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First-principles calculations of the radial breathing mode of single-wall carbon nanotubes
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The radial breathing mode is a promising candidate for the analysis of conformational and electronic
properties of carbon nanotubes. The paper presents calculations based on the local density approximation to
determine the radial breathing mo®BM) frequency of various zigzag and armchair tubes with radii between
3.5 and 8.1 A. The frequencies are derived from both frozen phonon calculations for nanotubes and from the
elastic constants of the flat graphene sheet. The RBM frequency ¢1@&&) armchair tube is found to be
175 cm* and 174 cm? for the two techniques, respectively. These values are in very good agreement with
one of the strongest components in the structured Raman band of the radial breathing modes observed at
177 cm'. Since the RBM frequency turns out to scale witR 1iie calculations also allow one to evaluate the
frequency of this mode for tubes with arbitrary chirality.
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The discovery of carbon nanotubésee, e.g., Ref.)lat-  dial breathing modéRBM), where all atoms move in phase
tracted great interest and inspired many theoretical and experpendicular to the tube axis changing the radius of the
perimental investigations. Unfortunately, early experimentdube.
were faced with the difficulty that samples consisted of vari- We focus on the RBM because it is unique to nanotubes,
ous multiwall tubes making an assignment of observed feawithout any counterpart in graphene sheets. The phonon
tures to specific species rather difficult. Nowadays the prepamodes and the RBM mode in particular have already re-
ration of single wall carbon nanotubeé§SWCNT) is  ceived some attention in theoretical work. Jighial. used
possible? however the interpretation of, e.g., spectroscopicBorn von Kaman force constants to predict the vibrational
measurements is still not straightforward because usuallfrequencies of carbon nanotubesteraction up to fourth
tubes of various diameter and chirality exist in the samplenearest-neighbor was considered, and the force constants
As a result even the thermodynamically most stable tubewere optimized to fit the experimental phonon dispersion of
have not yet been identified. Therefore, a reliable method ta flat graphene she&within the force constant model, it is
characterize the tubes would be of great value. easy to show that the RBM frequencieare inverse propor-

On the basis of x-ray analysis it was claimed originally tional to the radiusR of the tube,y=A/R.* This makes the
that the majority of the SWCNT’s have a diameter of 1.38mode an ideal candidate for the identification of the diameter
nm, corresponding t610,10 tubes®* In addition, based on of nanotubes by means of, e.g., Raman spectroscopy.
the competition between folding, edge, and cap energies, re- Subsequently, the previously mentioned empirical force
cent calculations also suggested that this species is the eneenstants or slightly modified versions were used extensively
getically most favorable form, although other tubes withfor the calculation of phonon dispersion relations and for the
similar diameter seem to have rather similar stabfliffhe  interpretation and prediction of Raman speétta!® Unfor-
energetical competition between different tubes is also contunately calculations relying on these empirical force con-
firmed by the fact that many different armchair, zigzag, andstants have several shortcomings. First, the electron-energy-
even chiral tubes are found by means of scanning probe mless spectroscop{EELS) measurements to which the force
croscopy and Raman spectroscSp}t constants were fitted were performed on graphite; the pho-

A particular promising tool for the identification and non modes of an isolated graphene sheet are different to
probing of carbon nanotubes is Raman spectroscopythose of bulk graphite. Second, for the acoustic modes
SWCNT’s have 15 or 16 Raman active vibrational modes;aroundq— 0, only very few experimental data are available
the exact number depends on the symmetry of the tube but Isading to uncertainties particularly for the prediction of the
independent of its diamet&rHowever, only four Raman RBM mode (see below. Indeed, the calculated RBM fre-
bands are strongly resonance enharfcétiThree of them quencies 010,10 tubes (156 cm' in Ref. 4, 165 cm? in
are located around 1600 crhand correspond to the charac- Refs. 8, 12, and 13do not agree well with the frequency of
teristic A, E;, and E, modes of the graphene sheet. Themaximum intensity in the Raman spectrurtaround
fourth strong band at around 200 chis caused by the ra- 177 cni’l). This indicates that either the theoretical values
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TABLE |. Calculated radii R), folding energies E), and fre-  ways employs three-dimensionaBD) periodic boundary
quencies(») of the RBM for (n,n) armchair tubes. conditions, our calculations relate to infinitely long isolated
tubes. This was achieved by arranging the tubes in a tetrag-

