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Chiral universality class in a frustrated three-leg spin ladder
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We study a model of threeS51/2 antiferromagnetic Heisenberg spin chains weakly coupled by on-rung and
plaquette-diagonal interchain interactions. It is shown that the model exhibits a critical phase with central
chargeC52 and belongs to the class of ‘‘chirally stabilized’’ liquids recently introduced by Andrei, Douglas,
and Jerez. By allowing anisotropic interactions in spin space, we find an exact solution at a Toulouse point
which captures all universal properties of the model, including the SU~2! symmetric case. At this critical point
the massless degrees of freedom are described in terms of an effectiveS51/2 Heisenberg spin chain and two
critical Ising models. We discuss the spectral properties of the model, compute spin-spin correlation functions,
and estimate the NMR relaxation rate.@S0163-1829~98!51738-9#
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In close parallel with the qualitative difference betwe
the integer-spin and half-integer-spin antiferromagne
chains, first predicted by Haldane,1 the universal properties
of standard spin ladders, i.e., those with the interchain
change interaction (J') across the rungs, dramatically d
pend on the parity of the number of legs.2 Ladders with even
number of legs are disordered spin liquids with a finite gap
the excitation spectrum, while in odd-legged ladders th
exists a gapless branch in the spectrum implying that the
correlations decay algebraically. In the low-energy limit, t
critical behavior of the odd-legged ladders is characteri
by the central chargeC51 corresponding to an effectiveS
51/2 Heisenberg spin chain.3 The interesting question i
whether frustration can lead to additional types of infrar
~IR! behavior not encountered by the above described
‘‘even-odd’’ scenarios. The existence of real quasi-on
dimensional~1D! antiferromagnets with a zigzag intercha
interaction, such as Cs2CuCl4 ~Ref. 4! and
Cu2~C5H12N2!Cl4,

5 indicates that this question is not pure
academic. The role of frustration has recently been addre
in a two-chain model with a weak zigzag interchain co
pling. For an isotropic antiferromagnetic interaction t
spectrum has an exponentially small gap, and the gro
state is spontaneously dimerized.6,7 However, an easy plan
XXZ-type anisotropy supports a gapless phase characte
by nonzero local spin currents polarized along the anisotr
axis and algebraically decaying incommensurate s
correlations.8

Recently another type of frustrated two-leg ladders w
discussed.9 In addition to the standard on-rung couplingJ' ,
this model also includes an interactionJ3 along both diago-
nals of elementary plaquettes. In this paper, we consid
three-chain generalization of such a model:
PRB 580163-1829/98/58~14!/8881~4!/$15.00
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H Ji (
j 50,1,2

Sj ,n•Sj ,n111J'S0,n•~S1,n1S2,n!

1J3@~S1,n1S2,n!•S0,n111~S1,n111S2,n11!•S0,n#J ,

~1!

where frustration introduced by the interactionJ3 shows up
in a highly nontrivial way. We shall show that in a certa
range of parameters the model displays an interesting typ
critical behavior in the IR limit, with the central chargeC
52, rather thanC51 as in usual~nonfrustrated! three-leg
ladders.10 This critical behavior is identified as the universa
ity class of ‘‘chirally stabilized’’ fluids, recently introduced
by Andrei, Douglas, and Jerez.11

We shall assume that 0,J' ,J3!Ji . Under this condi-
tion a continuum description can be adopted in which
spin densities in each chain are represented asSj (x)5Jj (x)
1(21)x/a0nj (x), where Jj5JjR1JjL and nj are, respec-
tively, the smooth and staggered parts of the magnetizat
In the continuum limit the Hamiltonian density of the orig
nal model~1! takes the form

H5 (
j 50,1,2

2pv j

3
~JjR•JjR1JjL•JjL !

1g1n0•~n11n2!1g2J0•~J11J2!. ~2!

