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We introduce an extension of the dynamical mean-field approximdfidiFA) that retains the causal
properties and generality of the DMFA, but allows for systematic inclusion of nonlocal corrections. Our
technique maps the problem to a self-consistently embedded cluster. The D&et resultis recovered as
the cluster size goes to(Ihfinity). As a demonstration, we study the Falicov-Kimball model using a variety of
cluster sizes. We show that the sum rules are preserved, the spectra are positive definite, and the nonlocal
correlations suppress the charge-density wave transition tempef@0463-182¢08)51436-1

INTRODUCTION Anderson model. The thermodynamics and phase diagram
have been obtained numerically by quantum Monte Carlo
Strongly interacting electron systems have been on théQMC) and other methods*
forefront of theoretical and experimental interest for several The name dynamical mean-field approximati@MFA)
decades. This interest has intensified with the discovery of has been coined for approximations in which a purely local
variety of heavy-fermion and related non-Fermi-liquid sys-self-energy(and vertex functionis assumed in the context of
tems and the higf-, superconductors. In all these systemsa finite-dimensional electron system. While it has been
strong electronic interactions play a dominant role in theshown that this approximation captures many key features of
selection of at least the low temperature phase. The simplestrongly correlated systems even in a finite-dimensional con-
theoretical models of strongly correlated electrons, the Hubtext, the DMFA, which leads to an effective single site
bard model(HM) and the periodic Anderson mod@AM),  theory, has some obvious limitations. For example, the
have remained unsolved in more than one dimension despil@MFA cannot describe phases with explicitly nonlocal order
a multitude of sophisticated techniques introduced since thparameters, such aswave superconductivity, nor can it de-
inception of the models. scribe the short-ranged spin correlations seen in the metallic
With the ground-breaking work by Metzner and state. Consequently, there have been efforts to extend DMFA
Vollhardt it was realized that these models become signifiby inclusion of nonlocal correlations, which would corre-
cantly simpler in the limit of infinite dimension® =, spond to 1D corrections to the self-energy of tHe=o
Namely, provided that the kinetic energy is properly rescalednodels®® These attempts have been only partially successful
as 1A/D, they retain only local, though nontrivial, dynamics: because of the difficulties of formulating a cadshkory out
The self-energy is constant in momentum space, though f nonlocal Green functions. The nonlocal Green functions
has a complicated frequency dependence. Consequently, tde not have a negative-definite imaginary part, so any self-
HM and PAM map onto a generalized single impurity energy diagram constructed with them is not guaranteed to
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preserve causality. In fact, in the work by Schiller and Solve Cluster
Ingerserft on the Falicov-Kimball mode(FKM) violations G, | problem | G/x)
of the spectral sum rule occurred for moderately large values Vd K
of the interaction strength. 1= a5t
In this work we introduce a new method that includes gK= Gy + 2 Z k) =gK - G
short-ranged dynamical correlations and allows for nonlocal N N ] /
order parameters. The method is an iterative self-consistency (_}K(z)= _c
scheme on a finite-size cluster with periodic boundary con- N PR TN Z K

ditions. The essential approximation is the assumption that

the self-energy is only weakly momentum dependent so that FIG. 1. Schematic sketch of the dynamical cluster algorithm.
it is well approximated on a coarse grid of cluster momen-

tum pointsK. This approximation will be very good in high — N

dimensions, but in low dimensions its validity is less clear. K=y D [2= e+ u—3(K)T L (1)
However, in many correlated systems, the momentum depen- K’

_dence of the self-energy is belleved to be I_ess Important tha\r/1vhere thek’ summation runs over the momenta of the cell
its energy dependence, since the physical properties ar

dominated by a weakly dispersive feature in the electroniép’leoOUt the cluster momentuk. z is the(comple frequency

spectra near the Fermi surface, as seen, e.g., in experimer&gument, ancu the chemical potential. G is causal pro-
on heavy-fermion systenfs. vided that its proper self-energ¥.(K) is causal. It is a

