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Chiral universality class in a frustrated three-leg spin ladder
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We study a model of thre®= 1/2 antiferromagnetic Heisenberg spin chains weakly coupled by on-rung and
plaquette-diagonal interchain interactions. It is shown that the model exhibits a critical phase with central
chargeC=2 and belongs to the class of “chirally stabilized” liquids recently introduced by Andrei, Douglas,
and Jerez. By allowing anisotropic interactions in spin space, we find an exact solution at a Toulouse point
which captures all universal properties of the model, including thB5&mmetric case. At this critical point
the massless degrees of freedom are described in terms of an effeeti/@ Heisenberg spin chain and two
critical Ising models. We discuss the spectral properties of the model, compute spin-spin correlation functions,
and estimate the NMR relaxation raf80163-18208)51738-9

In close parallel with the qualitative difference between
the integer-spin and half-integer-spin antiferromagnetic 2= Jn__E Sin Sin+1tILSon (Siat Szn)
chains, first predicted by Haldahehe universal properties " =042
of standard spin ladders, i.e., those with the interchain ex-
change interactionJ) across the rungs, dramatically de- +Ix[(SpntSon) - Son+ 1+ (Stnr1tSon+1) - Sonl (s
pend on the parity of the number of leggsadders with even
number of legs are disordered spin liquids with a finite gap in 1)
th? excitation spectrumz while in odd-l(_aggeo_l ladders ther?/vhere frustration introduced by the interactidp shows up
eX|sts| a_gaplzss brarllcht;n t_helispelctram“mplymg th?.t the ipll% a highly nontrivial way. We shall show that in a certain
correlations decay algebraically. In the low-energy limit, the ; : :
critical behavior of the odd-legged ladders is characterize jange of parameters the model displays an interesting type of

) . ritical behavior in the IR limit, with the central charge
by the central charg€=1 corresponding to an effectiv@ =2, rather thanC=1 as in usualnonfrustratey three-leg

=1/2 Heisenberg spin chahThe Interesting question IS |5qdersl® This critical behavior is identified as the universal-
whether frustration can lead to additional types of mfraredity class of “chirally stabilized” fluids, recently introduced
(IR) behavior not encountered by the above described tW@y Andrei, Douglas, and Jeré?.

“even-odd” scenarios. The existence of real quasi-one- e shall assume that<0J, ,J,<J,. Under this condi-
dimensional(1D) antiferromagnets with a zigzag interchain tion a continuum description can be adopted in which the
interaction, such as @SuCl, (Ref. 4 and spin densities in each chain are representes;@s = J;(x)
Cuy(CsHy,N,)Cl,,° indicates that this question is not purely +(—1)X’a0nj(x), where J;=J;g+J;. and n; are, respec-
academic. The role of frustration has recently been addresseidely, the smooth and staggered parts of the magnetization.
in a two-chain model with a weak zigzag interchain cou-In the continuum limit the Hamiltonian density of the origi-
pling. For an isotropic antiferromagnetic interaction thenal model(1) takes the form

spectrum has an exponentially small gap, and the ground

state is spontaneously dimerizédHowever, an easy plane

7TUJ'
XX Z-type anisotropy supports a gapless phase characterized sz;o:l , 3 UirRidirRT i i)
by nonzero local spin currents polarized along the anisotropy o
axis and algebraically decaying incommensurate spin +94Ng- (N1 +N3) +grdg- (J1+ J5). (2)

correlations

Recently another type of frustrated two-leg ladders wadHere the first line describes three decoupled chains in terms
discussed.In addition to the standard on-rung coupliag, of three critical SW2); Wess-Zumino-Novikov-Witten
this model also includes an interactidn along both diago- (WZNW) models!? vj~Jjay being the spin velocities. The
nals of elementary plaguettes. In this paper, we consider second line in2) includes the interchain coupling terms with
three-chain generalization of such a model: the constants:g;=(J, —2Jx)ag, 0,=(J, +2Jy)a,. We
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stress that in the continuum limit there is no marginally rel- U, 27y

evant twist perturbationy; - 9,n; , which appears in the de- Hi=—~lr'lrt —3=Jor - Jor + G2l JoL , (4)
scription of spin ladders with small zigzag interchain

coupling®®?

