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Skyrmion in a real magnetic film
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Skyrmions are magnetic defects in ultrathin magnetic films, similar to the bubble domains in the thicker
films. Even weak uniaxial anisotropy determines their radii unambiguously. We derive equations of slow
dynamics for Skyrmions. We show that the discreteness of the lattice in an isotropic two-dimensional magnet
leads to a slow rotation of the local magnetization in the Skyrmion and even a small dissipation leads to decay
of the Skyrmion. The radius of such a Skyrmion as a function of time is calculated. We prove that uniaxial
anisotropy stabilizes the Skyrmion and study the relaxation prof868463-182¢08)50438-9

Skyrmions are topological excitations of two-dimensionalping. Hence, the exchange energy [11¢V S)?d?x of a Skyr-
(2D) magnet or ultrathin magnetic films similar to the well- mion does not depend on its radigs The anisotropy energy
known bubble domains in the industrial magnetic memory— 1/2f)\35d2x of the Skyrmion is proportional t&R?> and
materials: The former play an important role as letters in decreases together with Therefore the exchange energy of
magnetic records. A natural question arises whether thehe fourth order in the derivatives 1/2(AS)?d?x is crucial
Skyrmions can be utilized in a similar way. To answer thisfor the Skyrmion. It stabilizes the Skyrmion if>0. Now
guestion one must adjust the existing theory to a realistithe total energy of the Skyrmion depends on its radius and
condition of real films with their anisotropy, defects, dissipa-has minimum aR~ («/\)Y*. The order of magnitude of is
tion, and discreteness. It is necessary also to consider hoda? wherea is the lattice constant, but its sign is model-
the Skyrmion can be created and destroyed, i.e., the Skydependent. It is negative for the Heisenberg model with the
mion dynamics, ignored in the previous studies. In this papepearest-neighbor interaction, but it is positive for a more re-
we address these problems. alistic Ruderman-Kittel-Kasuya-Yosida interaction. Thus, if

The Skyrmion was first discovered by Skyrhwveho con- there exists a stable Skyrmion, its radigsis of the order
sidered it as a localized solution in a model of nuclear matR~ (Ja%/\) ¥~ (l,a)"?<l, , wherel, = J/X is the domain
ter. Belavin and Polyako(BP) (Ref. 3 have shown that the Wall width. The energy of such a Skyrmion differs by about
Skyrmion is a topologically nontrivial minimum of energy AR>~+Vk\ from the classical Skyrmion energy =8

for the so-calledh field, the classical continuous limit of the > VK)." . . .
Heisenberg model. It realizes the mapping of the plane in This analysis shows that a kind of perturbation approach

. . is applied for this problem. Below we develop nonlinear per-
which the spins are placed onto sphere of the order paramet?surrbgft’ive theor \E)vorkin at rather eneralp remises pThe
with the degree of mapping 1. Y 9 9 P ’

classical two-dimensional Heisenberg exchange ferromagnet

Though then-field model was inspired by the studies of i, cntinuous approximation is described by the Hamiltonian
magnetic films, a more or less direct observation of the Skyr-

mions was made on the 2D electron layers under the quan- 1

tum Hall effect(QHE) conditiond following an earlier the- Ho== f J(VS)?d?x (1)
oretical predictior. An indirect observation of Skyrmion 2

effects in quasi-2D magnets was reported by F. VYaﬁjnerwith the constraint on the vector fielfi(r): S?(r)=1. An
who found t.he Skyrmion energy from the heat capacity meag, iqus minimum of such a Hamiltonian is the homoge-
surements'm good .agreement with t_he theoretmal pred.'c,t'oﬂeous ferromagnetic configuration in which all the spins are
by BP. This experimental observation is highly nontrivial arallel S(r)=const. The simplest topologically nontrivial

since the real magnets are at least weakly anisotropic. Due ta. . . o
; ; : inimum of the Hamiltonian(1) is given he Skyrm
the existence of Goldstone modes in the Heisenberg magnef, um of the Hamiltonian(1) is given by the Skyrme

. LS olution:
even very weak anisotropy can change the excitations cru-
cially.

Let us first approach the problem with simple dimension- Sox= 2Rr cos b+ i)
ality arguments. The Skyrmion is a static excitation of the X R24r2 '
homogeneous ferromagnetic state localized in a circle of the
radius R. From the dimensionality consideration and from R
the BP results the Skyrmion energy does not depend on its Soy= sin(é+ ),
size and is equal to#J|m| wherem is the degree of map- Y R24r2
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It describes a Skyrmion of radid® with the center placed in

the origin. The observation point is indicated by the polar

coordinates anddg; ¢ is an arbitrary angle. We have already
mentioned that the enerdy of the Skyrmion(2) does not
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It can be checked that, at=0, the equation of motioii7)
conserves the magnetization and energy of the g, as
well as the local constrainB?(r)=1. A small dissipation
term atv+0 allows for the relaxation processes.

