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Thermodynamic properties of spin-12 transverseXY chains with Dzyaloshinskii-Moriya
interaction: Exact solution for correlated Lorentzian disorder
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We extend the consideration of the spin-1
2 transverseXY chain with correlated Lorentzian disorder@Phys.

Rev. B 55, 14 298~1997!# for the case of additional Dzyaloshinskii-Moriya interspin interaction. It is shown
how the averaged density of states can be calculated exactly. Results are presented for the density of states and
the transverse magnetization.@S0163-1829~99!06501-7#
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Much work has been done since the famous paper
Lieb, Schultz, and Mattis1 to derive exact results for thermo
dynamics and spin correlations of one-dimensional sp
1
2 XY models. Much less exact results were obtained
random versions of spin-1

2 XY chains. One can mentio
here a group of papers dealing with random spin-1

2 XY
models using the well-known Dyson and Lloyd models
disorder.2–4 Recently the interest in random spin-1

2 XY
chains has noticebly increased since they provide a lab
tory for the investigation of generic features of quantu
phase transitions in disordered systems. As an example
refer to papers on renormalization group5 and numerical6

studies on random spin-1
2 transverse Ising chains.

In the present paper we continue the study started in R
4 that concerns the spin-1

2 isotropic XY chain with random
Lorentzian exchange couplingJn and a transverse fieldVn

that depends linearly on the surrounding exchange coupl
Jn21 and Jn . Obviously, due to the relation between th
transverse field and the random exchange couplings this
model of correlated disorder. The Jordan-Wigner meth1

and the method elaborated by John and Schreiber7 permitted
us to exactly derive the averaged density of states for su
model and as a result to study its thermodynamic proper
Apparently the most interesting result of introducing the c
related disorder is the appearance of the nonzero aver
transverse magnetization at zero averaged transverse
Later this effect was checked numerically.8,9 In the present
paper we shall extend the model introducing additio
Dzyaloshinskii-Moriya interspin interactions. Spin-1

2 XY
chains with Dzyaloshinskii-Moriya interaction were studi
in several papers10–14in which it was shown that they exhib
interesting thermodynamic and dynamic properties, wh
may be of interest for the understanding of the properties
some quasi-one-dimensional compounds~e.g., CsCuCl3). It
will be shown below that the Dzyaloshinskii-Moriya intera
tion may influence the thermodynamic properties of a m
netic chain conditioned by correlated disorder in a spec
manner.

Hereafter we consider an isotropicXY chain in a mag-
netic field along thez axis consisting ofN spins 1

2 . The
Hamiltonian is defined by
PRB 590163-1829/99/59~1!/100~4!/$15.00
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xsn11

x 1sn
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1 (
n51

N

Dn~sn
xsn11

y 2sn
ysn11

x !, ~1!

sn1N
a 5sn

a .

In addition to the exchange couplingJn between the neigh-
boring sitesn andn11, an additional Dzyaloshinskii-Moriya
interactionDn between these sites is introduced, i.e., a m
general case than in Ref. 4 is considered.

In what follows we consider two models.
Model ~i!. We assume the Dzyaloshinskii-Moriya intera

tion to be ordered, i.e.,Dn5D, whereas the exchange cou
plings Jn are independent random Lorentzian variables w
the probability distribution

p~Jn!5
1

p

G

~Jn2J0!21G2
. ~2!

The on-site transverse fields are determined by the form

Vn2V05
a

2
~Jn211Jn22J0!, ~3!

wherea is real anduau>1. Note that after puttingD50 one
obtains the model considered in Ref. 4.

Model ~ii !. We assume the exchange coupling to be
dered, i.e.,Jn5J, whereas theDn are independent random
Lorentzian variables with the probability distribution

p~Dn!5
1

p

G

~Dn2D0!21G2
. ~4!

The on-site transverse fields are determined by the form

Vn2V05
a

2
~Dn211Dn22D0!, ~5!

wherea is real anduau>1.
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With the help of the Jordan-Wigner transformation t
Hamiltonian~1! can be rewritten as a Hamiltonian of noni
teracting spinless fermions

H5 (
n51

N

VnS cn
1cn2

1

2D
1 (

n51

N S Jn1 iD n

2
cn

1cn112
Jn2 iD n

2
cncn11

1 D ~6!

with cyclic boundary conditions. In Eq.~6! we omitted
the boundary term that is not essential for the calculat
of the thermodynamic properties.15 Let us introduce
the retarded and advanced temperature double-
Green functionsGnm

7 (t)57 iu(6t)^$cn(t),cm
1%&, Gnm

7 (t)
5(1/2p)*2`

` dve2 ivtGnm
7 (v6 i e) that satisfy the set o

equations

~v6 i e2Vn!Gnm
7 ~v6 i e!2FJn212 iD n21

2
Gn21,m

7 ~v6 i e!

