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The spin-half Heisenberg antiferromagnet~HAF! on the square and triangular lattices is studied using the
coupled-cluster-method~CCM! technique of quantum many-body theory. The phase relations between differ-
ent expansion coefficients of the ground-state wave function in an Ising basis for the square lattice HAF is
exactly known via the Marshall-Peierls sign rule, although no equivalent sign rule has yet been obtained for the
triangular-lattice HAF. Here the CCM is used to give accurate estimates for the Ising-expansion coefficients for
these systems, and CCM results are noted to be fully consistent with the Marshall-Peierls sign rule for the
square-lattice case. For the triangular-lattice HAF, a heuristic rule is presented which fits our CCM results for
the Ising-expansion coefficients of states which correspond to two-body excitations with respect to the refer-
ence state. It is also seen that Ising-expansion coefficients which describe localized,m-body excitations with
respect to the reference state are found to be highly converged, and from this result we infer that the nodal
surface of the triangular lattice HAF is being accurately modeled. Using these results, we are able to make
suggestions regarding possible extensions of existing quantum Monte Carlo simulations for the triangular-
lattice HAF. @S0163-1829~99!09901-4#
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I. INTRODUCTION

The coupled-cluster method1–9 ~CCM! has been previ-
ously applied10–25 to a number of unfrustrated and frustrat
lattice quantum spin systems with a great deal of succ
Recently, it has been shown24 for a CCM calculation, within
the so-called SUB2 approximation which containsall two-
body correlations, that the ket-state correlation coefficie
can be related to the Marshall-Peierls sign rule26 for the
square-lattice Heisenberg antiferromagnet~HAF!. Further-
more, it was shown in this treatment24 that the CCM ket-state
correlation coefficients for the Heisenberg model on the
angular lattice also demonstrate a seemingly regular pat
This relationship between the Marshall-Peierls sign rule
the CCM ket-state correlation coefficients was furth
investigated25 and clarified for a spin model with bot
nearest-neighbor and next-nearest-neighbor excha
namely, theJ1-J2 model, on the linear chain and square la
tices. The Marshall-Peierls sign rule at the Heisenberg p
on the square lattice was found to be preserved byall of the
Ising-expansion coefficients within a localized approxim
tion scheme, as well as within the SUB2 scheme. No
sumption was made other than the choice of an initial re
ence state with respect to which the ground-state w
function was approximately constructed in the infinite latt
limit using the CCM formalism. It was also possible to o
tain a quantitative value for the point at which the sign ru
breaks down with increasing antiferromagnetic next-near
neighbor exchange for the square-lattice case. This quan
tive value was found to be in good agreement with ex
diagonalization calculations.27
PRB 590163-1829/99/59~2!/1000~8!/$15.00
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The Marshall-Peierls sign rule for Heisenberg antifer
magnets on bipartite lattices is an exact statement for
phase relations between the expansion coefficients of
ground-state wave function in an Ising basis. This statem
is of intrinsic interest because it provides exact informat
regarding the ground-state wave function in cases~e.g., the
square lattice HAF! for which no general exact solution ha
yet been determined. It is also of interest because by u
this rule one implicitly has full knowledge of the ‘‘noda
surface’’ of the ground-state wave function within this bas
~Note that whenever the words ‘‘nodal surface’’ are referr
to in this article, this is taken to mean the magnitudes a
signs of these expansion coefficients.! Of course, for the
square lattice HAF the signs are exactly known via t
Marshall-Peierls sign rule, although the magnitudes
known only via exact or approximate calculation. Quantu
Monte Carlo~QMC! calculations for fermionic and spin sys
tems demonstrate the infamous ‘‘sign problem,’’ and so su
information regarding the signs of the expansion coefficie
is of importance in these calculations.

