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Heisenberg spins on a cylinder in an axial magnetic field
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For classical Heisenberg spins in the continuum limit~i.e., the nonlinears model! on an elastic cylinder in
an external axial magnetic field we find that the corresponding Euler-Lagrange equation is the double sine-
Gordon~DSG! equation. The DSG soliton adopts a characteristic lengthj which is smaller than the radius of
the cylinder. This mismatch of length scales results in a geometric frustration in the region of the soliton and
is relieved by the deformation of the cylinder. We also find the DSG kink soliton lattice and pulse soliton
lattice solutions and show that they cause a periodic deformation of the cylinder.@S0163-1829~98!51126-5#
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Cylindrical structures, in particular microtubules,1 abound
in nature. They may either be made out of magnetic mat
als or may enclose magnetorheological fluids.2 To study their
magnetoelastic properties, one may treat their surfaces
continuum of classical spins. Along this line of thinkin
here we explore the elastic consequences of class
Heisenberg-coupled spins on a deformable cylinder in
presence of topological spin solitons and an external m
netic field. Recently, it has become possible to fabric
magnetic thin films in a cylindrical shape.3

The continuum limit of the Heisenberg Hamiltonian f
classical ferromagnets or antiferromagnets for isotropic s
spin coupling is the nonlinears model.4–8 The total Hamil-
tonian for a deformable, magnetoelastically coupled ma
fold is given by H5Hmagn1Hel1Hm2el , where Hmagn,
Hel andHm2el represent the magnetic, elastic, and magne
elastic energy, respectively. In this paper we will foc
mainly on the magnetic part. The magnetic part~a variant of
the nonlinears model! on a circular cylinder in an externa
axial magnetic field is given by

Hmagn5JE E
cyl

~¹n!2dS2gmE E
cyl

n–BdS, ~1!

where J denotes the coupling energy between neighbor
spins, n̂ is the magnetization unit vector, n̂
5(cosu,sinu cosf,sinu sinf), and dS is the surface ele-
ment of the deformable circular cylinder.B is the applied
magnetic field along the axis of the cylinder~Fig. 1!, m is the
magnetic moment, andg denotes theg factor of the electrons
in the magnetic material.

Assuming cylindrical symmetry and homogeneo
boundary conditions at both ends of the cylinder~u50 as
z→6`! we get

Hmagn52J~2pr0!E
2`

` H uz
2

2
1V~u!J dz, ~2a!

with
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V~u!5
sin2u

2r0
2 1

1

rB
2 ~12cosu!, ~2b!

where the magnetic length scalerB
252J/gmB.

The Euler-Lagrange equation for the above Hamilton
is the double sine-Gordon~DSG! equation

uzz5
1

2r0
2sin 2u1

1

rB
2sin u. ~3!

The DSG equation arises in several physical contexts inc
ing in the study of spin waves in~the B phase of! superfluid
3He,9,10 in the problem of self-induced transparency,11 poling
process of certain polymers,12,13 propagation of resonant op
tical pulses through degenerate media,14 compressibleXY
chain of dipoles with piezoelectric coupling,15 soliton-
magnon bound states in organic antiferromagnets,16 misfit
dislocations on reconstructed metallic surfaces,17 DNA
excitations,18 etc. The 2p soliton solution of the DSG equa
tion consistent with the boundary conditions is

u~z!52 tan21S rB

j sinh
z

j
D , j5

r0rB

~r0
21rB

2 !1/2, ~4!

wherej is the characteristic length of the 2p soliton. Equiva-
lently, j5Ar0rBAr0rB /(r0

21rB
2). Thus the soliton choose

a characteristic length which is smaller than the geome
mean of the cylinder radius and the magnetic length. W
increasing magnetic field the characteristic length of the s
ton decreases. Note that Eq.~4! is equivalent to the following
solution obtained in the context of anisotropic Heisenb
ferromagnetic chains19

u~z!52 sin21H S cosh2
z

j
2

j2

r0
2sinh2

z

j D 21/2J .

The 2p soliton is depicted in Fig. 1. Also note that the lim
B→0 (rB→`) cannot be taken in Eq.~4! to obtain a sine-
R563 © 1998 The American Physical Society
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Gordon kink solution since theu(z) boundary conditions for
a DSG kink are~0,2p! at (2`,`) as opposed to~0,p! for a
sine-Gordon kink.

The energy of the soliton

Es516pJH S 11
r0

2

rB
2 D 1/2

1
r0

2

rB
2sinh21

rB

r0
J ~5!

is larger than 16pJ ~the mimimum energy for the homotop
class4,20 with winding numberQ52!. Only in the limit rB
→` (B→0) we getEs→16pJ andj→r0 . Now let us con-
sider that part of the HamiltonianH1 which does not involve
the magnetic fieldB ~or rB!,

H152pJE
2`

` H r0uz
21

sin2u

r0
J dz. ~6!

