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The spin-half Heisenberg antiferromagrietAF) on the square and triangular lattices is studied using the
coupled-cluster-metho@CCM) technique of quantum many-body theory. The phase relations between differ-
ent expansion coefficients of the ground-state wave function in an Ising basis for the square lattice HAF is
exactly known via the Marshall-Peierls sign rule, although no equivalent sign rule has yet been obtained for the
triangular-lattice HAF. Here the CCM is used to give accurate estimates for the Ising-expansion coefficients for
these systems, and CCM results are noted to be fully consistent with the Marshall-Peierls sign rule for the
square-lattice case. For the triangular-lattice HAF, a heuristic rule is presented which fits our CCM results for
the Ising-expansion coefficients of states which correspond to two-body excitations with respect to the refer-
ence state. It is also seen that Ising-expansion coefficients which describe locadiredy excitations with
respect to the reference state are found to be highly converged, and from this result we infer that the nodal
surface of the triangular lattice HAF is being accurately modeled. Using these results, we are able to make
suggestions regarding possible extensions of existing quantum Monte Carlo simulations for the triangular-
lattice HAF.[S0163-182€09)09901-4

[. INTRODUCTION The Marshall-Peierls sign rule for Heisenberg antiferro-
magnets on bipartite lattices is an exact statement for the
The coupled-cluster methbd (CCM) has been previ- phase relations between the expansion coefficients of the
ously applied®**to a number of unfrustrated and frustrated ground-state wave function in an Ising basis. This statement
lattice quantum spin systems with a great deal of succesgs of intrinsic interest because it provides exact information
Recently, it has been shodhfor a CCM calculation, within regarding the ground-state wave function in cages., the

the so-called SUB2 approximation which contaadk two- - ; ;
body correlations, that the ket-state correlation coefficientsS quare lattice HAFfor which no general exact solution has

can be related to the Marshall-Peierls sign filtor the yet been determined. It is also of interest because by using

square-lattice Heisenberg antiferromagieiAF). Further- this ru",:‘, one implicitly has full knowledge qf Fhe ‘.‘noda.l
more, it was shown in this treatméhthat the CCM ket-state surface” of the ground-state wave function within this basis.
correlation coefficients for the Heisenberg model on the tri-NOte that whenever the words “nodal surface” are referred
angular lattice also demonstrate a seemingly regular patterf? In this article, this is taken to mean the magnitudes and
This relationship between the Marshall-Peierls sign rule angigns of these expansion coefficient@f course, for the
the CCM ket-state correlation coefficients was furthersquare lattice HAF the signs are exactly known via the
investigate® and clarified for a spin model with both Marshall-Peierls sign rule, although the magnitudes are
nearest-neighbor and next-nearest-neighbor exchangkhown only via exact or approximate calculation. Quantum
namely, thel,-J, model, on the linear chain and square lat-Monte Carlo(QMC) calculations for fermionic and spin sys-
tices. The Marshall-Peierls sign rule at the Heisenberg pointems demonstrate the infamous "sign problem,” and so such
on the square lattice was found to be preservedlbyf the information regarding the signs of the expansion coefficients
Ising-expansion coefficients within a localized approxima-is of importance in these calculations.

tion scheme, as well as within the SUB2 scheme. No as- For nonbipartite latticege.g., the triangular-lattice HAF
sumption was made other than the choice of an initial referor for other models containing frustratioie.g., theJ;-J,
ence state with respect to which the ground-state wavenodel on the square latticeorresponding exact sign-rule
function was approximately constructed in the infinite latticetheorems are generally not known. Hence, various approxi-
limit using the CCM formalism. It was also possible to ob- mate ways of simulating the nodal surface have been devel-
tain a quantitative value for the point at which the sign ruleoped for use, for example, in fixed-node quantum Monte
breaks down with increasing antiferromagnetic next-nearestcarlo calculations. However, one is always limited in such
neighbor exchange for the square-lattice case. This quantitgimulations by not knowing how close is the trial wave func-
tive value was found to be in good agreement with exaction or guiding wave function that one uses to the true
diagonalization calculatiorf. ground-state wave function. It is therefore of considerable

