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Coarse-grained molecular dynamics and the atomic limit of finite elements
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We develop a technique for simulation of the mechanics of micron-scale solid systems: coarse-grained
molecular dynamics~CGMD!. It captures the important atomistic effects without the computational cost of
conventional molecular dynamics~MD!. The CGMD equations of motion are derived directly from finite
temperature MD through a statistical coarse graining procedure, so they agree with MD as the mesh size is
reduced to the atomic scale. This allows a seamless coupling of length scales. The use of efficient CGMD in
peripheral regions extends atomistic simulation to much larger systems than amenable to MD alone.
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The physical world is replete with phenomena on diffe
ent scales that are only weakly coupled. Physics would
totally intractable were this not so. There are many syste
however, which depend inherently on physics on multi
scales. These pose notoriously difficult theoretical proble
Turbulence, crack propagation, and critical phenomena
nontrivial fixed points are prime examples. In this paper
focus on another multiscale problem, mesoscopic elastic
namics, and we formulate an effective theory which coup
micron-scale boundary conditions to physics at the ato
scale.

The mesoscopic elastic problem is this: there are inter
ing solid-state systems whose elastic properties can be m
eled neither by finite elements because they are too sm
nor by atomistics because they are too large. Examples
clude technologically important micro-electro-mechani
systems~MEMS! being constructed now, and mesoscop
systems of crack propagation and delamination. To be m
precise, dynamical regions smaller than 1mm are affected by
atomic scale physics which causes departures from c
tinuum elastic theory,1 and dynamical regions larger than 0
mm3 exceed the current limit of about one hundred milli
atoms for atomistic simulation of silicon on
supercomputer.2 The challenge is to develop a robust sim
lation technique which captures the important atomistic
fects without the computational cost of a brute force atom
tic simulation for the entire system.

Consider the standard finite element~FE! approach to this
problem.3 A mesh of varying coarseness is chosen, ad
tively or by fiat, such that no one region contributes disp
portionately to the error. Typically errors result from larg
strain gradients violating the discrete expression for the in
gral of the elastic energy density of a continuous mediu
Mesh refinement improves this approximation. However,
the mesh size approaches atomic dimensions, the constit
equations have significant errors, and further refinem
alone does not help. One proposal to improve this situa
replaces the FE equations of motion on regions of the m
that are atomic-sized with MD equations of motion a
implements a consistent hand shaking between the MD
FE regions.4,5 Another hybrid FE/MD proposal is the quas
continuum technique, a zero temperature relaxat
technique.6
PRB 580163-1829/98/58~10!/5893~4!/$15.00
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In this paper, we present a method of constructing sc
dependent constitutive equations suitable for a mesh whic
atomic sized in some regions. In these regions it is guar
teed to reproduce the atomistic equations of motion. T
enables MD regions to be coupled seamlessly to region
generalized FE, bringing the full power of MD to bear o
important parts of the system without the computatio
overhead of MD in other large, but physically less compl
regions. The procedure, coarse grained molecular dynam
~CGMD!, is based on a statistical coarse graining presc
tion.

Suppose we are given a microscopic potential energy
pression describing the motion of atoms in a solid, crys
line or amorphous, and a coarse grained~CG! mesh parti-
tioning the solid into cells. The mesh size may vary, so t
in important regions a mesh node is assigned to each e
librium atomic position, whereas in other regions the ce
contain many atoms and the nodes need not coincide
atomic sites. We propose a method to produce equation
motion for a mean displacement field defined at the nodes
particular, we define the conserved energy functional for
CG system as a constrained ensemble average of the a
istic energy under fixed thermodynamic conditions. T
equations of motion are Hamilton’s equations for this ene
functional.

The classical ensemble must obey the constraint that
position and momenta of the atoms are consistent with
mean displacement and momentum fields. Let the displa
ment of atomm beum5xm2xm0 wherexm0 is its equilibrium
position. The displacement of mesh nodej is an average of
the atomic displacements

uj5(
m

f j mum , ~1!

wheref j m is a weighting function, related to the microscop
analog of FE interpolating functions below. An analogo
relation is implied for the momentapm . Since the nodal
displacements are fewer or equal to the atomic position
number, fixing the nodal displacements and momenta d
not ~necessarily! determine the atomic coordinates entire
Some subspace of phase space remains, correspondin
degrees of freedom that are missing from the mesh. We
R5893 © 1998 The American Physical Society
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fine the CG energy as the average energy of the canon
ensemble on this constrained phase space:

E~uk ,u̇k!5^HMD&uk ,u̇k
~2!