For nonbipartite lattices~e.g., the triangular-lattice HAF!
or for other models containing frustration~e.g., theJ1-J2
model on the square lattice! corresponding exact sign-rul
theorems are generally not known. Hence, various appr
mate ways of simulating the nodal surface have been de
oped for use, for example, in fixed-node quantum Mo
Carlo calculations. However, one is always limited in su
simulations by not knowing how close is the trial wave fun
tion or guiding wave function that one uses to the tr
ground-state wave function. It is therefore of considera
1000 ©1999 The American Physical Society
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PRB 59 1001Ab initio SIMULATION OF THE NODAL SURFACES . . .
interest to develop theories which simulate the nodal surf
from an ab initio stand point, such as is done here via t
CCM. In this way, one might be able to utilize this CC
information concerning the nodal surface in a QMC calcu
tion, or at least suggest possible extensions of previous Q
calculations. It is also conceivable that one might obse
patterns in the expansion coefficients obtained via the C
and so infer rules concerning these coefficients or subcla
of them which relate to specific types of excitation.

In this article, we briefly introduce the CCM formalism
for the lattice quantum spin systems and also make an
plicit link between the expansion coefficients of the groun
state wave function and the CCM ket-state correlation co
ficients. This link is investigated for the square and triang
lattice HAF’s, and the Ising-expansion coefficien
corresponding to states which correspond to two-body e
tations with respect to a reference state are determined w
well-defined approximation schemes. These coefficients
seen to be well-converged using alocalizedapproximation
scheme. For the triangular-lattice HAF, a heuristic rule
presented which fits our CCM results for the Ising-expans
coefficients of states which correspond to two-body exc
tions with respect to the reference state. The Ising-expan
coefficients of states which correspond tom-body excitations
are also shown, within this same localized approximat
scheme, to be well converged. Patterns are also seen in
Ising-expansion coefficients which correspond to th
m-body excitations for the triangular-lattice HAF, althoug
no generic sign rule for them is formulated. Finally, sugg
tions are made regarding possible extensions of exis
quantum Monte Carlo simulations for the triangular-latti
HAF.

II. THE SPIN MODEL AND THE CCM FORMALISM

A. The Heisenberg model

In this paper we consider the zero-temperature (T50)
properties of the spin-half Heisenberg antiferromag
~HAF! quantum spin system, which is described by t
Hamiltonian

H5(
^ i , j &

si•sj , ~1!

where the indexi runs over allN lattice sites on the squar
and triangular lattices with periodic boundary condition
and the indexj runs over all nearest-neighbor sites toi. The
angular brackets indicate that each nearest-neighbor bon~or
link! is counted once and once only.

The Heisenberg model on the square lattice has not b
solved exactly up till now, although it been extensively stu
ied using various approximate methods.28–31 Runge31 has
performed the most accurate Monte Carlo simulation to d
for the square-lattice isotropic HAF. He finds a value for t
ground-state energy per spin ofEg /N520.66934(4), and a
value for the sublattice magnetization which is 61.5
60.5% of the classical value. Extensive CCM calculatio
have also been carried out for this model23 giving a value for
the ground-state energy per spin ofEg /N520.66968, and a
value for the sublattice magnetization which is 62% of t
classical value. In comparison, linear spin-wave the
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~LSWT! ~Ref. 28! gives a value ofEg /N520.658 for the
ground-state energy, and a value for the sublattice magn
zation which is 60.6% of the classical value.

Again, no exact solution exists for the Heisenberg mo
on the triangular lattice, although many approximate cal
lations have been carried out.23,32–37Exact series expansion33

calculations obtain a value for the ground-state energy
spin of this model ofEg /N520.551. Similarly, spin-wave
theory ~SWT! ~Ref. 34! gives a value ofEg /N520.5388,
and a fixed-node quantum Monte Carlo~FNQMC! ~Ref. 35!
calculation gives a value ofEg /N520.543160.0001. Exact
diagonalizations of finite-sized clusters of spins36 which have
been extrapolated to the infinite lattice limit give a value f
the ground-state energy per spin ofEg /N520.5445. In
comparison, a recent coupled-cluster-method calculatio23

predicts a value for the energy ofEg /N520.5505, which is
fully consistent with the best of the other results obtained
this system so far.