Here the first line describes three decoupled chains in te
of three critical SU~2!1 Wess-Zumino-Novikov-Witten
~WZNW! models,12 v j;Jia0 being the spin velocities. The
second line in~2! includes the interchain coupling terms wit
the constants:g15(J'22J3)a0 , g25(J'12J3)a0 . We
R8881 © 1998 The American Physical Society
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stress that in the continuum limit there is no marginally r
evant twist perturbation,ni•]xnj , which appears in the de
scription of spin ladders with small zigzag intercha
coupling.8,13

The two interaction terms in~2! are of different nature.
The first one is a relevant perturbation with scaling dime
siond51. The second term describes an interaction betw
the total current of the surface chains,I5J11J2 and that of
the middle chain. This interaction is only marginal and,
long asg1 is not too small, can be discarded. As a result,
generic values ofg1 andg2 , the low energy physics of ou
model will be essentially that of the standard three-leg l
der, and frustration will plays no role~except for renormal-
ization of the mass gaps and velocities14!. The important
point, though, is that in contrast with nonfrustrated ladde
the two coupling constantsg1 ,g2 can vary independently
and there exists a vicinity of the lineJ'52J3 (g150)
where the low-energy properties of the model are mai
determined by the current-current interchain interaction.
markably enough, exactly atg150 an anisotropic version o
this model is exactly solvable at a Toulouse point. The so
tion describes a fixed point with a larger central chargeC
52 which, as we shall demonstrate, govern the physics
sufficiently smallg1 . Our strategy will be first to present ou
solution and discuss the physical properties of the system
the special pointJ'52J3 , and then to explore its neighbo
hood forg1 small.

Toulouse point solution.We start by neglecting the inter
action between currents of the same chirality. Such te
lead to renormalization of the velocities of the excitatio
which can be effectively taken into account by allowing t
surface chain velocities (v15v2) to be different from that of
the middle chainv0 . In the noninteracting case (g250), the
central charge of two surface chains isC52. On the other
hand, the total currentI , being the sum of two SU~2!1 cur-
rents, satisfies the SU~2!2 Kac-Moody algebra. Since the cen
tral charge of the SU~2!2-symmetric WZNW model isC
53/2, some degrees of freedom should account for the m
ing C51/2. Those are associated with a discrete (Z2) non-
magnetic 1↔2 interchange symmetry, and remain deco
pled and critical with the central chargeC51/2. The
simplest way to see this is to exploit the equivalen
SU~2!3SU~2!'SO~4! and use the representation of tw
SU~2!1 currents in terms of a quadruplet of real~Majorana!
fermions, j0 and ja (a51,2,3):7 I a

a5

2(i/2)eabcja
bja

c , (Ja12Ja2)a5 ija
aja

0 , where a5R,L.
Then one easily finds that the contribution of the mass
Majorana fermionj0 decouples from the rest of the spe
trum, and the effective Hamiltonian at the special pointg1
50 reads

H52 i
v1

2
~jR

0]xjR
02jL

0]xjL
0!1H̄@ I ,J0#. ~3!

All nontrivial physics is incorporated in the current depe
dent part of the Hamiltonian,H̄, describing marginally
coupled SU~2!2 and SU~2!1 WZNW models. Notice thatH̄ in
turn separates into two commuting andchirally asymmetric

parts:H̄5H11H2 , (@H1 ,H2#50), where
-
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H15
pv1

2
IR•IR1

2pv0

3
J0L•J0L1g2IR•J0L , ~4!

with H2 obtained fromH1 by inverting chiralities of all the
currents. The Hamiltonian~4! resembles the two-channe
Kondo model:15 in the latter case the SU~2!2 currentIR de-
scribes two-flavor spin excitations of the conduction ele
trons, while the SU~2!1 currentJ0L is replaced by the loca
spin density of the impurity spinS51/2. Moreover, one can
show that ~3! corresponds to the Hamiltonian of the tw
channel Kondo lattice away from half-filling with a neare
neighbor interaction between the impurity spins.