5E dxmdpmHMDe2bHMDD/Z, ~3!

D5)
j

dS uj2(
m

um f j mD dS u̇j2(
m

pm f j m

mm
D , ~4!

whereb51/(kT) is the inverse temperature,Z is the parti-
tion function andd(u) is a three-dimensional delta function
The delta functions enforce the mean field constraint~1!.
Note that Latin indices,j ,k, . . . , denote mesh nodes an
Greek indices,m,n, . . . , denote atoms. The energy~3! is
computed below@Eq. ~8!#.

When the mesh nodes and the atomic sites are ident
the CGMD equations of motion agree with the atomis
equations of motion. As the mesh size increases some s
wavelength degrees of freedom are not supported by
coarse mesh. These degrees of freedom are not negle
entirely, because their thermodynamic average effect
been retained. This approximation is expected to be g
provided the system is initially in thermal equilibrium, an
changes to the system would only produce adiabatic cha
in the missing degrees of freedom. As long as this condit
is satisfied, the long wavelength modes may be driven ou
equilibrium without problems.

The CG energy~4! may be computed using standard tec
niques. We have derived the expression in closed form f
monatomic harmonic solid. We take the form of the atom
tic Hamiltonian to be

HMD5(
m

pm
2

2m
1(

m,n

1

2
um•Dmn•un , ~5!

whereDmn is the dynamical matrix. It acts as a tensor on t
components of the displacement vector at each site. We
fine the mass matrix by the matrix inverse

M jk5mS (
m

f j m f kmD 21

~6!

and the stiffness matrix by the matrix inverse

K jk5S (
mn

f j mDmn
21f knD 21

. ~7!

The CG energy~3! for a monatomic harmonic solid ofN
atoms coarse grained toNnode nodes is computed to be

E~uk ,u̇k!5Uint1
1

2 (
j ,k

~M jku̇j•u̇k1uj•K jk•uk!, ~8!

where Uint53(N2Nnode)kT. The energy contains term
representing the average kinetic and potential energies,
the thermal energy term expected from the equipartit
theorem for the modes that have been integrated out.
Hamiltonian is easily generalized to polyatomic solid
where the optical modes may be coarse grained in sev
ways to represent different physics. Also, we have form
al

al,

rt-
e

ted
as
d

es
n
of

-
a
-

e
e-

lus
n
is

,
ral
-

lated CGMD for an underlying anharmonic Hamiltonian
perturbation theory, assuming negligible diffusion in the C
region. Here the higher modes do not decouple, and en
may flow to and from the internal ensemble, contributing
thermal expansion, etc. Those results will be presen
elsewhere.7

The stiffness matrixKi j is to be computed once at th
start of a simulation, and it remains unaltered during
subsequent dynamics. It does not matter whether atoms
brate across cell boundaries, as long as diffusion is ne
gible. An efficient computation ofKi j is achieved through a
normal mode decomposition ofDmn . Use of Bloch symme-
try reduces the size of the dynamical matrix to be inverted
the size of the supercell of which the system is compris
This allows the simulation of billion atom crystals on des
top workstations without approximation beyond those p
sented here. Note that forTÞ0 the finite temperature dy
namical matrix should be used forDmn . This ensures a
consistent thermodynamics. For example, in ergodic syst
the time average of the kinetic energy term in the CG ene
~8! is related to the temperature through a virial expressi
In general, the dynamical matrix may depend on other m
roscopic parameters, as well, such as slowly varying exte
magnetic and electric fields.Dmn should be evaluated unde
these conditions. Also note that while the harmonic appro
mation may be good in peripheral regions, it may not
appropriate for the important regions. We have shown t
the CGMD and MD equations of motion agree in regio
where the mesh coincides with the atomic sites. In th
regions, the full MD potential may, and should, be restor
so that effects such as diffusion and dislocation are allow

Several comments about the CG energy are in order. F
the mass and stiffness matrix definitions involve matrix
verses. This is somewhat ill defined for the stiffness ma
becauseDmn is singular, due to the zero modes~gapless
acoustic phonons!. Since there are two inverses in Eq.~7!,
the matrix Ki j is finite after a suitable regularization. Fo
instance,

K jk5 lim
e→0

S (
mn

f j m~Dmn1eI mn!21f knD 21

, ~9!

whereI mn is the identity matrix. We have developed a mo
efficient and numerically stable regularization which will b
presented elsewhere.7

