb interactions can be considered
sonable for real materials.

In Fig. 9~b! the effects of change in non-interacting di
persion due to the inclusion of next-to-nearest-neighbor h
ping are shown for a square~solid line! and for a cubic
~dotted line! lattice. The stability domains of ferromagnetis
depend on the dimensionality of the lattice and do not co
cide. It is interesting to note that the most favorable values
t2 /t1 for which the Coulomb interaction takes its minim
valueUmin also depend on the spatial dimension. The sha
of the stability domains are also of interest: in a well-defin
region of t2 /t1 Umin changes only by a slight amount but a
soon as the edges of this region are reachedU increases
drastically. This feature suggests that inside the stability
gions a nonzero next-to-nearest-neighbor hopping via
asymmetric density of states13,32 helps ~in the presence of
other next-to-nearest-neighbor interactions! in stabilizing fer-
romagnetism but outside it destabilizes ferromagnetic ord
ing. The edges are determined mainly by the dispersi
~hence the shape of the particular density of states! and tuned
further by other interactions being present inHglob.

It is also known that the inclusion of nearest-neighb
ferromagnetic exchange interaction in the pure Hubb
model favors the parallel ordering of electron spins.4,11,19 In
Fig. 10 we considered the pure Hubbard model supp
mented with next-to-nearest-neighbor hoppingt2 and
nearest- and next-to-nearest-neighbor exchange interac
J1 and J2, respectively. All the other type of couplings a
turned off. As can be seen in the figure, the stability dom
of ferromagnetism extends with increasing value of the C
lomb repulsion and in the limit ofU→` fills the whole
J1 ,J2<0 quarter of the phase diagram. The fully polariz
ferromagnetic state remains the ground state of Eq.~7! for
finite values ofU only in the presence of finite values ofJ1
andJ2. Figure 10 also shows that the required minimal v
ues of uJ2u are about an order of magnitude less than

-

or
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required minimal values ofuJ1u, andJ2 should also be fer-
romagnetic in nature, i.e.,J2,0.

V. CONCLUSIONS

In the present paper we have studied in the thermo
namic limit the ground-state phase diagram of the Hubb
model supplemented by nearest- and next-to-near
neighbor interactions. The purpose of the study was
clarify to what extent and in which way the inclusion
additional spatial correlations changes the stability of phy
cally interesting states, theh-pairing state of momentumP
50 andP5p, or the fully z-polarized ferromagnetic state
The phase boundaries are extracted from the equality o
upper and a lower bound of the ground-state energy, he
these are exact. The additional spatial correlations are in
duced via the computation of the lower bound on elemen
plaquettes, instead of bonds, of theD-dimensional hypercu-
bic lattice. Except the case ofh-pairing state of momentum
P50 the exact phase boundaries cannot be given in clo
analytic forms. Instead, they are shown graphically in spe
cuts of the parameter space of the model under study.

The phase boundaries presented aresufficient phase
boundaries. This means that outside the region defined by
exact conditions a certain state might remain the ground s
of the model. Diagonalizing local Hamiltonians defined
larger clusters of the lattice the phase boundaries migh
further improved. This improvement with increasing clus
size addresses a further issue: does the stability domain
given ordered phase extend further with taking larger a
larger clusters, or is there a convergence regarding the l
tion of its phase boundary? If the latter holds, we could
termine the phase boundaries with a simple extrapola
even in the limit ofH5hcluster. Based on preliminary result
we believe that the further extension of stability doma
decreases rapidly with increasing cluster size. For insta
computing the lower bounds of the ground-state energy w
diagonalizing local Hamiltonians defined on clusters of
lattice sites, the further expansion of the stability regions
only a few percent, generally 4–5 % or less.

FIG. 10. Stability of the fully saturated FM state in the presen
of nearest (J1) and next-to-nearest (J2) -neighbor exchange cou
pling at t252

1
10 t1. All the other interactions are turned off, i.e

X15X25V15V25Y15Y250.
y-
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Considering the effects of more spatial correlation
which was equivalent in our case with the choice
plaquette Hamiltonians, we have improved significantly t
previously derived rigorous results of Refs. 11,12,24,
This means, e.g., for the fully polarized ferromagnetic st
that the minimal value of the Coulomb repulsion required
stabilize ferromagnetism along reasonable values of nea
neighbor interactions is predicted to be about 6–10 eV~in
D53) in a relatively broad range of nearest-neighbor ho
ping ~see Fig. 7!.

Another goal of the present study was to determine
overall effects of next-to-nearest-neighbor interactions on
stability domains. The inclusion of next-to-nearest-neighb
interactions can be done naturally using plaquette Hami
nians. To our knowledge, the effects of next-to-neare
neighbor interactions, except those of next-to-neare
neighbor hopping, have not yet been considered rigorousl
the literature. The relative strengths of next-to-neare
neighbor interactions are much smaller than that of near
neighbor interactions, the stability conditions, howev
strongly depend on them. Their effect in various sectors
the phase diagram is different and they result either an
tension or a shrinking of the stability domain. For instan
taking theh-pairing state of momentumP5p the possible
maximal value of the Coulomb repulsionUmax, up to which
the hp state remains the ground state of the extended H
bard model~i.e., the model has a superconducting grou
state!, is increased from 6 to 8–9 eV~in D53) by the in-
clusion of relatively small next-to-nearest-neighbor intera
tions @Fig. 6~b!#.

It is also known that next-to-nearest-neighbor hopping
single particles, which is characterized by the hopping a
plitude t2, is of importance in real materials. Our results a
in good agreement with this fact. We showed thatt2 has a
characteristic effect, e.g., on the stability of the fully sa
rated ferromagnetic state. Even a small ratio oft2 /t1, i.e., a
small amount of frustration in the dispersion, introduces
qualitative change into the phase diagram. The chang
mostly a shrinking of the stability domain, however, f
small ratios (t2 /t1<0.15) the presence oft2 helps in stabi-
lizing ferromagnetism~Fig. 9!. This is in good agreemen
with recent DMRG studies made on a one-dimensional
angular lattice.33 It is interesting to note that in our calcula
tions the extension of ferromagnetic domain occurs alway
positive ratios oft2 /t1 for fixed values of the other param
eters of the model.

The Hubbard model supplemented only by exchange
teractionsJ1 and J2 has also been investigated. Our resu
are in good agreement with Ref. 34, i.e., the critical values
nearest- and next-to-nearest exchange interactions to
rise to ferromagnetism approach zero asU→` in the case of
a half-filled band in any dimensions. However, at finite v
ues of the Coloumb repulsionJ1 andJ2 should also be finite,
if the ground state is the fully polarized ferromagnetic sta

In summary, we have established a simple method
allows us to incorporate and to treat the effects of next-
nearest-neighbor correlations and interactions in anexact
fashion. We showed that the ground state of the exten
Hubbard model in the thermodynammic limit at half-fillin
is superconducting or ferromagnetic, depending on the in

e
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action strengths. The improved phase boundaries for cer
sets of model parameters have also been constructed.
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