0163-1829/99/5@)/10008)/$15.00 PRB 59 1000 ©1999 The American Physical Society



PRB 59 Ab initio SIMULATION OF THE NODAL SURFACES ... 1001

interest to develop theories which simulate the nodal surfacd SWT) (Ref. 28 gives a value ofEy/N=—0.658 for the
from an ab initio stand point, such as is done here via theground-state energy, and a value for the sublattice magneti-
CCM. In this way, one might be able to utilize this CCM zation which is 60.6% of the classical value.
information concerning the nodal surface in a QMC calcula- Again, no exact solution exists for the Heisenberg model
tion, or at least suggest possible extensions of previous QM®@n the triangular lattice, although many approximate calcu-
calculations. It is also conceivable that one might observéations have been carried otit>?—>'Exact series expansidh
patterns in the expansion coefficients obtained via the CCMalculations obtain a value for the ground-state energy per
and so infer rules concerning these coefficients or subclassepin of this model ofE,/N=—0.551. Similarly, spin-wave
of them which relate to specific types of excitation. theory (SWT) (Ref. 39 gives a value off,/N=—0.5388,

In this article, we briefly introduce the CCM formalism and a fixed-node quantum Monte CaffeNQMC) (Ref. 35
for the lattice quantum spin systems and also make an exalculation gives a value d&y/N= —0.5431+0.0001. Exact
plicit link between the expansion coefficients of the ground-diagonalizations of finite-sized clusters of spfhshich have
state wave function and the CCM ket-state correlation coefbeen extrapolated to the infinite lattice limit give a value for
ficients. This link is investigated for the square and triangle-the ground-state energy per spin Bfj/N=—0.5445. In
lattice HAF's, and the Ising-expansion coefficients comparison, a recent coupled-cluster-method calcufation
corresponding to states which correspond to two-body excipredicts a value for the energy Bf,/N=—0.5505, which is
tations with respect to a reference state are determined withifully consistent with the best of the other results obtained for
well-defined approximation schemes. These coefficients argis system so far.
seen to be well-converged usinglacalized approximation Classically, this system orders as aelNetate on the tri-
scheme. For the triangular-lattice HAF, a heuristic rule isangular lattice such that each nearest-neighbor pair of spins
presented which fits our CCM results for the Ising-expansiommakes an angle of 120° to each other. The results of approxi-
coefficients of states which correspond to two-body excitamate theories for the amount of this ordering that remains in
tions with respect to the reference state. The Ising-expansiohe quantum limit, i.e., the sublattice magnetization, are
coefficients of states which corresponchtdbody excitations  typically?®>34*that 50% of the classical ordering remains in
are also shown, within this same localized approximatiorthe quantum limit. The FNQMC calculation of Ref. 35
scheme, to be well converged. Patterns are also seen in tipgaces this value at 60%, which is probably still too high. A
Ising-expansion coefficients which correspond to theserotable exception to all of these results quoted above is the
m-body excitations for the triangular-lattice HAF, although result of exact series expansion calculatidnghich predicts
no generic sign rule for them is formulated. Finally, sugges+hat as little as 20% of the classical ordering remains.
tions are made regarding possible extensions of existing
qguantum Monte Carlo simulations for the triangular-lattice B. The CCM formalism

HAF. The CCM formalism® is now briefly considered, al-

though the reader should note that more detailed descriptions
Il. THE SPIN MODEL AND THE CCM FORMALISM of the CCM applied to spin systems are given in Refs. 10—
25. To calculate the ground state wave functigr) of a spin

. ] system we start with a model statd) and a correlation
In this paper we consider the zero-temperatufe=0)  gperatorS such that

properties of the spin-half Heisenberg antiferromagnet

A. The Heisenberg model

(HAF) quantum spin system, which is described by the |¥)=e% D), 2
Hamiltonian where the ket-state correlation operamay be written as
H=2> s-s, (1) s=> S,C. 3
(.5 i#0

