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Ferromagnetism in the Hubbard model with orbital degeneracy in infinite dimensions
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Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

~Received 30 March 1998!

We study the ferromagnetism due to orbital degeneracy in the Hubbard model in infinite dimensions. The
model contains the intraorbital repulsionU, the interorbital repulsionU8, the exchangeJ ~Hund coupling! and
the pair hoppingJ8, where all of them originate from the on-site Coulomb interaction. The ground state of the
effective one-site problem was obtained by exact diagonalizations of finite clusters. At the1

4 filling, we found
two insulating phases; one is a ferromagnetic phase with alternating orbital order and the other is antiferro-
magnetic with uniform orbital order. If electrons are doped into the1

4 filling, the ferromagnetic phase still
survives and becomes metallic, while the antiferromagnetic phase disappears. This result indicates that a
double-exchange mechanism is relevant to stabilize metallic ferromagnetism in infinite dimensions.
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Many investigations have been done on the Hubb
model to clarify whether the Coulomb interaction can real
ferromagnetism in itinerant electron systems. They revea
that the simple single-band Hubbard model on the hype
bic lattice does not easily show ferromagnetism and t
some additional properties are necessary to stabilize fe
magnetism. There are several proposals for such prope
One is the special lattice structure~or band structure! which
favors ferromagnetism. For example, ferromagnetism on
fcc lattice1 and of the flat~or nearly flat! band model2,3 are
discussed in this context. Another is the existence of
orbital degeneracy.4–6 It was argued that the on-site Hun
coupling between electrons in degenerate orbitals create
direct ferromagnetic coupling between conducti
electrons.6

Numerical study of strongly correlated electron system
quite difficult in higher dimensions than one. In the infinit
dimensional (d5`) limit, however, it is manageable with
the aid of recently developed technique.7 In this limit we can
treat quantum fluctuations completely, by taking local int
actions into account exactly, and we can neglect spatial fl
tuations. Monte Carlo simulations of thed5` single-band
Hubbard model revealed that any ferromagnetic phase d
not appear on the hypercubic lattice8 and, on the other hand
metallic ferromagnetism occurs on the fcc-type lattic9

These two results clearly show the lattice-structure dep
dence for the appearance of the ferromagnetism. The pur
of this paper is to clarify whether the itinerant ferroma
netism appears due to orbital degeneracy in infinite dim
sions.

We study the Hubbard model with doubly degenerate
bitals at each site on the hypercubic lattice. The Hamilton
is given by

H5 (
m51,2 H 2

t

2Ad
(

^ i , j &PNN
s5↑,↓

~cims
† cjms1H.c.!

2m(
i ,s

nims1U(
i

nim↑nim↓J
1U8 (

i ,s,s8
ni1sni2s82J (

i ,s,s8
ci1s

† ci1s8ci2s8
† ci2s

2J8(
i

~ci1↑
† ci1↓

† ci2↑ci2↓1H.c.!, ~1!
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wherecims (cims
† ) denotes the annihilation~creation! opera-

tor of the electron at sitei with orbital m(51 or 2) and
spin s. The number operator is denoted bynims . All the
interaction terms in Eq.~1! originate from the Coulomb in-
teraction between electrons at the same site. We treat e
interaction exactly. Generally interaction parameters sat
the relationU>U8>J.J8. A symmetry argument leads t
the relationU5U812J.10 Hopping terms are scaled wit
the dimensionalityd so that the one-electron density of stat
~DOS! behaves asD(«)5exp(2«2/t2)/tAp in the limit d
→`.

