PHYSICAL REVIEW B

CONDENSED MATTER AND MATERIALS PHYSICS

THIRD SERIES, VOLUME 58, NUMBER 6

1 AUGUST 1998-II

RAPID COMMUNICATIONS

Rapid Communications are intended for the accelerated publication of important new results and are therefore given priority treatment both in the editorial office and in production. A Rapid Communication in **Physical Review B** may be no longer than four printed pages and must be accompanied by an abstract. Page proofs are sent to authors.

Ferroelastic phase transition in rutile-type germanium dioxide at high pressure

J. Haines, J. M. Léger, and C. Chateau

Laboratoire de Physico-Chimie des Matériaux, Centre National de la Recherche Scientifique, 1, Place Aristide Briand, 92190 Meudon, France

R. Bini

European Laboratory for Non-Linear Spectroscopy, Largo Enrico Fermi 2, 50125 Florence, Italy

L. Ulivi

Istituto di Elettronica Quantistica, CNR, Via Panciatichi 56/30, 50127 Florence, Italy (Dessired 11 Marsh 1008)

(Received 11 March 1998)

Rutile-type GeO₂ was found to undergo a proper ferroelastic transition at 26.7(2) GPa from Raman spectroscopic measurements. The B_{1g} optic mode softens up to this pressure and then becomes a hard A_g mode. The square of these mode frequencies varies linearly with pressure in accordance with the soft-mode theory of second-order phase transitions. The present results have enabled a systematic relationship between the square of the soft-mode frequency at ambient pressure and the critical pressure in the homologous series SiO₂, GeO₂, and SnO₂ to be identified. [S0163-1829(98)50230-5]

I. INTRODUCTION

There is a great deal of interest in the high-pressure transitions of silica due to the possible geophysical repercussions of such transitions. Stishovite (the high-pressure, tetragonal, rutile-structured phase of silica) was found to transform reversibly to an orthorhombic, CaCl₂-type phase at a pressure of about 100 GPa by x-ray powder diffraction.¹ In contrast, theoretical calculations and Raman spectroscopic experiments^{2,3} indicate that this transition occurs at 50 GPa. Landau theory predicts that a transition from the rutile-type $[P4_2/mnm(D_{4h}^{14}), Z=2]$ to a CaCl₂-type $[Pnnm(D_{2h}^{12}),$ Z=2] structure should be a second-order, proper ferroelastic transition and involve the softening of the Raman-active B_{1g} mode.^{4,5} The order parameter for this transition is the spontaneous strain $e_{ss} = (a-b)/(a+b)$, which is of B_{1g} symmetry (a and b are unit cell constants of the orthorhombic)CaCl₂-type phase). The B_{1g} mode does indeed soften in stishovite^{3,6} and at the transition it becomes a hard A_{g} mode. There is considerable disagreement, however, between the results of different studies using various techniques, concerning the transition pressure and the second-order nature of the rutile to CaCl₂ transition in silica.^{1-3,7,8} In particular, the reported transition pressure varies greatly as a function of the pressure-transmitting medium used. Values of 50 GPa,³ 56 GPa,⁷ and 100 GPa (Ref. 1) were reported for experiments using neon, hydrogen, and no medium, respectively. Studies of ferroelastic transitions at high pressure are difficult as they are highly sensitive to deviatoric stress.⁸⁻¹⁰ In all such studies, it is essential to use pressure-transmitting media that approximate as closely as possible hydrostatic conditions. The transition in silica presents particular problems as it occurs well above the solidification pressure of all potential, pressure-transmitting media. It is thus of interest to investigate the behavior of silica analogs, which undergo the same transition at lower pressures. The most appropriate model compound for stishovite is rutile-type GeO₂. Rutile-type to CaCl₂-type transitions at high pressure have been reported for the other group 14 dioxides, SiO_2 ,^{1,3,7} SnO_2 ,¹⁰ and PbO₂.¹¹ Preliminary, x-ray diffraction experiments under nonhydrostatic conditions indicate that rutile-type GeO₂ also transforms to an orthorhombic CaCl₂-type phase at high

R2909

R2910

Rutile type (0.1 MPa)			$CaCl_2$ type [34.2(2) GPa]		
Mode	ν (cm ⁻¹)	$d\nu/dP$ (cm ⁻¹ /GPa)	Mode	ν (cm ⁻¹)	$d\nu/dP$ (cm ⁻¹ /GPa)
B_{2g}	873(1)	4.25(3)	B_{1g}	1012(1)	3.4(2)
A_{1g}	701(1)	3.46(3)	A_g	815(1)	2.8(2)
B_{1g}	171(1)	*	A_g	155(1)	*

TABLE I. Raman data for GeO₂ at high pressure.

