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Coarse-grained molecular dynamics and the atomic limit of finite elements
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We develop a technique for simulation of the mechanics of micron-scale solid systems: coarse-grained
molecular dynamic§CGMD). It captures the important atomistic effects without the computational cost of
conventional molecular dynamid®D). The CGMD equations of motion are derived directly from finite
temperature MD through a statistical coarse graining procedure, so they agree with MD as the mesh size is
reduced to the atomic scale. This allows a seamless coupling of length scales. The use of efficient CGMD in
peripheral regions extends atomistic simulation to much larger systems than amenable to MD alone.
[S0163-182008)52134-0

The physical world is replete with phenomena on differ-  In this paper, we present a method of constructing scale-
ent scales that are only weakly coupled. Physics would bdependent constitutive equations suitable for a mesh which is
totally intractable were this not so. There are many systemsgtomic sized in some regions. In these regions it is guaran-
however, which depend inherently on physics on multipleteed to reproduce the atomistic equations of motion. This
scales. These pose notoriously difficult theoretical problemsenables MD regions to be coupled seamlessly to regions of
Turbulence, crack propagation, and critical phenomena adeneralized FE, bringing the full power of MD to bear on
nontrivial fixed points are prime examples. In this paper wemportant parts of the system without the computational
focus on another multiscale problem, mesoscopic elastic dyeverhead of MD in other large, but physically less complex
namics, and we formulate an effective theory which couplegegions. The procedure, coarse grained molecular dynamics
micron-scale boundary conditions to physics at the atomiéCGMD), is based on a statistical coarse graining prescrip-
scale. tion.

The mesoscopic elastic problem is this: there are interest- Suppose we are given a microscopic potential energy ex-
ing solid-state systems whose elastic properties can be mo@ression describing the motion of atoms in a solid, crystal-
eled neither by finite elements because they are too smaline or amorphous, and a coarse grain€{) mesh parti-
nor by atomistics because they are too large. Examples irfioning the solid into cells. The mesh size may vary, so that
clude technologically important micro-electro-mechanicalin important regions a mesh node is assigned to each equi-
systems(MEMS) being constructed now, and mesoscopiclibrium atomic position, whereas in other regions the cells
systems of crack propagation and delamination. To be moréontain many atoms and the nodes need not coincide with
precise, dynamical regions smaller thaprh are affected by —atomic sites. We propose a method to produce equations of
atomic scale physics which causes departures from cornotion for a mean displacement field defined at the nodes. In
tinuum elastic theory,and dynamical regions larger than 0.1 particular, we define the conserved energy functional for the
um® exceed the current limit of about one hundred million CG system as a constrained ensemble average of the atom-
atoms for atomistic simulation of silicon on a istic energy under fixed thermodynamic conditions. The
supercomputet.The challenge is to develop a robust simu- €quations of motion are Hamilton’s equations for this energy
lation technique which captures the important atomistic effunctional.
fects without the computational cost of a brute force atomis- The classical ensemble must obey the constraint that the
tic simulation for the entire system. position and momenta of the atoms are consistent with the

Consider the standard finite eleméRE) approach to this mean displacement and momentum fields. Let the displace-
problem® A mesh of varying coarseness is chosen, adapment of atomu beu,=x,—X,o Wherex,, is its equilibrium
tively or by fiat, such that no one region contributes dispro-position. The displacement of mesh nodes an average of
portionately to the error. Typically errors result from large the atomic displacements
strain gradients violating the discrete expression for the inte-
gral of the elastic energy density of a continuous medium. U:E fu 1)
Mesh refinement improves this approximation. However, as b e
the mesh size approaches atomic dimensions, the constitutive
equations have significant errors, and further refinementvheref;, is a weighting function, related to the microscopic
alone does not help. One proposal to improve this situatiomnalog of FE interpolating functions below. An analogous
replaces the FE equations of motion on regions of the mestelation is implied for the momenta,, . Since the nodal
that are atomic-sized with MD equations of motion anddisplacements are fewer or equal to the atomic positions in
implements a consistent hand shaking between the MD andumber, fixing the nodal displacements and momenta does
FE regions® Another hybrid FE/MD proposal is the quasi- not (necessarily determine the atomic coordinates entirely.
continuum technique, a zero temperature relaxatiorSome subspace of phase space remains, corresponding to
techniqué degrees of freedom that are missing from the mesh. We de-

