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The dense vortex matter structure and associated magnetization are calculated for type-1l superconducting
mesoscopic disks. The magnetization exhibits generically first-order phase transitions as the number of vortices
changes by one and presents two well-defined regimasmmonotonousvolution of the magnitude of the
magnetization jumps signals the presence of a vortex glass structure which is separated by a second-order
phase transition dtl., from a condensed state of vorticegant vorte} where the magnitude of the jumps
changes monotonously. We compare our results with Hall magnetometry measurements ley @diNature
(London 390, 259 (1997)] and claim that the magnetization exhibits clear traces of the presence of these
vortex glass state$S0163-18208)50734-3

Electronic device miniaturization in semiconductors hasmostly restricted to the numerical solving of the Ginzburg-
recently reached the ultimate limit where the number of elecLandau equations under the assumption of an order param-
trons present in the device can be tuned at will even down téter with a well-defined_.>° This is justifiable for type-|
a single electrod? These systems have been given the nam&uperconducting disks. For type-Il disks, however, this as-
of quantum dots or artificial atoms since their generic prop-Sumption is no longer valid. More precisely, it is only ex-
erties are determined by their few-electron configurationg€ctéd to hold in the Meissner state, which is associated to
much the same as in real atoms. Analogies can be drawiL =0 order parameter, and abokk, where, close to the
between these artificial atoms and type-Il superconductin urface of the disk, the superconductivity can survive up to a

. .y . 4_7 . .
mesoscopic disks in perpendicular magnetic fields where thBIgner critical fieldH . This surface order parameter is

role of the electron is played in this case, not by the CoopeF‘z“ferrG(j tq as a giant vortex or macrpvorf’é)?. Eor H.Cl
<H<Hy,, it has been arguédnd shown in numerical simu-

pair, bu.t by another fu.ndamental entity: the vortex. When thqations of the time-dependent Ginzburg-Landau equa"iiﬂns
dimensions of the d.'Sk are compargble to the coherenc%at the order parameter can form complex structures of
length £ only few vorpces can coexist in the.system. In con- single-fluxoid vortices, i.e., a “budding” Abrikosov lattice.
trast to the usual triangular arrangement in bulk, complex, o the more analytic standpoint presented in this paper the
and unique vortex structures are expected to occur due to thaeppearance of these structures can only come about if the
competition between surface superconductivity and vortexg qer parametedoes nothave a well-defined.. To find and
vortex interaction. When the dimensions of the system argnqerstand the structure of these vortex states, to calculate
much smaller tharg the very notion of superconductivity the magnetization associated to them, and to link these states

needs to be revisefd. . . o to the Abrikosov lattice which emerges in the thermody-
Transport experiments have contributed in a decisive wayamic limit of infinite disks are the main goals of this paper.
to unveil the electronic structure of artificial atofm&imi- We do this by expanding the order parameter in an appropri-

larly, transport measuremefitsn individual mesoscopic ate basis and minimizing, analytically to a large extent, the
disks gave us experimental evidence of the structure of th&inzburg-Landau functional. For an increasing magnetic
order parameter in these systems. Oscillations of the criticafleld we find first-order phase transitions whenever a vortex
temperaturd ¢ as a function of the external magnetic fi¢gld  is added to the disk. Aonmonotonoubehavior of the mag-
were correctly accounted for by the quantization of the annitude of the magnetization jumps signals the presence of the
gular momentunil of the Cooper pair wave function or, in glassy vortex structures while, Ht.,, a second-order phase
other words, by transitions between giant vortex states with &ansition constitutes the signature of the condensation of the
different number of flux quanta. Close to the superconductorvortices into the giant vortex state. In addition we compare
normal phase boundary the theoretical analysis of these tramvith the magnetization measured in Al disks by Gestral.
sitions does not present any difficulty since it simply impliesin Ref. 8 and claim that the magnetization jumps present a
solving the linearized Ginzburg-Landau equati8ms. nonmonotonous evolution which, as we have stated above