n 8 9 10 11 12 onal lattice with lattice parameters of 20 A in the directions
R (R) 54 6.1 6.7 74 8.1 perpendicular to the tube axis. The resulting vacuum region
E (meV) 69 54 45 36 29 is large enough so that there is almost no interaction between
v (cm™Y 219 195 175 159 146  the tubes but sufficiently small to keep the number of plane

waves at a reasonable lev@ypically around 10 000 plane
waves. Only parallel to the tube axis(direction the peri-

are inaccurate, or the assignment of the observed Ramd&¢licity was maintained. To calculate the tota_l energy and the
frequencies to the RBM is incorrect, or tH40,10 tubes are forces accurately, severklpoints were used in the direc-
in fact not dominant. tion. For the evaluation of the folding energiese below

In order to obtain more reliable theoretical values for thefour k points corresponding to (1/16, 3/16, 5/16, and 7/16)
frequency of the RBM a careful theoretical investigation isX2m/z were used, whereas the optimized geometries and
therefore required. To do that, we have carried out firstthe RBM frequencies were obtained with only tk@oints
principles local density approximatiofLDA) calculations corresponding to (1/8 and 3/8)2n/z. To ensure that this
for achiral tubes with a diameter between 7 and 16 A. Arm-setup is sufficiently accurate several tests were carried out as
chair tubes from(8,8) to (12,19 and zigzag tubes witim elaborated below.
=9, 10, 15, 17, and 20 have been considered. Chiral tubes Before calculating the RBM frequencies a two-step geom-
have not been taken into account because for the diameteetry optimization was carried out. First, all degrees of
of interest the number of carbon atoms in the unit cell is todreedom—including the length of the cell in the direction of
large (N>1000). the tube axis—were allowed to relax. This first procedure

We used the Viennab initio simulation packagévASP) exhibits a rather slow convergence because when changing
which was developed among others by one of the authorthe unit cell the effective plane-wave cutoff changes as well.
(G.K).¥® In VASP the solution of the generalized self- The well known systematic error in the diagonal components
consistent Kohn-Sham equations is calculated using an effof the stress tensor due to the finite size of the basis set was
cient matrix-diagonalization routine based on a sequentiatorrected by subtracting a constant value from the diagonal
band-by-band residual minimization method and a Pulay-likecomponents of the stress tensor. The required correction was
charge density mixing. For details, see Ref. 15 and referestimated from the difference of the stresszdirection
ences therein. The electron-ion interaction is described bpetween the 290 eV basis set and a 500 eV basis set. After
ultrasoft Vanderbilt-type pseudopotentiéief. 16 allowing  10-20 CG relaxation steps in which thdattice vector was
for a low cut-off energy in the plane-wave expansion of theallowed to change, the final optimized geometry was ob-
valence states. The cut-off energy was set to 290 eV in th&ined in a second relaxation—now with fixed unit cell pa-
present work. VASP allows for a conjugate gradi@®G) or  rameters. For the relaxed geometry the Cartesian compo-
guasi-Newton optimization of the geometry using analyticalnents of the forces on individual atoms were always less than
forces and the stress tensor. The program has already be8r©3 eV/A but typically less than 0.01 eV/A. We found that
used extensively for the investigation of the stability of car-the carbon-carbon bond lengths are not uniform in the tubes.
bon phase$’ The phonon dispersion relations of diamond In armchair tubes they are 1.401 A and 1.417 A, the shorter
and graphite have been determined with an overall accuradyond is perpendicular to the tube axis. In zigzag tubes they
of approximately 1%, indicating the reliability of the em- are 1.408 A and 1.413 A; the shorter is parallel to the tube
ployed pseudopotential for the prediction of vibrational axis. The final tube radii obtained with our geometry optimi-
frequencieg?® zation are summarized—together with other results—in