*See discussion in the text.

pressure,¹² however, due to the lack of hydrostaticity, the equilibrium transition pressure could not be determined. Raman experiments¹³ up to a maximum of 11.7 GPa indicate that the B_{1g} mode in GeO₂ softens with pressure. The present Raman spectroscopic results obtained using helium as a hydrostatic, pressure-transmitting medium indicate that this compound transforms at 26.7(2) GPa and that the transition is second order. These results permit systematic behavior in the homologous series SiO₂, GeO₂, and SnO₂ to be identified.

II. EXPERIMENT

High-pressure experiments were performed in a membrane-type, diamond-anvil cell. Rutile-type GeO₂ was prepared from the quartz-type phase (Produits Touzart & Matignon, purity 99.999%) in a belt-type apparatus at 3.0 GPa and 585 °C. The grey material recovered was subsequently annealed at 900 °C in air at ambient pressure. The resulting white product was entirely in the rutile-type phase and no impurities were detected by x-ray diffraction or Raman spectroscopy indicating a chemical and phase purity of at least 99.9%. The widths of the x-ray diffraction lines of this phase are consistent with a crystallite size of the order of 70 nm. Samples were loaded along with a ruby crystal using helium as a pressure transmitting medium in $50-100-\mu$ mdiameter holes of stainless steel gaskets, which had been preindented to a thickness of about 60 μ m. Several loadings were performed and great effort was made in order to avoid contact between the sample and the gasket or the diamond anvils. Such contact was easily detected as it yielded asymmetric peak shapes and, in extreme cases, additional peaks shifted to positions at which they would be expected at lower pressures. Pressures were measured based on the shifts of the ruby R_1 and R_2 fluorescence lines.¹⁴ No broadening of the ruby lines was observed up to the maximum pressure reached of 34.2 GPa. Raman experiments were performed in back-scattering geometry using a Jobin Yvon Model U 1000 double monochromator with a supernotch filter and a liquidnitrogen-cooled CCD. The 488.0 and 514.5 nm lines of an argon-ion laser were used for excitation. The spectrometer was calibrated using a standard neon lamp. The Raman scattering and ruby fluorescence data were fitted to Lorentzians and the resulting peak positions have an uncertainty of less than $\pm 1 \text{ cm}^{-1}$. The contribution to the pressure error due to measurement uncertainty is less than ± 0.2 GPa. Uncertainties in measured values and standard deviations for calculated values are given in parentheses.

III. RESULTS AND DISCUSSION

Rutile-structured germanium dioxide is composed of columns of edge-sharing GeO_6 octahedra along c, which are crosslinked along the [110] and [110] directions. Group theory predicts that a rutile-structured crystal $[P4_2/mnm(D_{4h}^{14}), Z=2]$ will have four Raman active modes: $\Gamma_{\text{Raman}} = A_{1g} + B_{1g} + B_{2g} + E_g$. Up to the present, only the first three modes have been observed for GeO₂.¹³ In this study, Raman lines were observed at 873(1), 701(1), and 171(1) cm^{-1} at ambient pressure, which are, respectively, the B_{2g} , A_{1g} , and B_{1g} modes. As in previous work,¹³ the E_g mode was too weak to be detected. The two higherfrequency modes involve Ge-O stretching in the GeO₆ octahedra, whereas the B_{1g} mode corresponds to the libration of the columns of octahedra about their twofold axes along c. The condensation of this libration at high pressure would yield a static, orthorhombic, CaCl₂-type distortion of the rutile-type structure as found by x-ray diffraction.¹² The two former modes were found to harden with increasing pressure. Their pressure dependences, Table I, were found to be linear within experimental error and are in agreement with the values obtained previously in experiments up to 11.7 GPa.¹³ The soft B_{1g} mode exhibited a nonlinear pressure dependence and was found to decrease in frequency up to 26.7(2)GPa (Fig. 1). Above this pressure, this mode began to harden, thereby indicating that the transition had occurred. The soft-mode behavior and the absence of discontinuities in the frequencies of the hard modes are consistent with a second-order phase transition. In addition, no hysteresis was observed on decompression. No new modes appeared above the transition pressure. Group theory predicts that the CaCl₂-type phase identified by x-ray diffraction¹² $[Pnnm(D_{2h}^{12}), Z=2]$ should have six Raman-active modes: $\Gamma_{\text{Raman}} = 2A_g + 2B_{1g} + B_{2g} + B_{3g}$. The two A_g modes corresponds to the A_{1g} and the B_{1g} modes of the tetragonal phase, while one B_{1g} mode corresponds to the tetragonal B_{2g} mode. The other three predicted modes arise from the unobserved tetragonal E_g mode and an inactive A_{2g} mode which could explain why they were not detected.

