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Skyrmion in a real magnetic film
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Skyrmions are magnetic defects in ultrathin magnetic films, similar to the bubble domains in the thicker
films. Even weak uniaxial anisotropy determines their radii unambiguously. We derive equations of slow
dynamics for Skyrmions. We show that the discreteness of the lattice in an isotropic two-dimensional magnet
leads to a slow rotation of the local magnetization in the Skyrmion and even a small dissipation leads to decay
of the Skyrmion. The radius of such a Skyrmion as a function of time is calculated. We prove that uniaxial
anisotropy stabilizes the Skyrmion and study the relaxation process.@S0163-1829~98!50438-9#
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Skyrmions are topological excitations of two-dimension
~2D! magnet or ultrathin magnetic films similar to the we
known bubble domains in the industrial magnetic mem
materials.1 The former play an important role as letters
magnetic records. A natural question arises whether
Skyrmions can be utilized in a similar way. To answer th
question one must adjust the existing theory to a reali
condition of real films with their anisotropy, defects, dissip
tion, and discreteness. It is necessary also to consider
the Skyrmion can be created and destroyed, i.e., the S
mion dynamics, ignored in the previous studies. In this pa
we address these problems.

The Skyrmion was first discovered by Skyrme2 who con-
sidered it as a localized solution in a model of nuclear m
ter. Belavin and Polyakov~BP! ~Ref. 3! have shown that the
Skyrmion is a topologically nontrivial minimum of energ

for the so-calledn¢ field, the classical continuous limit of th
Heisenberg model. It realizes the mapping of the plane
which the spins are placed onto sphere of the order param
with the degree of mapping 1.

Though then¢-field model was inspired by the studies
magnetic films, a more or less direct observation of the Sk
mions was made on the 2D electron layers under the qu
tum Hall effect~QHE! conditions4 following an earlier the-
oretical prediction.5 An indirect observation of Skyrmion
effects in quasi-2D magnets was reported by F. Waldn6

who found the Skyrmion energy from the heat capacity m
surements in good agreement with the theoretical predic
by BP. This experimental observation is highly nontriv
since the real magnets are at least weakly anisotropic. Du
the existence of Goldstone modes in the Heisenberg mag
even very weak anisotropy can change the excitations
cially.

Let us first approach the problem with simple dimensio
ality arguments. The Skyrmion is a static excitation of t
homogeneous ferromagnetic state localized in a circle of
radius R. From the dimensionality consideration and fro
the BP results the Skyrmion energy does not depend on
size and is equal to 4pJumu wherem is the degree of map
PRB 580163-1829/98/58~14!/8889~4!/$15.00
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ping. Hence, the exchange energy 1/2*J(¹S)2d2x of a Skyr-
mion does not depend on its radiusR. The anisotropy energy
21/2*lSz

2d2x of the Skyrmion is proportional toR2 and
decreases together withR. Therefore the exchange energy
the fourth order in the derivatives 1/2*k(DS)2d2x is crucial
for the Skyrmion. It stabilizes the Skyrmion ifk.0. Now
the total energy of the Skyrmion depends on its radius
has minimum atR;(k/l)1/4. The order of magnitude ofk is
Ja2 where a is the lattice constant, but its sign is mode
dependent. It is negative for the Heisenberg model with
nearest-neighbor interaction, but it is positive for a more
alistic Ruderman-Kittel-Kasuya-Yosida interaction. Thus,
there exists a stable Skyrmion, its radiusR is of the order
R;(Ja2/l)1/4;( l la)1/2! l l , wherel l5AJ/l is the domain
wall width. The energy of such a Skyrmion differs by abo
lR2;Akl from the classical Skyrmion energy 4pJ
@Akl.

This analysis shows that a kind of perturbation approa
is applied for this problem. Below we develop nonlinear p
turbative theory working at rather general premises. T
classical two-dimensional Heisenberg exchange ferroma
in continuous approximation is described by the Hamilton

H05
1

2 E J~¹S!2d2x ~1!

with the constraint on the vector fieldS~r !: S2(r )51. An
obvious minimum of such a Hamiltonian is the homog
neous ferromagnetic configuration in which all the spins
parallel S(r )5const. The simplest topologically nontrivia
minimum of the Hamiltonian~1! is given by the Skyrme
solution:

S0x5
2Rr

R21r 2
cos~f1c!,

S0y5
2Rr

R21r 2
sin~f1c!,
R8889 © 1998 The American Physical Society
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S0z5
R22r 2

R21r 2
. ~2!

It describes a Skyrmion of radiusR with the center placed in
the origin. The observation point is indicated by the po
coordinatesr andf; c is an arbitrary angle. We have alread
mentioned that the energyE of the Skyrmion~2! does not
depend on its radiusR. It also does not depend on the ang
c.

Any static distribution of magnetizationS~r ! satisfies the
equilibrium equation:

dH

dS~r !
5S~r !S S~r !•

dH

dS~r ! D . ~3!