LDA-based calculations were carried out to evaluate theéTables | and Il for armchair and zigzag tubes, respectively.
RBM frequency of selected tubes with a frozen phonon ap- From our calculations, we can easily derive the tube fold-
proach and using the elastic constants of the graphene shegty energies, which are defined as the energy difference per
For the frozen phonon calculations, the starting geometriesarbon atom between the tubes and a graphene sheet. For a
were obtained by simply wrapping up a graphene sheet agraphene sheet we obtained a cohesive energy of
cording to fi,m) with a carbon-carbon distance ai._c  —10.130 eV(with respect to a nonspin-polarized C atom
=1.4 A. The number of carbon atoms isn4for both  Tables | and Il show the calculated folding energies of the
(n,n)-armchair and 1§,0)-zigzag tubes. Although VASP al- considered armchair and zigzag tubes. The folding energy

TABLE Il. Calculated radii R), folding energies), and frequencieév) of the RBM for (n,0) zigzag
tubes. Values in parentheses have been derived assumifgsadling behavior of the RBM frequencyee

text).
n 9 10 15 16 17 18 19 20
R (A) 35 3.9 5.8 (6.2 6.6 (7.0 (7.4 7.8
E (meV) 159 128 57 45 32

v (cmY 329 298 200 (188 178 (167 (158 150
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per carbon atom is expected to increase inverse proportiona
to the square of the nanotube radtdsThis is in fact the
case, but the constant of proportionality is about 10% smaller
in the present work than in Ref. 19.

The frequency of the radial breathing mode was finally .~
calculated by a frozen phonon method: the tube radius Wafg
increased and decreased by 1 and 2%, and the total enerc z
was calculated for each configuration. From a quadratic fit §
the harmonic force constant and—taking into account the §
mass of the unit cell—the RBM frequency were obtained. To ’%3
make the results more robust with respect to nonperfect re- 2
laxation we allowed for a shift of the minimum of the energy 2
away from zero. However the shift was usually smaller than £
0.1% of the tube radius, indicating that our structural relax-
ation was rather accurate. Tables | and Il show the calculatec
frequencies of the radial breathing mode of the selected arm:
chair and zigzag tubes.

To check our results we have performed several test cal-
culations. First, the RBM frequencies were recalculated for
the (10,10 and(17,0 tubes with fourk points. This changed
the RBM frequency by less than 0.5% confirming that two
points are in fact sufficient for an accurate prediction of the FIG. 1. Frequency of the RBM of various SWCNT’s for arm-
frequency. Second, we evaluated the radial breathing modghair (squaresand zigzagtriangles tubes. There is a small differ-
of the Gy, molecule using a similar procedure as outlinedence between the fits for the two kinds of tuldeslid lines. For
above. The calculated result was 494 ¢mwhich is in ex-  comparison, the R behavior calculated in Ref. 4 is shown by the
cellent agreement with the experimental value ofdotted line.

493 cm *.2! Finally, we have already pointed out at the be-

ginning that a force constant approach based on the sam@me for all tubes and the RBM frequency would depend
LDA code and the same pseudopotentials as in the presephly on the radius of the tube. Our calculation indicates that
work yielded phonon frequencies with an average accuracshis is exactly the case. As an additional check for this de-
of 1% for graphite and diamond. Considering all these duction we have calculated the elastic stretching constant of
points, we are confident that the error of the calculated phothe flat graphene sheet by distorting the graphene sheet either
non frequencies is less than 1%. in the [100] or in the[110] direction. Both distortions lead

The obtained RBM frequencies are almost perfectly in-practically to the same elastic constant®# 30.3 eV/AZ.
verse proportional to the radius of the tube as shown in Figwith this value, we obtain a proportionality constant Af
1. Afitto A/RyieldsA=1180 for armchair and=1160 for =1170cniixA for the 1R law to calculate the RBM of
zigzag tubes(in cm™txA). With the proportionality con- tubes with any helicity(zigzag, armchair, or even chijal
stant we can predict the RBM frequency of nanotubes noDbviously this value agrees very well with the values de-
considered in the first-principles calculations, and the resultrived directly from the frozen phonon approach, indicating
ing values for(16,0, (18,0, and (19,0 zigzag tubes are that the elastic constants change indeed only little when the
given in Table Il. To check the linearity between the inversegraphene sheet is rolled up to form a nanotube.
of the tube radius and the RBM frequency we also fitted our QOn the basis of a force constant method Jishal. were
results to the relationo=1/R<.*> We found x=1.003 also able to evaluate the RBM frequerfcfthe two ap-
+0.007 andx=0.982+0.007 for the armchair and zigzag proaches are insofar related as the elastic constants can be
tubes, respectively. However, within the estimated error barebtained from a properly weighted sum of the interatomic
our values are equally consistent witi= 1. Furthermore, an force constants corresponding to tlge-0 slope of the
exact 1R dependence is to be expected if the force constantgcoustic phonons of a graphene sheet. Using the results of
of graphene were directly transferable to nanotdbes. Jishi et al. the elastic constant is 26.1 eVfAwhich is sig-

