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Thermodynamic properties of spins transverse XY chains with Dzyaloshinskii-Moriya
interaction: Exact solution for correlated Lorentzian disorder
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We extend the consideration of the séirtfansvers@(Y chain with correlated Lorentzian disordgthys.
Rev. B55, 14 298(1997] for the case of additional Dzyaloshinskii-Moriya interspin interaction. It is shown
how the averaged density of states can be calculated exactly. Results are presented for the density of states and
the transverse magnetizatidis0163-182609)06501-1

Much work has been done since the famous paper by N
Lieb, Schultz, and Mattfsto derive exact results for thermo- H=> Q.+ 2 Jn(Sksy, 1 +svsY, )
dynamics and spin correlations of one-dimensional spin- n=1
1 XY models. Much less exact results were obtained for
random versions of spip- XY chains. One can mention +2 Dn(Spsti1—SYshiq), 1)
here a group of papers dealing with random shirkY
models using the well-known Dyson and Lloyd models of
disorder”™* Recently the interest in random spinXY

chains has noticebly increased since they provide a laborap addition to the exchange couplidy between the neigh-
tory for the investigation of generic features of quantumporing sitesn andn+ 1, an additional Dzyaloshinskii-Moriya
phase transitions in disordered systems. As an example WgteractionD,, between these sites is introduced, i.e., a more
refer to papers on renormalization gréuand numericdl general case than in Ref. 4 is considered.
studies on random spifitransverse Ising chains. In what follows we consider two models.

In the present paper we continue the study started in Ref. Model(i). We assume the Dzyaloshinskii-Moriya interac-
4 that concerns the spip-isotropic XY chain with random tion to be ordered, i.eD,=D, whereas the exchange cou-
Lorentzian exchange coupling, and a transverse fiel@,, plings J,, are independent random Lorentzian variables with
that depends linearly on the surrounding exchange couplingée probability distribution
Jn—1 and J,. Obviously, due to the relation between the
transverse field and the random exchange couplings this is a 1 r
model of correlated disorder. The Jordan-Wigner method P(Jn)=— L )2+F2
and the method elaborated by John and Schréjemitted 0
us to exactly derive the averaged density of states for such Bhe on-site transverse fields are determined by the formula
model and as a result to study its thermodynamic properties.
Apparently the most interesting result of introducing the cor-
related disorder is the appearance of the nonzero averaged
transverse magnetization at zero averaged transverse field.
Later this effect was checked numericdliIn the present wherea is real anda|=1. Note that after putting =0 one
paper we shall extend the model introducing additionalobtains the model considered in Ref. 4.
Dzyaloshinskii-Moriya interspin interactions. Spjn-XY Model (ii). We assume the exchange coupling to be or-
chains with Dzyaloshinskii-Moriya interaction were studied dered, i.e.J,=J, whereas thd, are independent random
in several pape}g‘l‘lin which it was shown that they exhibit Lorentzian variables with the probability distribution
interesting thermodynamic and dynamic properties, which
may be of interest for the understanding of the properties of 1 r
some quasi-one-dimensional compourfeg., CsCuG)). It P(Dn)= g m (4)
will be shown below that the Dzyaloshinskii-Moriya interac- n -0
tion may influence the thermodynamic properties of a magThe on-site transverse fields are determined by the formula
netic chain conditioned by correlated disorder in a specific

o —
Sn+N=Snh -

2

a
Qn_QO:E(‘]n—l_lp‘]n_ZJO)v (3

manner. a
Hereafter we consider an isotropitY chain in a mag- 0y =Qo=5(Dn-1+Dn=2Do), 5

netic field along thez axis consisting ofN spins 3. The

Hamiltonian is defined by wherea is real anda|=1.
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With the help of the Jordan-Wigner transformation theOur task is to evaluate the random-averaged Green functions
Hamiltonian(1) can be rewritten as a Hamiltonian of nonin- since they yield the random-averaged density of states
teracting spinless fermions through the relation

N 1
_ + _
H_nZlQ”(C“C” 2) o .
) p(E)=F—ImG (Exie). ®)
J +iD J,—iD
+3 (PP e k) ©
n=1