The zero modes are not integrated out, so a short-ran
Dmn results in a short-rangedKi j . On the other hand, a
nearest-neighborDmn does not generally produce a neare
neighborKi j , except where the mesh is atomic-sized. T
stiffness matrix elements typically decrease exponenti
with separation, so the effective interaction is short rang
but not nearest neighbor. This is an important point, sinc
is this quality that improves the CGMD phonon spectrum

In addition to the general framework we have presen
for CGMD, a specific choice of the weighting functions
required for calculations. In general, suppose we have a
of interpolating functions$Nj (x)% j 51

Nnode that are linearly inde-
pendent at the mesh nodes@detNj(xk)Þ0 wherexk is the
location of thekth node#. Then we can define the displace
ment fieldu(x)5(ujNj (x). Also, given any list of atomic
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displacements we can find the displacement field represe
on the CG mesh which best fits these data in the le
squares sense:

x25(
m

Uum2(
j

ujNj mU2

, ~10!

where Nj m5Nj (xm0). This x2 error is minimized byuj
5(m f j mum @cf. ~1!#, where

f j m5(
k

S (
n

Nj nNknD 21

Nkm . ~11!

This defines the weighting functionf j m of ~1! in terms of the
interpolating functionNj (x).

The continuum limit of the elastic energy is proportion
to an integral of the square of the strain,“u. To avoid pa-
thologies in this limit, the displacement fieldu~x! should be
continuous, but not necessarily smooth. The usual linear
terpolation functions of finite elements are the simplest s
choice. They are defined such thatNj (x) is 1 at nodexj , it
goes linearly to zero at the nearest-neighbor nodes, an
vanishes outside of the nearest cells. These functions h
the desirable properties of locality and ease of use.

Other choices of interpolating functions are possible, s
as higher order polynomials. One basis we have found us
is the set of the longest wavelength normal modes. It p
vides a check of the CG Hamiltonian~3!, since it is the
optimal choice for a regular CG mesh—the phonon spect
comes out exactly correct, apart from the missing sh
wavelength modes.

As a proof of concept, we consider one-dimensio
chains of atoms with periodic boundary conditions. The fi
test is the phonon spectrum for atoms with harmonic in
actions coarse grained to a regular, but not necessarily c
mensurate mesh. The normal modes are plane waves bo
the underlying ring of atoms and on the CG mesh. The w
vector k is a good quantum number for both. The nonze
terms of the dynamical matrix are of the form:Dmm
52K, Dm,m6152K. Figure 1 shows the resulting phono

FIG. 1. The phonon spectra shown result from various tre
ments of a ring of 1024 atoms and an incommensurate regular m
of 30 nodes. The inset is the exact phonon spectrum, where
coarse-grained spectrum occupies the small box near the zone
ter. The error in the CGMD spectrum is much less than that of
FE spectra.
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spectra in four cases: exact, CGMD, distributed mass FE
lumped mass FE.8 The latter two use the long waveleng
elastic constants. The spectra are for a periodic chain of 1
atoms with lattice constanta coarse grained to 30 nodes.

Figure 1 shows that CGMD gives a better approximat
to the true phonon spectrum than the two kinds of FE do.
three do a good job at the longest wavelengths, as expe
but CGMD offers a higher order of accuracy. The relati
error for CGMD isO(k4) while that of the two versions o
FE is onlyO(k2). At shorter wavelengths, there are signi
cant deviations from the exact spectrum. The worst rela
error of CGMD is about 6%, better by more than a factor
3 than that for FE. This improvement is made possible by
longer-ranged interactions of CGMD as compared to F
The continuity condition satisfied by linear interpolation
enough to ensure that the hydrodynamic modes (k;0) are
well modeled, but the lack of continuity of the derivative
shows up as error in the spectrum of the modes away f
the zone center. This error vanishes for the smooth, nonl
basis consisting of the longest wavelength normal mode
turns out that the CGMD error at the CG zone boundary
relatively small ~less than 1%! for technical reasons. Also
note that even though the number of atoms varies from
to cell in the incommensurate mesh, the CGMD spectrum
free of anomalies. Other computations have shown t
CGMD with linear interpolation is well behaved on irregul
meshes, as well.