where the index runs over allN lattice sites on the square The correlation operatdgis formed from a linear combina-
and triangular lattices with periodic boundary conditions,tion of multiconfigurational creation operatof€,"} (which
and the inde) runs over all nearest-neighbor sitesitThe themselves are formed from products of spin raising opera-
angular brackets indicate that each nearest-neighbor mnd tors) multiplied with the relevant ket-state correlation coeffi-
link) is counted once and once only. cients{S;}. In addition, we define a set of destruction opera-
The Heisenberg model on the square lattice has not bednrs{C, } which are the Hermitian adjoints ¢C;"}.
solved exactly up till now, although it been extensively stud- For the square lattice case, the model state is chosen to be
ied using various approximate methdds®! Rungé! has the classical Nel state. The lattice is divided into two sub-
performed the most accurate Monte Carlo simulation to datéattices and one sublattice is populated with “up” spins and
for the square-lattice isotropic HAF. He finds a value for thethe other with “down” spins. In order to treat the spins
ground-state energy per spin6f/N=—0.669344), and a  equivalently the local spin axes of the “up” spins are rotated
value for the sublattice magnetization which is 61.5%by 180° about thg axis, which is mathematically written as
+0.5% of the classical value. Extensive CCM calculations
have also been carried out for this mddejiving a value for
the ground-state energy per spinif/N=—0.66968, and a The Hamiltonian may now be written, with the introduction
value for the sublattice magnetization which is 62% of theof an anisotropy coefficienton the off-diagonal elements of
classical value. In comparison, linear spin-wave theornH, as

sf— -5 =g, -5 (4)
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X . This equation illustrates one of the key aspects of CCM,
H=-2> Ssit5(sis| +s7s) (5 which is named the similarity transform—here of the Hamil-
0 tonian. The similarity transform of any operator may be ex-

where the sum oKi,j) runs over all nearest-neighbor pairs panded as a series of nested commutators such that an exact
and counts each pair once only, and whetel corresponds expression for the ground-state energy in terms of the ket-
to the isotropic Heisenberg Hamiltonian of E€l). The state correlation coefficientsS,} which is already deter-
Marshall-Peierls sign rule for the original Hamiltonian of Eq. mined in the infinite lattice limiiN—o, can often be found
(1), in terms of rotated spin coordinates, now differs from thefor whatevernontrivial) approximations are made f& The
original sign rule?®® For the ground-state wave function, approximation inSmeans that we obtain approximate values
|T)y==,%,|l), the Ising-expansion coefficien{sV,} must for ket-state coefficientsS,} and so the ground-state energy
now all be greater thator equal t9 zero with respect to a is approximately determined, although, as stated above, the
complete set of Ising basis statfl$)} in the rotated spin equation for the ground-state energy is an exact expression
coordinates. of one or more of these coefficients. To determine the CCM
For the triangular lattice case, we chodde to again be ket-state coefficients we operate on the Sdhmger equation
the classical Nel state, and we start the CCM calculation by with exp(—S) and then by ®|C, , for a given cluster con-
dividing the lattice into three sublattices, deno{eédB,C}. figuration indicated by the indek An explanation of how
The spins on sublatticA are oriented along the negatize the CCM equations may be derived and then solved is pre-
axis, and spins on sublatticBsandC are oriented at-120°  sented in Refs. 10-25.
and —120°, respectively, with respect to the spins on sub- The three most commonly employed approximation
lattice A. In order both to facilitate the extension of the iso- schemes ar€l) the SUBY scheme, in which all correlations
tropic HAF to include an lIsing-like anisotropy first intro- involving only n or fewer spins are retained, but no further
duced by Singh and Hu¥tand to make a suitable choice of restriction is made concerning their spatial separation on the
the CCM model state, we perform the following spin- lattice, (2) the SUB-m sub-approximation, in which all
rotation transformations. Specifically, we leave the spin axeSUBn correlations spanning a range of no more thaad-
on sublatticeA unchanged, and we rotate about jhexis the  jacent lattice sites are retained, ai8ithe localized LSUBn
spin axes on sublatticeB and C by —120° and+120°, scheme, which retains all multispin correlations over distinct

respectively, locales on the lattice defined loy or fewer contiguous sites.
In order to clarify the physical significance of the approxi-
X 1, 3 z X X V3 z mation schemes outlined above, we note that since thenSUB
ST 5T 5 S8 Sc T ESCJF = S scheme contains al-body (and lower-order correlations,
the SUB approximation contains botfong-ranged and
s, sLost, (6)  short-ranged rbody (and lower-order correlations. In con-
trast, the SUB-m scheme contains only thoséort-ranged
3 1 \/5 1 n-body (and Iovye_r—ordercorrelations within a locale defined
Sg— 73@— ESZB, Se¢— — 7s)é— §Szc- by m, although it is noted that results of the ShHth scheme

converge to those of the SWBscheme in the limim— .

