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Transport in the XXZ model
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We present evidence suggesting that spin transport in the gapless phaseSsf 12 XXZ model is
ballistic rather than diffusive. We map the model onto a spinless fermion model whose charge stiffness
determines the spin transport of the original model. By means of exact numerical diagonalization and finite size
scaling we study both the stiffness and the level statistics. We show that the stiffness is nonzero at any
temperature so that the transport is ballistic. Our results suggest that the nonzero stiffness arises because even
in the presence of umklapp scattering a nonzero fraction of states remains degenerate in the thermodynamic
limit. [S0163-182@08)50630-3

The problem of transport in a nondisordered interactingpaper we approach the question in a different way. We use
many particle system is one of the oldest unsolved problemexact numerical diagonalization and finite-size scaling to
in solid-state physics. A particular case which has attractedtudy the spin stiffness of th€XZ model and the behavior
recent attention is spin diffusion in one-dimensional spinof the energy levels which leads to a nonzero stiffness.
systems. Recent experiments indicated 8watl chains with The XXZ model is defined by the Hamiltonian
a gap in the excitation spectrum display diffusive behaVior,
in reasonable agreement with theoretical work of Sachdev A~ ex yay ez
and Daml@ relating diffusion to classical scattering of exci- HXXZ_‘JEn: (§7S 1SS HASS L ). @
tations near the gap edge. Reference 2 provided a detailed
analysis indicating diffusive behavior for ti&=1 chain and At T=0 the gapless phase1<A<1 of this model has a
also gave arguments implying that for gapped systems igpin-current correlator which includes a term proportional to
general the low-energy excitations display diffusive behav-§(w); the coefficient of this term defines the spin stiffnégs
ior. On the other hand, measurements on gapksd/2 (Ref. 11 (in the gapped phagé\|>1 the T=0 stiffness is
chains show a different behavior. The authors fit their datazerg. The question of interest here is whetherTat0 the
with a diffusion constant which is much larger than either thestiffnessDS remains nonzero, implying ballistic transport, or
value found experimentally for th8=1 chains or the value D, vanishes, implying nonballisti¢and perhaps diffusiye
D~Jy27wS(S+1)/3 expected from classical transport.
consideration§ We believe that the measured value Bpin The XXZ model is equivalent via the Jordan-Wigner
the S=1/2 system is so large that it implies that diffusion is transformation to the spinless fermion model,
not an intrinsic property of aB=1/2 spin system but is due

to a weak coupling to other degrees of freeddar example . 1 . t 1
to phonong) and prompts us to examine further the question H=2> |- 5(ICnCnsytH.CI)HIA| CiCh— 5
of spin transport in gapless systems. 3
This question has been previously studied. An analysis N 1
based on a continuum limit Luttinger liquid representation X| Cns1Cns1™ 5” 2

suggested that the diffusion constant was associated with
umklapp operators and was finite but exponentially large inn this mapping the fermion density-density correlation func-
the umklapp gap. On the contrary, Zotos and collaborator§ion represents th& —S? correlator and therefore the de-
have argued that integrable models exhibit ballistic transporgcription of fermion transport directly translates into the spin
while nonintegrable models are diffusifeRecently Fabri- language. In particular the real part of the frequency depen-
cius and McCof have shown that numerical computations dent conductivityo(w) may be written as

of the long-time behavior of the correlation functions of the

S=1/2 XXZ chain in theT=0 limit are consistent with Reo(w)=27Dd(w) + reg( ®), ®)
ballistic transport if the model has atY anisotropy but not

at the isotropic Heisenberg point. Very recently, Montedefining the charge stiffnes3., which is proportional t@Dg
Carld® and Bethe-ansatZanalyses of the stiffness of related of the original model. IfD.#0 the model has infinite con-
models have appeared, reporting similar conclusions. In thiductivity whereas ifD,=0 one has either a normal conduc-
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tor [D;=0, 0y¢4(w—0)>0] with diffusive transport or an 0.14
ideal insulatof{ D=0, 0y¢q(w—0)=0].

As was first noted by Kohf? in systems with periodic 0.12

boundary conditions the stiffness at=0 can be related to
the response of the ground-state endfgyo a magnetic flux
¢, which modifies the hopping term in the Hamiltonian Eq.

0.10

0.08

(2) by the usual Peierls phase factbr>J exp(¢/L). For a E
system of size., D,=(L/2)d°Eqy/dp*($—0). Q" oo
Kohn's result has been recently generalized to finite

temperature$, 004

L 1 7%E, 002

=— — —BE
D=3z 2 35428 " @
0.00

where Z is the partition function of the system andabels o 2z 4 s s 10
exact eigenstates. T

We further rewrite Eq(4) asD.=D;+D,, with . )
FIG. 1. D,(T) for different system sizes fak=0.4.

