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Transport in the XXZ model
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We present evidence suggesting that spin transport in the gapless phase of theS51/2 XXZ model is
ballistic rather than diffusive. We map the model onto a spinless fermion model whose charge stiffness
determines the spin transport of the original model. By means of exact numerical diagonalization and finite size
scaling we study both the stiffness and the level statistics. We show that the stiffness is nonzero at any
temperature so that the transport is ballistic. Our results suggest that the nonzero stiffness arises because even
in the presence of umklapp scattering a nonzero fraction of states remains degenerate in the thermodynamic
limit. @S0163-1829~98!50630-3#
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The problem of transport in a nondisordered interact
many particle system is one of the oldest unsolved proble
in solid-state physics. A particular case which has attrac
recent attention is spin diffusion in one-dimensional s
systems. Recent experiments indicated thatS51 chains with
a gap in the excitation spectrum display diffusive behavio1

in reasonable agreement with theoretical work of Sach
and Damle2 relating diffusion to classical scattering of exc
tations near the gap edge. Reference 2 provided a det
analysis indicating diffusive behavior for theS51 chain and
also gave arguments implying that for gapped systems
general the low-energy excitations display diffusive beh
ior. On the other hand, measurements on gaplessS51/2
chains3 show a different behavior. The authors fit their da
with a diffusion constant which is much larger than either
value found experimentally for theS51 chains or the value
D;JA2pS(S11)/3 expected from classica
considerations.4 We believe that the measured value forD in
the S51/2 system is so large that it implies that diffusion
not an intrinsic property of anS51/2 spin system but is du
to a weak coupling to other degrees of freedom~for example
to phonons5! and prompts us to examine further the quest
of spin transport in gapless systems.

This question has been previously studied. An analy
based on a continuum limit Luttinger liquid representatio6

suggested that the diffusion constant was associated
umklapp operators and was finite but exponentially large
the umklapp gap. On the contrary, Zotos and collabora
have argued that integrable models exhibit ballistic transp
while nonintegrable models are diffusive.7 Recently Fabri-
cius and McCoy8 have shown that numerical computatio
of the long-time behavior of the correlation functions of t
S51/2 XXZ chain in theT5` limit are consistent with
ballistic transport if the model has anXY anisotropy but not
at the isotropic Heisenberg point. Very recently, Mon
Carlo9 and Bethe-ansatz10 analyses of the stiffness of relate
models have appeared, reporting similar conclusions. In
PRB 580163-1829/98/58~6!/2921~4!/$15.00
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paper we approach the question in a different way. We
exact numerical diagonalization and finite-size scaling
study the spin stiffness of theXXZ model and the behavio
of the energy levels which leads to a nonzero stiffness.

The XXZ model is defined by the Hamiltonian

ĤXXZ5J(
n

~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !. ~1!

At T50 the gapless phase21,D<1 of this model has a
spin-current correlator which includes a term proportional
d~v!; the coefficient of this term defines the spin stiffnessDs
~Ref. 11! ~in the gapped phaseuDu.1 theT50 stiffness is
zero!. The question of interest here is whether atT.0 the
stiffnessDs remains nonzero, implying ballistic transport,
Ds vanishes, implying nonballistic~and perhaps diffusive!
transport.

The XXZ model is equivalent via the Jordan-Wign
transformation to the spinless fermion model,

Ĥ5(
n

F2
1

2
~Jcn

†cn111H.c.!1JDS cn
†cn2

1

2D
3S cn11

† cn112
1

2D G . ~2!

In this mapping the fermion density-density correlation fun
tion represents theSz2Sz correlator and therefore the de
scription of fermion transport directly translates into the sp
language. In particular the real part of the frequency dep
dent conductivitys~v! may be written as

Res~v!52pDcd~v!1s reg~v!, ~3!

defining the charge stiffnessDc , which is proportional toDs
of the original model. IfDcÞ0 the model has infinite con
ductivity whereas ifDc50 one has either a normal condu
R2921 © 1998 The American Physical Society
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tor @Dc50, s reg(v→0).0# with diffusive transport or an
ideal insulator@Dc50, s reg(v→0)50#.

As was first noted by Kohn,12 in systems with periodic
boundary conditions the stiffness atT50 can be related to
the response of the ground-state energyE0 to a magnetic flux
f, which modifies the hopping term in the Hamiltonian E
~2! by the usual Peierls phase factorJ→J exp(ıf/L). For a
system of sizeL, Dc5(L/2)]2E0 /]f2(f→0).