0163-1829/98/5@.0)/58934)/$15.00 PRB 58 R5893 © 1998 The American Physical Society



RAPID COMMUNICATIONS

R5894 ROBERT E. RUDD AND JEREMY Q. BROUGHTON PRB 58

fine the CG energy as the average energy of the canonicldted CGMD for an underlying anharmonic Hamiltonian in

ensemble on this constrained phase space: perturbation theory, assuming negligible diffusion in the CG
. region. Here the higher modes do not decouple, and energy
E(uk,uk)z(HMD>uk,uk (20  may flow to and from the internal ensemble, contributing to
thermal expansion, etc. Those results will be presented
elsewher¢.
:f dx,dp,Hype PHveA/Z, () The stiffness matrix<;; is to be computed once at the

start of a simulation, and it remains unaltered during the
] p,fi subsequent dynamics. It does not matter whether atoms vi-
A=]] 5( u—> qujM) 5( u-> “—”‘) (4)  brate across cell boundaries, as long as diffusion is negli-
J m v My gible. An efficient computation oK;; is achieved through a
where 8=1/(kT) is the inverse temperaturZ, is the parti- hormal mode decomposition @f,,,. Use of Bloch symme-
tion function ands(u) is a three-dimensional delta function. try reduces the size of the dynamical matrix to be inverted to
The delta functions enforce the mean field constrgint  the size of the supercell of which the system is comprised.

Note that Latin indicesj,k, ..., denote mesh nodes and This allows the simulation of billion atom crystals on desk-
Greek indices,u,v, . . ., denote atoms. The energ) is  top workstations without approximation beyond those pre-
computed beloWEq. (8)]. sented here. Note that far#0 the finite temperature dy-

When the mesh nodes and the atomic sites are identicatamical matrix should be used f@,,. This ensures a
the CGMD equations of motion agree with the atomisticCOﬂSiStent thermodynamics. For example, in ergodic systems
equations of motion. As the mesh size increases some shoifie time average of the kinetic energy term in the CG energy
wavelength degrees of freedom are not supported by thed) is related to the temperature through a virial expression.
coarse mesh. These degrees of freedom are not neglectbétigeneral, the dynamical matrix may depend on other mac-
entirely, because their thermodynamic average effect ha®scopic parameters, as well, such as slowly varying external
been retained. This approximation is expected to be goofhagnetic and electric field® ,, should be evaluated under
provided the system is initially in thermal equilibrium, and these conditions. Also note that while the harmonic approxi-
changes to the system would only produce adiabatic changé®ation may be good in peripheral regions, it may not be
in the missing degrees of freedom. As long as this conditior@ppropriate for the important regions. We have shown that
is satisfied, the long wavelength modes may be driven out ghe CGMD and MD equations of motion agree in regions
equilibrium without problems. where the mesh coincides with the atomic sites. In these

The CG energy4) may be computed using standard tech-regions, the full MD potential may, and should, be restored,
niques. We have derived the expression in closed form for &0 that effects such as diffusion and dislocation are allowed.
monatomic harmonic solid. We take the form of the atomis- Several comments about the CG energy are in order. First,
tic Hamiltonian to be the mass and stiffness matrix definitions involve matrix in-

verses. This is somewhat ill defined for the stiffness matrix
pi 1 becauseD,, is singular, due to the zero modégapless
HMDZE ﬁ+2 EUM'DMv'va ©) acoustic phonons Since there are two inverses in H{),
. o the matrixKj; is finite after a suitable regularization. For
whereD ,, is the dynamical matrix. It acts as a tensor on theinstance,
components of the displacement vector at each site. We de-

fine the mass matrix by the matrix inverse -1
i Kix=lim| X f;,(D,,+el ) | 9
e—0\ MV
) ] o wherel ,, is the identity matrix. We have developed a more
and the stiffness matrix by the matrix inverse efficient and numerically stable regularization which will be
1 presented elsewhefe.
Kjk:(z meWlka) _ 7) The zero modes are not integrated out, so a short-ranged
wy D,, results in a short-rangel{;;. On the other hand, a