This part of the energy is minimized by a soliton soluti
which satisfies the self-dual equations21 or in other words by
a soliton solution which hasr0 , the radius of the cylinder, a
its characteristic length.

Our soliton solution has a characteristic lengthj,r0 ~as
in the case of a soliton lattice when considering a singlep
soliton!, which leads to a geometric frustration.21 The origin
of this geometric frustration lies in the applied magnetic fie

FIG. 1. Cylindrically symmetric 0→2p twist soliton on an in-
finite cylinder in the presence of an axial magnetic field.
B which introduces a new length scale into the system. N
in order to release this frustration the cylinder~if it is elastic!
will deform, i.e., to decrease its radius in the region whe
the soliton is centered.21 This will miminize the energy in
H1 .

Next, we focus on the second part of the HamiltonianH2
which does involve the external magnetic fieldB:

H254pJE
2`

` r0

rB
2 ~12cosu!dz. ~7!

For our soliton solution@Eq. ~4!# H2 will take the form:

H254pJE
2`

` 2

rB
2

r0~z!

F11S 12
j2

r0
2~z! D sinh2

z

jG dz

58pJE
2`

`

f „r0~z!,z…dz

if we allow r05r0(z).
This part of the Hamiltonian will decrease in energy if w

locally decrease the radiusr0 but keepr0 constant in Eq.~4!
for our soliton solution.

Therefore, for constant magnetic field if we keep the c
inder cross section constant atz56`, the cylinder will de-
form in the region of the soliton. For small magnetic fie
~i.e., rB@r0! we get

Es516pJH 11
r0

2

2rB
2 S 112 ln

2rB

r0
D J . ~8!

For large magnetic field ~i.e., rB!r0! we get Es
516pJ(2r0 /rB).

The deformation of the cylinder can be understood phy
cally as follows. At cylinder boundaries atz56` the spins
are aligned with the direction of the magnetic field. How
ever, since this is a 2p soliton, in the middle of the cylinder
the spins are antiparallel to the direction of the magnetic fi
~Fig. 1!. To reduce this magnetic energy cost the cylind
will try to deform ~pinch! in the middle. The shape,r0(z) of
the cylinder which minimizes the energy~to 16pJ! and at
the same time respects the uniform boundary conditions
the vector fieldn̂ would come from finding a suitable solu
tion of ~the self-duality equations and! the DSG equation.
We do not attempt to find a solution of this highly nonline
system of differential equations but note that an ansatz
the radius of the cylinderr0(z)5r02er0sech2(z/j) ~which
in inself represents an elastic soliton! would lead to a lower
energy than on a rigid cylinder withr0(z)5r0 . Heree,1 is
a small parameter. It can be shown explicitly by choosing
appropriate value ofe ~Ref. 21! that the energy is lowered b
deforming the cylinder.

In the absence of a magnetic field the self-dual equa
for a cylinder with cylindrically symmetric field isuz
56sinu/r0. For the DSG case, using Eq.~3! we can write

uz56
sin u

r0
F11

4r0
2

rB
2

sin2u/2

sin2u G1/2

.

The function in square brackets is greater than one for
values ofu(z) and the self-dual equation is not satisfie
Therefore, the cylinder would deform in order to satisfy t
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self-dual equation and to lower the energy. Note that all
lutions of this equation satisfy the Euler-Lagrange equat
@Eq. ~3!# but not vice versa.

Next, we consider the 2p soliton lattice solution of the
DSG equation in two regimes:~i! r0>rB ~large magnetic
field! and ~ii ! r0,rB ~small magnetic field!.

~i! r0>rB . In this case there is only one local maximu
Vmax52/rB

2 in the zero to 2p range and occurs atu5p. We
find the following ~topological! kink lattice exact solution

tan
uL~z!

2
56

rB

jL

cnS z2z0

jL
,kD

snS x2x0

jL
,kD , ~9a!

with periodicity d54KjL , where sn(z,k), cn(z,k) are Ja-
cobi elliptic functions andK(k) is the complete elliptic inte-
gral of the first kind.22 Here

jL
25

rB
2

tan2
u1

2
1tan2

u2

2

, k25

tan2
u2

2

tan2
u1

2
1tan2

u2

2

, ~9b!

and tan2u1/2 and tan2u2/2 are the two nonzero roots of

S 12
rB

2V0

2 D tan4
u

2
1rB

2 S 1

j2 2V0D tan2
u

2
2

rB
2V0

2
50,

~9c!

with 0<V0,2/rB
2 . HereV050 andV052/rB

2 correspond to
k51 ~single soliton case! andk50, respectively.

The energy of the kink lattice is obtained by substituti
Eqs. ~9a! and ~9b! in Eq. ~2! and evaluating various
integrals,22

EL516pJF H 2r0rB
2

j

~j22jL
2!