The two interaction terms ii2) are of different nature. yith 4/, obtained fromi*, by inverting chiralities of all the

The first one is a relevant perturbation with scaling dimen-¢;rrents. The Hamiltoniari4) resembles the two-channel
siond=1. The second term describes an interaction betWeeRondo modef'S in the latter case the SP), currently de-

the total current of the surface chaiis; J;+J, and that of g ines two-flavor spin excitations of the conduction elec-

the middle chain. This interaction is only marginal and, astrons, while the S(), currentd, is replaced by the local

long asg; is not too small, can be discarded. As a result, forSpin density of the impurity spiS=1/2. Moreover, one can

generic \_/alues 00, a_nd da, the low energy physics of our show that(3) corresponds to the Hamiltonian of the two
model will be essentially that of the standard three-leg ladep,yhe| Kondo lattice away from half-filling with a nearest

_dert,_ and ffrtjhstratmn will plays 30 r?@%%ep;;or _renor;nalt- neighbor interaction between the impurity spins.
lza Kt)ntho he _m?ﬁstgaps etm tve_?hm Sf et |rtn%o|r ?jré A simple renormalization group analysis reveals that, at
point, thougn, IS that in confrast with nonirustrated fa ersg2>0, the interaction is marginally relevant. Usually the de-

the two coupling constantg, ,g, can vary independently, velopment of a strong coupling regime is accompanied by a

ar;]d therr]e |eX|sts a vicinity Of thefllr;]él=2\éxl(gl=0) . Idynamical mass generation and the loss of conformal invari-
where the low-energy properties of the model are mainly, .o 4t the strong coupling fixed point. This is indeed the

determined by the current-current interchain interaction. Reéase for the model of two marginally coupl&1/2 spin

markably enough, exactly @ =0 an anisotropic version of = ., i, ith zigzag interactiofi’ We shall see, however, that
this model is exactly solvable at a Toulouse point. The solu-d hiral & the effective i . .
tion describes a fixed point with a larger central cha@e ue to chiral asymmetry dfl the effective |nteract|qn, asin

]he two-channel Kondo model, flows towards an intermedi-

=2 which, as we shall demonstrate, govern the physics fo te fixad point wh ¢ I . : d with
sufficiently smallg, . Our strategy will be first to present our ate fixed point where conlormal invariance IS recovered wi
smaller central charge.

solution and discuss the physical properties of the system & The model(4) is Bethe-Ansatz solvabi® (see also Ref.

the special poind, =2J, and then to explore its neighbor- . .
hoodpforg gmaIIL % P 9 11). Here we present an exact solution for éllJversion of
1 . . . . . .

Toulouse point solutionWe start by neglecting the inter- the model, pharacterlzed b.y an|_sotrop|c interactiegy, (
action between currents of the same chirality. Such terms_ 9 9.), Wh'c.h allows us to mvesﬂgate the speptrum of_the
lead to renormalization of the velocities of the excitationsmOOIeI an_d estimate asymptot|cs_of the corre_lat|on funct!ons.
which can be effectively taken into account by allowing the OUr solut|o_n IS baseo_l on a mapping onto Majorana fermions.
surface chain velocities =v,) to be different from that of Using Abelian bosonization, we shall exploit the existence of
the middle chain . In the noilinteracting cas@{=0), the a Toulouse-like point where the fermions are fte®Ve start

