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Heisenberg spins on a cylinder in an axial magnetic field
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For classical Heisenberg spins in the continuum li(né., the nonlinearr mode) on an elastic cylinder in
an external axial magnetic field we find that the corresponding Euler-Lagrange equation is the double sine-
Gordon(DSG) equation. The DSG soliton adopts a characteristic leggttich is smaller than the radius of
the cylinder. This mismatch of length scales results in a geometric frustration in the region of the soliton and
is relieved by the deformation of the cylinder. We also find the DSG kink soliton lattice and pulse soliton
lattice solutions and show that they cause a periodic deformation of the cyl[isf63-182@8)51126-3

Cylindrical structures, in particular microtubuleapound sirfd 1
in nature. They may either be made out of magnetic materi- V()= 57 —(1—cos6), (2b)
als or may enclose magnetorheological flid® study their Po P8

magnetoelastic properties, one may treat their surfaces as,gere the magnetic length scaj§=2J/g,uB.

continuum of classical spins. Along this line of thinking, 11 Euler-Lagrange equation for the above Hamiltonian
here we explore the elastic consequences of classicl ihe double sine-GordofDSG) equation
Heisenberg-coupled spins on a deformable cylinder in the
presence of topological spin solitons and an external mag- 1 1
netic field. Recently, it has become possible to fabricate 0,,==—Sin 20+ —sin 6. 3)
magnetic thin films in a cylindrical shape. 2pp B

The continuum fimit of the Heisenberg Hamiltonian for The DSG equation arises in several physical contexts includ-

classical ferromagnets or antiferromagnets for isotropic splni—ng in the study of spin waves ifthe B phase of superfluid

spin coupling is the nonlinear model?~® The total Hamil- 3He 5001 the problem of self-induced transpareriyoling

tonian for a deformable, magnetoelastically coupled mani- rocess of certain polvmetd 2 pronagation of resonant op-
fold is given by H=Hq gt Hej+Hm_ei, Where H 40, P poly ,~ propag p

Hq andH,,_ represent the magnetic, elastic, and magnetoycal pulses through degenerate metfizompressiblexY

. . ; . chain of dipoles with piezoelectric couplirg, soliton-
elastic energy, respectively. In this paper we will focus

. . : . magnon bound states in organic antiferromaghetsisfit
mainly on the magnetic part. The magnetic garvariant of . . |
. . . ; dislocations on reconstructed metallic surfatesDNA
the nonlinears mode) on a circular cylinder in an external

axial maanetic field is qiven b excitations'® etc. The 2r soliton solution of the DSG equa-
9 9 y tion consistent with the boundary conditions is

H =Jf Vn)?dS— ff n-Bd 1 _ _ PB _ _ bors
magn cyl( ) gu eyl S’ ( ) 0(2) =2 tan 1 —Z f g_ %_F—F)%B)]_/Z! (4)
£ sinh:

where J denotes the coupling energy between neighboring §

spins, n is the magnetization unit vector,n  where¢is the characteristic length of theraoliton. Equiva-

= (cos,sin 6 cos¢,sinf'sin ¢), anddS is the surface ele- jently, £=\/popp\pops/(p2+ p2). Thus the soliton chooses
ment of the deformable circular cylindeB. is the applied 5 characteristic length which is smaller than the geometric
magnetic field along the axis of the cylind@ig. 1), wisthe  mean of the cylinder radius and the magnetic length. With
magnetic moment, angldenotes thg factor of the electrons  j,creasing magnetic field the characteristic length of the soli-
in the magnetic material. ton decreases. Note that H4) is equivalent to the following

Assuming  cylindrical symmetry and homogeneousggytion obtained in the context of anisotropic Heisenberg
boundary conditions at both ends of the cylindé~0 as  ferromagnetic chairf@

z— *+ o) we get

2 —1/2
0(z)=2 sin1(<cosﬁz— g—zsinhzz> }
'3 Po '3

The 27 soliton is depicted in Fig. 1. Also note that the limit
with B—0 (pg—) cannot be taken in Ed4) to obtain a sine-

w [ g2
Hmagn=23(2mpo) f {§+vw>}dz, (2
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B B which introduces a new length scale into the system. Now,
in order to release this frustration the cylindiit is elastic)
will deform, i.e., to decrease its radius in the region where

® the soliton is centerett. This will miminize the energy in

0=2n Z->+ Hy.
~ | - Next, we focus on the second part of the Hamiltortén
~ |~ which does involve the external magnetic fi&d
~ e
LD e e H2=47TJJ P (1-cos 0)dz. )
(//*\\\ —» P
ol [~ For our soliton solutiodEq. (4)] H, will take the form:
o [~
Ao B » 2 po(2)
eyt — 00 B .
J ; ‘ * ; ‘/ 1+ 1—;26)3"1}'\2%}
S o 0
S | o
PO A SN G =877Jf f(po(2),2)dz
2 SO SN WS —o0
> ~
;' Dy if we allow po=po(2).
CEBN t f‘ This part of the Hamiltonian will decrease in energy if we
60 A= ~ 75— locally decrease the radiyg but keepp, constant in Eq(4)
for our soliton solution.
p_>| Therefore, for constant magnetic field if we keep the cyl-
0 inder cross section constantzt +«, the cylinder will de-
) 9 form in the region of the soliton. For small magnetic field
(i.e., pg>pg) We get
25 2
p 2
Es:167TJ[1+—()2 1+2lnﬂ>]. ®
n 2pp Po
For large magnetic field(i.e., pg<<pg) we get Eg
0 >Z =16mJ(2po/pg).