Having the independent Lorentzian random variables one
with cyclic boundary conditions. In Eq(6) we omitted may try to perform the random averaging of Eg) with the
the boundary term that is not essential for the calculatiorhelp of contour integrals. However, one must know the po-
of the thermodynamic propertié®. Let us introduce sitions of the singularities of the Green functions in the
the retarded and advanced temperature double-timplanes of complex random variables. The latter information
Green functionsG,,(t)=Fio(=t){{ca(t),ch}), Grm(t) can be derived for the defined models on the basis of the
—(12m)f”,dwe G (w*ie) that satisfy the set of Gershgorin criteriort®
equations Consider at first spin modéi) described by Eqg1)—(3).
Suppose that exchange couplingis (and hence the trans-

Jno1—iDpog ) verse field),) are complex variables. As follows from Eq.

2 n-1m(@*1€) (7) the singularities of the matriG™ =||G; (w=*i€)|| are
determined by the zeros of the determinant of the matrix

(w*ie— Q)G (w=ie)—

J,+iD _ . - .. X )
Lo 5 nGnﬂrl‘m(wiie) —5 7 QyilB , whereA andB™ are the Hermitian matrices given
1 ) 1 )
w—ReQ, —EReJl—(|/2)D 0 —EReJN+(|/2)D
1R J;+(i/2)D Re Q 1R J,— (i/2)D 0
— -Re i w— —-ReJ,— (i
A=| 270 ’ 27 9
1 .
—EReJN— (i/12)D 0 0 w—ReQy
and
_ 1 1
_1I J *Im Q —1I J 0
_ TF—Im €+ +=lm
Br=| "2 2 T2 , (10)
1 _
Iilm NN 0 0 <o exIm Qy

respectively. John and Schreiber noticed that if all eigenvalis satisfied. From Eq(11) it immediately follows that the
ues ofB™ are positive then def(+iB*)+#0.” On the other retarded(advancefl Green function does not have poles for
hand, for any eigenvalua of the matrix B* (10) the Im J,<0 (ImJ,>0) if a=1 and for ImJ,>0 (ImJ,
Gershgorin criterion after making use of H§) guarantees <0) if a<-1. Noting that F(...,Q,,J,,...)
that at least one of the inequalities =F(... Q¢—ial',Jo—il,...) if F(...,Q4,35,...)
does not have poles in lower half plane}, and
FC. ... Qn0dny - )=F(... Qptial’, Jptil’, .. .) if
F(...,Q,4,3,,...) does not have poles in upper half
planes], one finds the following result of averaging the set
la|]=1, n=1,...N (1) of Egs.(7):

_a 1 1
e+§(lm Jo_1+Im J)—\ $§|Im Jn,1|+§|lm Jl,



102

FIG. 1. The density of statgslescribed by Eq(13)] [(a),(b)]
and the transverse magnetizatienm, versus ), at S=1000
[(c),(d)] at fixedJp=1,T'=1, anda=—1.01[(a),(c)] or a=1.01
[(b),(d)]. The short-dashed curves correspon®te 0, long-dashed
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(w—ﬂoii|a|F)G§m((u)—

The obtained equationd2) possess translational symmetry
and proceeding further in a standard manner one obtains

FIG. 2. The density of statdslescribed by Eq(13)] [(a),(b)]
and the transverse magnetizatienm, versus (), at S=1000
[(0),(d)] at fixedD=0, I'=1, anda=—1.01[(a),(c)] or a=1.01
[(b),(d)]. The short-dashed curves correspondde 1, long-dashed
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— 1 JAZ+BZ-A
PEZZN e
A=(E—Qq)%+(1—|a|’)I?-J33-D?,
B=2I[|a|(E— Q) +sgn(a) Jo]. (13

Consider now spin model(ii)) described by Egs.
(1),(4),(5). Certainly we may repeat the whole calculation
once more obtaining as a respl{E) for this model. How-
ever, there is a relationship between modeélsand (ii) that
immediately yields thermodynamics of the latter model if it
is known for the former one. Namely, consider the following
rotations of spin axes around theaxis:

o ] .m(n=1) |
Snexgi———s;/.

