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Vortex matter in superconducting mesoscopic disks: Structure, magnetization,
and phase transitions
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The dense vortex matter structure and associated magnetization are calculated for type-II superconducting
mesoscopic disks. The magnetization exhibits generically first-order phase transitions as the number of vortices
changes by one and presents two well-defined regimes: Anonmonotonousevolution of the magnitude of the
magnetization jumps signals the presence of a vortex glass structure which is separated by a second-order
phase transition atHc2 from a condensed state of vortices~giant vortex! where the magnitude of the jumps
changes monotonously. We compare our results with Hall magnetometry measurements by Geimet al. @Nature
~London! 390, 259 ~1997!# and claim that the magnetization exhibits clear traces of the presence of these
vortex glass states.@S0163-1829~98!50734-5#
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Electronic device miniaturization in semiconductors h
recently reached the ultimate limit where the number of el
trons present in the device can be tuned at will even dow
a single electron.1,2 These systems have been given the na
of quantum dots or artificial atoms since their generic pr
erties are determined by their few-electron configuratio
much the same as in real atoms. Analogies can be dr
between these artificial atoms and type-II superconduc
mesoscopic disks in perpendicular magnetic fields where
role of the electron is played in this case, not by the Coo
pair, but by another fundamental entity: the vortex. When
dimensions of the disk are comparable to the cohere
lengthj only few vortices can coexist in the system. In co
trast to the usual triangular arrangement in bulk, comp
and unique vortex structures are expected to occur due to
competition between surface superconductivity and vort
vortex interaction. When the dimensions of the system
much smaller thanj the very notion of superconductivit
needs to be revised.3

Transport experiments have contributed in a decisive w
to unveil the electronic structure of artificial atoms.2 Simi-
larly, transport measurements4 in individual mesoscopic
disks gave us experimental evidence of the structure of
order parameter in these systems. Oscillations of the crit
temperatureTc as a function of the external magnetic fieldH
were correctly accounted for by the quantization of the
gular momentumL of the Cooper pair wave function or, i
other words, by transitions between giant vortex states wi
different number of flux quanta. Close to the superconduc
normal phase boundary the theoretical analysis of these
sitions does not present any difficulty since it simply impli
solving the linearized Ginzburg-Landau equations.4–7

Hall magnetometry,8 on the other hand, is revealing itse
as a powerful tool for obtaining information of the ord
parameter through its associated magnetizationM away from
the superconductor-normal phase boundary. To date, the
oretical efforts to calculate the structure of the order para
eter andM well into the superconducting phase have be
PRB 580163-1829/98/58~10!/5948~4!/$15.00
s
-

to
e
-
s
n
g
e
r

e
ce
-
x
he
-

re

y

e
al

-

a
r-
n-

e-
-

n

mostly restricted to the numerical solving of the Ginzbur
Landau equations under the assumption of an order par
eter with a well-definedL.9,10 This is justifiable for type-I
superconducting disks. For type-II disks, however, this
sumption is no longer valid. More precisely, it is only e
pected to hold in the Meissner state, which is associate
anL50 order parameter, and aboveHc2 where, close to the
surface of the disk, the superconductivity can survive up t
higher critical fieldHc3 .4–7 This surface order parameter
referred to as a giant vortex or macrovortex.9,10 For Hc1
,H,Hc2 it has been argued9 and shown in numerical simu
lations of the time-dependent Ginzburg-Landau equations8,11

that the order parameter can form complex structures
single-fluxoid vortices, i.e., a ‘‘budding’’ Abrikosov lattice
From the more analytic standpoint presented in this paper
appearance of these structures can only come about if
order parameterdoes nothave a well-definedL. To find and
understand the structure of these vortex states, to calcu
the magnetization associated to them, and to link these s
to the Abrikosov lattice which emerges in the thermod
namic limit of infinite disks are the main goals of this pape
We do this by expanding the order parameter in an appro
ate basis and minimizing, analytically to a large extent,
Ginzburg-Landau functional. For an increasing magne
field we find first-order phase transitions whenever a vor
is added to the disk. Anonmonotonousbehavior of the mag-
nitude of the magnetization jumps signals the presence of
glassy vortex structures while, atHc2 , a second-order phas
transition constitutes the signature of the condensation of
vortices into the giant vortex state. In addition we compa
with the magnetization measured in Al disks by Geimet al.
in Ref. 8 and claim that the magnetization jumps presen
nonmonotonous evolution which, as we have stated ab
and shown below, can be associated to the existenc
single-fluxoid vortex glassy structures. This would indica
that the Al disks in Ref. 8 behave like type-II supercondu
ors rather than type-I, possibly due to the expected enha
ment of the effective magnetic penetration length in suc
geometry.
R5948 © 1998 The American Physical Society