Kohn’s result has been recently generalized to fin
temperatures,7

Dc5
L

2Z (
n

1

2

]2En

]f2 e2bEn, ~4!

whereZ is the partition function of the system andn labels
exact eigenstates.

We further rewrite Eq.~4! asDc5D11D2 , with

D152
L

2b

1

Z
]2Z
]f2 ~5!

and

D25
bL

2

1

Z (
n

S ]En

]f D 2

e2bEn. ~6!

The advantage of this representation is that it separatesDc
into a thermodynamic part~depending only on derivatives o
Z! and a positive part, depending on current-carryin
( j nn;]En /]f) states.D1 gives no contribution to the
charge stiffness atT.0 and L→`;13 for example, for
T!J

D1~T@2p/vRL!5LT expS 2
2pLT

vR D , ~7!

with R25@12(1/p)cos21 D#/2p. Thus atT.0 any nonzero
Dc must be due toD2 which essentially counts the number
thermally accessible current carrying states.

Time-reversal invariance implies that for a nondegene
state ]En /]f(f→0)50. Current carrying states occur i
degenerate pairs which are split by the application of m
netic flux. A sufficient condition for a nonvanishingDc is to
have a nonzero fraction of current carrying states w
]En /]f;1/L1/2. In what follows, we investigateDc and the
statistics of the current carrying states numerically.

For any finite-size chain the Heisenberg Hamiltonian E
~1! is a Hermitian matrix. We construct this matrix fo
f5131024, 231024, 331024, 431024 and use the stan
dard QL routine from the Numerical Recipes package14 to
calculate the eigenvalues~with accuracy given by machin
precision!. We then fitf dependence of the eigenvalues
obtain derivatives. Our choices off lead to;1026 accuracy
for the derivative values. The size of matrices that could
diagonalized by the routine is limited by computer memo
for anN3N matrix it requires'8N2 bytes of storage space
With computer memory of about 360 MB available to us w
can diagonalize matrices up toN57000, corresponding to
chain sizesL<14.

The result of the calculation is presented in Fig. 1. For
system sizes we foundD2 to be nonzero. At small tempera
tures the value ofD2 appears to grow with system size~es-
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pecially the peak value!. At large temperatures all eigenva
ues become involved in the sum Eq.~6! and the temperature
dependence is defined by the prefactor 1/T, while the value
of D2 decreases with the system size, but appears to ten
a nonzero limit asL→`.

To investigate the finite-size scaling in Fig. 2 we pl
(D2T)`5 limT→`D2T versus the inverse system size for d
ferent values of the interaction. The symbols represent
actual data points and the best-fit lines are continued to
infinite size (1/L50). We are unaware of theoretical resu
for the largeL behavior of (D2T)` ; our numerical results
are consistent with the ansatz (D2T)`(L)5A1B/L1¯

with A,B depending on the interaction, but withA always
positive forD<1. For smallD the best-fit line is flat and the
fit using four largest sizes is excellent~least-squares erro
estimate for parameterA is 0.7%!. For D50.6 we find
A'0.076, B'0.32 with 3.6% error. At the isotropic poin
D51 the best straight-line fit yieldsA'0.029,B'0.46 but
with rather larger 11% error leading us to question whet
we have assumed the correct functional form. We note, h
ever, that fits to the form (D2T)`(L)5C/Lu lead to even
larger errors, so the hypothesis (D2T)(L→`)→0 is incon-
sistent with our data.

The scaling ofD2 can be expressed in terms of the si

FIG. 1. D2(T) for different system sizes forD50.4.

FIG. 2. (D2T) plotted against inverse system size atT550.
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dependence of the current carried by a typical excited st
For the free case a typical state contains a total num
P;L of fermions excited above both left and right Ferm
points and has aAP imbalance between the left and rig
movers, producing a nonzero current]En /]f;1/AL. The
interaction affects current carrying states in two ways. As
noted above these states come in degenerate pairs. I
momentum of two degenerate states differs exactly b
reciprocal-lattice vector, these states will be mixed by
umklapp interaction term which will destroy the degenera
Consequently these states will no longer carry current.
the other hand if two degenerate states differ by a mom
tum which is incommensurate with a reciprocal-lattice ve
tor, they cannot be mixed by the Umklapp interaction. T
interaction can mix a given current-carrying state with a
other current-carrying state changing the value of the t
current carried. To analyze these effects we plot in Fig. 3
fraction of states with]En /]f(f→0)50 as a function of
system size for theXXZ model with varying interaction
strengthD ~solid symbols!. One sees that adding an intera
tion sharply increases the fraction of noncurrent-carry
states, but this fraction remains small and decreases
system size.