Hall magnetometry,on the other hand, is revealing itself and shown below, can be associated to the existence of
as a powerful tool for obtaining information of the order single-fluxoid vortex glassy structures. This would indicate
parameter through its associated magnetizafioaway from  that the Al disks in Ref. 8 behave like type-Il superconduct-
the superconductor-normal phase boundary. To date, the thers rather than type-I, possibly due to the expected enhance-
oretical efforts to calculate the structure of the order paramment of the effective magnetic penetration length in such a
eter andM well into the superconducting phase have beergeometry.
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We start from the traditional Ginzburg-Landau functional X1 Ldlcllc?lc |
for the Gibbs free energy of the superconducting state T b «
N
B 1 + > 80 +1, L+, COS L+ b — b,
GS=Gn+f dr| a|W(r)2+ 5 [W(r)[*+ 5= W*(r) 1>k T>i=1
2 2m
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c T

+(B—H)?, ©)
where G, is the Gibbs free energy of the normal state and
[—iV—e*A(r)/c]?/2m* is the kinetic energy operator for whereG,— G, anda are given in units oHZ,V/87 (V is the
Cooper pairs of charge* =2e and massn* =2min avec- volume of the disk e (B) is given in units of the lowest
tor potentialA(r) which is associated with the magnetic in- Landau level energy w /2 (with w;=e*B/m*c), R is the
duction h(r). The parametersx and B have the usual radius of the disk in units of, andB andH are given in
meaning'? Before proceeding any further we must stress aunits of H.,. The terms proportional ta contain the con-
not fully appreciated fact: Even for small values &f densation and kinetic energy of the Cooper pairs. All the
(=1), the magnetic induction is weakly varying in spaceother terms, which are proportional t?, account for the
down to fairly low fields H~0.5H,).*3 This observation is  “interaction” between Cooper pairs. There appear four types
very important for our purposes since, down td  of these terms(i) those proportional td, (B)=/drr®{ re-
~0.5H,, itis a very good approximation to consider a uni- flecting the interaction between Cooper pairs occupying the
form magnetic inductiorfh(r)=B] and to expand of the same quantum state, (ii) those proportional td LiLj(B)

order parameter in the following way: =[drr®f df reflecting the interaction between Cooper
o pairs occupyijng different quantum states, diid the ones
‘I’(f):E CL— e LoD, (r). 2) proportional toILiLij(B)EfdrrCDLi(I)EjCDLk and propor-
5o /2w tional to I (B)=[drrd® & & & which, along
with the phasies:bL, are responsibjle for the correlation be-

tween vortices. The nonlinear dependenceBoof these in-
tegrals[as well as that o€ _(B)] comes from the existence of

In this expansiorC, =|C, €'’ are complex coefficients and
(1/\J2m)e M9 (r) are normalized nodeless functions
that dlagonallze,_ in t.he symmgtnc gauge, the kinetic energy. = Gisk surface.
operator appearing in Eq1) with eigenvaluese (B). We In order to find the minimum Gibbs free energy for a
only consider disk thicknesses smaller than the coherencelven set we have to minimize with respect to thgymoduli
length so that the order parameter can be taken constantf& | IC. |, the phasess & pof the coeffi-
the direction of the field. These eigenfunctions are subject to"k1'* -+ "~y P Ly e %y
the boundary conditions of zero current through the surfac§ients, and with respect t8. The minimum-energy set of
and the radial par®, (r) may be found numerically(The components is picked up at the end. The advantage of doing
radial unit is the magnetic lengtii= \Je*%/cB.) This ex- this selective minimization resides in our expectation that a
pansion captures both the simplicity of the macrovortexsMall number of components will suffice to describe the or-
(aboveH,,) when only oneC, is expected to be different der parameter for the disk sizes considered in the experiment
C. . .
from zero and the full complexity of the order parameter®f Ref. 8. As an illustrative and relevant example we con-
(below H,,) when several’s must participate sider in the detail the solution with a single componfoy.
C . . . . . .