We may rewrite Eq(1) in terms of spins defined in these Similarly, the LSUBn scheme contains only thosshort-
local quantization axes for the triangular lattice with a furtheranged mbody (and lower-order correlations in a locale

introduction of an anisotropy parameterfor the non-Ising-  &/S0 defined bym. (For specific examples of the application
like pieces of such schemes to lattice spin models the reader is referred

to Refs. 10—25.Note that all 30 cluster configurations which

1 J3n are used in the LSUB4 approximation for the triangular lat-
H=> |- Esizsjz+ T(sizsj*ﬁtsizsj’—si*sjz— S S7) tice antiferromagnet, and which are independent under the
(i=i) six-point symmetry group inherent in the Hamiltonian of Eq.
A 3\ (7), are listed in Fig. 1.
+ g(sﬁsj”rsi_sr)— ?(sﬁstrsi_sj_) , (7 We now consider an expansion of the ground-state wave

function in a complete Ising basf§l )} (in terms of theocal

wherex=1 corresponds to the isotropic Heisenberg Hamil-coordinates after rotation This may be again written as
tonian of Eq.(1). We note that the summation in Eq)  |¥)=3,¥[I), where the sums overgo over all ' Ising
again runs over nearest-neighbor bonds, but now also with gfates, and we find that this expression naturally leads from
directionality indicated by(i—j), which goes fromA to  Ed.(2) (also see Ref. 250 an exact mapping of the CCM
B, B to C, andC to A. We note that no exact sign rule has correlation coefficientdS;} to the Ising-expansion coeffi-
yet been proven for the Hamiltonian of E(7). Whenx  cients{¥}, which is given by
=0, the Hamiltonian in Eq(7) describes the usual classical
Ising system with a unique ground state which is simply the ~ ¥1=(®|C; e%|®) = (P[5 s ---s €SP) . (9)
fully aligned (“ferromagnetic”) configuration in the local ) ) ) )
spin coordinates described above. It is possible to match the terms in the exponential to the

From the Schidinger equatiorH|¥)=E|¥) we obtain  “target” configuration of C;" in Eq. (9), and so obtain a

an expression for the ground state energy which is given bjiumerical value for th¢¥,} coefficients once the CCM ket-
state equations have been derived and solved for a given

E=(d|e SHeS|®). (8) value of the anisotropy. As the target configuration is formed
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FIG. 2. Results for the Ising-expansion coefficients, plotted as a
function of the lattice distancB, corresponding to two-body exci-
tations with respect to the model state for the spin-half, square-
lattice HAF (x=1) obtained via the LSUB approximation
schemewith m={4,6,8) and the SUB2 approximation.

scheme(with m=8) and within the SUB2 approximation.
(This result for the SUB2 case was previously seen in Ref.
25) This is an expression of the Marshall-Peierls sign?ule
which provides an exact relation between the,} expan-
sion coefficients. However, we note that the CCM predicts
such behavior with no recourse to exact proofs, and this pre-
diction is a natural result of the CCM calculations. Further-
FIG. 1. Excitation cluster configurations for the triangular- more, the convergence of the LStiBseries of results com-
lattice antiferromagnet within the LSUB4 approximation. Eachpared to SUB2 calculation can clearly be seen in Fig. 2. For
hexagon marks the lattice position of a spin raising operator applieghort lattice distance, we believe that the LStBesults are
to the model state at a given point on the triangular lattice. much better model of the “nodal surface” of states corre-
sponding to two-body excitations than those of the SUB2
from a finite number of spin lowering operators, there is acalculation.
cutoff point in the Taylors series expansion of the exponen- For the spin-half triangular-lattice HAR\& 1), the re-
tial above which no contribution t#, in Eq. (9) can possi-  sults for the Ising-expansion coefficieqt¥,} corresponding
bly occur. This matching may be achie?®dn two ways: to two-body excitations with respect to the model are shown
analytically at the SUB2 level of approximation or at small in Fig. 3 and in Table I(Note again that the solution to the
LSUBm levels of approximation; or by using computational- CCM equations is tracked from=0, at which point again
algebraic techniques. We note that we use, for the sake afie know that all of the ket-state correlation coefficiefs}
consistency, the same configurations for the ‘target’ configuare zero, to the isotropic Heisenberg poimk. rule that fits
rations inC, in Eqg. (9) as are used in the ket-state correla-
tion operatorS for the approximation schemes define above. 0.020