The double-exchange mechanism due to strong H
couplingJ was proposed to produce itinerant ferromagneti
for n.1, wheren denotes electron density per site.4–6 At the
1
4 filling ( n51) the ground state is expected to be insulat
in the strong-coupling limit. In this case the effective inte
action due to virtual hoppings of electrons favor a ferroma
netic ground state with alternating orbital order.11–14 In one
dimension, the ferromagnetism was found numerically n
n51,15–19 and shown rigorously for generaln in the strong-
coupling limit.20,17 For higher dimensions, it is not yet clea
whether ferromagnetic order appears. Inagaki and Kubo
tained ferromagnetic phases on the simple cubic lattice
J850 using the Hartree-Fock approximation.21 However, it
is not quite clear how the predicted metallic ferromagneti
in three dimensions is stable, since the local quantum fl
tuations and the pair-hopping (J8) term, both of which sup-
press the magnetic order, are neglected in their study. Eff
of orbital degeneracy were also studied with ad5` two-
band model in the anisotropic~Ising! limit of Hund coupling
andJ850.22–24

In this paper we study the model~1! in infinite dimensions
near the quarter filling. We present the one-site effective
tion of the model~1! and study the ground-state properti
using the exact diagonalization method. We found a meta
ferromagnetic phase for electron doped cases, e.g.,n51.2,
which indicates that the double-exchange mechanism
stabilize ferromagnetism in infinite dimensions. At the1

4 fill-
ing, the ground state shows a metal-insulator transition
finite parameterU. A phase diagram with both ferromagnet
and antiferromagnetic phases is obtained forn51. The phase
diagram is consistent with a mean-field theory based on
perturbational treatment from the strong-coupling limit.
R567 © 1998 The American Physical Society
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To derive the one-site effective action of the pres
model, we employ the cavity method.7 Taking the trace for
all degrees of freedom except for those on site 0, we ob
the effective action

exp@2Seff~c0ms
† ,c0ms!#[

Zeff

Z E )
iÞ0
m,s

Dcims
† Dcimse2S,

~2!

where the partition function of the model is written as
functional integral over Grassman variables. Generally,Seff
is an infinite series of multiples of Grassman variables
various times. In thed5` limit, the action becomes quite
simple as

Seff52b (
m51,2
s5↑,↓

(
vn

c0ms
† ~ ivn!Goms

21~ ivn!c0ms~ ivn!

1E
0

b

dtH int„c0ms
† ~t!,c0ms~t!…, ~3!

where H int denotes the local interaction on the site 0, a
G0ms satisfies the relation

G0ms~ ivn!5@Gms~ ivn!211Sms~ ivn!#21. ~4!

To derive Eqs.~3! and ~4!, we have used the facts that th
self-energy is independent of momentum and that^ci

†cj&
;(1/Ad) u i 2 j u, which applies for larged.

Here we briefly explain the method for calculating t
ground state. This one-site effective action can be appr
mated by the following two-channel impurity model:

H5 (
m51,2
s5↑,↓

H (
p52,ns

«pmsapms
† apms2mcms

† cms

1 (
p52,ns

Vpms~apms
† cms1H.c.!J 1U(

m
nm↑nm↓

1U8 (
s,s8

n1sn2s82J (
s,s8

c1s
† c1s8c2s8

† c2s

2J8~c1↑
† c1↓

† c2↑c2↓1H.c.!, ~5!

whereapms (cms) denotes the annihilation operator of th
conduction~impurity! electron with channelm and spins.
The effective action of the impurity site has the same form
Eq. ~3! with

Gms
imp~ ivn!5F ivn1m2 (

p52,ns

Vpms
2

ivn2«pms
G21

~6!

instead ofG0ms( ivn). Conduction electrons havens21 or-
bitals. The effective action~3! can be well approximated
with the impurity model~5!, if we increasens and select the
most suitable parameters («pms ,Vpms) so thatGms

imp satisfies
the self-consistency condition~4!. We numerically diagonal-
ize the impurity model~5! with the Lanczos method an
obtain the ground state under the self-consistency cond
~4!. It has been shown that this method works well and
ground state can be accurately described even with s
numberns55 or 6.7 In spatially uniform ground states th
t

in

t

d

i-

s

n
e
all

Green function is related to the self-energy wi
Gms(k,ivn)215(G0)212S2«k , where G051/(ivn1m)
and «k5d21/2(m51

d coskm . We also consider states wit
two-sublattice structures. The Green function froml sublat-

tice to l 8 sublattice,Gms
l l 8 (k,ivn), has the form

S ~G0!212SA 2«k

2«k ~G0!212SBD 21

. ~7!