0- =0), . . o
central charge of two surface chainsGs=2. On the other W'th. Abelian bosonlzanor_l O.f the S@), currentJo_. Intro-
ducing a massless bosonic fieidwe have(see, for instance,

hand, the total currerit, being the sum of two S(@@), cur- i A +
rents, satisfies the SP), Kac-Moody algebra. Since the cen- APPENdix A g Ref. 14 Jor=(1V2m)dxerL: JorL
=(1/2mway)e™"*"¥rL, On the other hand, combining two

tral charge of the S(2),-symmetric WZNW model isC - - 1 ) - )
=3/2, some degrees of freedom should account for the misé\—/'g‘lofarl‘a fields, £ and ¢° to form a Dirac fermion,
ing C=1/2. Those are associated with a discretg) (@on- (¢ T1€7)/v2, and then bosonizing it, we can express
magnetic -2 interchange symmetry, and remain decou-the€ SU2) current | in tegms of a bosonic f'e'OP
pled and critical with the central charg€=1/2. The and the Majorana fermiort™: RL=(INm)aPr 1, IR
simplest way to see this is to exploit the equivalence=(i/ Vmag)&} ke™#™rL. An additional fermionic zero-
SU(2)XSU(2)~SO4) and use the representation of two mode operatok has been introduced to ensure the correct
SU(2), currents in terms of a quadruplet of rédajorana ~ commutation relations. Then the Hamiltoniancan be writ-
fermions, & and £ (a=1,2,3)7 2= ten in the following bosonized form:

—(il2) €3P%EP£0 | (31— J2)2=i£2¢°,  where a=R,L.

Then one easily finds that the contribution of the massless

Majorana fermion£® decouples from the rest of the spec- H=uv [ (dy@r)2+ (dxer) 2]+ v1[ (I PR)Z+ (5P )?]

trum, and the effective Hamiltonian at the special pajpt

=0 reads U1 9y
=1 ?(fg’?xgg_ gﬁaxgﬁ)"_ E(ﬁxgoL(?xq)R
He=—i (B~ o) +HLS). () LT
2 + dxprdx® ) + - Eric COVATDR+ VBT )
2(7Tao)
All nontrivial physics is incorporated in the current depen- ig

dent part of the Hamiltonian, describing marginally +—l)3,2§EK cod \VAmd +\Bmeg). %)
3 0

2(ma
coupled SW2), and SU2); WZNW models. Notice thak{ in (
turn separates into two commuting aokirally asymmetric

parts:??= Hi+Hy, ((H1,H2]=0), where We now perform a canonical transformation:
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=cosha<I_> +sinh cI_> ® =cosh CI_>+sinha<I_>, _ i — 3 40
¢ 2 ady a®1 2 10 =Tr0 ™ 3 (MLRELRT EriérL)

ﬂ=cosha52—sinh a®_1, ®=cosha®_1—sinh aG_)2 , , )
(6) Jor)= ~ TR TIRLIERL) - 8

where® and® (respectively®, and®,) are the dual fields At energies|w|>m, where all Majorana fields can be con-

iated wit dd iively . dd.). Th sidered as massless, E@8) transform back to the standard
associated withp an (respectively, P1 an 2)- € definitions of the currents of the three decoupled chains. In
cross termsl,¢d, P in Eq. (5) can be eliminated by setting

; : this (ultravioley limit, h ict f th f
tanh 2v=—g,/7v2(vg+v,). One immediately observes 'S (ultravioley limit, one has a picture of three groups o

. v . > independently propagating spinons. However, in the IR limit
that choosing tankk=—1/#2, which corresponds to a special (lw|<m), all Majorana bilinears ir8) are characterized by

(though nonuniversal positive value ofgy,[9f =47(vo  short-ranged correlatiorisince the Majorana fermiongand
+v4)/3], the arguments of the two cosine terms(8) be- 3 4516 massive implying that strongly fluctuating parts of
come those of free fermions, ca,%(bz,_,R). Introducing a  the currents of individual chains are no longer independent;
pair of Majorana fields,; and ¢, and using the correspon- all of them contribute to the formation of a single, physical,
dence:  ¢r = (nrL+ilr)/V2=(kl\2may)e " *™®2rL ~ currentJ” In fact, the physical spinon represents a chirally
we finally obtain ’ asymmetric, strongly correlated statetbfee spinons. Con-
sider, for instance, a right-movingm/2 kink of the field®
representing a physical spinon with the spin project&n