The right-hand side of Eq.~3! is added as a Lagrangian fa
tor which ensures thatS2(r )51 at any pointr . For H5H0
1H1 whereH1 is a perturbation we look for a solution in
form S5S01S1 , whereS0(r ) is determined by Eq.~2! and
S1(r ) is perpendicular toS0 and satisfies the linearized inho
mogeneous equation:

K̂S1~r !5F dH1

dS~r !
2S0~r !S S0•

dH1

dS D G
S5S0

, ~4!

where the tensor kernelKi j (r ,r 8) of the linear operatorK̂ is
given by

Ki j ~r ,r 8!52Jd~r2r 8!

3@d i j D r82d i j ~S0•DS0!2S0iS0 jD r8#.

The derivatives]S0 /]R and]S0 /]c are the zero mode
and, hence, they satisfy homogeneous equationsK̂]S0 /]R

5K̂]S0 /]c50. Therefore, the right-hand side of Eq.~4!
must be orthogonal to the vectorial functions]S0 /]R and
]S0 /]c. The two orthogonality conditions allow us to dete
mine bothR andc fixed by small perturbationH1 . Consid-
ering a special perturbation Hamiltonian

H15
1

2 E @k~DS!21l~12Sz
2!#d2x, ~5!

we find from the orthogonality condition

R5R05S 8k

3lL D 1/4

, ~6!

whereL5 ln@(3l/8k)1/4l l#. The logarithm in Eq.~6! comes
from the divergent integral*(12S0z

2 )]S0z /]Rd2x. It was
cut off at a radiusr 5 l l at which the perturbation theor
fails. Due to axial symmetry,c remains to be zero mode
Note that the Skyrmion does not exist fork,0. Now we are
in a position to consider the dynamics of the Skyrmion.

The dynamics of the unit vector fieldS(r ,t) is given by
the Landau-Lifshitz equation:7

Ṡ~r ,t !52gS~r ,t !3
dH@S#

dS~r ,t !

1nS~r ,t !3FS~r ,t !3
dH@S#

dS~r ,t !G . ~7!
r

It can be checked that, atn50, the equation of motion~7!
conserves the magnetization and energy of the fieldS~r !, as
well as the local constraintS2(r )51. A small dissipation
term atnÞ0 allows for the relaxation processes.

We consider only the slow Skyrmion dynamics. It mea
that we present again the HamiltonianH as a sumH0
1H1 , where H1 is a small perturbation to the exchang
HamiltonianH0 . We are looking for a solution in the form
S5S01S1 , S0•S150, whereuS1u!uS0u andS0„r ;R(t),c(t)…
is the standard Skyrmion solution~2! with the parametersR
andc slowly varying in time. We also consider the dissip
tion and the termṠ as a perturbation. Substituting onl
S0„r ;R(t),c(t)… in the perturbation terms in Eq.~7! and re-
quiring the orthogonality of the perturbation terms to bo
zero modes]S0 /]R and ]S0 /]c, we obtain equations o
motion for R andc :

Ṙ

R
52

n

g
v, ~8!

vR2ln
R̃2

R2
1gk

16

3

1

R2
2glR2ln

R̃2

R2
50, ~9!

wherev5ċ and R̃ is a scale at which the perturbation e
pansion breaks down, i.e.,uS0(r 5R̃)u'uS1(r 5R̃)u. Equa-
tions ~8! and ~9! have a fixed point withv50 andR5R0 ,
whereR0 is determined by Eq.~6!.

If R deviates slightly fromR0 so thatDR5R2R0 is still
small enough, one can putR̃5 l l into Eq. ~9! and obtainv
54lgDR/R. Using Eq.~8!, we find

DṘ524lnDR. ~10!

‘‘Small enough’’ DR means that we still can useR̃' l l .
However, if DR is large, the cutoff scale is determined b
finite frequency:R̃' l v5AgJ/uvu. Eq. ~10! is valid if l l

, l v or DR/R,1/4. In the opposite casel v! l l andR@R0
one can neglect the second term in Eq.~9!. Then equations of
motion ~8! and ~9! read as follows:

v5lg; Ṙ52nlR. ~11!

For l v! l l andR!R0 the last term in Eq.~9! can be omitted.
Then

v52
16

3

kg

R4

1

ln
3R2J

16k

; R3Ṙ5
16

3
kn

1

ln
3R2J

16k

. ~12!

Thus, the easy-axis anisotropy together with the four
order exchange term fix the radius~6! of the Skyrmion ifk
.0. In the opposite casek,0 there is no stable configura
tion with nontrivial topology. We also have shown that th
Skyrmion reaches its equilibrium radius within characteris
time t r5(nl)21.