Classically, this system orders as a Ne´el state on the tri-
angular lattice such that each nearest-neighbor pair of s
makes an angle of 120° to each other. The results of appr
mate theories for the amount of this ordering that remains
the quantum limit, i.e., the sublattice magnetization, a
typically23,34,36that 50% of the classical ordering remains
the quantum limit. The FNQMC calculation of Ref. 3
places this value at 60%, which is probably still too high.
notable exception to all of these results quoted above is
result of exact series expansion calculations33 which predicts
that as little as 20% of the classical ordering remains.

B. The CCM formalism

The CCM formalism1–9 is now briefly considered, al-
though the reader should note that more detailed descript
of the CCM applied to spin systems are given in Refs. 1
25. To calculate the ground state wave functionuC& of a spin
system we start with a model stateuF& and a correlation
operatorS such that

uC&5eSuF&, ~2!

where the ket-state correlation operatorS may be written as

S5(
IÞ0
S ICI

1 . ~3!

The correlation operatorS is formed from a linear combina
tion of multiconfigurational creation operators$CI

1% ~which
themselves are formed from products of spin raising ope
tors! multiplied with the relevant ket-state correlation coef
cients$SI%. In addition, we define a set of destruction ope
tors $CI

2% which are the Hermitian adjoints of$CI
1%.

For the square lattice case, the model state is chosen t
the classical Ne´el state. The lattice is divided into two sub
lattices and one sublattice is populated with ‘‘up’’ spins a
the other with ‘‘down’’ spins. In order to treat the spin
equivalently the local spin axes of the ‘‘up’’ spins are rotat
by 180° about they axis, which is mathematically written a

sx→2sx, sy→sy, sz→2sz. ~4!

The Hamiltonian may now be written, with the introductio
of an anisotropy coefficientx on the off-diagonal elements o
H, as
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H52(
^ i , j &

H si
zsj

z1
x

2
~si

1sj
11si

2sj
2!J , ~5!

where the sum on̂i , j & runs over all nearest-neighbor pai
and counts each pair once only, and wherex51 corresponds
to the isotropic Heisenberg Hamiltonian of Eq.~1!. The
Marshall-Peierls sign rule for the original Hamiltonian of E
~1!, in terms of rotated spin coordinates, now differs from t
original sign rule.26 For the ground-state wave function
uC&5( IC I uI &, the Ising-expansion coefficients$C I% must
now all be greater than~or equal to! zero with respect to a
complete set of Ising basis states$uI &% in the rotated spin
coordinates.

For the triangular lattice case, we chooseuF& to again be
the classical Ne´el state, and we start the CCM calculation
dividing the lattice into three sublattices, denoted$A,B,C%.
The spins on sublatticeA are oriented along the negativez
axis, and spins on sublatticesB andC are oriented at1120°
and 2120°, respectively, with respect to the spins on s
lattice A. In order both to facilitate the extension of the is
tropic HAF to include an Ising-like anisotropy first intro
duced by Singh and Huse33 and to make a suitable choice o
the CCM model state, we perform the following spi
rotation transformations. Specifically, we leave the spin a
on sublatticeA unchanged, and we rotate about they axis the
spin axes on sublatticesB and C by 2120° and1120°,
respectively,

sB
x→2

1

2
sB

x 2
A3

2
sB

z , sC
x→2

1

2
sC

x 1
A3

2
sC

z ,

sB
y→sB

y , sC
y→sC

y , ~6!

sB
z→

A3

2
sB

x 2
1

2
sB

z , sC
z→2

A3

2
sC

x 2
1

2
sC

z .

We may rewrite Eq.~1! in terms of spins defined in thes
local quantization axes for the triangular lattice with a furth
introduction of an anisotropy parameterl for the non-Ising-
like pieces

H5 (
^ i→ j &

H 2
1

2
si

zsj
z1

A3l

4
~si

zsj
11si

zsj
22si

1sj
z2si

2sj
z!