A simple renormalization group analysis reveals that,
g2.0, the interaction is marginally relevant. Usually the d
velopment of a strong coupling regime is accompanied b
dynamical mass generation and the loss of conformal inv
ance at the strong coupling fixed point. This is indeed
case for the model of two marginally coupledS51/2 spin
chain with zigzag interaction.6,7 We shall see, however, tha
due to chiral asymmetry ofH̄ the effective interaction, as in
the two-channel Kondo model, flows towards an interme
ate fixed point where conformal invariance is recovered w
a smaller central charge.

The model~4! is Bethe-Ansatz solvable16 ~see also Ref.
11!. Here we present an exact solution for a U~1! version of
the model, characterized by anisotropic interaction (g2
→gi ,g'), which allows us to investigate the spectrum of t
model and estimate asymptotics of the correlation functio
Our solution is based on a mapping onto Majorana fermio
Using Abelian bosonization, we shall exploit the existence
a Toulouse-like point where the fermions are free.15 We start
with Abelian bosonization of the SU~2!1 currentJ0 . Intro-
ducing a massless bosonic fieldw, we have~see, for instance
Appendix A of Ref. 14!: J0R,L

z 5(1/A2p)]xwR,L , J0R,L
1

5(1/2pa0)e7 iA8pwR,L. On the other hand, combining tw
Majorana fields, j1 and j2 to form a Dirac fermion,
(j21 i j1)/&, and then bosonizing it, we can expre
the SU~2!2 current I in terms of a bosonic fieldF
and the Majorana fermionj3: I R,L

z 5(1/Ap)]xFR,L , I R,L
1

5(i/Apa0)jR,L
3 ke7 iA4pFR,L. An additional fermionic zero-

mode operatork has been introduced to ensure the corr
commutation relations. Then the HamiltonianH̄ can be writ-
ten in the following bosonized form:

H̄5v0@~]xwR!21~]xwL!2#1v1@~]xFR!21~]xFL!2#

2 i
v1

2
~jR

3]xjR
32jL

3]xjL
3!1

gi

&p
~]xwL]xFR

1]xwR]xFL!1
ig'

2~pa0!3/2
jR

3k cos~A4pFR1A8pwL!

1
ig'

2~pa0!3/2
jL

3k cos~A4pFL1A8pwR!. ~5!

We now perform a canonical transformation:
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w5coshaF̄21sinh aF̄1 , F5coshaF̄11sinh aF̄2 ,

q5coshaQ̄22sinh aQ̄1 , Q5coshaQ̄12sinh aQ̄2
~6!

whereq andQ ~respectively,Q̄1 andQ̄2) are the dual fields

associated withw and F ~respectively,F̄1 and F̄2). The
cross terms]xw]xF in Eq. ~5! can be eliminated by settin
tanh 2a52gi /p&(v01v1). One immediately observe
that choosing tanha521/&, which corresponds to a speci
~though nonuniversal! positive value of gi , @gi* 54p(v0

1v1)/3#, the arguments of the two cosine terms in~5! be-

come those of free fermions, cos(A4pF̄2L,R). Introducing a
pair of Majorana fields,h and z, and using the correspon
dence: cR,L5(hR,L1 izR,L)/&5(k/A2pa0)e6 iA4pF̄2;R,L,
we finally obtain

H̄5
u1

2
@~]xF̄1!21~]xQ̄1!2#2

iu2

2
@zR]xzR2zL]xzL#

2
iv1

2
@jR

3]xjR
32jL

3]xjL
3#2

iu2

2
@hR]xhR2hL]xhL#

1 im@jR
3hL2hRjL

3#. ~7!

Herem5g'/2pa0 , and the two renormalized velocities,u1
and u2 , are expressed in terms of the surface and mid
chain velocitiesv1 and v0 as u15(2v12v0)/3,u25(2v0
2v1)/3. The first two terms in Eq.~7! describe completely

decoupled free massless bosonic and Majorana fields,F̄1
and z, contributing to criticality with the central charge:C

5111/253/2. Therefore, at the new critical pointH̄ effec-
tively represents a gaplessS51/2 spin chain and a critica
Ising model. Coming back to the model~3! and adding the
contribution of the singlet Majorana fermionj0, i.e., one
more critical Ising model, the total central charge becom
CT52. The remaining part of the Hamiltonian~7! has a
spectral gapm and describes hybridization of the Majoran
j3 andh fields with different chiralities. Since the canonic
transformation~6! does not mixH1 andH2 , the Hamiltonian
~7! still decouples into two commuting, chirally asymmetr
parts. This reflects the chiral nature of the fixed point.

