RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 58, NUMBER 4 15 JULY 1998-II

Band-gap renormalization in photoexcited semiconductor quantum-wire structures
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We investigate the dynamical self-energy corrections of the electron-hole plasma due to electron-electron
and electron-phonon interactions at the band edges of a quasi-one-dimefER)nathiotoexcited electron-hole
plasma. The leading-ord&W dynamical screening approximation is used in the calculation by treating the
electron-electron Coulomb interaction and the electron—optical-phondti¢franteraction on an equal foot-
ing. We calculate the exchange-correlation-induced band-gap renormaliZB&R) as a function of the
electron-hole plasma density and the quantum-wire width. The calculated BGR shows good agreement with
existing experimental results, and the BGR normalized by the effective quasi-1D excitonic Rydberg exhibits an
approximate one-parameter universalfi$0163-182¢08)50528-(

A highly dense electron-hole plasntaHP) can be gener- the RPA dynamical screeninGW scheme by taking into
ated in a wide variety of semiconductors by optical pumping.account the full frequency dependent dielectric response in
The band structure and the optical properties of highly exthetwo componenbne-dimensiona{lD) EHP.
cited semiconductors differ from those calculated for nonin- Most high quality QW structures of our interest are fab-
teracting electron-hole pairs due to many-body exchangericated in weakly polar 1ll-V semiconductors. In a polar
correlation effects arising from the EHB.One of the semiconductor, free carriers couple to the longitudinal-
important many-body effects in high-density EHP is aoptical (LO) phonons of the underlying lattice through the
density-dependent renormalization of the fundamental bantbng-range polar Fildich interaction. The carrier—LO-
gap of the semiconductor, which causes an increasing alphonon interaction leads to polaronic many-body renormal-
sorption in the spectral region below the lowest exciton resoization of the single-particle free-carrier properties. Even
nance. The exchange-correlation correction of the fundamerihough the weakly polar 1lI-V materials have rather small
tal band gap due to the presence of free carfiglectrons in  Frohlich coupling constants, the electronic properties can
the conduction band and holes in the valence bamdhe  still be substantially modified by the Hilich interaction.
system is referred to as the band-gap renormalizdB@R)  Thus, inclusion of dynamical electron-phonon interaction in
effect. Optical nonlinearities, which are strongly influencedthe theory is important since, in the quantum wires made of
by Coulomb interaction in the EHP, are typically associatedveakly polar materials, the Fntich interaction produces ob-
with the band-gap renormalization phenomenon. Band-gapervable many-body corrections. In spite of substantial cur-
renormalization has been widely studied in bulk and quasirent interest in the properties of polar quasi-one-dimensional
two-dimensional(quantum well semiconductor$=® In re- QW systems existing in GaAs quantum wires, the full many-
cent years, quasi-one-dimensional semiconductor quantutmody problem that includes dynamical screening and treats
wires (QW) have been fabricated with atomic scale defini-electron-electron and electron-phonon interactions on an
tion, and QW optical properties have been studied for theiequal footing has not yet been worked out.
potential device applications, such as semiconductor lasers. Our goal is to calculate the BGR of a coupled 1D
There has, however, been little work on the BGR in QWelectron-phonon many-body system, treating electrons and
systems, both experimentdllgnd theoretically:® Until now  phonons on an equal footing. There has been no detailed
most calculations have been done in the static screening aguantitative study of 1D quasiparticle properties including
proximation or in the simple plasmon-pole approximation,both electron-electron and electron-phonon interactions. We
which is a simplified version of the random-phase approxiprovide such an analysis in this paper based on the leading-
mation (RPA). The plasmon-pole approximation consists of order many-body perturbation theory. We calculate the self-
ignoring the weight in the single-particle excitations and as-energy corrections to the band eddése highest valence-
suming that all free-carrier contributions to the dynamicaland the lowest conduction-band edgesthe presence of the
dielectric function lie at the effective plasma frequeney. EHP densityn.= n,, of the electronsrf,) and the holesr,)