~rB
22j2!

2 f ~k!J K

2H rB
22jL

2

jL
22k82rB

2 f ~k!J E

2H 2r0@jL
22~21k2!j212rB

2~j22jL
2!#

j~rB
22jL

2!

1
2rB

21jL
2

rB
2 f ~k!1

k82~rB
22jL

2!

jL
22k82rB

2 f ~k!J PG , ~10!

where E(k) and P(12jL
2/rB

2 ,k) are the complete elliptic
integrals of the second and third kind,22 respectively, and

f ~k!5
2r0j

jL
2 1

r0rB
2@jL

22~21k2!j2#

jjL
2~rB

22jL
2!

1
r0rB

4~j22jL
2!

jjL
2~rB

22jL
2!2 .

Note that in the limitk→1 the kink lattice solution and
energy reduce precisely to the single soliton results.

Again, following the analysis after Eq.~7!, we state that if
we allow the cylinder to be elastic, it will have a period
deformation in the presence of the kink lattice in order
lower the total energy of the system. This argument a
follows from an analogy with the periodic pinch of the cy
-
n

o

inder in the absence of the magnetic field~sine-Gordon soli-
ton lattice solution21!. Specifically, the ansatz for the radiu
r0(z)5r02er0cn2(z/jL ,k) would lead to a lower energy
than the rigid case„r0(z)5r0…. Heree,1 is a small param-
eter. In addition, it can be shown explicitly by choosing
appropriate value ofe ~Ref. 21! that the energy is lowered b
periodically deforming the cylinder.

The interaction between two kinks can be obtained
evaluatingEL in the limit k→1. However, this is an algebra
ically tedious task. A more elegant way is to use t
asymptotic form (z→`) of Eq. ~4! and then apply Manton’s
formula.23 We get the potential between a kink-antikink pa
separated by a distanced as

UDSG~d!52128pJ
r0rB

2

j3 expS 2
d

j D .

Note that, even though there is a magnetic field-depend
prefactor in the interaction, it decreases monotonically w
increasing magnetic field. We contrast this with the inter
tion in the absence of the magnetic field~for a sine-Gordon
kink-antikink pair21!

USG~d!5232pJ expS 2
d

r0
D .

The factor of 4 inUDSG, as compared toUSG, can be un-
derstood approximately as follows: For very small values
the magnetic field each 2p soliton can be considered as co
sisting of twop solitons~see Fig. 5 of Ref. 19!. Thus, there
are four kink-antikink interactions between thep solitons.

~ii ! r0,rB . In this case there is a local minimumVmin

52/rB
2 in the zero to 2p range and occurs atu5p. How-

ever, now there are two local maximaVmax5r0
2/2j4 in the

zero to 2p range that occur symmetrically aboutu5p at
cosu52r0

2/rB
2 . For V0,2/rB

2 we find the same~kink and!
kink lattice solutions as discussed above. ForV0.2/rB

2 ,
however, the kink lattice solution does not exist. Instead,
find the following ~nontopological! pulse lattice exact solu
tion

tan
uL~z!

2
56

rB

jp

q8

dnS z2z0

jp
,qD , ~11a!

with periodicity d52K(q)jp , where dn(z,q) is a Jacobi el-

liptic function andq85A12q2 is the complementary modu
lus. Here

jp5
rB

tan
u2

2

, q25

tan2
u2

2
2tan2

u1

2

tan2
u2

2

, ~11b!

and tan2u1/2 and tan2u2/2 are the two appropriate roots of Eq
~9b! with 2/rB

2,V0,r0
2/2j4. Specifically,V05r0

2/2j4 and
V052/rB

2 correspond toq50 and q51 ~single pulse!, re-
spectively.

The energy of the pulse lattice is obtained in a simi
way to that of the kink lattice. However, we do not presen
here explicitly. The argument about the periodic deformat
of the elastic cylinder applies in the presence of a pulse
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tice as well. Note that the limitq→1 (q8→0) cannot be
taken in Eq.~11!. Instead, we directly obtain the single pulse
solution ~whenV052/rB

2! from the equation of motion~Eq.
3!,

tan
u

2
56

z

rB
cosh

z

z
, z5

r0rB

ArB
22r0

2
,

wherez is the characteristic length. The pulse energy

Epulse5
4

z
2

4r0

rB
2 tanh21

r0

z
.

The cylinder will deform in the presence of a pulse soliton
The arguments presented after Eq.~5! apply in the present
case as well.