L 142
Dy=— ﬁ Z W 5 pecially the peak valye At large temperatures all eigenval-
ues become involved in the sum E§) and the temperature
and dependence is defined by the prefactor, While the value

of D, decreases with the system size, but appears to tend to
JEq a nonzero limit ag. — .
I20) To investigate the finite-size scaling in Fig. 2 we plot
_ o ) (D,T)=limt_.D,T versus the inverse system size for dif-
The advantage of this representation is that it sepa®@es ferent values of the interaction. The symbols represent the
into a thermodynamic paftiepending only on derivatives of actyal data points and the best-fit lines are continued to the
Z) and a positive part, depending on current-carrying jnfinite size (1L.=0). We are unaware of theoretical results
(Inn~JdEq/d¢) states.D; gives no_contribution to the for the largeL behavior of O,T)..; our numerical results
charge stiffness af>0 and L—=;*® for example, for gre consistent with the ansatD{T)..(L)=A+B/L+---
T<J with A,B depending on the interaction, but with always
positive forA<1. For smallA the best-fit line is flat and the
2mLT ) fit using four largest sizes is excellefieast-squares error
vR )7 estimate for parametef is 0.7%). For A=0.6 we find
A~0.076, B~0.32 with 3.6% error. At the isotropic point
A =1 the best straight-line fit yield&~0.029,B~0.46 but
with rather larger 11% error leading us to question whether
we have assumed the correct functional form. We note, how-
éver, that fits to the form@,T)..(L)=C/L? lead to even
larger errors, so the hypothesi®{T)(L—%)—0 is incon-
sistent with our data.
The scaling ofD, can be expressed in terms of the size

2
e PEn, (6)

Dy(T>2m/vRL)=LT exp( -

with R?=[1— (1/m7)cos ! A]/27. Thus afT >0 any nonzero
D. must be due t@®, which essentially counts the number of
thermally accessible current carrying states.

Time-reversal invariance implies that for a nondegenerat
state JE,,/dd(¢p—0)=0. Current carrying states occur in
degenerate pairs which are split by the application of mag
netic flux. A sufficient condition for a nonvanishirig, is to
have a nonzero fraction of current carrying states with
9Enld¢p~1ILY2 In what follows, we investigat®, and the oo oos om0 ovs oz
statistics of the current carrying states numerically. ' - - - '

For any finite-size chain the Heisenberg Hamiltonian Eq. P amm = _Joss
(1) is a Hermitian matrix. We construct this matrix for
$p=1x10"% 2x10 4 3%x10 4 4x10 *and use the stan-
dard QL routine from the Numerical Recipes packédge
calculate the eigenvaludsiith accuracy given by machine

B A=00 ¥ A=06
0.20 | ® A=02 ¢ A=08 4020
A A=04 X A=10

precision). We then fit¢p dependence of the eigenvalues to st J0.15
obtain derivatives. Our choices gflead to~10~° accuracy N SEREE ':t'x-;:i—f
for the derivative values. The size of matrices that could be ook ;v»r’f /ix’_ o0
diagonalized by the routine is limited by computer memory; PP St

for anNx N matrix it requires~8N? bytes of storage space. ,Xxx

With computer memory of about 360 MB available to us we i e 7008
can diagonalize matrices up %= 7000, corresponding to 1

chain sized <14. 0.00 : -

L 0.00
0.00 0.05 0.10 0.15 0.20

The result of the calculation is presented in Fig. 1. For all "

system sizes we found, to be nonzero. At small tempera-
tures the value oD, appears to grow with system sizes- FIG. 2. (D,T) plotted against inverse system sizeTat 50.
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FIG. 4. Histogram of current values; lines for differeftare
FIG. 3. Fraction of states with zero current. indistinguishable.

dependence of the current carried by a typical excited statehange in the fraction of these states is small and the size
For the free case a typical state contains a total numbetependence is similar to the integrable case.

P~L of fermions excited above both left and right Fermi The effect of the nonintegrable interaction is mostly to
points and has a/P imbalance between the left and right reduce the values of the current carried by the remaining

movers, producing a nonzero curref, /d¢~1\L. The ii/egeDn(?rratf states as'is iIIIu'stratﬁd irr11 Fig. 5. At Iea;tdfog large
interaction affects current carrying states in two ways. As we"’ ( 2T)(L—2)—0, imp ylng_t at the current carrie Y a
ical state, although not 0, is much less thaglLland is

noted above these states come in degenerate pairs. If 1P

momentum of two degenerate states differs exactly b Qresumablyo(l/L). Interesti_ngly, the effect seems not to
g y by occur forV<A. For A=0 Fig. 5 shows clearly that even

reciprocal-lattice vector, these states will be mixed by the ™™ . .
umklapp interaction term which will destroy the degeneracye.x;g'gzlzlﬁggf’/gzgz\'\@ggsv;n';hveasnisha;’(z‘_’rv? ((ire_iso)for