(26) @n (28) (C)) (30)

We also note that, although this is an approximate calcula-
tion, we are already dealing with the infinite lattice limi, e 8
—o0, The next section describes our results for the set of M
{W¥} coefficients for the spin-half Heisenberg model on the 0.000 g X a8 Q5 4
square and triangular lattices using the CCM formalism, and a
discuss possible rules that can be inferred from these results. ¥y x SUB
x 2
<4LSuB3
lll. RESULTS -0.020 - . o LSUB4
A. The two-body excitations ° = LSUBS
. . . » o LSUB6
The results for the Ising-expansion coefficiefis,} cor-
responding to two-body excitations with respect to the model _0.040 s : ;
1 2.0 3.0 4.0 5.0

state for the spin-half square-lattice HAkK=1) are shown
in Fig. 2. (Note that the solution to the CCM equations is R

tracked fromx=0, at which point we know that all of the  FG. 3. Results for the Ising-expansion coefficients, plotted as a
ket-state correlation coefficien{ss,} are zero, to the isotro-  function of the lattice distanck, corresponding to two-body exci-
pic Heisenberg point.The results for the two-body¥,}  tations with respect to the model state for the spin-half triangular-
coefficients are then determined and it is found that these@ttice HAF (\=1) obtained via the LSUB approximation
coefficients areall positive for the LSUBn approximation schemewith m={3,4,5,6) and the SUB2 approximation.
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TABLE |. Expansion coefficient§W¥,} for the spin-half triangular-lattice HAFN(=1) for the clusters

given in Fig. 1 within LSUBN (with m={3,4,5,6) approximation scheme and the SUB2 approximation. For
the sake of consistency, the only clusters expansion coefficfdngs that have been determined are those

which are also used within the given approximation.

PRB 59

Cluster SuUB2 LSUB3 LSUB4 LSUBS LSUBG6

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.114444 0.128096 0.141570 0.145502 0.149245

3 0.000000 0.000000 0.000000 0.000000

4 0.000941 0.002642 0.007384 0.007310 0.008302

5 0.000000 0.000000 0.000000 0.000000

6 —0.008838 —0.024744 —0.028535 —0.031743 —0.032843

7 0.004098 0.004380 0.004694

8 —0.029600 —0.039855 —0.044560 —0.047332

9 0.020290 0.021182 0.022933
10 0.029600 0.039855 0.044560 0.047332
11 0.055163 0.060557 0.065889
12 —0.004098 —0.004380 —0.004694
13 0.020290 0.021182 0.022933
14 0.014343 0.013776 0.014106
15 0.000428 —0.001568 —0.002414 —0.002185
16 0.000133 0.000437 0.000409
17 0.004417 0.007473 0.008187 0.009555
18 —0.001828 —0.002663 —0.002865
19 —0.000133 —0.000437 —0.000409
20 0.019778 0.020721 0.022046
21 0.005219 0.006398 0.007213
22 0.025031 0.027608 0.029788
23 —0.005219 —0.006398 —0.007213
24 0.013840 0.012139 0.012059
25 0.001828 0.002663 0.002865
26 0.025031 0.027608 0.029788
27 0.004266 0.006421 0.007184
28 0.000679 0.004521 0.006052
29 —0.004266 —0.006421 —0.007184
30 0.000679 0.004521 0.006052

the behavior seen in Fig. 3 can now be stated as “the coeft should be again noted that the only assumption made is the
ficients are found to be positive if the lattice vector of be-initial model state, and that the rest follows naturally on from
tween the two spin-raising operators $connects sites on the CCM calculation.