1
Jn1 iD n

2
Gn11,m

7 ~v6 i e!G5dnm . ~7!
a

n

e

Our task is to evaluate the random-averaged Green funct
since they yield the random-averaged density of sta
through the relation

r~E!57
1

p
ImGnn

7 ~E6 i e!. ~8!

Having the independent Lorentzian random variables
may try to perform the random averaging of Eq.~7! with the
help of contour integrals. However, one must know the p
sitions of the singularities of the Green functions in t
planes of complex random variables. The latter informat
can be derived for the defined models on the basis of
Gershgorin criterion.16

Consider at first spin model~i! described by Eqs.~1!–~3!.
Suppose that exchange couplingsJn ~and hence the trans
verse fieldsVn) are complex variables. As follows from Eq
~7! the singularities of the matrixG75uuGnm

7 (v6 ie)uu are
determined by the zeros of the determinant of the ma
A6 iB7, whereA andB7 are the Hermitian matrices give
by
A5S v2Re V1 2
1

2
Re J12 ~ i /2! D 0 . . . 2

1

2
Re JN1 ~ i /2! D

2
1

2
Re J11 ~ i /2! D v2Re V2 2

1

2
Re J22 ~ i /2! D . . . 0

A A A A A

2
1

2
Re JN2 ~ i /2! D 0 0 ••• v2Re VN

D ~9!

and

B75S e7Im V1 7
1

2
Im J1 0 . . . 7

1

2
Im JN

7
1

2
Im J1 e7Im V2 7

1

2
Im J2 . . . 0

A A A A A

7
1

2
Im JN 0 0 ••• e7Im VN

D , ~10!
or

lf
et
respectively. John and Schreiber noticed that if all eigenv
ues ofB7 are positive then det(A6 iB7)Þ0.7 On the other
hand, for any eigenvaluel of the matrix B7 ~10! the
Gershgorin criterion after making use of Eq.~3! guarantees
that at least one of the inequalities

Ue7
a

2
~ Im Jn211Im Jn!2lU< 1

2
uIm Jn21u1

1

2
uIm Jnu,

uau>1, n51, . . . ,N ~11!
l-is satisfied. From Eq.~11! it immediately follows that the
retarded~advanced! Green function does not have poles f
Im Jn,0 (Im Jn.0) if a>1 and for ImJn.0 (Im Jn

,0) if a<21. Noting that F( . . . ,Vn ,Jn , . . . )
5F( . . . ,V02 iaG,J02 iG, . . . ) if F( . . . ,Vn ,Jn , . . . )
does not have poles in lower half planesJn and
F( . . . ,Vn ,Jn , . . . )5F( . . . ,V01 iaG,J01 iG, . . . ) if
F( . . . ,Vn ,Jn , . . . ) does not have poles in upper ha
planesJn one finds the following result of averaging the s
of Eqs.~7!:
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~v2V06 i uauG!Gnm
7 ~v!2FJ02 iD 7 i sgn~a! G

2
Gn21,m

7 ~v!

1
J01 iD 7 i sgn~a! G

2
Gn11,m

7 ~v!G5dnm . ~12!

The obtained equations~12! possess translational symmet
and proceeding further in a standard manner one obtain

FIG. 1. The density of states@described by Eq.~13!# @~a!,~b!#
and the transverse magnetization2mz versus V0 at b51000
@~c!,~d!# at fixed J051, G51, anda521.01 @~a!,~c!# or a51.01
@~b!,~d!#. The short-dashed curves correspond toD50, long-dashed
curves toD51, and the solid curves toD52.

FIG. 2. The density of states@described by Eq.~13!# @~a!,~b!#
and the transverse magnetization2mz versus V0 at b51000
@~c!,~d!# at fixed D50, G51, anda521.01 @~a!,~c!# or a51.01
@~b!,~d!#. The short-dashed curves correspond toJ051, long-dashed
curves toJ051.5, and the solid curves toJ052.
r~E!5
1

p
AAA21B22A

2~A21B2!
,

A5~E2V0!21~12uau2!G22J0
22D2,

B52G@ uau~E2V0!1sgn~a! J0#. ~13!

Consider now spin model~ii ! described by Eqs.
~1!,~4!,~5!. Certainly we may repeat the whole calculatio
once more obtaining as a resultr(E) for this model. How-
ever, there is a relationship between models~i! and ~ii ! that
immediately yields thermodynamics of the latter model if
is known for the former one. Namely, consider the followin
rotations of spin axes around thez axis:

~sn
a!85expF2 i

p~n21!