a

n
r

n-
l
s

ce

i-

d
s
rg

n
nt
t
ac

te
t
te

es
be
e

he

es

the

er

e-

f

a
uli

f
oing
t a
or-
ent
n-

se
th

t
q.
er

e
so

es

RAPID COMMUNICATIONS

PRB 58 R5949VORTEX MATTER IN SUPERCONDUCTING MESOSCOPIC . . .
We start from the traditional Ginzburg-Landau function
for the Gibbs free energy of the superconducting state

Gs5Gn1E dr FauC~r !u21
b

2
uC~r !u41

1

2m*
C* ~r !

3S 2 i\¹2
e*

c
A~r ! D 2

C~r !1
@h~r !2H#2

8p G , ~1!

whereGn is the Gibbs free energy of the normal state a
@2 i\¹2e* A(r )/c#2/2m* is the kinetic energy operator fo
Cooper pairs of chargee* 52e and massm* 52m in a vec-
tor potentialA~r ! which is associated with the magnetic i
duction h(r ). The parametersa and b have the usua
meaning.12 Before proceeding any further we must stres
not fully appreciated fact: Even for small values ofk
('1), the magnetic induction is weakly varying in spa
down to fairly low fields (H'0.5Hc2).13 This observation is
very important for our purposes since, down toH
'0.5Hc2 , it is a very good approximation to consider a un
form magnetic induction@h(r )5B# and to expand of the
order parameter in the following way:

C~r !5 (
L50

`

CL

1

l A2p
e2 iLuFL~r !. ~2!

In this expansionCL[uCLueifL are complex coefficients an
(1/l A2p) e2 iLuFL(r ) are normalized nodeless function
that diagonalize, in the symmetric gauge, the kinetic ene
operator appearing in Eq.~1! with eigenvalueseL(B). We
only consider disk thicknesses smaller than the cohere
length so that the order parameter can be taken consta
the direction of the field. These eigenfunctions are subjec
the boundary conditions of zero current through the surf
and the radial partFL(r ) may be found numerically.~The
radial unit is the magnetic lengthl 5Ae* \/cB.! This ex-
pansion captures both the simplicity of the macrovor
~aboveHc2! when only oneCL is expected to be differen
from zero and the full complexity of the order parame
~below Hc2! when severalL ’s must participate.

Direct substitution of the expansion~2! into Eq. ~1! and
subsequent numerical minimization of the resulting expr
sion is a daunting task bound to fail due to the large num
of unknown variables involved. Instead, it is key to consid
expansions in restricted sets$L1 ,L2 , . . . ,LN% of few N com-
ponents whereL1,L2,¯,LN . The Gibbs free energy
takes the following form for each set:
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whereGs2Gn anda are given in units ofHc2
2 V/8p ~V is the

volume of the disk!, eL(B) is given in units of the lowest
Landau level energy\vc/2 ~with vc5e* B/m* c!, R is the
radius of the disk in units ofj, and B and H are given in
units of Hc2 . The terms proportional toa contain the con-
densation and kinetic energy of the Cooper pairs. All t
other terms, which are proportional toa2, account for the
‘‘interaction’’ between Cooper pairs. There appear four typ
of these terms:~i! those proportional toI L(B)[*drrFL

4 re-
flecting the interaction between Cooper pairs occupying
same quantum stateL, ~ii ! those proportional toI LiL j

(B)

[*drrFLi

2 FL j

2 reflecting the interaction between Coop

pairs occupying different quantum states, and~iii ! the ones
proportional to I LiL jLk

(B)[*drrFLi
FL j

2 FLk
and propor-

tional to I LiL jLkLl
(B)[*drrFLi

FL j
FLk

FLl
which, along

with the phasesfL , are responsible for the correlation b
tween vortices. The nonlinear dependence onB of these in-
tegrals@as well as that ofeL(B)# comes from the existence o
the disk surface.