We have computed an analytic expression for the CGM
spectrum on a commensurate mesh:

v~k!52AK

mS (p50
n821sin24S 1

2
ka1

ppNnode

N D
(p50

n821 sin26S 1

2
ka1

ppNnode

N D D
1/2

,

~12!

wheren85N/Nnode. This formula shows the contribution o
many modes of the underlying crystal to each CGMD mo
resulting from the choice of interpolation functions whic
have many normal mode components. Near the center o
CG Brillouin zone, a single mode (p50) dominates the
sums~12!, whereas near the boundary@k'Nnodep/(Na)#,

FIG. 2. A comparison of the reflection of elastic waves from
CG region in three cases: CGMD and two varieties of FE. T
dashed line marks the natural cutoff~see text!.t-
sh
he
en-
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many modes contribute to keep the CGMD spectrum clos
the true spectrum which is not smooth at the boundary.

Most of the applications that we envision for CGMD a
dynamical and have varying mesh size. For example, in s
ies of crack propagation the far-field regions away from
crack may be coarse grained. For these applications
important that elastic waves generated at the crack tip
able to propagate into the CG region. One source of fin
size effects are waves which are reflected back unphysic
from boundaries or artificial interfaces.9 This also produces a
nonzero Kapitza resistance, which may cause uneven he
across the interface. Of course, a stationary system start
thermal equilibrium remains at a constant, uniform tempe
ture given a reasonable measure of temperature in the
region.

The natural measure of the ability of waves to propag
from an atomistic region into a CG region is theS matrix of
scattering theory, or in one dimension, the transmission
reflection coefficients,T andR, respectively. In Fig. 2 we
plot R(k) for scattering from a CG region of 72 nodes re
resenting 652 atoms in the middle of an infinite harmo
chain of atoms. The cell size increases smoothly in the
region, as it should, to a maximum ofNmax520 atoms per
cell. In all three cases shownR vanishes in the long wave
length limit, and it goes to unity as the wavelength becom
smaller than the mesh spacing—a coarse mesh cannot
port short wavelength modes.

At intermediate wavelengths, however, the behavior
quite different. The two finite element simulations sho
y
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anomalous phonon resonances, corresponding to unphys
excitations in the CG region. These are almost complete
absent from CGMD. Also, whereas the cutoff for CGMD
occurs atk5p/(Nmaxa), exactly where it should be, the two
finite element cutoffs are shifted. CGMD also reduces u
wanted scattering of waves traveling from the CG region in
the atomistic region, as compared to FE, but we have n
shown the plot for lack of space. Of course, any long-live
short-wavelength elastic waves that would reflect from th
CG region must be handled as well. We are developing
mechanism based on resonant Nose´-Hoover chains10 to ab-
sorb and thermalize these modes.7 For it to work, the under-
lying simulation must be well behaved and predictable, a
this is exactly what CGMD offers.

CGMD is a technique for simulation of the mechanics o
micron-scale systems. CGMD captures the important ato
istic effects without the computational cost of an ordinar
atomistic simulation. This is made possible by a seamle
coupling of length scales: important regions of the syste
may be modeled with MD, while peripheral regions ar
coarse grained for efficiency. The CGMD equations of m
tion smoothly match those of MD as the mesh size is reduc
to the atomic scale. Much larger systems may be mode
with CGMD than would otherwise be possible in an atomi
tic simulation.

This work was supported by ONR and DARPA.
,

e

,

.

*Also at SFA, Inc., 1401 McCormick Drive, Largo, MD 20774
Electronic address: rudd@dave.nrl.navy.mil

†Electronic address: broughto@dave.nrl.navy.mil
1J. Q. Broughton, C. A. Meli, P. Vashishta, and R. K. Kalia, Ph

Rev. B56, 611 ~1997!.
2F. F. Abraham and J. Q. Broughton, Comput. Mater. Sci.10, 1

~1998!.
3See, for example, O. C. Zienkiewicz and R. L. Taylor,The Finite

Element Method, 4th ed.~McGraw-Hill, New York, 1991!, Vol.
II.

4S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister, Philos. Mag
.

s.

A

64, 851 ~1991!.
5F. F. Abraham, J. Q. Broughton, E. Kaxiras, and N. Bernstein

Comput. Phys.~to be published!.
6E. B. Tadmor, M. Ortiz, and R. Phillips, Philos. Mag. A73, 1529

~1996!.
7R. E. Rudd and J. Q. Broughton~unpublished!.
8The FE lumped mass matrix is a diagonal approximation of th

true distributed mass matrix~cf. Ref. 3!.
9F. F. Abraham, D. Brodbeck, R. A. Rafey, and W. E. Rudge

Phys. Rev. Lett.73, 272 ~1994!.
10G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys

97, 2635~1992!.