Another property of a real film which should be taken in
account is the lattice discreteness. We have mentioned ea
that in the continuous model the Skyrmion is a topologi
excitation and as such cannot dissipate. However, in the
crete lattice the continuity of the fieldS~r ! is lost and the
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very notion of topological excitation becomes inconsiste
Therefore, the Skyrmion configuration in the discrete latt
is unstable. Moreover, it is sufficient to remove one plaque
in the center of the Skyrmion to make it unstable~see, for
example, Ref. 8!. We will imitate the discreteness effect b
considering a hole in the center of the Skyrmion. In the p
ture due to BP the Skyrmion is described by a mesomorp
function which has a pole in the center of the Skyrmion. T
pole cannot be removed by any continuous variation of
field S. However, the Skyrmion configuration with a ho
punched in its center will dissipate.

Let us first consider the Skyrmion without anisotrop
‘‘Punching a small hole in the center’’ means the substitut
J→Ju(r 2r 0) in Eq. ~1! where r 0!R is the radius of the
hole andu(x) is the step function:u(x)50 for x,0 and
u(x)51 for x.0. Hence, the perturbationH1 is given by

H̃152JE u~r 02r !~¹S!2. ~13!

Employing the orthogonality condition of the right-hand si
of the linearized Eq.~7! to the zero modes and neglecting a
the terms of the higher order inr 0 , one finds that Eq.~8! still
holds, but Eq.~9! must be replaced by

v ln
R̃2

R2
5g

Jr0
2

R4
, ~14!

where R̃' l v5AgJ/uvu is the scale where the perturbatio
scheme breaks down. With the logarithmic accuracy one
write ln(R̃2/R2)5ln(R2/r0

2). Finally, substitutingv from Eq.
~14! into Eq. ~8!, we find

R3Ṙ52n
Jr0

2

ln
R2

r 0
2

. ~15!

From this equation one can conclude that the Skyrmio
lifetime is roughly proportional to its radius in the fourt
power.

Returning to the field with the easy-axis anisotropy a
the fourth-order term, let us introduce again a hole in
center. In this situation the perturbation is given by the s
of the two terms~5! and~13!. Using the same orthogonalit
trick one gets

22
v

g
R2ln

R̃2

R2
2

32

3

k

R2
12R2l ln

R̃2

R2
524J

r 0
2

R2
. ~16!

After substitutionk→k̃5k2(3/8)Jr0 Eq. ~16! acquires the
same form as Eq.~9!. It means that, as long ask
.(3/8)Jr0

2, the Skyrmion is stable and its radius is defin

by Eq.~6! with k̃ instead ofk. Equations~10!, ~11!, and~12!
are valid as well after the same substitution. In the cask

,(3/8)Jr0
2, however, the effectivek̃ is negative and the

stable Skyrmion exists no longer.
The translation motion of a Skyrmion can be studied

the same technique as well. In order to move the Skyrm
t.
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a nonuniform magnetic field perpendicular to the film can
applied. The perturbative part of the Hamiltonian reads

H15E S 1

2
k~DS!21

1

2
l~12Sz

2!2h~r !SzDd2x, ~17!

whereh(r )5mBSH(r ), mB is the Bohr magneton,S is the
spin per unit area, andH(r ) is the magnetic field. The two
new zero modes associated with the translation motion
]S0 /]X and]S0 /]Y, whereX andY are the coordinates o
the center of the Skyrmion. Assuming that magnetic fie
varies slowly, and employing the same orthogonality te
nique, we find equations of translational motion

vx52
gR2

2
]Yh0ln

R̃2

R2
1

nR2

2
]Xh0ln

R̃2

R2
,

vy5
gR2

2
]Xh0ln

R̃2

R2
1

nR2

2
]Yh0ln

R̃2

R2
, ~18!

where vx5Ẋ, vy5Ẏ, h05h(X,Y), and R̃5min(lv ,ll ,
AJ/h0). Equations~18! are valid if u¹huR̃/uhu!1.

In conclusion, we proposed a general framework for d
scription of any slow motion in a system of Skyrmions. W
have shown that in a real ultrathin ferromagnetic film w
easy-axis anisotropy the Skyrmion known for the isotro
model still exists, but it acquires a definite radiusR0 given
by Eq.~6!. This result was obtained in Ref. 9 by other met
ods. By the order of magnitudeR0;Aall! l l wherel l is the
domain wall width. Once we made a domain with the r
versed magnetization in a ferromagnetic film, it shrin
down to the sizeR0;1nm ~see also Ref. 9!. The magnetic
moment of such a Skyrmion is still rather large,mS
5mBp( l l /a)ln(ll /a);300mB , and can be observed exper
mentally by the methods employed to discover the Skyr
ons in QHE systems.4 The Skyrmion stability allows us to
create it with a magnetic tip.

The discreteness of the lattice in the isotropic model le
to a finite Skyrmion lifetime which is roughly proportional t
the fourth power of its radius. However, anisotropy togeth
with the higher order exchange interaction stabilizes
Skyrmion. At finite temperature it can decay through an
stanton configuration. Our results allow us to understa
why the activation energy found by Waldner is so close
4pJ: the difference is expected to be of the relative ord
a/ l l;1022. The detailed thermodynamics of Skyrmion
will be published elsewhere.
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