(sf{)’zexp{ —i—w(nz_ 1) sh

(14)

One immediately finds that the Hamiltonidh) arises as a
result of transformation$14) applied to a Hamiltonian of
form (1), however, with the exchange couplinBs, and the
Dzyaloshinskii-Moriya interactions-J,. Therefore it be-
comes evident that the density of stat&3) after the replace-
mentJo—D,, D?— J?2 transforms into the density of states
for the model(ii). Hence it is sufficient in what follows to
consider only the spin modél) defined by Eqs(1)—(3).

Let us discuss the obtained density of magnon sidi@s
It can be straightforwardly checked that EG3) covers in
the particular cas® =0 the result derived in Ref. 4. In the
limit of diagonal disorded”— 0, |a|T'=y=const, Eq.(13)
reproduces the density of states for the spiisotropic XY
chain with Dzyaloshinskii-Moriya interaction in a random
Lorentzian transverse field with the mean valdg and the
width of distributiony.* The density of state€l3) remains
the same after the simultaneous change of sigrk, eihda;
hereafter we choos#&,>0.

Let us remind the reader of how the density of states is
influenced by correlated disorder in the caseDof 0 (for
details see Ref.)4For|a|~1 the disorder causes a smearing
out of mainly one edge of the magnon barfdhich
one depends on the sign a). As a result we have
J° . dEp(E) # [5dEp(E) atQ,=0 that leads to the appear-
ance of a nonzero averaged transverse magnetization
m,=—3J”..dEp(E)tanh(BE/2) at zero averaged transverse
field Q. With an increase ofa| the symmetry of the non-
random case is recovered, i.e., both edges of the magnon
band become smeared out in a symmetric way, the numbers
of states [, dEp(E) and [3dEp(E) at Q,=0 become
equal to each other, amd,=0 atQ,=0.

Figures 1a), 1(b) demonstrate the changes in the behavior
of the averaged density of statg6E) versusE— ), for I
=1, a==*1.01, Jp=1 for three different strengths of the
Dzyaloshinskii-Moriya interactio® =0,D=1,D=2. It can
be seen that an additional Dzyaloshinskii-Moriya interspin
interaction(1) increases the width of the smoothed magnon
band, (2) leads to the recovering of the symmetry with re-
spect to the changé—Q,— — (E—Q). Thus the increase
of the Dzyaloshinskii-Moriya interaction leads to the de-
crease of the nonzero valuemf, at(),=0 [Figs. Xc), 1(d)].

In Fig. 2 we depicted the influence of an increase of the
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averaged exchange couplidg at fixedD = 0. Similar to the
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may be used to test approximations and/or calculations for

previous case one observes an increasing of the band widrﬁ_r,lite systems. As an example we present re_sults for th(_a den-
however, in contrast to the previous case the density of stateity of states and the transverse magnetization. In particular,

remains not symmetric with respect to the chage(},

we find that the Dzyaloshinskii-Moriya interaction may lead

——(E—Q) [Figs. 2a), 2(b)] and as a result the model to a decrease of the nonzero averaged transverse magnetiza-

exhibits a noticeable nonzero value wf, at (4,=0 [Figs.

tion at zero averaged transverse field that appears because of

2(c), 2(d)]. The difference in the behavior of the density of the correlated disorder. It is knowh*3that in the nonran-

states with increasinD or Jg is not surprising sincd, and
D enter in a different way into Eq13).

To summarize, we have studied the spitransverse iso-

dom case the Dzyaloshinskii-Moriya interaction leads to

spectacular changes in the spin correlations and their dynam-
ics. However, the rigorous consideration of correlated disor-

tropic XY chain in the presence of correlated Lorentzian dis-der in this paper is restricted to thermodynamic quantities

order. Going beyond the results given in Ref. 4 we include i

Pased on the density of states.

The effect of the

the model the Dzyaloshinskii-Moriya interaction. The DZyaloshinskii-Moriya interaction on the spin correlations
asumption of correlated disorder allows the exact calculatio@d their dynamics in the_presence of correlated disorder

of the averaged density of statp§E). The exact formula
(13) for p(E) is the main result of the paper. Based on this

may be studied numerically.
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