1
l

8
~si

1sj
21si

2sj
1!2

3l

8
~si

1sj
11si

2sj
2!J , ~7!

wherel51 corresponds to the isotropic Heisenberg Ham
tonian of Eq.~1!. We note that the summation in Eq.~7!
again runs over nearest-neighbor bonds, but now also w
directionality indicated by^ i→ j &, which goes fromA to
B, B to C, andC to A. We note that no exact sign rule ha
yet been proven for the Hamiltonian of Eq.~7!. When l
50, the Hamiltonian in Eq.~7! describes the usual classic
Ising system with a unique ground state which is simply
fully aligned ~‘‘ferromagnetic’’! configuration in the local
spin coordinates described above.

From the Schro¨dinger equationHuC&5EuC& we obtain
an expression for the ground state energy which is given

E5^Fue2SHeSuF&. ~8!
-

s

r

-

a

e

y

This equation illustrates one of the key aspects of CC
which is named the similarity transform—here of the Ham
tonian. The similarity transform of any operator may be e
panded as a series of nested commutators such that an
expression for the ground-state energy in terms of the
state correlation coefficients$SI% which is already deter-
mined in the infinite lattice limitN→`, can often be found
for whatever~nontrivial! approximations are made forS. The
approximation inSmeans that we obtain approximate valu
for ket-state coefficients$SI% and so the ground-state energ
is approximately determined, although, as stated above,
equation for the ground-state energy is an exact expres
of one or more of these coefficients. To determine the CC
ket-state coefficients we operate on the Schro¨dinger equation
with exp(2S) and then bŷ FuCI

2 , for a given cluster con-
figuration indicated by the indexI. An explanation of how
the CCM equations may be derived and then solved is p
sented in Refs. 10–25.

The three most commonly employed approximati
schemes are~1! the SUBn scheme, in which all correlation
involving only n or fewer spins are retained, but no furth
restriction is made concerning their spatial separation on
lattice, ~2! the SUBn-m sub-approximation, in which al
SUBn correlations spanning a range of no more thanm ad-
jacent lattice sites are retained, and~3! the localized LSUBm
scheme, which retains all multispin correlations over disti
locales on the lattice defined bym or fewer contiguous sites
In order to clarify the physical significance of the approx
mation schemes outlined above, we note that since the SUn
scheme contains alln-body ~and lower-order! correlations,
the SUBn approximation contains bothlong-ranged and
short-ranged n-body ~and lower-order! correlations. In con-
trast, the SUBn-m scheme contains only thoseshort-ranged
n-body ~and lower-order! correlations within a locale define
by m, although it is noted that results of the SUBn-m scheme
converge to those of the SUBn scheme in the limitm→`.
Similarly, the LSUBm scheme contains only thoseshort-
ranged m-body ~and lower-order! correlations in a locale
also defined bym. ~For specific examples of the applicatio
of such schemes to lattice spin models the reader is refe
to Refs. 10–25.! Note that all 30 cluster configurations whic
are used in the LSUB4 approximation for the triangular l
tice antiferromagnet, and which are independent under
six-point symmetry group inherent in the Hamiltonian of E
~7!, are listed in Fig. 1.

We now consider an expansion of the ground-state w
function in a complete Ising basis$uI &% ~in terms of thelocal
coordinates after rotation!. This may be again written a
uC&5( IC I uI &, where the sums overI go over all 2N Ising
states, and we find that this expression naturally leads f
Eq. ~2! ~also see Ref. 25! to an exact mapping of the CCM
correlation coefficients$SI% to the Ising-expansion coeffi
cients$C I%, which is given by

C I5^FuCI
2eSuF& [ ^Fusi 1

2si 2
2
•••si l

2 eSuF& . ~9!