nearest-neighbdD ,, does not generally produce a nearest-
neighborK;; , except where the mesh is atomic-sized. The
stiffness matrix elements typically decrease exponentially
_ 1 o with separation, so the effective interaction is short ranged
E(uy,u)=Ujn+ > E (Mjguj-ugtu;-Kje-u), (8)  but not nearest neighbor. This is an important point, since it
Ik is this quality that improves the CGMD phonon spectrum.
where U;,=3(N—N,,40kT. The energy contains terms In addition to thg_ general framework_ we have pr_esen;ed
representing the average kinetic and potential energies, pld8" CGMD, a specific choice of the weighting functions is
the thermal energy term expected from the equipartitior{equ'red for calculations. In general, suppose we have a set
theorem for the modes that have been integrated out. Thigf interpolating functiongN;(x)}; 9% that are linearly inde-
Hamiltonian is easily generalized to polyatomic solids,pendent at the mesh nodgdetN;(x,) #0 wherex, is the
where the optical modes may be coarse grained in severfcation of thekth nodd. Then we can define the displace-
ways to represent different physics. Also, we have formument fieldu(x) =2u;N;(x). Also, given any list of atomic

The CG energy3) for a monatomic harmonic solid dfl
atoms coarse grained d,,4. Nodes is computed to be



RAPID COMMUNICATIONS

PRB 58 COARSE-GRAINED MOLECULAR DYNAMICS AND THE . .. R5895
x 2 . 10} PR -
0.1 a— [ if !
c i :(
‘o 1 X ok -% 08| i
0.08 - . . = ' ;
: § ) H :
3 O 06} 1
© 006 ° -, 0 ¥ Lo o i
VK/m R 0 ™a tx c i i
£ . fi cown—
0.04r . s ot ' i lump mass ---
‘. : oact - 5 %20 X 1§ dist. mass -
0.02r dist. mass = o ,‘I"I" o b
N " lump mass = 0.0 — Aepoad =g os
n L L] 0 k 1%3
. _30n 0 30n
1024a 1024a ) _ )
k FIG. 2. A comparison of the reflection of elastic waves from a

CG region in three cases: CGMD and two varieties of FE. The
FIG. 1. The phonon spectra shown result from various treatdashed line marks the natural cuté¢éee text
ments of a ring of 1024 atoms and an incommensurate regular mesh

of 30 nodes. The inset is the exact phonon spectrum, where thsﬁgectra in four cases: exact, CGMD, distributed mass FE and

coarse-grained spectrum occupies the small box near the zone Cium ed mass EE The latter two use the long wavelenath
ter. The error in the CGMD spectrum is much less than that of th P : ong ) 9
elastic constants. The spectra are for a periodic chain of 1024

FE spectra. - ) .
atoms with lattice constarst coarse grained to 30 nodes.

displacements we can find the displacement field represented Figure 1 shows that CGMD gives a better approximation

on the CG mesh which best fits these data in the leasto the true phonon spectrum than the two kinds of FE do. All
squares sense: three do a good job at the longest wavelengths, as expected,

but CGMD offers a higher order of accuracy. The relative
) 2 error for CGMD isO(k*) while that of the two versions of
X :% ' (10 FE is only O(k?). At shorter wavelengths, there are signifi-

- . o cant deviations from the exact spectrum. The worst relative
where Nj,=N;(x,0). This x* error is minimized byu;  error of CGMD is about 6%, better by more than a factor of
=3,f;,.u, [cf. (1)], where

-1
f“j':; (Ey NjVNkV) Nk/.L'

This defines the weighting functidn,, of (1) in terms of the

UM_; UiN;j .

11

3 than that for FE. This improvement is made possible by the
longer-ranged interactions of CGMD as compared to FE.
The continuity condition satisfied by linear interpolation is
enough to ensure that the hydrodynamic modes (@) are
well modeled, but the lack of continuity of the derivatives
. ) : shows up as error in the spectrum of the modes away from
interpolating functionN;(x). . )
; ) . . , the zone center. This error vanishes for the smooth, nonlocal
The continuum limit of the elastic energy is proportional basis consisting of the longest wavelength normal modes. It
to an integral of the square of the strall. To avoid pa- turns out that t%e CGMD grror at the CgG zone boundar .is
thologies in this limit, the displacement fieldx) should be ; : y
. . ; . relatively small(less than 1% for technical reasons. Also
continuous, but not necessarily smooth. The usual linear in- )
. . - . note that even though the number of atoms varies from cell
terpolation functions of finite elements are the simplest such . . ;
) . ; ; to cell in the incommensurate mesh, the CGMD spectrum is
choice. They are defined such théf(x) is 1 at nodex;, it ) .
] . ] free of anomalies. Other computations have shown that
goes linearly to zero at the nearest-neighbor nodes, and o . S .
. . ; GMD with linear interpolation is well behaved on irregular
vanishes outside of the nearest cells. These functions have
the desirable properties of locality and ease of use meshes, as well. . :
i . ) ) - We have computed an analytic expression for the CGMD
Other choices of interpolating functions are possible, such )
) . : pectrum on a commensurate mesh:
as higher order polynomials. One basis we have found usefd
is the set of the longest wavelength normal modes. It pro-