The advantages of the plasmon-pole approximation are itfor quantum well wires of various thicknesses and for a num-
mathematical simplicity and simple physical meaning. How-ber of different semiconductor systems. To the best of our
ever, a certain degree of arbitrariness in the choice of th&nowledge, this is the first calculation of electronic many-

effective plasmon-pole parameters that are needed to satishody BGR correction in QW systems including full effects

the f-sum rule and the static Kramers-Kroning relation leadsof both the dynamical electron-electron and “Hiich

to considerable difficulties in applying the theory to semi-electron—LO-phonon interactions treated on an equal foot-
conductors with complex band structures. In this paper, wéng. We find that the calculated BGR using the full RPA

calculate the BGR of the quantum-wire structures based odielectric function agrees very well with available experi-
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mental resultsand depends on both the electron-hole density 0 /e 10
and quantum-wire widths. Our calculated BGR in quantum W
wires shows an approximate materials independent two- 2/e075
parameter universality as a function of tkealed plasma -5
density and wire width. We find that this two-parameter uni-
versality of the BGR can be reduced to a single universal
curve when the BGR scaled in the units of the appropriate
guasi-1D effective excitonic Rydberg is expressed as a func-
tion of the dimensionless 1D electron-hole density parameter
rs=1/(2nag), with a plasma density and an effective Bohr —-15
radiusag . -30
We assume that our quasi-1D QW system has an infinite 0.1 10 100
square-well confinement with a finite widtra) in the y —20 | n(10%m™)
direction and zero thickness in tledirection, which is one
of the simplest 1D confinement models. Because of the uni- 0.1 1.0 10.0
versality mentioned above we believe that our results are T
valid for more general 1D confinement situations. Only one
kind of electrons and holes with isotropic, parabolic disper- 0 ' T
sion in a direct gap semiconductor is assumed to exist, thus (b)
neglecting most of the band-structure complications of the
valence subbands. This should be an adequate approximation
for calculating the band-edge BGR. We consider hereTthe
=0 K situation with only the lowest conduction subbaifat
the electronsand the highest valence subbafa the hole$
occupied. The effective mass approximation is expected to
be fairly well valid under the experimental conditions and we
will assume that uncritically for our theory. Our main calcu-
lations use th& W approximation for the self-enerdy’ This
is the leading term in an iterative expansion of the self-
energy operator in powers of the dynamically screened ef- —-30 ‘
fective electron-electrofincluding both Coulomb and Fie
lich couplingg interactionW, and has been shown to yield 0.1 1.0
an excellent description of quasiparticle energies in 1’1(10601’1’1_1)
semiconductor&:1°
The BGR is given by the sum of the self-energies for FIG. 1. (a) The calculated band-gap renormalizatianas a
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electrons and holes at band edges: function of the effective electron-hole pair density parameter
=1/(2nag) for different quantum-wire widths, whegg; is the bulk
A=Re2(0,0+ReZ(0,0). (1)  effective Bohr radius. The BGR is scaled by the 3D exciton binding

energy Eo=e?/(2agep). In the inset we show the BGR for the
quasi-1D GaAS-AlGaAs system as a function of the electron-hole
plasma densityr. The experimental points are taken from Ref. 4.

The total electronic self-energy within the leading-order ef-
fective dynamical interaction in a two-component electron-

hole plasma is The middle thick line is for confinement widia=600 A and the
q do’ v , upper(lowen thin line fora=650 A (a=550 A). (b) Comparison

s (K w)=if aq J' iG (K—Q,0— ') i(q,@’) of our calculated3W theory BGR with less sophisticated calcula-
e 27 2 0 ' e(qw’)’ tions (Refs. 5 and P for the quasi-1D GaAS-AlGaAs systena (
(2 =500 A). Here, the solid line represents dBW result, and the