We consider only the slow Skyrmion dynamics. It means
that we present again the Hamiltonidh as a sumH,
+H,, whereH, is a small perturbation to the exchange

depend on its radiuR. It also does not depend on the angle HamiltonianH,. We are looking for a solution in the form

.
Any static distribution of magnetizatio®(r) satisfies the
equilibrium equation:
o

oY(r) o(r)

The right-hand side of E(3) is added as a Lagrangian fac-
tor which ensures the®?(r)=1 at any pointr. For H=H,
+H,; whereH, is a perturbation we look for a solution in a
form S=$+S;, whereSy(r) is determined by Eq(2) and
S,(r) is perpendicular t&, and satisfies the linearized inho-
mogeneous equation:

=S(r)(S(r)- ©)

l_

SS(r) ' “)

=%

where the tensor kern&;;(r,r’) of the linear operatof( is
given by

KSy(r)=

So(r)(SO' 5—;)

Kij(r,r')=—=Ja(r—r")
X[6ijA = 6ij(Spr ASp) — SpiSpj A/ ]

The derivatives9S,/JdR and 9S,/d¢ are the zero modes
and, hence, they satisfy homogeneous equationS,/JR
=R¢980/¢9¢=0. Therefore, the right-hand side of E@)
must be orthogonal to the vectorial functionS,/¢R and
dSy /9. The two orthogonality conditions allow us to deter-
mine bothR and ¢ fixed by small perturbatioi,. Consid-
ering a special perturbation Hamiltonian

1 2 2\ 742
H1=§ [k(AS)“+AN(1—S)]d“x, (5
we find from the orthogonality condition
8k 1/4
R=Ry= 3)\_L> , (6)

whereL=In[(3\/8x)Y,]. The logarithm in Eq(6) comes
from the divergent integraf(l—SSZ)r?SOZ/aRdzx. It was
cut off at a radiusr=1I, at which the perturbation theory
fails. Due to axial symmetryys remains to be zero mode.
Note that the Skyrmion does not exist fer<0. Now we are
in a position to consider the dynamics of the Skyrmion.

The dynamics of the unit vector fielf(r,t) is given by
the Landau-Lifshitz equatioh:

. SH[S]
S(r,t)=—918(r,t)><5s(Ir 0
SH[S]
+vS(r,t) X S(r,t)><58(r ol (7)

S=S+S;, Sp- S;=0, where|S;| <|Sp| andSp(r;R(t), (1))
is the standard Skyrmion solutigg) with the parameterR
and ¢ slowly varying in time. We also consider the dissipa-

tion and the termS as a perturbation. Substituting only
So(r;R(t),#(t)) in the perturbation terms in Eq7) and re-
quiring the orthogonality of the perturbation terms to both
zero modesdS,/dR and 9S,/dy, we obtain equations of
motion forR and ¢:

®

D2 1 D2
2ln — _ 2
oR4In R2+gK 3 R2 gAR?In

= C)

01

wherew= w andR is a scale at which the perturbation ex-
pansion breaks down, i.elS,(r=R)|~|S,(r=R)|. Equa-
tions (8) and (9) have a fixed point withv=0 andR=R,,
whereR, is determined by Eq(6).

If R deviates slightly fronRR, so thatAR=R—- R, is still
small enough, one can p&=1, into Eq.(9) and obtainw
=4NgAR/R. Using Eq.(8), we find

AR=—4\vAR. (10)

“Small enough” AR means that we still can use~I, .
However, if AR is large, the cutoff scale is determined by
finite frequency:R~1,=gJ/|w|. Eq. (10) is valid if I,
<l, or AR/R<1/4. In the opposite cadg<l, andR>R,
one can neglect the second term in B). Then equations of
motion (8) and(9) read as follows:

w=\g; R=—1\R. (12)

Forl ,<l, andR<R, the last term in Eq(9) can be omitted.
Then

16kg 1 35 16 1 12
w=————; = —KV——————.
3 R 3R 3 3R2J
In In
16k 16«

Thus, the easy-axis anisotropy together with the fourth-
order exchange term fix the radi@®) of the Skyrmion if«
>0. In the opposite case<0 there is no stable configura-
tion with nontrivial topology. We also have shown that the
Skyrmion reaches its equilibrium radius within characteristic
timet,=(v\) L.