In order to find the minimum Gibbs free energy for
given set we have to minimize with respect to the mod
uCL1

u, . . . ,uCLN
u, the phasesfL1

, . . . ,fLN
of the coeffi-

cients, and with respect toB. The minimum-energy set o
components is picked up at the end. The advantage of d
this selective minimization resides in our expectation tha
small number of components will suffice to describe the
der parameter for the disk sizes considered in the experim
of Ref. 8. As an illustrative and relevant example we co
sider in the detail the solution with a single component$L%.
The energy functional is invariant with respect to the pha
of the only coefficient so one can minimize analytically wi
respect touCLu2 to obtain

Gs2Gn52
@12BeL~B!#2

k2BR2I L~B!
1~B2H !2. ~4!

Finally, the minimal value ofB and the minimum Gibbs free
energy for eachL must be found numerically. It is importan
to notice thata disappears from the final expression in E
~4! which leaves us withk as the only adjustable paramet
when comparing with experiments.~This is also true for the
more complex cases discussed below.! The two-component
$L1 ,L2% solutions can be dealt with in a similar way. Th
energy functional is invariant with respect to the phases
one can minimize analytically with respect touCL1

u2 and

uCL2
u2 and numerically only with respect toB. The final

solutions look generically like an (L22L1)-vortex ring. For
three-component solutions~two vortex rings! the energy
functional is still invariant with respect to all the three phas



n
-

on
se

-
on
te

ce
ng
la

he
o
en
m

e

ec
n
s
o

er
e-
ic

t
v
p
n
e
on
st

ion.
n-

nts

w-
ntal
of

g-
to
ed
n
a

en

ed.
su-

ep:
t it

-
se
rin

xp

ly
s
e
t
t

r

r of
t-

e
tries

-

RAPID COMMUNICATIONS

R5950 PRB 58J. J. PALACIOS
wheneverL11L3Þ2L2 , and, once again, the minimizatio
with respect touCL1

u2, uCL2
u2, and uCL3

u2 can be done ana

lytically. However, if L11L352L2 , the two rings have the
same number of vortices and their relative angular positi
come into play through the term depending on the pha
There is, however, an obvious choice for these phases:fL1

50,fL2
50,fL3

5p. This choice gives a negative contribu
tion to the free energy which reflects the lock-in positi
between the vortex rings. One important fact should be no
now: The components in which the bulk Abrikosov latti
needs to be expanded in the symmetric gauge are stro
overlapping. Depending on the chosen symmetry of the
tice the set of components is either$1,7,13,19, . . . % for the
C6 symmetry with a vortex at the origin or$0,3,6,9, . . . % for
the C3 symmetry with the center of a vortex triangle at t
origin.14 Consequently, the minimum-energy solutions f
disks are expected to have strongly overlapping compon
which invalidates any perturbative treatment of the ter
that contain the phases.15 Moreover, unlike simpler
geometries,15 there is no direct connection between numb
of components and number of vortices. This prompts us
seek solutions through numerical minimization with resp
to the moduli andB for the three-component cases just me
tioned, and, forN.3, with respect to the moduli, the phase
andB whenever the terms involving phases are present. F
tunately, for the disk sizes like the ones used in the exp
ment of Ref. 8 we will see below that two- and thre
component solutions suffice to capture the relevant phys

Figure 1 shows the magnetization as a function ofH for a
disk of R58j and k53. ~There is nothing special abou
these parameters, the only purpose of which being con
nient for the discussion of the physics we want to bring u!
As indicated in the figure, different types of lines correspo
to the magnetization obtained expanding the order param
with up toN51, 2, 3, and 4 components. A feature comm
to all curves is that the magnetization exhibits many fir