2
sn

zG sn
a expF i

p~n21!

2
sn

zG .
~14!

One immediately finds that the Hamiltonian~1! arises as a
result of transformations~14! applied to a Hamiltonian of
form ~1!, however, with the exchange couplingsDn and the
Dzyaloshinskii-Moriya interactions2Jn . Therefore it be-
comes evident that the density of states~13! after the replace-
mentJ0→D0 , D2→J2 transforms into the density of state
for the model~ii !. Hence it is sufficient in what follows to
consider only the spin model~i! defined by Eqs.~1!–~3!.

Let us discuss the obtained density of magnon states~13!.
It can be straightforwardly checked that Eq.~13! covers in
the particular caseD50 the result derived in Ref. 4. In th
limit of diagonal disorderG→0, uauG5g5const, Eq.~13!
reproduces the density of states for the spin-1

2 isotropicXY
chain with Dzyaloshinskii-Moriya interaction in a rando
Lorentzian transverse field with the mean valueV0 and the
width of distributiong.14 The density of states~13! remains
the same after the simultaneous change of signs ofJ0 anda;
hereafter we chooseJ0.0.

Let us remind the reader of how the density of states
influenced by correlated disorder in the case ofD50 ~for
details see Ref. 4!. For uau'1 the disorder causes a smeari
out of mainly one edge of the magnon band~which
one depends on the sign ofa). As a result we have
*2`

0 dEr(E)Þ*0
`dEr(E) at V050 that leads to the appea

ance of a nonzero averaged transverse magnetiza
mz52 1

2 *2`
` dEr(E)tanh(bE/2) at zero averaged transvers

field V0 . With an increase ofuau the symmetry of the non-
random case is recovered, i.e., both edges of the mag
band become smeared out in a symmetric way, the num
of states*2`

0 dEr(E) and *0
`dEr(E) at V050 become

equal to each other, andmz50 at V050.
Figures 1~a!, 1~b! demonstrate the changes in the behav

of the averaged density of statesr(E) versusE2V0 for G
51, a561.01, J051 for three different strengths of th
Dzyaloshinskii-Moriya interactionD50, D51, D52. It can
be seen that an additional Dzyaloshinskii-Moriya intersp
interaction~1! increases the width of the smoothed magn
band,~2! leads to the recovering of the symmetry with r
spect to the changeE2V0→2(E2V0). Thus the increase
of the Dzyaloshinskii-Moriya interaction leads to the d
crease of the nonzero value ofmz at V050 @Figs. 1~c!, 1~d!#.

In Fig. 2 we depicted the influence of an increase of
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averaged exchange couplingJ0 at fixedD50. Similar to the
previous case one observes an increasing of the band w
however, in contrast to the previous case the density of st
remains not symmetric with respect to the changeE2V0
→2(E2V0) @Figs. 2~a!, 2~b!# and as a result the mode
exhibits a noticeable nonzero value ofmz at V050 @Figs.
2~c!, 2~d!#. The difference in the behavior of the density
states with increasingD or J0 is not surprising sinceJ0 and
D enter in a different way into Eq.~13!.

To summarize, we have studied the spin-1
2 transverse iso-

tropic XY chain in the presence of correlated Lorentzian d
order. Going beyond the results given in Ref. 4 we include
the model the Dzyaloshinskii-Moriya interaction. Th
asumption of correlated disorder allows the exact calcula
of the averaged density of statesr(E). The exact formula
~13! for r(E) is the main result of the paper. Based on th
formula one can exactly calculate in a simple way therm
dynamic properties such as entropy, specific heat, transv
magnetization, and static transverse linear susceptibility~see
for details Ref. 4!. In that sense the presented random qu
tum spin model may serve as a reference model to study
interplay of disorder and quantum effects. In particular
th,
es

-
n

n

-
rse

-
he
t

may be used to test approximations and/or calculations
finite systems. As an example we present results for the d
sity of states and the transverse magnetization. In particu
we find that the Dzyaloshinskii-Moriya interaction may lea
to a decrease of the nonzero averaged transverse magn
tion at zero averaged transverse field that appears becau
the correlated disorder. It is known10–13 that in the nonran-
dom case the Dzyaloshinskii-Moriya interaction leads
spectacular changes in the spin correlations and their dyn
ics. However, the rigorous consideration of correlated dis
der in this paper is restricted to thermodynamic quantit
based on the density of states. The effect of
Dzyaloshinskii-Moriya interaction on the spin correlatio
and their dynamics in the presence of correlated disor
may be studied numerically.17
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