The paper is organized as follows. First, we briefly reviewcoarse-grained average of the lattice Green’s function in mo-
the DMFA, which is reproduced by our method if we chooseMentum space with a self-energy(K). Before a new esti-
a cluster consisting of only a single site. We then describdénate for the self energy can be formulated, we calculate the
the new technique that we name dynamical cluster approxi?0st cluster propagat@f(K) using
mation (DCA). Finally, we demonstrate the method by ex-
ample of the Falicov-Kimball model. g*l(K)zgfl(K)ngc(K)_ 2)

DYNAMICAL MEAN-EIELD APPROXIMATION This is the “cluster exclusion” to prevent overcounting of
. self-energy diagrams on the cluster. Since the self-energy in

The DMFA assumes that the self-energy is a purely localq. (1) is independent of the integration variable, E¢s.
functional of the local Green’s function onlyS;;  and(2) are formally identical to the corresponding equations
=2 i(Gi;) 9 ;. Consequently, the self-energy has no mo-(steps 3 and yused in the DMFA(after rescaling’). Thus,
mentum dependence, and the lattice problem may be mappeg this point the DCA is equivalent td, independent
onto a self-consistently embedded impurity problem. The reppMEA's, one for eachK. That Eq.(2) preserves causality
sulting DMFA algorithm has the following steps. can be seen as follows: Siné&.(K) in Eq. (1) does not

(1) The procedure starts with a local host Green’s func'depend ork’, the sum ork’ can be rewritten as an energy
tion G that includes self-energy processes at all lattice Siteﬁnegral with aK -dependent density of stat€BOS) py(e).

except at the “impurity” sitei under consideratior; defines  owever, for any positive semidefinite, normalized function
the undressed Green’s function of a generalized AndersopK(e) one has

impurity model that is then solved by some technique, e.g.,
the QMC method.

(2) Then; ;=G =G\, whereGip, is the computed | g f';(e) = [2-3(K)— e
Green’s function of the generalized Anderson impurity ztp—2(K)—e€
model =Tz p=Se(K)] !

(3) This self-energy is assumed to also be the self-energy

of the lattice. Consequently, the local lattice Green’s func- . PRSP L
. " Tl 1 with an effective “dispersion”ex=(N¢/N) =/ ek for
téonkfo!lov:]s ftr)om IGi'i._(léN)Ek(fGo (k) Enldl) ,hw_h(?_re the embedded cluster and a causal functibp(z+ u
o(K) is the bare lattice Green function aiis the (infi- —3(K)),® which is the self energy of.

nite) number of points of the lattice. Given a causal host cluster propagaf@K) we then com-

(4_)1The iteration loop closes by defining the nagv * pute the interacting cluster Green’s functiGi(K) (or self-
=G +%;. The iteration typically continues untiG;;  energys ) by any convenient method. This introduces non-
=Gimp to within the desired accuracy, and the procedurqqcq| interactions and correlations between the different
may be shown to be completely causal. momentum cellsX (K) is obtained via

DYNAMICAL CLUSTER APPROXIMATION EC(K)=Q71(K)—G71(K) 3
c .

We consider a cluster of siz&l.=LP with periodic ) o )
boundary conditions. The corresponding first Brillouin zoneZc(K) is assumed to be a good approximation of the lattice
is divided intoN,, cells of size (2r/L)P. The algorithm be- self-energy at the cluster momenta. It is fed into En.to

gins with a guess, usually zero, for the cluster self-energgenerate a ner_;(K). This process is repeated until upon

2.¢(K) (here and in the following we suppress the frequencyconvergence of the algorith®(K)=G(K). The schemat-
argument We now define a Green functidd as ics of the algorithm is sketched in Fig. 1.
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DISCUSSION OF THE ALGORITHM ‘ ‘ ‘ ‘ ‘
2x2 cluster = T=1
U=16 = T=1/2