. . . . dashed(dot-dashefline is from Ref. 6(Ref. 5.
whereGy is the Green'’s function for the noninteracting elec- a H S(Ref. 9

tron gas,V;=V +Vy, is the total effective interaction, and tem is a two-component syste(alectron-hole plasmathe
€(g,w)=1-V(q,w)II(q,w) is the effective dynamical di- polarizability function is a sum of electron and hole polariz-
electric function. Here/., V., andlly(q,w) are the direct  abilities I14(q,w) =1I1ge(q, w) +Mp(q,w). The formalism
Coulomb interaction, the LO-phonon mediated electronfor holes, within our parabolic band approximation, is the
electron interaction, and the irreducible 1D noninteractingsame as that for electrons and the only modification needed
polarizability, respectively. In our extreme quantum limit in Eq. (2) is the substitution ofn, by m,,. The self-energy
model where only the lowest 1D subband is occupied by thealculation is standard and more details can be found in the
electrons, we obtain the interaction matrix elements by takiiterature!®

ing the quantizing confinement potential to be of infinite  In Fig. 1(a) we show our calculated exchange-correlation-
square-well type'® and the LO-phonon mediated electron- induced band-gap renormalization for quasi-1D quantum
electron interaction is dependent on wave vector and frewires, which is scaled by the effective 3D Rydbefg
quency,Vph(q,w)zMéDo(w), whereM is the effective 1D =e?/(2age,), as a function of the effective electron-hole
Frohlich interaction matrix element anB,(w) the unper- plasma density parametet=1/(2nag). We also show in
turbed retarded bare LO-phonon propagat@ince our sys-  Fig. 1(a) the band-gap renormalization for various quantum-
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wire widths. The BGR increases with decreasing wire width. 50
The QW BGR depends rather strongly on the wire width

because the 1D Coulomb interaction matrix element is a sen- 40
sitive function of the width even in the long wavelength
limit. We have carried out the calculation of BGR as a func-
tion of carrier density and wire width for a number of Ill-V
semiconductor materials. We find that when expressed in
suitable dimensionless unitthe effective 3D Rydberg and
the effective 1D density parametey) as shown in Fig. (),

the band-gap renormalization in quasi-1D systems is an ap- 10
proximate two-parameter universal function, i.e., a universal

function of the effective density and the wire confinement 0 s
width. (Since the lowest exciton state is not well defined in

the ideal zero width limit of the 1D electron-hole systém, 0 2 4 60 8 10

we use the effective 3D Rydberg to scale the band-gap renor- a ( 1 OOA)

malization) The inset in Fig. 1a) shows the BGR for the

quasi-1D GaAS-AlGaAs system as a function of the FIG. 2. The two lowest effective exciton binding energies of a
electron-hole plasma density together with the available gquasi-1D GaAs QW system as a function of the confinement width
experimental data from Ref. 4, in which the BGR is mea-a. n=1 (n=2) is for the groundthe first excited state. The dia-
sured in confined quantum well structures with lateral widthgnond represents a data point from Ref. 15.

of 600+50A. For GaAs we use the parameters, ) . . )
=0.067n,, m,=0.45m,, and the background dielectric Rydberg as the effective Iength un_lt and energy scaling unit,
constante,= 13. We find that the calculated BGR using the feSPectively. In order to investigate whether the two-
full RPA dielectric function agrees well with the available Parameter universality of the quasi-1D BGR in Fig. 1 can be
experimental datAThe comparison of our fulBW calcula- reduced to a one-parameter universality by sunaply resca_lmg
tion result with less sophisticated approximatiohis shown ~ €nergy and length units, we calculate the quasi-1D exciton
in Fig. 1(b). We find that the BGR irGW dynamical ap- bmdmg energy, which \_Nould be used as a suqable energy
proximation including both carrier-carrier Coulomb and rescallng unit. The exciton energy Of the_ qua§|-1D_syste_m
carrier—LO-phonon interaction increases about 10%. Sinc32S earlier been calculated in the cylindrical wire with a fi-
the BGR as shown in Fig.(a) depends strongly on the lat- Nite radius smaller than the bulk exciton radjrﬁﬁpwever,

eral width, the qualitative comparisons for different widths'" order to be consistent with our BGR calculation we use
may give different results. However, the only exchange-the quasi-1D Coulomb interaction of the quantum wire with
correlation-induced BGR's in all different models show the & 28r0 thickness in thedirection and a finite widtfa in the
quantitatively similar dependence of a density and a confingY _direction to calculate the 1D excitonic binding energy
ment width, that is, BGR’s increase as the density increase¥ithin our confinement model. In this approximation and
or the width decreases. It is very difficult to directly compareWithin the one subband extreme quantum limit the effective
the theories with the existing experimeéhtsecause the ex- duasi-1D Coulomb interaction is given by

perimental data for BGR are extracted from the observed

luminescence spectra by neglecting the phase-space filling Vqld(x—x’)zf f dydy Vop(x—x",y—y’)
effects(population of higher subbandand the electron-hole