It is possible to match the terms in the exponential to
‘‘target’’ configuration of CI

2 in Eq. ~9!, and so obtain a
numerical value for the$C I% coefficients once the CCM ket
state equations have been derived and solved for a g
value of the anisotropy. As the target configuration is form
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from a finite number of spin lowering operators, there is
cutoff point in the Taylors series expansion of the expon
tial above which no contribution toC I in Eq. ~9! can possi-
bly occur. This matching may be achieved25 in two ways:
analytically at the SUB2 level of approximation or at sm
LSUBm levels of approximation; or by using computationa
algebraic techniques. We note that we use, for the sak
consistency, the same configurations for the ‘target’ confi
rations inCI

2 in Eq. ~9! as are used in the ket-state corre
tion operatorS for the approximation schemes define abo
We also note that, although this is an approximate calc
tion, we are already dealing with the infinite lattice limit,N
→`. The next section describes our results for the se
$C I% coefficients for the spin-half Heisenberg model on t
square and triangular lattices using the CCM formalism, a
discuss possible rules that can be inferred from these res

III. RESULTS

A. The two-body excitations

The results for the Ising-expansion coefficients$C I% cor-
responding to two-body excitations with respect to the mo
state for the spin-half square-lattice HAF (x51) are shown
in Fig. 2. ~Note that the solution to the CCM equations
tracked fromx50, at which point we know that all of the
ket-state correlation coefficients$SI% are zero, to the isotro
pic Heisenberg point.! The results for the two-body$C I%
coefficients are then determined and it is found that th
coefficients areall positive for the LSUBm approximation

FIG. 1. Excitation cluster configurations for the triangula
lattice antiferromagnet within the LSUB4 approximation. Ea
hexagon marks the lattice position of a spin raising operator app
to the model state at a given point on the triangular lattice.
a
-

l
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-

-
.
a-

f

d
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scheme~with m<8) and within the SUB2 approximation
~This result for the SUB2 case was previously seen in R
25.! This is an expression of the Marshall-Peierls sign rul26

which provides an exact relation between the$C I% expan-
sion coefficients. However, we note that the CCM predi
such behavior with no recourse to exact proofs, and this p
diction is a natural result of the CCM calculations. Furthe
more, the convergence of the LSUBm series of results com
pared to SUB2 calculation can clearly be seen in Fig. 2.
short lattice distance, we believe that the LSUBm results are
much better model of the ‘‘nodal surface’’ of states corr
sponding to two-body excitations than those of the SU
calculation.

For the spin-half triangular-lattice HAF (l51), the re-
sults for the Ising-expansion coefficients$C I% corresponding
to two-body excitations with respect to the model are sho
in Fig. 3 and in Table I.~Note again that the solution to th
CCM equations is tracked froml50, at which point again
we know that all of the ket-state correlation coefficients$SI%
are zero, to the isotropic Heisenberg point.! A rule that fits

d

FIG. 2. Results for the Ising-expansion coefficients, plotted a
function of the lattice distanceR, corresponding to two-body exci
tations with respect to the model state for the spin-half, squa
lattice HAF (x51) obtained via the LSUBm approximation
scheme~with m5$4,6,8%) and the SUB2 approximation.

FIG. 3. Results for the Ising-expansion coefficients, plotted a
function of the lattice distanceR, corresponding to two-body exci
tations with respect to the model state for the spin-half triangu
lattice HAF (l51) obtained via the LSUBm approximation
scheme~with m5$3,4,5,6%) and the SUB2 approximation.
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TABLE I. Expansion coefficients$C I% for the spin-half triangular-lattice HAF (l51) for the clusters
given in Fig. 1 within LSUBm ~with m5$3,4,5,6%) approximation scheme and the SUB2 approximation. F
the sake of consistency, the only clusters expansion coefficients$C I% that have been determined are tho
which are also used within the given approximation.