We have two effective actions for two sublattices. The se
consistency condition is unchanged asG0ms

l ( ivn)
5@Gms

l l ( ivn)211Sm
l ( ivn)#21, where G0ms

l ( ivn) denotes
the dynamical mean field applied to the sublatticel.

We study the ground states at the fillingsn51, 1.2, and
0.8, controlling the chemical potential. Parameters are se
U5U812J and J5J8. Both spatially uniform states an
those with the two-sublattice structure are considered.
merical calculations were done forns55 or ns56. We
mostly studied the system withns55 and confirmed phase
boundaries using the system withns56. We found thatns
dependence of the ground state is small and the phase
grams are the same between the casesns55 and 6.

For the 1
4 filling, we found three ground-state phases, i.

paramagnetic, ferromagnetic, and antiferromagnetic on
We obtained the phase diagram shown in Fig. 1. ThougJ
will be positive in real systems, we consider both positi
and negativeJ to clarify the effects of Hund coupling. Nea
the phase boundary, two~or three! solutions coexist and thei
energies cross over. We selected the ground state comp
the energies and determined the phase diagram.

For a wide parameter region, we found a ferromagne
phase. This state has an orbital super-lattice structure.
pseudospint i

z5(s(ni1s2ni2s)/2, which represents the or
bital degree of freedom, is antiferromagnetically ordered.
this phase the compressibility,dn/dm, is always vanishing
and hence the ground state is insulating~see Fig. 2!. Thus
magnetic transition and metal-insulator transition occur
the same coupling parameter. The magnetization is ha
reduced from the full polarization. For example, the mag
tization per site (5Ne) is ^M &/Ne50.5000 forU518, U8
510, andJ54, whereNe denotes the number of electron

FIG. 1. Magnetic phase diagram at the1
4 filling ( n51). Param-

eters are fixed asU5U812J andJ5J8.
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Rigorously speaking the spins cannot be fully polarized
the d→` limit because of the Gaussian DOS.25 Since the
reduction is too small, it is invisible within accuracy of th
present calculation.

Another insulating phase appears for negativeJ. In this
phase the ground state has antiferromagnetic long-rang
der and also uniform orbital order. The sublattice magnet
tion per site is very close to12 .

The phase boundaries of the above two phases are
understood in terms of the effective Hamiltonian in t
strong-coupling limit. We start from the ground states in t
atomic limit (t50) and treat the hopping term as
perturbation.12 Then the second-order perturbation leads
the following effective Hamiltonian for spin operatorsSi and
pseudospin operatorsti :12

Heff52
t2

2d (
^ i , j &

F 4U

U22J82 ~ 1
4 1t i

zt j
z!~ 1

4 2Si•Sj !

2
2J8

U22J82 ~t i
2t j

21t i
1t j

1!~ 1
4 2Si•Sj !

1
2U8

U822J2 $ 1
4 2t i

zt j
z22~ti•tj2t i

zt j
z!~ 1

4 1Si•Sj !%

1
2J

U822J2 $t i
zt j

z2ti•tj12~ 1
4 2t i

zt j
z!~ 1

4 1Si•Sj !%G .
~8!