FIG. 1. Magnetization as a function ofH for a disk of radius
R58j andk53. Different line types correspond to different num
ber of components allowed in the minimization. For this specific
of parameters the plot shows clearly the necessity of conside
more than one component belowHc2 . However, no appreciable
difference can be seen between the traces obtained using an e
sion with up toN53 andN54 components.
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order transitions. AboveHc2 the N51 solutions suffice to
describe entirely the order parameter and magnetizat
Here the solutions correspond to a giant vortex which co
tainsL ~the quantum number of the single component! flux-
oids. WheneverL changes by one the magnetization prese
a ~nonquantized! jump whose magnitude evolvesmonoto-
nouslywith L. Below Hc2 we see that theN51 solutions
underestimate the correct value of the magnetization. Allo
ing more components in the expansion has a fundame
effect: It splits the giant vortex into a complex structure
many single-fluxoid vortices@for an example see Figs. 2~a!
to 2~d!#. This reflects in the magnetization curves by chan
ing the regular evolution of the magnitude of the jumps in
an irregular one. Whenever a vortex is added or remov
from the disk the symmetry of the new vortex configuratio
is expected to change which, in turn, expels the field in
different way. There exist configuration switches for a giv
number of vortices, but these changesdo not reflect in the
magnetization, in contrast to what has been suggest8

When the number of vortices is large enough, there are u
ally two possible symmetries within each magnetization st
one with a vortex at the center of the disk and one withou

t
g

an-FIG. 2. Modulus square of the order parameter for anR58j,
k53 disk atH50.6Hc2 expanded with up to~a! N51 ~minimum-
energy set$12%!, ~b! N52($3,12%), ~c! N53($0,3,12%), and ~d!
N54($0,3,6,12%) components. The vortex structure is strong
modified fromN51 to N54 although the total number of vortice
is always given by the largestL which does not depend on th
number of components considered.~Only the internal arrangemen
of vortices does.! Allowing four-component solutions does no
change appreciably the magnetization obtained withN53 ~or even
N52! at any value ofH ~see Fig. 1!. However, the order paramete
is still modified as can be seen by comparing~c! and ~d!. The
addition of a fourth component does not increase the numbe
vortex rings, but can help fix the relative position of the two exis
ing ones in theN53 solution. This modification does not hav
measurable consequences, but illustrates how one of the symme
of the triangular vortex lattice~the C3! can emerge, bearing confi
dence in our calculations.
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which are reminiscent of theC3 and C6 symmetries of the
regular vortex lattice. On top of the many first-order tran
tions the overall slope in the magnetization clearly chan
at Hc2 , i.e., at the transition between the giant vortex and
vortex glass structures. This transition is reminiscent of
second-order transition atHc2 for bulk samples whereM
vanishes.

Finally, we would like to point out that the magnetizatio
measured by Geimet al. in Ref. 8 presents features that a
in good agreement with our results despite of the fact that
disks are made out of a strong type-I material as Al. In th
materials the plate geometry can lead to vortex structu
being more favorable than domains.16 To compare with the
experiment, we simulate this fact by using a higher value
k than the nominal one. In Fig. 3 we show the data for a d
of nominal radiusR55j, thicknessd50.6j, andk50.24.
We have obtained a reasonable good agreement in the n
ber and magnitude of the jumps, and overall shape of
magnetization usingR'5j and k'1 ~the dotted line is a
good example!. This is consistent with an effective penetr
tion length longer than expected and, possibly, with a coh
ence length shorter than the bulk nominal one. Although,
to the smallness of the disk, it is difficult to point at
second-order phase transition, the nonmonotonous evolu
of the magnitude of the magnetization jumps is notorio
over a large range of fields which, as we have shown, is
indication of the formation of vortex glass structures. In o
approximation the magnetic induction is uniform in spa
but, given the good agreement with the experimental cu
this seems to be a much less important restriction than c
sidering an order parameter with a well-defined quant
numberL.10
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FIG. 3. Comparison between experimental data~reproduced
from Ref. 10! and theory usingR55.25j andk51.2. Similar con-
siderations as in Ref. 10 have been followed for the adjustmen
the theoretical curve.
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