Cluster SUB2 LSUB3 LSUB4 LSUB5 LSUB6

1 0.000000 0.000000 0.000000 0.000000 0.000000
2 0.114444 0.128096 0.141570 0.145502 0.149245
3 0.000000 0.000000 0.000000 0.000000
4 0.000941 0.002642 0.007384 0.007310 0.008302
5 0.000000 0.000000 0.000000 0.000000
6 20.008838 20.024744 20.028535 20.031743 20.032843
7 0.004098 0.004380 0.004694
8 20.029600 20.039855 20.044560 20.047332
9 0.020290 0.021182 0.022933

10 0.029600 0.039855 0.044560 0.047332
11 0.055163 0.060557 0.065889
12 20.004098 20.004380 20.004694
13 0.020290 0.021182 0.022933
14 0.014343 0.013776 0.014106
15 0.000428 20.001568 20.002414 20.002185
16 0.000133 0.000437 0.000409
17 0.004417 0.007473 0.008187 0.009555
18 20.001828 20.002663 20.002865
19 20.000133 20.000437 20.000409
20 0.019778 0.020721 0.022046
21 0.005219 0.006398 0.007213
22 0.025031 0.027608 0.029788
23 20.005219 20.006398 20.007213
24 0.013840 0.012139 0.012059
25 0.001828 0.002663 0.002865
26 0.025031 0.027608 0.029788
27 0.004266 0.006421 0.007184
28 0.000679 0.004521 0.006052
29 20.004266 20.006421 20.007184
30 0.000679 0.004521 0.006052
oe
e

th

te
x-
in

-

e

the
m

l-

nd

ell
a-
p-
r-
d

-

en
rs
tice
the behavior seen in Fig. 3 can now be stated as ‘‘the c
ficients are found to be positive if the lattice vector of b
tween the two spin-raising operators inS connects sites on
different sublattices; conversely, the$C I% coefficients are
found to be negative if the lattice vector connects sites on
same sublattice.’’ It is again seen that the LSUBm series is
clearly well converged for small lattice distanceR. This se-
ries of LSUBm results also clearly present a much bet
representation of the ‘‘nodal surface’’ for the two-body e
citations, for small lattice distance than the correspond
$C I% coefficients within the SUB2 approximation.24

B. The m-body excitations

For the Ising-expansion coefficients$C I% corresponding
to m-body excitations for the square lattice HAF (x51), it
has previously been noticed25 that the CCM calculation out
lined above predicts that they areall positive. This is an
indication that the CCM results are~once more! fully consis-
tent with the exact Marshall-Peierls sign rule for this mod
f-
-

e

r

g

l.

It should be again noted that the only assumption made is
initial model state, and that the rest follows naturally on fro
the CCM calculation.

Table I indicates the$C I% expansion coefficients for the
triangular lattice HAF (l51) states corresponding to loca
ized, m-body ~with m<4) configurations~i.e., those also
used within the LSUB4 approximation! with respect to the
model state. One should note however that these$C I% ex-
pansion coefficients are determined within the SUB2 a
LSUBm ~with m5$3,4,5,6%) approximations. It is again
seen in Table I that all of the expansion coefficients are w
converged for the LSUB5 and LSUB6 levels of approxim
tion. Note, however, that within the LSUB5 and LSUB6 a
proximation many other$C I% coefficients have been dete
mined, within the ‘‘consistency’’ assumption explaine
above.