Physical picture of elementary excitations.There are two
different kinds of elementary excitations at the Toulou
point: magnetic excitation described by the fieldF̄1 , and
nonmagnetic, singlet, excitations associated with the
Majorana fermionsj0 andz.

Notice that, due to the mixing of different degrees of fre
dom reflected in the canonical transformation~6!, the
‘‘physical’’ spinons, i.e., those defined asAp/2 kinks of the

field F̄1 describing the effectiveS51/2 spin chain, should
not be misleadingly identified as the spinons of the mid
chain. To get a better understanding of the structure of s
excitations at the chiral fixed point, let us express the c
rentsJ1

z , J2
z , andJ0

z in terms of the ‘‘physical’’ currentJ z

5(1/A2p)]xF̄1 . Using the transformation~6! at the Tou-
louse point, we find
le

s

e

o

-

e
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J1,2R~L !
z 5JR~L !

z 2
i

2
~hL~R!zL~R!7jR~L !

3 jR~L !
0 !,

J0R~L !
z 52J L~R!

z 1 ihR~L !zR~L ! . ~8!

At energiesuvu@m, where all Majorana fields can be con
sidered as massless, Eqs.~8! transform back to the standar
definitions of the currents of the three decoupled chains
this ~ultraviolet! limit, one has a picture of three groups o
independently propagating spinons. However, in the IR lim
(uvu!m), all Majorana bilinears in~8! are characterized by
short-ranged correlations~since the Majorana fermionsh and
j3 are massive!, implying that strongly fluctuating parts o
the currents of individual chains are no longer independe
all of them contribute to the formation of a single, physic
currentJ z. In fact, the physical spinon represents a chira
asymmetric, strongly correlated state ofthreespinons. Con-

sider, for instance, a right-movingAp/2 kink of the fieldF̄1 ,
representing a physical spinon with the spin projectionSz

51/2. According to the exact relation

JR~L !
z 5J1R~L !

z 1J2R~L !
z 1J0L~R!

z ~9!

following from ~8!, such an excitation is a combination o
two right-moving spinons of the surface chains, each ca
ing the spinSz51/2, and a left-moving antispinon of th
middle chain, withSz521/2. The rigidity of such a state is
ensured by a finite mass gap in the (h2j3) sector of the
model. This peculiar structure of the elementary spin exc
tions at the chiral fixed point is also reflected by the expr
sion for the velocityu1 .

Apart from the nontrivial nature of the spinon, the chir
fixed point manifests itself in the existence of two addition
massless singlet excitations. The Majorana fermionj0 de-
scribes collective excitations of singlet pairs formed on
two surface chains. The nature of the Majorana fermionz is
less transparent: it is a highly nonlocal object when e
pressed in terms of the original spin operators. The best
to understand the role of the singlet excitations is to comb
the j0 and z fields into a single Dirac fermion and the
bosonize it. The corresponding massless bosonic fieldF̃c
resembles the scalar field describing the charge degree
freedom in the Hubbard model away from half-filling in th
limit U5`. We shall hence refer to the gapless Majora
fields as ‘‘pseudocharge’’ excitations which account for t
central chargeC51. The spin-pseudocharge separation
already manifest at the Toulouse point implying that t
leading asymptotics of correlations functions will factori
into the spin and pseudocharge contributions.