different sublattices; conversely, tHaP',} coefficients are Table | indicates th¢W¥,} expansion coefficients for the
found to be negative if the lattice vector connects sites on thifiangular lattice HAF { =1) states corresponding to local-
same sublattice.” It is again seen that the LStBeries is  1Z€d, mrbody (with m=4) configurations(i.e., those also
clearly well converged for small lattice distanBe This se-  Used within the LSUB4 approximatipnwith respect to the
ries of LSUBM results also clearly present a much betterM0de! state. One should note however that theg: ex-
representation of the “nodal surface” for the two-body ex- Pansion coefficients are determined within the SUB2 and

citations, for small lattice distance than the correspondin SUBm T(V\g}h ITh:t{&I?’Sf’?f? approximationsf%. I.t i‘i’ again I
{W} coefficients within the SUB2 approximatig. een in Taple | that al of Ihe expansion Coetlicients are we

converged for the LSUB5 and LSUBSG levels of approxima-
tion. Note, however, that within the LSUB5 and LSUB6 ap-
proximation many othe{¥,} coefficients have been deter-
mined, within the ‘“consistency” assumption explained
above.

Patterns in thd¥,} expansion coefficients for the trian-
gular lattice HAF = 1) for states corresponding to-body

B. The m-body excitations

For the Ising-expansion coefficienfd,} corresponding
to mbody excitations for the square lattice HAk= 1), it
has previously been noticEtthat the CCM calculation out-
lined above predicts that they agdl positive. This is an excitationswith m=1) have also been observed. It was seen
indication that the CCM results atence morgfully consis-  that, withm odd, all of the coefficients for excitation clusters
tent with the exact Marshall-Peierls sign rule for this model.which are equivalent under both the symmetries of the lattice
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(a point group of order twelyeand the Hamiltoniaria point  looking at the magnitude of its corresponditfg coefficient,
group of order § were found to have both CCM correlation illustrated in Table I. In this manner, we find that the two-
coefficients and Ising-expansion coefficients which are zerdody, nearest-neighbor configurati¢oonfiguration (2) in
at all levels of approximation; e.g., configuratio(iy, (3), Fig. 1] is the most important correlation for this model. By
and (5) in Fig. 1 and in Table I. In contrast, thoqa,} this rationale, the next most important configurations are a
coefficients corresponding to configurations wittild num-  “diamond-shaped,” four-body configuratiofconfiguration
bers of spins which are equivalent under the symmetries ofll) in Fig. 1] and a “dog-leg,” three-body configuration
the lattice but areot equivalent under the symmetries of the [configurationg8) and (10) in Fig. 1]. A previous FNQMC
Hamiltonian were found to have equal magnitudes but oppoealculatiori® contains all two-body correlations and this par-
site signs. That is, there exists pait®/6=2) of coefficients, ticular three-body correlation, and so a straightforward ex-
for the odd-number spin-excitation clusters, which differtension of this calculation would be to include this four-body
with respect to each other only by a phase factor-a@f, e.g.,  configuration. However, from this “naive” interpretation of
those pairs(7,12, (8,10, (16,19, (18,29, (21,23, and our results it appears that, as well as the two-body configu-
(27,29 in Fig. 1 and in Table I. In contrast, for the Ising- rations and the two configurations mentioned above, many
expansion coefficient§¥,} corresponding tan-body exci-  otherlocalizedthree-body and four-body configurations are
tations, withm even, we find that thosé¢¥,} coefficients also very important(These configurations are localized in
corresponding to configurations which are equivalent undethe same sense of those configurations contained in the
symmetries of the lattice but amot equivalent under the LSUBmM approximation. Hence, to attempt an accurate
symmetries of the Hamiltonian are exactly the same. That issimulation of this model one probably needs to find a way of
there exist pairs(12/6=2) of coefficients, for the even- also including many, if not all, of these localized, higher-
number spin-excitation clusters, which have a phase factaprder correlations. One way of achieving this would there-
with respect to each other of unity; e.g., pa®sl3, (22,26, fore be to use the nodal surface predicted by the CCM in a
and (28,30 in Fig. 1 and in Table I. FNQMC calculation.