Several assumptions were made in the construction of this
algorithm. The first is the weak momentum dependence of
the self-energy that is equivalent to assuming that the dy-
namical intersite correlations have some short spatial range
b=<L/2. Then, according to Nyquist's sampling theor&tn
reproduce these correlations in the self-energy, we need only 016 |
sample the reciprocal space at an intervahbf~2x/L; i.e.,
on a cluster oN.=LP points within the first Brillouin zone.
Equivalently,> (K + k')~ (K) for eachk’ within a cell of ;, \
size (7/b)P, so the lattice self-energy is well approximated 014 e 0 o5 o0 05 10 15
by the self-energy..(K) obtained from the coarse-grained Frequency o
cluster. Thus, the algorithm is a natural extension of the
DMFA. The second assumption is the form of E#j). This
choice is not unique, but it is the simplest that maintains’
causality and produces an algorithm that both recovers th
DMFA whenN;=1 and becomes exact whéh=. When
N.=1, thek’ summation runs over the complete Brillouin

zone andG is the local Green's function. WhelN. =, the o ynnormalized weighZ == ;,w} is the “partition sum.”

k’ summation vanishes. The determinant is to be taken over the spatial indices. Given

We want to stress that the DCA is a general scheme nghe yeights, the newd-electron cluster Green's function is
specialized to a particular model of interest or to the tech-

) . ; iven b
nigue used to obtain the cluster self-energy. A variety ofg y
techniques, including perturbation thebry[noncrossing

DOS

FIG. 2. Conduction electron DOS in the homogeneous phase for
arious temperatures 22 clustej and U=1.6. Note the emer-
ence of “charge-transfer” peaks with simultaneous suppression of
the 2D van Hove peak at the band center. In contrast, the DMFA
result is temperature independent.

approximation (NCA), the fluctuation exchange approxi- Gij(2)=> WG, (2)-Un{s;] % (6)
mation'?], quantum Monte Carlo, or numerical renormaliza- {fy
tion group can also be used to solve the embedded clustgt,o self-consistency loop closes by use of H4$(3).

problem. Because the number df configurations grows exponen-

tially with the cluster size we confine ourselves tx 1, 2
X2, and 4x4 clusters in two dimensions. We first simulta-
neously determine the weights and the Matsubara Green’s
The spinless FKM can be considered as a simplified Hubfunction. Then we use knowledge of the weights to find the
bard model in which one spin species is prohibited to hopetarded Green's function. Convergence of the algorithm is
and has consequently only local dynamics. The Hamiltoniariast for Matsubara frequencies, but relatively slow for real
reads frequencies. Upon convergence we test the sum rules of the
spectral function at the cluster momenta.
The spectral functions are always positive, and the sum
H= —tz ddej—ME (nid+nif)+U2 nidnifa (4) rules for both fthe cluster G_reen’s_fu_nction as_well as the host
) i i Green'’s functionG are fulfilled within numerical accuracy
for moderate interaction strength For largeU a gap opens
in the DOS and convergence becomes more difficultdor
=0. This is because the self-energy for the momenta on the
Fermi surfacde.g.,K=(,0)] approaches the atomic limit
rg(w)~UZ/4(w+i n) for frequencies inside the gap is a
positive infinitesimal. This implies that asw—0, ImX,
——oo, Which is rather difficult to converge to. On the other

che;]rgedden5|;[y f""a‘é‘i‘a"i‘wo[g’?”“g vect@=(7;,w|11. .b.b)] d hand, for all other frequencies the algorithm converges to
W'td <r}i>¢d<ni>d01 ithi h n conrt]rast to the bu alr dwithin the desired accuracy. Since the contribution to the
and related models, within the DCA the FKM can be solvedp g trom =0 is infinitesimal, the spectral sum rules are

without the application of QMC because theelectrons are 5 fifilled to within numerical accuracy. We emphasize

static, acting as an annealed Q|sorder pote.nt|a| on the dypat these peculiarities at=0 are only observed for the real
namic d electrons. We generalize the algorithm of Brandteqency algorithm. For the Matsubara frequency algo-
and Mielsch® to a finite-size cluster. Given an initial host 0 tha sum rulegwhich may be reexpressed in terms of
Green’s functiong;; of the d electrons, the algorithm first imaginary-time propagatoravere always satisfied and the

computes the Boltzmann weighig of g"" configurationsf}  gigorithm was perfectly stabléat least at the temperatures
of f electrons on the cluster, ag=w;/Z with considerel