vides a check of the CG Hamiltonia(8), since it is the w1 a4l mPNnogel \ 2
optimal choice for a regular CG mesh—the phonon spectrum K Zp=g Sin Eka+ - N
comes out exactly correct, apart from the missing short- w(k)=2\[a 1 N ,
wavelength modes. =01 sin 6| ka+ P node)

As a proof of concept, we consider one-dimensional P= 2 N

chains of atoms with periodic boundary conditions. The first (12

test is the phonon spectrum for atoms with harmonic inter-

actions coarse grained to a regular, but not necessarily comvheren’=N/N,yq4e. This formula shows the contribution of
mensurate mesh. The normal modes are plane waves both arany modes of the underlying crystal to each CGMD mode,
the underlying ring of atoms and on the CG mesh. The waveesulting from the choice of interpolation functions which
vectork is a good quantum number for both. The nonzerchave many normal mode components. Near the center of the
terms of the dynamical matrix are of the fornD,, CG Brillouin zone, a single modep&0) dominates the

=2K,D, ,+1=—K. Figure 1 shows the resulting phonon sums(12), whereas near the bounddrg~N,,qem/(Na)],
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many modes contribute to keep the CGMD spectrum close tanomalous phonon resonances, corresponding to unphysical
the true spectrum which is not smooth at the boundary.  excitations in the CG region. These are almost completely
Most of the applications that we envision for CGMD are absent from CGMD. Also, whereas the cutoff for CGMD
dynamical and have varying mesh size. For example, in stutbceurs atk= 7/(N,,5,@), €xactly where it should be, the two
ies of crack propagation the far-field regions away from thefinite element cutoffs are shifted. CGMD also reduces un-
crack may be coarse grained. For these applications it i§anted scattering of waves traveling from the CG region into
important that elastic waves generated at the crack tip argye atomistic region, as compared to FE, but we have not
able to propagate into the CG region. One source of finiteghown the plot for lack of space. Of course, any long-lived

size effects are waves which are reflected back unphysicallyy o \vavelength elastic waves that would reflect from the
from boundaries or artificial interfacésThis also produces a CG region must be handled as well. We are developing a

nonzero qultza resistance, which may cause uneven heat"ﬁqechanism based on resonant Netmver chain® to ab-
across the interface. Of course, a stationary system started in

S : ; sorb and thermalize these modeBor it to work, the under-
thermal equilibrium remains at a constant, uniform temperas . : . .

ture given a reasonable measure of temperature in the C N9 simulation must be well behaved and predictable, and
region. this is exa_ctly what _CGMD offers. _ _

The natural measure of the ability of waves to propagate _CGMD is a technique for simulation of the_ mechanics of
from an atomistic region into a CG region is tBenatrix of ~ micron-scale systems. CGMD captures the important atom-
scattering theory, or in one dimension, the transmission ant§tic effects without the computational cost of an ordinary
reflection coefficients7 and R, respectively. In Fig. 2 we atomistic simulation. This is made possible by a seamless
plot R(k) for scattering from a CG region of 72 nodes rep- coupling of length scales: important regions of the system
resenting 652 atoms in the middle of an infinite harmonicmay be modeled with MD, while peripheral regions are
chain of atoms. The cell size increases smoothly in the C@oarse grained for efficiency. The CGMD equations of mo-
region, as it should, to a maximum of,,,,=20 atoms per tion smoothly match those of MD as the mesh size is reduced
cell. In all three cases showR vanishes in the long wave- to the atomic scale. Much larger systems may be modeled
length limit, and it goes to unity as the wavelength becomesvith CGMD than would otherwise be possible in an atomis-
smaller than the mesh spacing—a coarse mesh cannot suje simulation.
port short wavelength modes.

At intermediate wavelengths, however, the behavior is
quite different. The two finite element simulations show This work was supported by ONR and DARPA.
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