In conclusion, we showed that the equation of motion i
the continuum approximation for classical Heisenberg spi
on a cylinder in an external magnetic field is the doubl
sine-Gordon equation. We found exact single 2p kink, single
pulse, kink lattice, and pulse lattice solutions. For an elas
cylinder we demonstrated that the cylinder will deform
d

t

,

.

s

ic

~pinch! in the region of the soliton. The kink and pulse lat
tices will cause a periodic pinch. The extent of deformatio
can be tuned by the magnitude of applied magnetic field. T
present study provides an example of field-induced geome
cal frustration caused by a mismatch of cylinder radiusr0 ,
magnetic length scalerB , and soliton characteristic lengthj
~or jL and the lattice periodicityd!. We have previously
studied examples of geometrical frustration due to intern
factors such as~a! spin anisotropy,21 ~b! soliton interaction,21

and~c! variable curvature24 ~e.g., elliptic cylinder or a spher-
oid!.

Physically relevant systems, where the magnetoelastic
fects predicted above can possibly be observed, include m
netically coated deformable~whether metallic, nonmetallic
or organic! cylindrical thin films.25 Microtubules1 containing
magnetorheological fluids2 may also serve as a physical re
alization of such systems.

We acknowledge fruitful discussions with Radha Ba
akrishnan and Mahdi Sanati. This work was supported
part by the U.S. Department of Energy.
t

s

*Electronic address: abs@aegir.lanl.gov
†Electronic address: rossen@u-cergy.fr
1R. Bar-Ziv and E. Moses, Phys. Rev. Lett.73, 1392 ~1994!; P.

Nelson, T. Powers, and U. Seifert,ibid. 74, 3384~1995!.
2U. Hartmann and H. H. Mende, J. Appl. Phys.59, 4123~1986!;

A. K. Dickstein, S. Erramilli, R. E. Goldstein, D. P. Jackson, an
S. A. Langer, Science261, 1012~1993!.

3M. Wuttig ~private communication!.
4A. A. Belavin and A. M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz.

22, 503 ~1975! @JETP Lett.22, 245 ~1975!#.
5S. Trimper, Phys. Lett.70A, 114 ~1979!.
6S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Le

60, 1057~1988!.
7F. D. M. Haldane, Phys. Rev. Lett.50, 1153~1983!; Phys. Lett.

93A, 464 ~1983!.
8E. Fradkin, Field Theories of Condensed Matter System

~Addison-Wesley, New York, 1991!.
9K. Maki and T. Tsuneto, Phys. Rev. B11, 2539~1975!; K. Maki

and P. Kumar,ibid. 14, 118 ~1976!.
10R. K. Bullough and P. J. Caudrey, inProceedings of the Fourth

Rochester Conference on Coherence and Quantum Optics, ed-
ited by L. Mandel and E. Wolf~Plenum, New York, 1978!, p.
180.

11S. Duckworth, R. K. Bullough, P. J. Caudrey, and J. D. Gibbon
Phys. Lett.57A, 19 ~1976!.

12A. J. Hopfinger, A. J. Lewanski, T. J. Sluckin, and P. L. Taylor
.

,

in Solitons and Condensed Matter Physics, edited by A. R.
Bishop and T. Schneider~Springer, Berlin, 1978!.

13R. Pandit, C. Tannous, and J. A. Krumhansl, Phys. Rev. B28,
289 ~1983!.

14R. K. Dodd, R. K. Bullough, and S. Duckworth, J. Phys. A8, L64
~1975!.

15M. Remoissenet, J. Phys. C14, L335 ~1981!.
16J. A. Holyst and H. Benner, Phys. Rev. B52, 6424 ~1995!; J.

Magn. Magn. Mater.140, 1969~1995!.
17M. El-Batanouny, S. Burdick, K. M. Martini, and P. Stancioff,

Phys. Rev. Lett.58, 2762 ~1987!; R. Ravelo and M. El-
Batanouny, Phys. Rev. B47, 12 771~1993!.

18S. Yomosa, J. Phys. Soc. Jpn.64, 1917~1995!.
19K. M. Leung, Phys. Rev. B26, 226 ~1982!; 27, 2877~1983!.
20E. B. Bogomol’nyi, Sov. J. Nucl. Phys.24, 449 ~1976!.
21R. Dandoloff, S. Villain-Guillot, A. Saxena, and A. R. Bishop,

Phys. Rev. Lett.74, 813 ~1995!; S. Villain-Guillot, R. Dan-
doloff, A. Saxena, and A. R. Bishop, Phys. Rev. B52, 6712
~1995!.

22P. F. Byrd and M. D. Friedman,Handbook of Elliptic Integrals
for Engineers and Scientists, 2nd ed.~Springer, Berlin, 1971!.

23N. S. Manton, Nucl. Phys. B150, 397 ~1979!.
24A. Saxena and R. Dandoloff, Phys. Rev. B55, 11 049~1997!.
25L. J. de Jongh,Magnetic Properties of Layered Transition Metal

Compounds~Kluwer Academic Publisher, Dordrecht, 1990!.