Direct substitution of the expansia@) into Eq. (1) and The energy fungtlpnal is invariant vx_/lt_h respect to the ph_ase
subsequent numerical minimization of the resulting expres®f the only coc2aff|0|ent so one can minimize analytically with
sion is a daunting task bound to fail due to the large numbefeSPect tdC,|* to obtain
of unknown variables involved. Instead, it is key to consider )
expansions in restricted sdts;,L,, ... Ly} of few N com- P [1-Be(B)] 2

! Gs— G, T +(B—H)~. (4)
ponents wherd_;<L,<---<Ly. The Gibbs free energy «“BRI (B)

takes the following form for each set: . o o )
Finally, the minimal value oB and the minimum Gibbs free

N energy for eacth. must be found numerically. It is important
G~ G =2, a[l— Be, (B)]|C, |2 to notice thata disappears from the final expression in Eq.
i=1 ' ! (4) which leaves us with¢ as the only adjustable parameter

1 N when comparing with experimentsThis is also true for the

+ - 2?k’BR2 4 more comple_x cases discussed b_e)o_’v'\he tvyo—_component
a’r’BR izl L (BIC,| {L,L,} solutions can be dealt with in a similar way. The

energy functional is invariant with respect to the phases so
one can minimize analytically with respect t6L1|2 and

|CL2|2 and numerically only with respect tB. The final
solutions look generically like anL;—L,)-vortex ring. For

N
_ three-component solution§wo vortex rings the energy
+ 45, . . co + 2¢ . i A ) X
k>;:1 Lithied S{qﬁ"' P d)"I) functional is still invariant with respect to all the three phases

N
+ 2 41 (B)|CL|?Cy |?
iST=1 i i
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FIG. 1. Magnetization as a function &f for a disk of radius
R=28¢ and «=3. Different line types correspond to different num-
ber of components allowed in the minimization. For this specific se
of parameters the plot shows clearly the necessity of considerin
more than one component belo,.,. However, no appreciable
difference can be seen between the traces obtained using an expan-gig. 2. Modulus square of the order parameter forRan8¢,
sion with up toN=3 andN=4 components. x=3 disk atH=0.6H,, expanded with up t¢a) N=1 (minimum-

energy sef{12}), (b) N=2({3,12), (c) N=3({0,3,12), and (d)
wheneverl;+L3;#2L,, and, once again, the minimization N=4({0,3,6,12) components. The vortex structure is strongly
with respect tdc'-1|2' |CL2|2, and|C|_3|2 can be done ana- modified fromN=1 to N=4 although the total number of vortices

. . _ . is always given by the largedt which does not depend on the
lytically. However, ifL; + Ls=2L5, the two rings have the number of components consideré@®nly the internal arrangement

same number of vortices and their relative angular posmon%f vortices doe3. Allowing four-component solutions does not