The deformation of the cylinder can be understood physi-
FIG. 1. Cylindrically symmetric 6-27r twist soliton on an in-  cally as follows. At cylinder boundaries at= +« the spins
finite cylinder in the presence of an axial magnetic field. are aligned with the direction of the magnetic field. How-
ever, since this is a2 soliton, in the middle of the cylinder
Gordon kink solution since the(z) boundary conditions for  the spins are antiparallel to the direction of the magnetic field
a DSG kink arg(0,2m) at (—,) as opposed t¢0,7) fora  (Fig. 1). To reduce this magnetic energy cost the cylinder

sine-Gordon kink. _ will try to deform (pinch) in the middle. The shap@g(z) of
The energy of the soliton the cylinder which minimizes the enerd§o 16xJ) and at
N1z 2 the same time respects the uniform boundary conditions for
E=16mJ{ | 1+ ﬂg + Egsinh‘lﬁJ 5 the vector fieldn would come from finding a suitable solu-
PB PB Po tion of (the self-duality equations aphdhe DSG equation.

We do not attempt to find a solution of this highly nonlinear
system of differential equations but note that an ansatz for
the radius of the cylindepy(z) = po— eposech(Z£) (which
in inself represents an elastic solijomould lead to a lower
energy than on a rigid cylinder witby(z) = pog. Heree<1 is
a small parameter. It can be shown explicitly by choosing an
" Sirto appropriate value of (Ref. 21 that the energy is lowered by
[p09§+ —]dz. (6) deforming the cylinder.

Po In the absence of a magnetic field the self-dual equation
for a cylinder with cylindrically symmetric field is6,
= =*sin #lpy. For the DSG case, using E() we can write

is larger than 16J (the mimimum energy for the homotopy
clas$?° with winding numberQ=2). Only in the limit pg
—» (B—0) we getEs— 167 andé— pg. Now let us con-
sider that part of the Hamiltoniad ,; which does not involve
the magnetic fieldB (or pg),

Hi=2%J f
This part of the energy is minimized by a soliton solution
which satisfies the self-dual equatihsr in other words by

a soliton solution which hag,, the radius of the cylinder, as sin 6 4p2 sirtol2
its characteristic length. 0,==* +— o

Our soliton solution has a characteristic lengthp, (as Po Pe

in the case of a soliton lattice when considering a single The function in square brackets is greater than one for all
soliton), which leads to a geometric frustrati6hThe origin  values of §(z) and the self-dual equation is not satisfied.

of this geometric frustration lies in the applied magnetic fieldTherefore, the cylinder would deform in order to satisfy the
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self-dual equation and to lower the energy. Note that all soinder in the absence of the magnetic fiékthe-Gordon soli-
lutions of this equation satisfy the Euler-Lagrange equatiorton lattice solutiof?). Specifically, the ansatz for the radius
[Eq. (3)] but not vice versa. po(2)=po— epocr?(z/ &, ,k) would lead to a lower energy
Next, we consider the 22 soliton lattice solution of the than the rigid cas€oy(z) = py). Heree<1 is a small param-
DSG equation in two regimesi) po=pg (large magnetic eter. In addition, it can be shown explicitly by choosing an

field) and (ii) pp<pg (small magnetic field appropriate value of (Ref. 21 that the energy is lowered by
(i) po=pg - In this case there is only one local maximum periodically deforming the cylinder.
Vmax= 2/p2B in the zero to 2 range and occurs #= 7. We The interaction between two kinks can be obtained by

find the following (topologica) kink lattice exact solution evaluatingg, in the limit k— 1. However, this is an algebra-
ically tedious task. A more elegant way is to use the

Z— 17 K asymptotic form g— ) of Eq. (4) and then apply Manton’s
6.(z) P8 e —%— & formula?® We get the potential between a kink-antikink pair
nT ary T’ (93 separated by a distanceas
L 0\
& ' ) d
N ) Uosdd)= — 128m3"%5% p(— —).
with periodicity d=4K¢, , where sng,k), cn(z,k) are Ja- & &

cobi elliptic functions an&K (k) is the complete elliptic inte-

! s Note that, even though there is a magnetic field-dependent
gral of the first kind?? Here

prefactor in the interaction, it decreases monotonically with
increasing magnetic field. We contrast this with the interac-
) tanzﬁ tion in the absemie of the magnetic figfdr a sine-Gordon
£ g PB - e 2 - o) kink-antikink paif?)
1 2 2
tar? > + tar? > tan2 +tan2 Ueu(d)= — 32113 exr{ ;ﬂ)
0