Interestingly, our calculation reveals that the proportion-nificantly lower than the value obtained by us. On the rea-
ality constantA is almost the same for armchair and zigzagsons discussed above the larger value obtained from the
tubes. This may be surprising at first glance. There is, howkDA calculations is expected to be more reliable.
ever, a simple explanation for it. The RBM corresponds to a We are now prepared to compare our results with the
stretching of the graphene sheet in [&0] (armchair tubels  experimentally determined Raman frequenéfeSable IlI
or [100] (zigzag tubegdirection. For such a stretching, the shows the calculated frequencies together with 14 experi-
energy change can be derived from elastic theory. Becaugeentally observed components of the RBM of SWCNT's
the elastic properties of hexagonal systems are isotrope in theeasured for a tube material prepared by a two-step laser
hexagonal planésee, e.g., Ref. 2@the elastic constant that evaporation processThe underlined numbers refer to the
describes the stretching of a graphene sheet is the same flares with the strongest response. As it can be seen, each
any direction in the hexagonal plane. Therefore, if the elasticalculated valugexcept ong matches one of the observed
constants of the graphene sheet were directly transferable feequencies within 1-2 wave numbers. In one case there are
the nanotubes, the proportionality constant would be théwo types of tubes, namel10,10 and(17,0, corresponding

breal

o
tube radius (A)
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TABLE IIl. Vibrational frequencies used to fit the experimentally observed Raman lines of the radial
breathing mode of single wall carbon nanotulf@sf. 11 in comparison to calculated results.

Observed lines 147 156 162167 172 177 182 185 190 195 199 206 211 230
Calculated for 146 159 175 - 195 219
armchair ,n) (12 (11 (10 9 (8)
Calculated for 158 167 178 187 200 214 231
zigzag (,0) } (19 (18 a7 (16 (15 (14 @13
chiral tubes 172 182 190 206

to the same strong Raman component at 177criirom an A are favorable, with the tube radius strongly peaked around
analysis of the Raman excitation profile in the 1.6-2.7 eV6—7 A. _ _
region, this overlap could be disentangled confirming that _ N @ddition, we have shown that simple LDA calculations
two tubes contribute to the same Raman fih@he concen- of tg? tetlr?sthcl\?lnsftants (t)f;‘ flat .?r:aphene sgeet allow O_Ir_]ﬁ. to

: redict the of nanotubes with very good accuracy. This
tration of the(10,10 tubes was found to be much larger than Ealculation seems to be particularly )[gr%mising, becguse it
that of the(17,0 tubes. _shows unambiguously that the elastic constants and the

The remaining four rather weak components observed ig|psely related force constants of a flat graphene sheet can be
the experiment cannot be attributed either to an armchair ofansferred to carbon nanotubes without modifications. It
to a zigzag tube. This might indicate that chiral tubes wereshould be stressed that these constants can be calculated re-
also present in the sample. The results of the LDA calculatiably from first principle!® avoiding uncertainties in their
tion allow one to estimate the radius of the correspondingletermination from experiments. In the future, methods com-
chiral tubes by using the B/law with a proportionality con-  bining force constants determined from first-principles meth-
stant ofA=1170 cnTixA. ods with simple folding techniques might become a reliable

In conclusion, we have demonstrated that elaborated LDAQO! for the prediction of elastic and vibrational properties of
calculations for single wall nanotubes reveal values for th€arbon nanotubes.
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