come |_nto play through th? term dgpendlng on the phase%hange appreciably the magnetization obtained With3 (or even
There is, however, an obvious choice for these phaﬁ@f‘ N=2) at any value oH (see Fig. 1 However, the order parameter
=0,¢.,=0,¢ ;= 7. This choice gives a negative contribu- is still modified as can be seen by comparifgy and (d). The
tion to the free energy which reflects the lock-in positionaddition of a fourth component does not increase the number of
between the vortex rings_ One important fact should be noteﬁortex rings, but can help fix the relative position of the two exist-
now: The components in which the bulk Abrikosov lattice ing ones in theN=3 solution. This modification does not have
needs to be expanded in the symmetric gauge are strongweasurqble consequences, but illustrates how one of the symmgtries
overlapping. Depending on the chosen symmetry of the |atof the t_nangular vortgx latticéthe C3) can emerge, bearing confi-
tice the set of components is eithr7,13,19. ..} for the  dence in our calculations.
Cgs symmetry with a vortex at the origin ¢6,3,6,9 . . .} for
the C3; symmetry with the center of a vortex triangle at the order transitions. Abovéd., the N=1 solutions suffice to
origin.** Consequently, the minimum-energy solutions fordescribe entirely the order parameter and magnetization.
disks are expected to have strongly overlapping componentdere the solutions correspond to a giant vortex which con-
which invalidates any perturbative treatment of the termszainsL (the quantum number of the single componéiuix-
that contain the phasés. Moreover, unlike simpler oids. Whenevet changes by one the magnetization presents
geometries? there is no direct connection between numbera (nonquantizel jump whose magnitude evolvesonoto-
of components and number of vortices. This prompts us taouslywith L. Below H,, we see that thé=1 solutions
seek solutions through numerical minimization with respectunderestimate the correct value of the magnetization. Allow-
to the moduli and for the three-component cases just men-ing more components in the expansion has a fundamental
tioned, and, foN> 3, with respect to the moduli, the phases, effect: It splits the giant vortex into a complex structure of
andB whenever the terms involving phases are present. Formany single-fluxoid vortice§for an example see Figs(&
tunately, for the disk sizes like the ones used in the experito 2(d)]. This reflects in the magnetization curves by chang-
ment of Ref. 8 we will see below that two- and three-ing the regular evolution of the magnitude of the jumps into
component solutions suffice to capture the relevant physicsan irregular one. Whenever a vortex is added or removed
Figure 1 shows the magnetization as a functiokldbr a  from the disk the symmetry of the new vortex configuration
disk of R=8¢ and «=3. (There is nothing special about is expected to change which, in turn, expels the field in a
these parameters, the only purpose of which being convedifferent way. There exist configuration switches for a given
nient for the discussion of the physics we want to bring up. number of vortices, but these changis notreflect in the
As indicated in the figure, different types of lines correspondmagnetization, in contrast to what has been suggésted.
to the magnetization obtained expanding the order paramet&/hen the number of vortices is large enough, there are usu-
with up toN=1, 2, 3, and 4 components. A feature commonally two possible symmetries within each magnetization step:
to all curves is that the magnetization exhibits many first-one with a vortex at the center of the disk and one without it
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which are reminiscent of th€,; and Cg symmetries of the 1 ;
regular vortex lattice. On top of the many first-order transi-
tions the overall slope in the magnetization clearly changes ﬁ ‘
atH,, i.e., at the transition between the giant vortex and the ~ 08 | i ]
vortex glass structures. This transition is reminiscent of the f _
. ¢ e Experiment
second-order transition ai ., for bulk samples wheré/ Py
0.6 -

vanishes.

Finally, we would like to point out that the magnetization
measured by Geiret al. in Ref. 8 presents features that are
in good agreement with our results despite of the fact that the
disks are made out of a strong type-l material as Al. In these
materials the plate geometry can lead to vortex structures
being more favorable than domaitfsTo compare with the
experiment, we simulate this fact by using a higher value of
« than the nominal one. In Fig. 3 we show the data for a disk
of nominal radiusR=5¢, thicknessd=0.6¢, and k=0.24.

We have obtained a reasonable good agreement in the num-
ber and magnitude of the jumps, and overall shape of the FIG. 3. Comparison between experimental déeproduced
magnetization USi.ng.{%5§ "J.md Kml. (the dOttec_j line is a from Réf. iO and theory usindR=5.25% andx=1.2. Similar con-
g_ood example This is consistent with an eﬁeCt'Ve penetra- gijerations as in Ref. 10 have been followed for the adjustment of
tion length longer than expected and, possibly, with a coherg o theoretical curve.

ence length shorter than the bulk nominal one. Although, due

to the smallness of the .d.'Sk’ it is difficult to point at & The author acknowledges enlightening discussions with
second-order phase transition, the nonmonotonous evolquR K. Geim and thanks him for pointing out to the author a
of the magnitude of the magnetization jumps is notorious =~ ™ t related & Thi Kk has b funded b
over a large range of fields which, as we have shown, is al ery recent reflated work. 1his work has been funded by
indication of the formation of vortex glass structures. In our SF Grant No. DMR-9503814 and MEC of Spain under
approximation the magnetic induction is uniform in space,Contract No. PB96-0085.

but, given the good agreement with the experimental curve,
this seems to be a much less important restriction than con-
sidering an order parameter with a well-defined quantum
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