The decrease in $d\nu/dP$ for the hard modes above the phase transition indicates reduced compression of the Ge-O bonds in the octahedra. This reduction in compressibility of the Ge-O bonds is a consequence of the additional compression mechanism available above the transition pressure. Whereas in the rutile-type phase the columns of edge-sharing octahedra are fixed, in the high-pressure phase they gradually tilt about their two-fold axes. This process is favored by the application of pressure as the gradual increase in angle to

FIG. 1. Observed Raman modes of GeO₂ as a function of pressure. Open symbols refer to points obtained upon compression and solid symbols to those obtained on decompression. Symbols \bigcirc and \square correspond to the rutile-type and CaCl₂-type phases, respectively. Solid lines represent least-squares fits to the data. The spectral region containing the very weak B_{2g} mode was not investigated in all runs due to the long acquisition time needed. Diamonds (\diamondsuit) represent the values obtained in Ref. 13 at the maximum pressure attained of 11.7 GPa.

close to 10° yields a hexagonal close-packed oxygen sublattice.^{9,10}

The soft-mode theory of second-order phase transitions predicts that the soft mode in the paraelastic phase (p)should have the following pressure dependence: $\nu_p^2 = k_p |P - P_p|$, while for the corresponding mode in the ferroelastic phase (f): $\nu_f^2 = k_f |P - P_f|$, where P_p and P_f are the pressures at which the modes for each phase become unstable and k_p and k_f are constants. These relationships hold for both the paraelastic low-pressure phase and the ferroelastic high-pressure phase over the entire pressure ranges that they are observed (Fig. 2). The lines intersect at the critical pressure (P_c) of 26.7(2) GPa and the slopes k_p and k_f are -631(4) and 1503(52) cm⁻²/GPa, respectively. P_p and P_f were found to be 46.9(2) and 18.2(4) GPa, respectively. The ratio $k_f/k_p = -2.4(1)$, which is close to the value of -2predicted by Landau theory¹⁵ and the critical pressure is close to the predicted value, $P_c = 1/3(P_p + 2P_f)$ = 27.8(3) GPa. The soft-mode frequency at P_c is $112(1) \text{ cm}^{-1}$, which is 0.66(1) times its ambient pressure value, ν_0 . The behavior in silica is very similar with the soft-mode frequency decreasing to 70% of its ambient pressure value.³ Calculations for silica² are in agreement with this observation as they indicate that the elastic shear modulus $(C_{11} - C_{12})/2$ goes to zero well before the soft-mode fre-

FIG. 2. Square of the B_{1g} soft-mode and corresponding A_g hard-mode frequencies in GeO₂ as a function of pressure. Legend as for Fig. 1.

FIG. 3. Square of the B_{1g} soft-mode frequency at ambient pressure as a function of critical pressure for rutile-type SiO₂, GeO₂, and SnO₂. Note: P_c was obtained from Raman spectroscopic measurements for SiO₂ and GeO₂ and from x-ray diffraction for SnO₂.

quency. This implies the softening of a transverse acoustic mode. Similarly, at the well-known, second-order, CaCl₂-type to rutile-type transition in CaCl₂ at high temperature, the optic-mode softening was also incomplete and a significant difference between T_c and T_p was found.¹⁵ It can be noted that a rather unusual ratio of the slopes, $d\nu^2/dT$ below and above T_c of -6.5, was obtained. The present results indicate that GeO₂ undergoes a second-order, ferroelastic phase transition at 26.7(2) GPa and the behavior of this compound mirrors that of silica.