In Fig. 2 we show the DOS of the conduction electrons
G Yiw,)—Un's, for the half-filled case for the 22 cluster forU=1.6. In

wo=2Ne]T det———" Ay (57 DMFA there is no temperature dependence of the DOS,
@n Xeney since the weights of the unoccupied and occupistate are

APPLICATION: THE FALICOV-KIMBALL MODEL

with n=dld;, nf=£f,, and in the particle-hole symmetric
case that we consideyy=U/2. We measure energies in
units of the hopping elemenit For D=2 the system has a
phase transition from a homogeneous high-temperatu
phase with(n®)=(n/y=1/2 to a checkerboard phage
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Frequency ® to the DMFA result(circles T, of the 2x 2 cluster DCA(triangles

is significantly suppressed for large interaction. At asymptotically

FIG. 3. Conduction electron DOS in the homogeneous phase f%\rgeu the T, of the DCA is bounded from below by tH&, of the
various cluster sizes for a fixell=1 andU=28. Only half of the 2D Ising moéel

symmetric DOS is shown. Note that the artificial sideband of the

2X2 cluster disappears at larger cluster size. The entire DOS for . . . .
the 6x 6 cluster is shown in the inset. maps onto an effective Ising model with a near-neighbor

exchange couplingd=t?/2U and a corresponding>'""?
w,=w;=1/2, independent of temperatu@@® the homoge- =1.1340.%° Figure 4 shows that already for the<2 clus-
neous phageThis is changed in the DCA, where the check- ter the achieved correction takes one almost halfway to the
erboard configurations begin to dominate as the temperatuggsymptotically {J—o) exact T, of the two-dimensional

is lowered. The result is the appearance of the “charge trang2D) Ising model.
fer” features in the DOS, the two peaks separated by the

interaction strengthJ.

Next, we explore the finite-size effects of the DCA at
large U where the DOS shows more featur@scluding a We have introduced a new dynamical cluster approxima-
gap, and finite-size effects are more severe. In small clustersion that includes short-ranged spatial correlations in addition
the effects of periodic boundary conditions are strong. Ouko the local correlations of the dynamical mean-field approxi-
results for the DOS d) =8 are shown in Fig. 3. Notice how mation of strongly interacting electron systems. The method
the spurious features of thex2 cluster(strong dips and an interpolates between the infinite lattice and the DMFA by
additional small gap have essentially disappeared in the evaluating the self-energy on a finite-size cluster with peri-
DOS of the 4x4 cluster, though small features at the edgesodic boundary conditions. The DCA is a general scheme and
of the gap remair(not discernible in the figuje As larger s easily adapted to specific models and various existing ex-
clusters cannot be evaluated exadfigo many configura- act and perturbative techniques to solve these models. As an
tions) we employ Monte Carlo sampling of the configura- example we applied the method to the Falicov-Kimball
tions. As a preliminary result of work in progress we showmodel in 2D and obtained the DOS as a function of tempera-
the DOS of the & 6 cluster. Already at this modest cluster ture for small cluster sizes. In addition, we computed the
size all finite-size features are essentially eliminated. Thigritical temperature of the checkerboard phase transition and
hints to the superior finite-size scaling properties of the DCAshowed that it is suppressed for large interactions when com-
as compared to the standard lattice techniques without coyared to the result of DMFA.
pling to a host.

Finally, we discuss the effect of nonlocal corrections on
the transition temperaturd, to the checkerboard phase.
Within the DCA, we findT. by estimating the temperature It is a pleasure to acknowledge discussions with J. Freer-
where the order parameter in the broken symmetry phasieks, G. Baker, P. G. J. van Dongen, J. Gubernatis, A.
vanishes. The phase diagram is displayed in Fig. 4. The norschiller and F.-C. Zhang. This work was supported by NSF
local correlations of the DCA suppress tiig compared to  Grant Nos. DMR-9704021 and DMR-9357199, and by the
the DMFA estimate, except for wedlk where the nonlocal Ohio Board of Regent$H.R.K.). Travel support was pro-
corrections to the vertex are very smaif orderU? smaller  vided by NATO(T.P. and M.J. Computer support was pro-
than local contributions For largeU, however, the model vided by the Ohio Supercomputer Center.

CONCLUSIONS
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