30

E, (meV)

Coulomb correlation effects. Thus, to get better quantitative x| p(y) 2 b(y")]|?, (3)
agreement between experiment and theory we need to in-
clude not only the exchange-correlation effects due to the 0 ' ' '
screening of the interaction but the higher subband filling
effects, which have been neglected in this calculation.

In bulk semiconductors the exchange-correlation energy —1F
is essentially independéAt of band-structure details when Lﬂﬂ
expressed in appropriate dimensionless units. This leads to a ~_ — ajapt
universal form for the BGR when the self-energy corrections < of C aja? ]
and the carrier density are expressed in appropriate rescaled o e ajages
units of the effective excitonic Rydberg and the normalized e a/ag=10
interparticle separation,, respectively:> A similar univer- 3
sality holds for two-dimensiona(2D) systems when the - ' ' '
band gap is expressed in effective 2D Rydberg and the 0 1 2 3 4
electron-hole density in the 2B, parametef? In quasi-2D r
guantum well systems, however, the BGR depends on the S

well width and is found to be a two-parameter universal |G, 3. The approximate one-parameter universality of the
function of the effective 20rg parameter and well width. It pand-gap renormalization of the quasi-1D system as a function of
was showd that this two-parameter universality can be re-the effective density parametey. We rescale the BGR in Fig. 1 in
duced to an approximate one-parameter universality byhe unit of the effective quasi-1D exciton binding energy of Fig. 2.
choosing a suitablguasi2D Bohr radius and an effective The experimental points from Ref. 4 are also shown.
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where V,p(x,y) =e?/ (e X?+y?) is the 2D Coulomb po- units in terms ofquasi1D effective parameters produces an
tential andg(y) is the single-particle wave function in the approximate one-parameter universalitdote that we use
unperturbed quantum well wire with infinite barriers. The the 3D Bohr radiusag to rescale the lengthsin order to
Fourier transform of Eq(3) is used as the bare Coulomb check the general applicability of our universal BGR results,
interaction to calculate the self-energy of the electron-holeexperimental data on different 111-V quasi-1D semiconductor
plasma in Eq(2). If we neglect the motion of carriers in the QW systems are needed. It would be interesting to verify our
y direction, the relative motion of a quasi-1D electron-holepredicted one-parameter BGR universality by measuring the
pair is described by the 1D Sclinger equation with the BGR in different I11-V materials for QW of different widths.
effective quasi-1D Coulomb interaction given in ). In |5 conclusion, we investigate the band-gap renormaliza-
Flg: 2 we 'show our'numerlcally calculated two lowest exci-tion of quasi-1D electron-hole plasma systems in semicon-
tonic binding energie&,(a) for a GaAs-AlGaAs quantum - qctor QW structures including the full dynamical effects of
well wire as a function of the widtfa (the ground stat®@ ot the electron-electron and electron-phonon interactions
=1 and the first excited state=2). Comparing with the  reating electrons and phonons on an equal footing. Our cal-
measured exciton energ¥{~12 meV) for alSGaAs quan-  cylated BGR agrees well with the available experimental
tum wire with the lateral widtla= 600+ 50 A®our calcu-  gata. We derive an approximate one-parameter universality
lation gives reasonable agreement. Using the calculated efy the band-gap renormalizatiomescaled by the effective

fective exciton binding energyFig. 2) we rescale the quasi-1D excitonic Rydbejgas a function of the effective
calculated QW band-gap renormalization to investigate thqp density parameter,, which should be experimentally
applicability of a one-parameter QW BGR universality. In specked.

Fig. 3, we show the rescaled BGR in the unit of the effective
binding energy of the exciton as a function of the density This work was supported by the U.S.-ARO and the U.S.-
parameters. As one can see from Fig. 3, this rescaling of ONR.
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