We now consider the statistical distribution of the curre
carried by the eigenstates. We show in Fig. 4 a histogram of
(]En /]f)2 values forL514 and all previously considere
values of D. For eachD the x axis has been scaled s
x510 corresponds to (]En /]f)2 equal to the average value
The data have been grouped into bins of width 0.1 of
average (]En /]f)2 and they axis has been scaled so th
y51 represents the number of states in bin 1. With t
choice of scaling the distributions for differentD are indis-
tinguishable: the interaction does not change the shape o
distribution, but merely reduces the average value
(]En /]f)2.

We now consider the effect of an interaction that spo
the integrability of theXXZ model by adding the next
nearest-neighbor interactionV( iSi

zSi 12
z to the Hamiltonian

Eq. ~1!. As shown in Fig. 3 this term lifts more degeneracie
so that more states carry zero current. However, the rela

FIG. 3. Fraction of states with zero current.
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change in the fraction of these states is small and the
dependence is similar to the integrable case.

The effect of the nonintegrable interaction is mostly
reduce the values of the current carried by the remain
degenerate states as is illustrated in Fig. 5. At least for la
V, (D2T)(L→`)→0, implying that the current carried by
typical state, although not 0, is much less than 1/AL and is
presumablyo(1/L). Interestingly, the effect seems not
occur for V,D. For D50 Fig. 5 shows clearly that eve
V50.02 leads toD2T which vanishes asL→`, whereas for
D50.2 largeV50.62 leads to a vanishing (D2T)(L→`),
while the effect ofV50.02 is much smaller than forD50
and our data are consistent with a nonzero (D2T)(L→`).
Our system sizes are too small to allow us to make a defi
statement about (D2T)(L→`) for V,D, but clearly the
relative size of the effect of the nonintegrable interacti
depends strongly on the ratioV/D.

In conclusion, we have studied the spin transport in
Heisenberg model by calculating the finite temperature s
ness for small system sizes. The data presented in Fi
show that for the available sizesD2 is greater than zero an

FIG. 4. Histogram of current values; lines for differentD are
indistinguishable.

FIG. 5. D2T(1/L) comparing integrable and nonintegrab
cases; the lines are guides to the eye.
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extrapolates to a nonzero value in the thermodynamic li
in agreement with previous work.5,7 At small D this extrapo-
lation seems unambiguous in agreement with the pertu
tion theory results,5 which are valid for smallD where the
umklapp is irrelevant in the renormalization group sense.
largerD the data seems to slowly decrease with size extra
lating to some small but nonzero value as 1/L→0. For the
isotropic Heisenberg point (D51) the considered sizes ar
too small to make conclusive predictions about the therm
dynamic limit behavior perhaps because the Umklapp op
tor becomes marginal at this point, but our results seem
consistent with vanishingDc obtained in Ref. 8.

Our results provide a new perspective on the origin of
nonzero stiffness atT.0. One necessary condition for a no
zero stiffness isdegeneracy: current carrying states come i
degenerate pairs related by time reversal. It is tempting
argue that for integrable models such as theXXZ model the
large number of conserved quantities arising from integra
ity ‘‘protects the degeneracy’’ and thus ensures a nonz
stiffness; indeed a connection between the large numbe
conservation laws and ballistic transport has previously b
noted.7 However, our results suggest that this is not t
whole story. We see from Fig. 4 the existence of a la
number of degenerate states is not specific to integrable m
els. The next-nearest-neighbor interaction destroys the i
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grability but still leaves a macroscopic fraction of degener
~current carrying! states. A more important difference is thi
in the integrable models~except possibly forD51! and pos-
sibly in the nonintegrable models~for V,D! the typical cur-
rent carried by these states is;1/AL leading to nonzero
stiffness asL→`, whereas forV.D we see the typical
current is much smaller, presumably;1/L. Thus the crucial
issue is the size of the current carried by each state, not
number of current carrying states.

Finally our results seem to indicate a difference in beh
ior betweenV,D andV.D in the nonintegrable model. A
scenario involving critical value ofV separating ballistic and
diffusive behavior seems to us unlikely; we speculate that
all VÞ0 Dc→0 in the thermodynamic limit, but that there
a length scalej(V,D) diverging asV→0 such that for sys-
tem sizesL,j the current carried by a typical state scales
1/AL but that for L.j the current scales asj21/2/L; our
system sizes are too small to allow definite conclusions.
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