Patterns in the$C I% expansion coefficients for the trian
gular lattice HAF (l51) for states corresponding tom-body
excitations~with m>1) have also been observed. It was se
that, withm odd, all of the coefficients for excitation cluste
which are equivalent under both the symmetries of the lat
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~a point group of order twelve! and the Hamiltonian~a point
group of order 6!, were found to have both CCM correlatio
coefficients and Ising-expansion coefficients which are z
at all levels of approximation; e.g., configurations~1!, ~3!,
and ~5! in Fig. 1 and in Table I. In contrast, those$C I%
coefficients corresponding to configurations withodd num-
bers of spins which are equivalent under the symmetrie
the lattice but arenot equivalent under the symmetries of th
Hamiltonian were found to have equal magnitudes but op
site signs. That is, there exists pairs~12/652! of coefficients,
for the odd-number spin-excitation clusters, which diff
with respect to each other only by a phase factor of21; e.g.,
those pairs~7,12!, ~8,10!, ~16,19!, ~18,25!, ~21,23!, and
~27,29! in Fig. 1 and in Table I. In contrast, for the Ising
expansion coefficients$C I% corresponding tom-body exci-
tations, with m even, we find that those$C I% coefficients
corresponding to configurations which are equivalent un
symmetries of the lattice but arenot equivalent under the
symmetries of the Hamiltonian are exactly the same. Tha
there exist pairs~12/652! of coefficients, for the even
number spin-excitation clusters, which have a phase fa
with respect to each other of unity; e.g., pairs~9,13!, ~22,26!,
and ~28,30! in Fig. 1 and in Table I.

We note that these simple relations were obtained with
assumption other than the model state, which is of course
classical ground state of this system. This is in contras
variational calculations,32 spin-wave theory,37 and FNQMC
~Ref. 35! which assume that the classical phase relations
correct phase relations for their quantum mechanical co
terparts. It has been shown19 that in a case in which the
Hamiltonian shares some symmetry of the model state t
the values of the CCM correlation coefficients in the grou
state, for configurations which are equivalent under th
symmetries, must be completely identical. We believe t
the ‘‘rules’’ presented above for them-body expansion coef
ficients for the triangular lattice HAF are therefore a refle
tion of the symmetries inherent in the Hamiltonian and l
tice. Furthermore, it remains an open question as to
solution ofall branches of coupled, nonlinear, ket-state CC
equations for high-order calculations. One should note th
might be possible to obtain another solution branch wh
might not demonstrate the full symmetries of the lattice a
Hamiltonian, as has been seen for other systems treate
CCM before. A full treatment of this subject would form th
contents of another article.

Apart from these simple observations, we cannot infe
more general rule as to the behavior of the expansion c
ficients form-body excitations withm.2. However, we do
have results for the signs of all of the expansion coefficie
within the LSUBm approximation scheme, as is illustrated
Table I, and hence the CCM is simulating, from ana priori
viewpoint, the nodal surface of this model. From the amo
of convergence of the results of the expansion coefficie
within the LSUBm scheme described above, we therefo
also believe that we have an accurate simulation of the n
surface of this model using the LSUBm approximation
scheme.

C. Relevance to QMC calculations

For the triangular lattice HAF, a ‘‘naive’’ picture of how
important each excitation configuration can be found
ro
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looking at the magnitude of its correspondingC I coefficient,
illustrated in Table I. In this manner, we find that the tw
body, nearest-neighbor configuration@configuration ~2! in
Fig. 1# is the most important correlation for this model. B
this rationale, the next most important configurations ar
‘‘diamond-shaped,’’ four-body configuration@configuration
~11! in Fig. 1# and a ‘‘dog-leg,’’ three-body configuration
@configurations~8! and ~10! in Fig. 1#. A previous FNQMC
calculation35 contains all two-body correlations and this pa
ticular three-body correlation, and so a straightforward
tension of this calculation would be to include this four-bo
configuration. However, from this ‘‘naive’’ interpretation o
our results it appears that, as well as the two-body confi
rations and the two configurations mentioned above, m
other localized three-body and four-body configurations a
also very important.~These configurations are localized
the same sense of those configurations contained in
LSUBm approximation.! Hence, to attempt an accura
simulation of this model one probably needs to find a way
also including many, if not all, of these localized, highe
order correlations. One way of achieving this would the
fore be to use the nodal surface predicted by the CCM i
FNQMC calculation.