We note that these simple relations were obtained with no
assumption other than the model state, which is of course the
classical ground state of this system. This is in contrast to IV. CONCLUSIONS

variational calculationd? spin-wave theory; and FNQMC In this article it has been shown that the expansion coef-
(Ref. 33 which assume that the classical phase relations arcients of the ground-state wave function in the infinite lat-
correct phase relations for their quantum mechanical counice |imit may be approximately determined via CCM calcu-
terparts. It has been shownthat in a case in which the |ations. The two-body expansion coefficients have thereby
Hamiltonian shares some symmetry of the model state thefeen obtained as a function of lattice distance. For the
the values of the CCM correlation coefficients in the groundriangular-lattice HAF, a Heuristic rule which fits CCM re-
state, for configurations which are equivalent under thesgits for the coefficients corresponding to two-body excita-
symmetries, must be completely identical. We believe thations with respect to the model state was also obtained. Cer-
the “rules” presented above for the-body expansion coef-  tain patterns, for the triangular-lattice HAF, were also seen
ficients for the triangular lattice HAF are therefore a reflec-for coefficients corresponding to higher-order excitations, al-
tion of the symmetries inherent in the Hamiltonian and lat-though no complete Heuristic rule for all Ising states could
tice. Furthermore, it remains an open question as to thge inferred. For the square lattice HAF, it has once more
solution ofall branches of coupled, nonlinear, ket-state CCMpgen noted thaall of these expansion coefficients obey the
equations for high-order calculations. One should note that i{1arshall-Peierls sign rule for the LSWB and SUB2 ap-
might be possible to obtain another solution branch whichyoximations with no other assumption other than the model
Hamiltonian, as has been seen for other systems treated gy, the LSUBM series of results was also seen for small
CCM before. A full treatment of this subject would form the |attice distance for both lattices. In this manner, the LBUB
contents of another article. _ _ results are believed to provide an accurate simulation of the
Apart from these simple observations, we cannot infer &,e nodal surface of these models at small lattice separation.
more general rule as to the behavior of the expansion coef- | the above context it is evident that a knowledge of the
ficients form-body excitations withm>2. However, we do  precision of the calculations presented here is essential in
have results for the signs of all of the expansion coefficientgger to ascertain the certainty of the derived sign rule infor-
within the LSUBM approximation scheme, as is illustrated in mation. The errors involved are both numerical and system-
Table I, and hence the CCM is simulating, fromaupriori  atic. In the first place we note that the numerical errors are
viewpoint, the nodal surface of this model. From the amountompletely under control. Thus, the calculations to find the
of convergence of the results of _the expansion coefficientgfq,l} coefficients for the infinite \—) lattice are essen-
within the LSUBm scheme described above, we thereforetjg|ly exactwithin a givenLSUBm approximation for SThis
also believe that we have an accurate simulation of the nodgd pecause the process of matching the configurafigrend
surface of this model using the LSWB approximation the corresponding multiconfigurational creation operators
scheme. {C,"} to the spin-raising operators in the exponential CCM
ket-state operatceS always terminates at a finite order, and
because théinite) truncated CCM equations themselves can
For the triangular lattice HAF, a “naive” picture of how easily be solved numerically t@rbitrarily) high accuracy.
important each excitation configuration can be found byFor these reasons we have not put error bars on the coeffi-

C. Relevance to QMC calculations
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cients{W¥,} in Table | or Figs. 2 and 3, since to the accuracygence, particularly since for present purposes we are prima-
displayed the results are exact for each level of approximarily interested only in the signs of the coefficients.
tion shown. Finally, suggestions were made with respect to further
The only remaining source of error thus arises from theQMC calculations for the triangular-lattice HAF. The first
systematic “errors” between the exact results and the result§as the inclusion of a “diamond-shaped” cluster in a FN-
at a particular level of approximation. This is completely QMC calculation, which we believe to be the most important
analogous to the systematic errors involved in the differenc|yster not yet used in such a calculation. However, we also
between the essentially exact results for finite-sized systemgger from our results that many three- and four-body clusters
(e.g., by exact diagonalizations or by QMC techniquesd  5re important in order to accurately simulate this model. One
the unknown results for the infinite systems. In both casegyethod of including these correlations in a QMC calculation
one needs to extrapolate: to the linnit—o for the CCM  \yould be to use the nodal surface predicted by CCM calcu-
results in the LSUB1 approximation scheme, and to the |ations, thereby overcoming the infamous “sign problem”
limit N—co for the finite-size calculations. Whereas finite- which is the main present stumbling block in performing

size scaling typically provides a guide to the corrieb  QMC calculations of arbitrary accuracy, within statistical er-
extrapolation rule for macroscopic parameters such as thgys controlled only by the length of the run.

ground-state energy and staggered magnetization for the

finite-sized results, no such exaot—oc extrapolation rules
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