Clearly, spin interactions haveSO(3) symmetry and, unde
the conditionsU5U812J and J5J8, pseudospin interac
tions also haveSO(2) rotational symmetry about they axis.
The derivation of Eq.~8! is valid for 2U8/3,J,U8, where
intermediate states have higher energy than the unpertu
ground states. The perfect ferromagnetic state with per
antiferromagnetic pseudospin order has the ene
2t2/(2U822J) per site, while that of the Ne´el state with
perfect ferromagnetic pseudospin order is2t2U/(2U2

FIG. 2. Chemical potential dependence of the electron densi
the parametersU518, U8510, andJ5J854. Magnetic order of
each state is written by FM, P, FI, and AFI. FM and P den
ferromagnetic and paramagnetic metal, respectively. FI means
romagnetic insulator with alternating orbital order and AFI deno
antiferromagnetic insulator with no orbital order.
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22J2). Thus the ferromagnetic state has a lower energy
0,J,U8 and the antiferromagnetic state is lower f
2U8/3,J,0. We see in Fig. 1 that the phase boundar
are close to the three linesJ52U8/3, J50, andJ5U8. The
present result reflects the fact that the mean-field theor
exact in infinite-dimensional localized spin models.

In order to examine the effects of electron doping to t
ordered states at the14 filling, we studied the case withn
51.2. At this filling we obtained two metallic phases, bo
of which are spatially uniform, i.e., the ferromagnetic pha
and the paramagnetic one~see Fig. 3!. We could not find any
antiferromagnetic phase at this filling. The transition fro
the paramagnetic phase to the ferromagnetic one is of
order. Both ferromagnetic and paramagnetic states exis
solutions of the self-consistency equations in a region cl
to the phase boundary and their energies cross over a
phase boundary.

The ferromagnetic state is metallic, since it has fin
compressibility~Fig. 2!, and it has no orbital ordering. Th
reduction of magnetization is larger than the insulating f
romagnet at the1

4 filling. For example,̂ M &/Ne50.341 for
U518, U8510, andJ54 at n51.2. The area of the ferro
magnetic phase is reduced in the phase diagram compar
that of the insulating ferromagnetic phase at the1

4 filling. On
the other hand, the antiferromagnetic phase completely
appears at this filling. This result is consistent with the we
known fact that the itinerancy of electrons~or holes! is
hardly compatible with the antiferromagnetic long-range
der.

As a hole-doped case, we study the ground state fon
50.8. At this filling we found only metallic ground state
which are translationally invariant. We could not find an
magnetically ordered phase forJ<U8<20. Disappearance
of antiferromagnetism is understood as the result of the i
erancy of the holes. Self-consistent solutions that show
romagnetism also appear for largeU8, e.g., U8510, but
have slightly higher energy than that of the paramagn
states. Since the probability of double occupancy is low
n,1, the double-exchange mechanism due to Hund coup
is less effective than in the case withn.1 and hence ferro-
magnetism may disappear. The ferromagnetic ground s
however appears even forn,1 in one dimension.17,19 This

at

e
r-

s

FIG. 3. Magnetic phase diagram at the fillingn51.2. Param-
eters are fixed asU5U812J andJ5J8.
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discrepancy may be understood with the argument
higher dimensionality destroys the perfect ferr
magnetism,25,26 though we need more study to conclude t
absence of the metallic ferromagnetism at less than1

4 filling
for strong coupling.

In this study, we found the metallic ferromagnetism,
which spins are partially polarized, for positiveJ only at
more than1

4 filling ( n51.2). This result should be compare
with the single-band Hubbard model, which does not sh
ferromagnetism.8 This indicates that the double-exchan
mechanism due to the Hund-coupling favors ferromagnet
and realizes metallic ferromagnetism for strong but fin
coupling in infinite dimensions. The ferromagnetism appe
in a parameter region where 0,J,U8. We did not search
for ground states with larger sublattice structures in
o
.

e

at

w

m

rs

e

present study. Hence possibility of incommensurate sta
still remains. Further extension of the study in infinite d
mensions and also a reliable phase diagram of the met
ferromagnetism in one dimension, which is still not ava
able, will be useful to gain insight into the role of the orbit
degeneracy in the metallic ferromagnetism in two and
three dimensions.
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