and taé,/2 and taré,/2 are the two nonzero roots of The factor of 4 inUpg, as compared ttgc, can be un-

p2V 1 P PBVo derstood approximately as fpllows: For very _smaII values of
( )t f— +PB —Vq tanz , the magnetic field eachi2soliton can be considered as con-
2 ¢ 2 sisting of two solitons(see Fig. 5 of Ref. 19 Thus, there
(90) are four kink-antikink interactions between thesolitons.
with 0<V,<2/p3. HereV,=0 andV,= 2/p3 correspond to (ii) po<pg. In this case there is a local minimukf,;,
k=1 (single soliton caseandk=0, respectively. =2/pg in the zero to # range and occurs a=. How-

The energy of the kink lattice is obtained by substitutingever, now there are two local maximéy, ;= p2/2¢* in the
Egs. (99 and (9b) in Eq. (2) and evaluating various zero to 2r range that occur symmetrically abodt 7 at
integrals?? cosf=—pi/p5. For Vo<2/p3 we find the samekink and
kink lattice solutions as discussed above. RQ,r>2/p§,

E 160 2popp (82— &) Cto K however, the kink lattice solution does not exist. Instead, we
L= o7 2_ 42 ( find the following (nontopological pulse lattice exact solu-
¢ (pg— &) .
)i tion
- —,f k)(E 0.(z !
{S k'2pg ( ] tan—L( ):i@—q , (1139
2 &y q z—2, )
n

_{ 2po[ £~ (2+K)) £+ 2p3(£— £))] g
§(p§—§f) with periodicity d=2K(q)§,, where dng,q) is a Jacobi el-

2p5+ &7 k'2(p5—&2) liptic function andg’ = V1—q? is the complementary modu-
——f(k)+ ﬁf(k) , (100 lus. Here
Ps §L_k
where E(k) and IT(1— £2/p3 k) are the complete elliptic tanz%—tanzﬁ
integrals of the second and third kiftirespectively, and _ P8 2
gp_ 1 q - ’ (11b)
2r £2 2\ ¢2 4os2_ 42 02 P 02
2po€  popaléL—(2+K)ET]  popp(E°—ED) tan? ta 2

f(k)=

7t 2 2 ;2 t Tz T2

& SICEN) ¢6Llpe— &) and taré,/2 and tafé,/2 are the two appropriate roots of Eq.

Note that in the limitk—1 the kink lattice solution and (9b) with 2/p3<V,<pj/2¢*. Specifically, Vo= p§/2¢* and

energy reduce precisely to the single soliton results. V0:2/p§ correspond tag=0 andqg=1 (single pulsg re-
Again, following the analysis after E¢7), we state that if spectively.

we allow the cylinder to be elastic, it will have a periodic  The energy of the pulse lattice is obtained in a similar

deformation in the presence of the kink lattice in order toway to that of the kink lattice. However, we do not present it

lower the total energy of the system. This argument alsdere explicitly. The argument about the periodic deformation

follows from an analogy with the periodic pinch of the cyl- of the elastic cylinder applies in the presence of a pulse lat-
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tice as well. Note that the limig—1 (q’—0) cannot be (pinch) in the region of the soliton. The kink and pulse lat-
taken in Eq(11). Instead, we directly obtain the single pulse tices will cause a periodic pinch. The extent of deformation
solution (whenVy= 2/p§) from the equation of motioEg.  can be tuned by the magnitude of applied magnetic field. The

3), present study provides an example of field-induced geometri-
cal frustration caused by a mismatch of cylinder ragiys
ta 0 . i cos z (= PoPB magnetic length scalgg, and soliton characteristic lengéh
Y ~ps hg_ m’ (or & and the lattice periodicityd). We have previously

studied examples of geometrical frustration due to internal
factors such a&) spin anisotropy: (b) soliton interactiorf*
ﬁtanh*@ and(c) variable curvaturé (e.g., elliptic cylinder or a spher-

2 : oid).
) ) ) i ‘ ) Physically relevant systems, where the magnetoelastic ef-
The cylinder will deform in the presence of_ a pulse soliton.fgcts predicted above can possibly be observed, include mag-
The arguments presented after E8). apply in the present netically coated deformablévhether metallic, nonmetallic
case as well. or organi¢ cylindrical thin films?® Microtubuleg containing

In conclusion, we showed that the equation of motion inmagnetorheological fluidsmay also serve as a physical re-
the continuum approximation for classical Heisenberg spingjization of such systems.

on a cylinder in an external magnetic field is the double

sine-Gordon equation. We found exact singtekgnk, single We acknowledge fruitful discussions with Radha Bal-
pulse, kink lattice, and pulse lattice solutions. For an elasti@krishnan and Mahdi Sanati. This work was supported in
cylinder we demonstrated that the cylinder will deform part by the U.S. Department of Energy.

where( is the characteristic length. The pulse energy

Epulse:Z_
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