IV. CONCLUSIONS

In this article it has been shown that the expansion co
ficients of the ground-state wave function in the infinite la
tice limit may be approximately determined via CCM calc
lations. The two-body expansion coefficients have there
been obtained as a function of lattice distance. For
triangular-lattice HAF, a Heuristic rule which fits CCM re
sults for the coefficients corresponding to two-body exci
tions with respect to the model state was also obtained. C
tain patterns, for the triangular-lattice HAF, were also se
for coefficients corresponding to higher-order excitations,
though no complete Heuristic rule for all Ising states cou
be inferred. For the square lattice HAF, it has once m
been noted thatall of these expansion coefficients obey t
Marshall-Peierls sign rule for the LSUBm and SUB2 ap-
proximations with no other assumption other than the mo
state. The convergence of the Ising-expansion coefficie
for the LSUBm series of results was also seen for sm
lattice distance for both lattices. In this manner, the LSUBm
results are believed to provide an accurate simulation of
true nodal surface of these models at small lattice separa

In the above context it is evident that a knowledge of t
precision of the calculations presented here is essentia
order to ascertain the certainty of the derived sign rule inf
mation. The errors involved are both numerical and syste
atic. In the first place we note that the numerical errors
completely under control. Thus, the calculations to find
$C I% coefficients for the infinite (N→`) lattice are essen
tially exactwithin a givenLSUBm approximation for S. This
is because the process of matching the configurations$I% and
the corresponding multiconfigurational creation operat
$CI

1% to the spin-raising operators in the exponential CC
ket-state operatoreS always terminates at a finite order, an
because the~finite! truncated CCM equations themselves c
easily be solved numerically to~arbitrarily! high accuracy.
For these reasons we have not put error bars on the co



cy
m

th
u
ly
nc
em

se

e
e-

t
t

ic
a
n

n
ts
ts
le

er

ma-

er
st

-
nt
lso

ers
ne

on
cu-
’’
g
r-

h
arch

ein-
f

ean
4-

1006 PRB 59R. F. BISHOP, D. J. J. FARNELL, AND CHEN ZENG
cients$C I% in Table I or Figs. 2 and 3, since to the accura
displayed the results are exact for each level of approxi
tion shown.

The only remaining source of error thus arises from
systematic ‘‘errors’’ between the exact results and the res
at a particular level of approximation. This is complete
analogous to the systematic errors involved in the differe
between the essentially exact results for finite-sized syst
~e.g., by exact diagonalizations or by QMC techniques! and
the unknown results for the infinite systems. In both ca
one needs to extrapolate: to the limitm→` for the CCM
results in the LSUBm approximation scheme, and to th
limit N→` for the finite-size calculations. Whereas finit
size scaling typically provides a guide to the correctN→`
extrapolation rule for macroscopic parameters such as
ground-state energy and staggered magnetization for
finite-sized results, no such exactm→` extrapolation rules
are known for the LSUBm CCM results, particularly for the
CCM correlation coefficients. Although simple Heurist
rules for the extrapolation of CCM results for such glob
quantities as the ground-state energy and staggered mag
zation have been very effective in previous calculations23,25

no such simple rules have yet been found for the coefficie
$SI% or $C I%. Furthermore, for the higher-order coefficien
shown in Figs. 2 and 3 we only have relatively few poin
and it is not yet technically feasible to perform a credib
quantitative extrapolation. Nevertheless, the results~and see
Table I! clearly demonstrate excellent qualitative conv
.,
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gence, particularly since for present purposes we are pri
rily interested only in the signs of the coefficients.

Finally, suggestions were made with respect to furth
QMC calculations for the triangular-lattice HAF. The fir
was the inclusion of a ‘‘diamond-shaped’’ cluster in a FN
QMC calculation, which we believe to be the most importa
cluster not yet used in such a calculation. However, we a
infer from our results that many three- and four-body clust
are important in order to accurately simulate this model. O
method of including these correlations in a QMC calculati
would be to use the nodal surface predicted by CCM cal
lations, thereby overcoming the infamous ‘‘sign problem
which is the main present stumbling block in performin
QMC calculations of arbitrary accuracy, within statistical e
rors controlled only by the length of the run.
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