Correlation functions.We shall now use the exact solu
tion of the model, found at the Toulouse point, to calcula
physical quantities of interest. From Eqs.~8! it follows that,
as for a singleS51/2 Heisenberg spin chain, an extern

magnetic fieldH couples only to the massless fieldF̄1 . The
uniform susceptibility in units ofgmB is easily found to be
x2152pu1 . At low temperatures (T!m) only the gapless
modes (j0, z, andF̄1) contribute to the specific heat. Usin
the general formulaCV5pCT/3v, we find
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u2
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u1
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We have also computed all spin-spin correlation functio
at the Toulouse point~details will be published elsewhere13!.
The leading asymptotics of the uniform part of the corre
tion functions coincide with that of the effectiveS51/2 spin
chain, in agreement with the above discussion. The natur
the chiral fixed point manifests itself instaggeredcorrela-
tions between the spins of the surface chains. It can be sh
that, up to nonuniversal constant prefactors, strongly fluc
ating parts of the staggered fields are given at the Toulo
point by the following expressions:n0; ipa0zRzLN1 , n1,2

;(cosApF̃cN27sinApF̃cN1) where N6

;(cosA2pQ̄1 ,sinA2pQ̄1 ,6sinA2pF̄1). The staggered
correlations between the spins of the surface chains rea

^na~x,t!nb~0,0!&

;dab

1

~x21u1
2t2!1/2

1

~x21v1
2t2!1/8

1

~x21u2
2t2!1/8, ~10!

wherea,b5(1,2). There is an intrinsic velocity anisotrop
in the pseudocharge sector which might be important w
considering the dynamical properties. We emphasize tha
exponents in the correlation functions areuniversaland char-
acterize a new universality class in spin ladders. This is
main result of our work. Another quantity of experiment
interest is the NMR relaxation rate 1/T1 . It is not difficult to
show that at low temperature, 1/T1;AT, in contrast with the
Heisenberg chain where 1/T1;const.

Stability of the chiral fixed point.With all these results a
hand, now we turn to the stability of the chiral fixed poin
There are two important questions we shall address. The
is related to the stability of the Toulouse point withg150
kept fixed, and the second is to examine the behavior of
system when one moves away from the pointJ'52J3 .

We begin by stressing that our solution is stable provid
bothu1 andu2 are positive, the stability condition thus bein
1/2<v0 /v1<2. So the chiral fixed point is stable in a rel
tively broad range of velocities. Whengi deviates from its
Toulouse-point value, the Hamiltonian~7! picks up an extra
term dgi(]xF̄1LzRhR1]xF̄1RzLhL). Since the fieldh is
ev
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of

wn
-

se

n
he

e
l

rst

e

d

massive, the expansion indgi does not introduce new infra
red singularities, implying that the long-distance behavior
the correlation functions will not be modified except for
velocity and mass renormalization. Therefore, the solution
the Toulouse point captures all universal properties of
chiral fixed point and includes the casegi5g' where the
Hamiltonian has the full SU~2! symmetry.

Now we consider small deviations from the pointg150.
At small enoughug1u it is possible to investigate the effect o
the backscattering termn0•(n11n2) as a weak perturbation
to the chiral fixed point. This perturbation can be shown

be proportional to cos(ApF̃c), which is a relevant operato
with scaling dimension 1/4. We thus conclude that the ba
scattering operator opens a gap,Dc , in the pseudocharge
sector but has no effect on the magnetic~spinons! excita-
tions. Standard scaling arguments give an estimate:Dc

;g1
4/7. The chiral fixed point is thus unstable in the far I

limit, and the system will flow to theC51 fixed point of the
standard three-leg spin ladder. Of course, the very appl
bility of the perturbative approach to the chiral fixed poi
requires thatDc!m, the condition which can always be sa
isfied for sufficiently smallg1 . Under this condition, there
exists an intermediate but still low-energy regionDc!E
!m where theC52 behavior caused by frustration is dom
nant. The physics in this region is universal and cannot
understood without having recourse to the chiral fixed po
At lower energies,E!Dc , the system will eventually cros
over to the conventional criticalC51 behavior.

We think that this fixed point discussed in the prese
paper might be responsible for additional physics in ma
frustrated ladders such as the three-chain zigzag ladder.
model and the doped case are currently under study.
hope that the chiral-fluid critical state with all its physic
properties will be observed in further experiments on sp
ladder systems.
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