Consequently these states will no longer carry current. Or\}vhile the effect ofV=0.02 is much smaller than fak =0
the other hand if two degenerate states differ by a momen: ; .
i hich is | te with ) latti and our data are consistent with a nonzelbp T) (L — «).
tumt\;]v Ich 1S m::%mmgnsgrg etr\:\" Ua l::aCIprQCta ) at_lce \fl_ehC'Our system sizes are too small to allow us to make a definite
tor, they cannot be mixed by the UmKiapp Interaction. 1N€qatement aboutd,T)(L—=>) for V<A, but clearly the
interaction can mix a given current-carrying state with an-

) : relative size of the effect of the nonintegrable interaction
other current-carrying state changing the value of the tOtaJ:iepends strongly on the rati@/A.

currgnt carried. To a_malyze these effects we plot in Fig. 3the |, conclusion, we have studied the spin transport in the
fraction of states wittvE,/d¢(¢$—0)=0 as a function of  Hejsenberg model by calculating the finite temperature stiff-
system size for theXXZ model with varying interaction ness for small system sizes. The data presented in Fig. 2

strengthA (solid symbol. One sees that adding an interac- show that for the available siz€3, is greater than zero and
tion sharply increases the fraction of noncurrent-carrying

states, but this fraction remains small and decreases with 000 005 010 o045 020
system size. ' ' '

We now consider the statistical distribution of the currents 025k -nmmna- B -g---3--4025
carried by the eigenstates. We show in.Fg histogram of O A=00,V=00
(9E,/d¢)? values forL=14 and all previously considered —W—A=00, V=002
values of A. For eachA the x axis has been scaled so | IS A=02, V=00 1%
x=10 corresponds todE,/d¢)? equal to the average value. —@—4=02, V=002
The data have been grouped into bins of width 0.1 of the X0 Ve Jo1s
average §E,/d¢)? and they axis has been scaled so that 7
y=1 represents the number of states in bin 1. With this Lo
choice of scaling the distributions for differeatare indis-
tinguishable: the interaction does not change the shape of the
distribution, but merely reduces the average value of 7008
(9E,19)?.

We now consider the effect of an interaction that spoils 0.00 s . s 0.00

0.00 0.05 0.10 0.16 0.20

the integrability of theXXZ model by adding the next-
nearest-neighbor interactioiz;S’S’, , to the Hamiltonian

Eq.(1). As shown in Fig. 3 this term lifts more degeneracies, FIG. 5. D,T(1/L) comparing integrable and nonintegrable
so that more states carry zero current. However, the relativeases; the lines are guides to the eye.

1/L
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extrapolates to a nonzero value in the thermodynamic limigrability but still leaves a macroscopic fraction of degenerate
in agreement with previous work. At small A this extrapo-  (current carryinystates. A more important difference is this:
lation seems unambiguous in agreement with the perturban the integrable model@xcept possibly foA =1) and pos-
tion theory results, which are valid for smallA where the sibly in the nonintegrable mode{for V<<A) the typical cur-
umklapp is irrelevant in the renormalization group sense. Fofent carried by these states is1/\L leading to nonzero
largerA the data seems to slowly decrease with size extrapostiffness asL—, whereas forv>A we see the typical
lating to some small but nonzero value ak-+0. For the  cuyrrent is much smaller, presumabiyl/L. Thus the crucial
isotropic Heisenberg pointA=1) the considered sizes are jssue is the size of the current carried by each state, not the
too small to make conclusive predictions about the thermonumber of current carrying states.
dynamic limit behavior perhaps because the Umklapp opera- Finally our results seem to indicate a difference in behav-
tor becomes marginal at this point, but our results seem inpr betweenV<A andV=>A in the nonintegrable model. A
consistent with vanishin@, obtained in Ref. 8. scenario involving critical value of separating ballistic and
Our results provide a new perspective on the origin of thejiffusive behavior seems to us unlikely; we speculate that for
nonzero stiffness at>0. One necessary condition for a non- 3| V=0 D,— 0 in the thermodynamic limit, but that there is
zero stiffness islegeneracycurrent carrying states come in g |ength scale(V,A) diverging asv—0 such that for sys-
degenerate pairs related by time reversal. It is tempting t@em sized < ¢ the current carried by a typical state scales as
argue that for integrable models such as X¥Z model the 1/ /" put that forL>¢ the current scales a& Y?/L; our

!arge number of conserved quantities arising from integrabil-system sizes are too small to allow definite conclusions.
ity “protects the degeneracy” and thus ensures a nonzero

stiffness; indeed a connection between the large number of We are grateful to Lev loffe for stimulating our interest in
conservation laws and ballistic transport has previously beethe problem and for helpful discussions and to lan Affleck
noted’ However, our results suggest that this is not thefor pointing out an error in an earlier draft of this paper.
whole story. We see from Fig. 4 the existence of a largeA.J.M. thanks the Physics Department of Rutgers University
number of degenerate states is not specific to integrable modisr hospitality and NSF Grant No. DMR 9707701 for sup-
els. The next-nearest-neighbor interaction destroys the intgort.
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