J— Ul — — iU2
H= ?[(0x¢1)2+(0x@1)2]— 5 [{rixdr™ {L0x¢L] =1/2. According to the exact relation
iv iu _
~ 5 [ 80,81~ = [rdxme—nidxm] Taw = hmw) T Izmn HoLw ©
+im[ £ m — 7rEN. (7)  following from (8), such an excitation is a combination of

two right-moving spinons of the surface chains, each carry-
ing the spinS*=1/2, and a left-moving antispinon of the
dniddle chain, withS*=—1/2. The rigidity of such a state is
ensured by a finite mass gap in the- &%) sector of the
model. This peculiar structure of the elementary spin excita-

q led f | b , d Mai p tions at the chiral fixed point is also reflected by the expres-
ecoupled free massless bosonic an ajorana fi@dds, qign for the velocityu, .

and £, contributing to criticality with the central charg&: Apart from the nontrivial nature of the spinon, the chiral
=1+1/2=3/2. Therefore, at the new critical poifif effec-  fixed point manifests itself in the existence of two additional
tively represents a gapless=1/2 spin chain and a critical massless singlet excitations. The Majorana fermg8rde-
Ising model. Coming back to the mode) and adding the scribes collective excitations of singlet pairs formed on the
contribution of the singlet Majorana fermiog’, i.e., one  two surface chains. The nature of the Majorana fernijos
more critical Ising model, the total central charge becomesess transparent: it is a highly nonlocal object when ex-
Cr=2. The remaining part of the Hamiltoniaf7) has a  pressed in terms of the original spin operators. The best way
spectral gapn and describes hybridization of the Majorana to understand the role of the singlet excitations is to combine
&£ and » fields with different chiralities. Since the canonical the £° and ¢ fields into a single Dirac fermion and then
transformation(6) does not mixH,; andH,, the Hamiltonian  posonize it. The corresponding massless bosonic field
(7) still decouples into two commuting, chirally asymmetric resembles the scalar field describing the charge degrees of
parts. This reflects the chiral nature of the fixed point. freedom in the Hubbard model away from half-filling in the
Physical picture of elementary excitationEhere are two  |imjt U=c. We shall hence refer to the gapless Majorana
different kinds of elementary excitations at the Toulousefie|ds as “pseudocharge” excitations which account for the
point: magnetic excitation described by the field, and  central chargeC=1. The spin-pseudocharge separation is
nonmagnetic, singlet, excitations associated with the twalready manifest at the Toulouse point implying that the

Herem=g, /27a,y, and the two renormalized velocitias;
and u,, are expressed in terms of the surface and middl
chain velocitiesv,; and vg as u;=(2v,—vg)/3,u,=(2v
—v4)/3. The first two terms in Eq(7) describe completely

Majorana fermions® and . leading asymptotics of correlations functions will factorize
Notice that, due to the mixing of different degrees of free-into the spin and pseudocharge contributions.
dom reflected in the canonical transformatidf), the Correlation functionsWe shall now use the exact solu-

“physical” spinons, i.e., those defined a&r/2 kinks of the  tion of the model, found at the Toulouse point, to calculate
field &, describing the effectivés=1/2 spin chain, should Physical quantities of interest. From EqB) it follows that,
not be misleadingly identified as the spinons of the middle2S for @ singleS=1/2 Heisenberg spin chain, an external
chain. To get a better understanding of the structure of spimagnetic fieldH couples only to the massless figlg,. The
excitations at the chiral fixed point, let us express the curuniform susceptibility in units ofjug is easily found to be
rentsJj, J5, andJj in terms of the “physical” current7?  x~'=2mu,. At low temperaturesT{<m) only the gapless
=(1\2m)a,®,. Using the transformation) at the Tou- modes &°, ¢, and®,) contribute to the specific heat. Using
louse point, we find the general formul&, = 7CT/3v, we find
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#T(11 11 1 massive, the expansion #g, does not introduce new infra-
Cv:? > U_1+ > u_2+ 1U_1 : red singularities, implying that the long-distance behavior of