Rutile-type to CaCl2-type phase transitions are observed in the homologous group 14 dioxides SiO_2 and SnO_2 . The critical pressure in silica obtained under the conditions closest to hydrostatic is 50 GPa using neon as a pressuretransmitting medium in a Raman spectroscopic study.³ SnO₂ was found from x-ray diffraction measurements to transform at 11.8 GPa under hydrostatic conditions.¹⁰ The B_{1g} soft mode is observed at 231.6 cm⁻¹ in SiO₂ (Ref. 3) and 123 cm^{-1} in SnO₂ (Ref. 16) at ambient pressure. The following relationship is obtained from soft-mode theory: $\nu^2 \propto |P - P_c|$. If we select ambient pressure in order to compare these dioxides, the experimental results on the homologous series SiO₂, GeO₂, and SnO₂ indicate that $(\nu_{B_{1}})_0^2$ $\propto |P_0 - P_c|$, which reduces to $(\nu_{B_{1g}})_0^2 \propto P_c$ (Fig. 3). There is thus systematic behavior in this series of homologous compounds, which undergo a second-order phase transition driven by a soft mode, with the critical pressure being proportional to the square of the soft-mode frequency at P=0. As the soft modes do not go to zero at the critical pressure, systematic behavior in k_p , k_f , P_p , and P_f is also implied, which is due to the similarities in the structural and vibrational properties of these dioxides. The present result also supports the validity of the phase transition pressure of 50 GPa obtained for SiO₂ from Raman scattering measurements using neon as a pressure-transmitting medium.³

IV. CONCLUSIONS

The present Raman spectroscopic investigation of GeO₂ up to 34.2(2) GPa indicates that a second-order, proper ferroelastic transition occurs at 26.7(2) GPa. The square of the frequencies of the B_{1g} soft mode and the corresponding A_g hard mode varies linearly with pressure over the entire pressure range that they are observed as predicted by the softmade theory of second-order phase transitions. A systematic relationship between $(\nu_{B_{1g}})_0^2$ and P_c is identified for SiO₂, GeO₂, and SnO₂. This result indicates that the behavior of stishovite at high pressure closely mirrors that of its heavier homologues GeO₂ and SnO₂.

ACKNOWLEDGMENT

We would like to thank the European Union for funding this experiment under Contract No. ERB FM GE CT 950017.

- ¹Y. Tsuchida and T. Yagi, Nature (London) **340**, 217 (1989).
- ²R. E. Cohen, in *High-Pressure Research: Applications to Earth and Planetary Sciences*, edited by Y. Syono and M. H. Manghnani (American Geophysical Union, Washington, DC, 1992), p. 425.
- ³K. J. Kingma, R. E. Cohen, R. J. Hemley, and H. K. Mao, Nature (London) **374**, 243 (1995).
- ⁴E. K. H. Salje, *Phase Transitions in Ferroelastic and Co-elastic Crystals* (Cambridge University Press, Cambridge, 1990).
- ⁵H. T. Stokes and D. M. Hatch, *Isotropy Subgroups of the 230 Crystallographic Space Groups* (World Scientific, Singapore, 1988).
- ⁶R. J. Hemley, in *High-Pressure Research in Mineral Physics*, edited by M. H. Manghnani and Y. Syono (Terra Scientific, Tokyo, and American Geophysical Union, Washington, DC, 1987), p. 347.
- ⁷H. K. Mao, J. Shu, J. Hu, and R. J. Hemley, EOS Trans. Am. Geophys. Union **75**, 662 (1994).

- ⁸L. S. Dubrovinsky and A. B. Belonoshko, Geochim. Cosmochim. Acta **60**, 3657 (1996).
- ⁹J. Haines, J. M. Léger, and S. Hoyau, J. Phys. Chem. Solids 56, 965 (1995).
- ¹⁰J. Haines and J. M. Léger, Phys. Rev. B 55, 11 144 (1997).
- ¹¹J. Haines, J. M. Léger, and O. Schulte, J. Phys.: Condens. Matter 8, 1631 (1996).
- ¹²J. Haines, J. M. Léger, C. Chateau, A. S. Pereira, D. Häusermann, M. Hanfland, G. Fiquet, and D. Andrault (unpublished).
- ¹³J. F. Mammone, M. Nicol, and S. K. Sharma, J. Phys. Chem. Solids **42**, 379 (1981).
- ¹⁴H. K. Mao, P. M. Bell, J. W. Shaner, and D. J. Steinberg, J. Appl. Phys. **49**, 3276 (1978).
- ¹⁵H.-G. Unruh, D. Mühlenberg, and Ch. Hahn, Z. Phys. B 86, 133 (1992).
- ¹⁶P. S. Percy and B. Morosin, Phys. Rev. B 7, 2779 (1973).