Another property of a real film which should be taken into
account is the lattice discreteness. We have mentioned earlier
that in the continuous model the Skyrmion is a topological
excitation and as such cannot dissipate. However, in the dis-
crete lattice the continuity of the fiel8(r) is lost and the
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very notion of topological excitation becomes inconsistenta nonuniform magnetic field perpendicular to the film can be
Therefore, the Skyrmion configuration in the discrete latticeapplied. The perturbative part of the Hamiltonian reads

is unstable. Moreover, it is sufficient to remove one plaquette

in the center of the Skyrmion to make it unstalgee, for

example, Ref. 8 We will imitate the discreteness effect by

considering a hole in the center of thg Skyrmion. In the pic_- lef (EK(AS)2+ E)\(l—Sg)— h(r)S,|d?x, (17)
ture due to BP the Skyrmion is described by a mesomorphic 2 2

function which has a pole in the center of the Skyrmion. This

pole cannot be removed by any continuous variation of the

field S. However, the Skyrmion configuration with a hole Wherenh(r)=ugSH(r), ug is the Bohr magnetort; is the
punched in its center will dissipate. spin per unit area, and(r) is the magnetic field. The two

Let us first consider the Skyrmion without anisotropy. "€W Zero modes associated with the translation motion are
“Punching a small hole in the center” means the substitution?So/9X anddSy/JY, whereX andY are the coordinates of
J—J(r—ro) in Eq. (1) wherer,<R is the radius of the the center of the Skyrmion. Assuming that magnetic field
hole andé(x) is the step functiond(x)=0 for x<0 and  Varies slow_ly, and e_mploylng the same orth_ogonallty tech-
f(x)=1 for x>0. Hence, the perturbatidd, is given by nique, we find equations of translational motion

oo _ 2 ~ ~
Hl_ JJ 0(!’0 I’)(VS) . (13) gRZ R2 VR2 R2
Uy=— _ﬁyholn _2+ _axholn _2,
Employing the orthogonality condition of the right-hand side 2 R 2 R
of the linearized Eq(7) to the zero modes and neglecting all
the terms of the higher order i, one finds that E¢8) still
holds, but Eq(9) must be replaced by - _
9R s in ot 7B i (18
Vy=—— n—+-—4 n—,
R P2 TR 2 TR
w In ngg, (14)

whereR~1,=gJ/|w] is the scale where the perturbation where UX:X’. oy=Y, ho:h,(x_’Y)’ and R=min(,, |,
scheme breaks down. With the logarithmic accuracy one can?d/ho). Equations(18) are valid if|Vh|R/|h| <1.

. ~ . - In conclusion, we proposed a general framework for de-
wnte. In(RZ/Rz):m(RZ/.r(Z’)' Finally, substitutinge from Eq. scription of any slow I?no'ﬁon ina gystem of Skyrmions. We
(14) into Eq. (8), we find '

have shown that in a real ultrathin ferromagnetic film with
easy-axis anisotropy the Skyrmion known for the isotropic

ReR= JFS model still exists, but it acquires a definite radiRg given
-t R2 (15) by Eq.(6). This result was obtained in Ref. 9 by other meth-

In — ods. By the order of magnitud®,~ v/al, <I, wherel, is the
o domain wall width. Once we made a domain with the re-

From this equation one can conclude that the Skyrmion'’€7Sed magnetization in a ferromagnetic film, it shrinks
lifetime is roughly proportional to its radius in the fourth down to the sizeRo~1nm (see also Ref.)0 The magnetic
power. moment of such a Skyrmion is still rather larges

Returning to the field with the easy-axis anisotropy and=#g7(l)/@)In(l\/8)~300ug, and can be observed experi-
the fourth-order term, let us introduce again a hole in thementally by the metgods employed to discover the Skyrmi-
center. In this situation the perturbation is given by the sunPnS in QHE systemS.The Skyrmion stability allows us to

of the two terms(5) and (13). Using the same orthogonality C'€ate it with a magnetic tip. , ,
trick one gets The discreteness of the lattice in the isotropic model leads

to a finite Skyrmion lifetime which is roughly proportional to
the fourth power of its radius. However, anisotropy together

) 2 R? 32« N ~R2_ rs with the higher order exchange interaction stabilizes the
_ZER n Q_ 3 Q’LZR Aln Q_ _4J§' (16) Skyrmion. At finite temperature it can decay through an in-

stanton configuration. Our results allow us to understand

After substitutionk— %= k—(3/8)Jr, Eq. (16) acquires the Why the activation energy found by Waldner is so close to
same form as Eq.9). It means that, as long ax 4mJ: the difference is expected to be of the relative order
>(3/8)Jr2, the Skyrmion is stable and its radius is defined@/|\~10"2. The detailed thermodynamics of Skyrmions
by Eq.(6) with % instead of. Equationg10), (11), and(12)  Will be published elsewhere.
are valid as well after the same s~ubstitution. Inthe cdse  This work has been supported by the NSF Grant No.
<(3/8)Jr§, however, the effectivec is negative and the DMR-9705812 and by the DOE Grant No. DE-FGO3-
stable Skyrmion exists no longer. 96ER45598. We are indebted to B.I. Halperin for useful dis-

The translation motion of a Skyrmion can be studied bycussions and to B. Ilvanov who attracted our attention to
the same technique as well. In order to move the SkyrmionRef. 9.
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