the correlation functions will not be modified except for a

We have also computed all spin-spin correlation functionsselocity and mass renormalization. Therefore, the solution at
at the Toulouse poirtdetails will be published elsewhéf  the Toulouse point captures all universal properties of the
The leading asymptotics of the uniform part of the correla-chiral fixed point and includes the cagg=g, where the
tion functions coincide with that of the effecti&=1/2 spin  Hamiltonian has the full S(2) symmetry.
chain, in agreement with the above discussion. The nature of Now we consider small deviations from the point=0.
the chiral fixed point manifests itself istaggeredcorrela- At small enoughg;| it is possible to investigate the effect of
tions between the spins of the surface chains. It can be showRe packscattering termy,- (n;+n,) as a weak perturbation

that, up to nonuniversal constant prefactors, strongly fluctug, the chiral fixed point. This perturbation can be shown to
ating parts of the staggered fields are given at the Toulouse , ~ L
point by the following expressionsiy~imaglrl N} , Ny, bihprop?rt|or(;§1| to C'OSIGlC/IZC)\’/VWh[Ir(\:h Is a rflzvat?]t ?E’ﬁragor ’

~ = with scaling dimension 1/4. We thus conclude that the back-
~(cosmD N_Fsin JadN,) where N 9

< o — scattering operator opens a gay,, in the pseudocharge
~(cos\2m04,sin 27O, =sin J27d,). The staggered sector but has no effect on the magnegpinons excita-
correlations between the spins of the surface chains read tions. Standard scaling arguments give an estimatg:
(na(%7)N5(0,0)) I_~g_‘1”7. The chiral fixed point is thus_uns_table in the far IR
imit, and the system will flow to th€ =1 fixed point of the
1 1 1 standard three-leg spin ladder. Of course, the very applica-
~5ab(xz+u2 21 2, 2208 w2, 2.z (10 bility of the perturbative approach to the chiral fixed point
177 (X2 v {T) T (X usyT) ) " X
requires that\ .<m, the condition which can always be sat-
wherea,b=(1,2). There is an intrinsic velocity anisotropy isfied for sufficiently smallg;. Under this condition, there
in the pseudocharge sector which might be important whegxists an intermediate but still low-energy regidn<E
considering the dynamical properties. We emphasize that the m where theC=2 behavior caused by frustration is domi-
exponents in the correlation functions amgiversaland char-  nani The physics in this region is universal and cannot be
acterize a new universality class in spin ladders. This is theyngerstood without having recourse to the chiral fixed point.

mtam rttagultthofNol\L/Jlkwolrk. ?nothetr qu/aﬂt!ty Oft Zﬁ?er'{?fntal At lower energiesE<A_, the system will eventually cross
Interest 1S the relaxation rateTyy. It is not difficult to over to the conventional critical=1 behavior.

show that at low temperature,Ty/~ /T, in contrast with the We think that this fixed point discussed in the present

Heisenberg chain whereTly/~const. : ; " o
" L o paper might be responsible for additional physics in many
Stability of the chiral fixed pointith all these resuits at frustrated ladders such as the three-chain zigzag ladder. This

hand, now we turn to the stability of the chiral fixed point. odel and the dooed case are currently under study. We
There are two important questions we shall address. The firﬁl P y Y-

is related to the stability of the Toulouse point wigh= 0 ope that the chiral-fluid critical state with all its physical

kept fixed, and the second is to examine the behavior of th roperties will be observed in further experiments on spin-
system when one moves away from the pdint2J. . adder systems.
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1/2<vo/v,=2. So the chiral fixed point is stable in a rela- and Lu Yu for very helpful conversations. A.N. acknowl-
tively broad range of velocities. Wheg) deviates from its  edges the support from DFG. He would also like to thank
Toulouse-point value, the Hamiltonidi) picks up an extra vjadimir Rittenberg for his kind hospitality and stimulating
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