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Band-gap renormalization in photoexcited semiconductor quantum-wire structures
in the GW approximation
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We investigate the dynamical self-energy corrections of the electron-hole plasma due to electron-electron
and electron-phonon interactions at the band edges of a quasi-one-dimensional~1D! photoexcited electron-hole
plasma. The leading-orderGW dynamical screening approximation is used in the calculation by treating the
electron-electron Coulomb interaction and the electron–optical-phonon Fro¨hlich interaction on an equal foot-
ing. We calculate the exchange-correlation-induced band-gap renormalization~BGR! as a function of the
electron-hole plasma density and the quantum-wire width. The calculated BGR shows good agreement with
existing experimental results, and the BGR normalized by the effective quasi-1D excitonic Rydberg exhibits an
approximate one-parameter universality.@S0163-1829~98!50528-0#
ng
ex
in
g

a
an
a

so
e

ed
te
ga
s

tu
ni
e
e
W

a
n
x
o
as
ca

w
th
ti
d
i
w
o

e in

b-
r

al-
e

al-
en
all
an

in
of

-
ur-
nal
y-
ats
an

D
and
iled
ng
We
ing-
elf-
-

m-
our
y-
ts

ot-
A
ri-
A highly dense electron-hole plasma~EHP! can be gener-
ated in a wide variety of semiconductors by optical pumpi
The band structure and the optical properties of highly
cited semiconductors differ from those calculated for non
teracting electron-hole pairs due to many-body exchan
correlation effects arising from the EHP.1,2 One of the
important many-body effects in high-density EHP is
density-dependent renormalization of the fundamental b
gap of the semiconductor, which causes an increasing
sorption in the spectral region below the lowest exciton re
nance. The exchange-correlation correction of the fundam
tal band gap due to the presence of free carriers~electrons in
the conduction band and holes in the valence band! in the
system is referred to as the band-gap renormalization~BGR!
effect. Optical nonlinearities, which are strongly influenc
by Coulomb interaction in the EHP, are typically associa
with the band-gap renormalization phenomenon. Band-
renormalization has been widely studied in bulk and qua
two-dimensional~quantum well! semiconductors.1–3 In re-
cent years, quasi-one-dimensional semiconductor quan
wires ~QW! have been fabricated with atomic scale defi
tion, and QW optical properties have been studied for th
potential device applications, such as semiconductor las
There has, however, been little work on the BGR in Q
systems, both experimentally4 and theoretically.5,6 Until now
most calculations have been done in the static screening
proximation or in the simple plasmon-pole approximatio
which is a simplified version of the random-phase appro
mation ~RPA!. The plasmon-pole approximation consists
ignoring the weight in the single-particle excitations and
suming that all free-carrier contributions to the dynami
dielectric function lie at the effective plasma frequencyvp .
The advantages of the plasmon-pole approximation are
mathematical simplicity and simple physical meaning. Ho
ever, a certain degree of arbitrariness in the choice of
effective plasmon-pole parameters that are needed to sa
the f -sum rule and the static Kramers-Kroning relation lea
to considerable difficulties in applying the theory to sem
conductors with complex band structures. In this paper,
calculate the BGR of the quantum-wire structures based
PRB 580163-1829/98/58~4!/1738~4!/$15.00
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the RPA dynamical screeningGW scheme by taking into
account the full frequency dependent dielectric respons
the two componentone-dimensional~1D! EHP.

Most high quality QW structures of our interest are fa
ricated in weakly polar III-V semiconductors. In a pola
semiconductor, free carriers couple to the longitudin
optical ~LO! phonons of the underlying lattice through th
long-range polar Fro¨hlich interaction. The carrier–LO-
phonon interaction leads to polaronic many-body renorm
ization of the single-particle free-carrier properties. Ev
though the weakly polar III-V materials have rather sm
Fröhlich coupling constants, the electronic properties c
still be substantially modified by the Fro¨hlich interaction.
Thus, inclusion of dynamical electron-phonon interaction
the theory is important since, in the quantum wires made
weakly polar materials, the Fro¨hlich interaction produces ob
servable many-body corrections. In spite of substantial c
rent interest in the properties of polar quasi-one-dimensio
QW systems existing in GaAs quantum wires, the full man
body problem that includes dynamical screening and tre
electron-electron and electron-phonon interactions on
equal footing has not yet been worked out.

Our goal is to calculate the BGR of a coupled 1
electron-phonon many-body system, treating electrons
phonons on an equal footing. There has been no deta
quantitative study of 1D quasiparticle properties includi
both electron-electron and electron-phonon interactions.
provide such an analysis in this paper based on the lead
order many-body perturbation theory. We calculate the s
energy corrections to the band edges~the highest valence
and the lowest conduction-band edges! in the presence of the
EHP densityne5nh of the electrons (ne) and the holes (nh)
for quantum well wires of various thicknesses and for a nu
ber of different semiconductor systems. To the best of
knowledge, this is the first calculation of electronic man
body BGR correction in QW systems including full effec
of both the dynamical electron-electron and Fro¨hlich
electron–LO-phonon interactions treated on an equal fo
ing. We find that the calculated BGR using the full RP
dielectric function agrees very well with available expe
R1738 © 1998 The American Physical Society
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mental results4 and depends on both the electron-hole den
and quantum-wire widths. Our calculated BGR in quant
wires shows an approximate materials independent t
parameter universality as a function of thescaled plasma
density and wire width. We find that this two-parameter u
versality of the BGR can be reduced to a single univer
curve when the BGR scaled in the units of the appropr
quasi-1D effective excitonic Rydberg is expressed as a fu
tion of the dimensionless 1D electron-hole density param
r s51/(2naB), with a plasma densityn and an effective Bohr
radiusaB .

We assume that our quasi-1D QW system has an infi
square-well confinement with a finite width (a) in the y
direction and zero thickness in thez direction, which is one
of the simplest 1D confinement models. Because of the
versality mentioned above we believe that our results
valid for more general 1D confinement situations. Only o
kind of electrons and holes with isotropic, parabolic disp
sion in a direct gap semiconductor is assumed to exist,
neglecting most of the band-structure complications of
valence subbands. This should be an adequate approxim
for calculating the band-edge BGR. We consider here thT
50 K situation with only the lowest conduction subband~for
the electrons! and the highest valence subband~for the holes!
occupied. The effective mass approximation is expected
be fairly well valid under the experimental conditions and
will assume that uncritically for our theory. Our main calc
lations use theGW approximation for the self-energy.7,8 This
is the leading term in an iterative expansion of the se
energy operator in powers of the dynamically screened
fective electron-electron~including both Coulomb and Fro¨h-
lich couplings! interactionW, and has been shown to yiel
an excellent description of quasiparticle energies
semiconductors.8–10

The BGR is given by the sum of the self-energies
electrons and holes at band edges:

D5Re Se~0,0!1Re Sh~0,0!. ~1!

The total electronic self-energy within the leading-order
fective dynamical interaction in a two-component electro
hole plasma is

Se~k,v!5 i E dq

2p E dv8

2p
G0~k2q,v2v8!

Vt~q,v8!

e~q,v8!
,

~2!

whereG0 is the Green’s function for the noninteracting ele
tron gas,Vt5Vc1Vph is the total effective interaction, an
e(q,v)512Vt(q,v)P0(q,v) is the effective dynamical di-
electric function. HereVc , Vph, andP0(q,v) are the direct
Coulomb interaction, the LO-phonon mediated electro
electron interaction, and the irreducible 1D noninteract
polarizability, respectively. In our extreme quantum lim
model where only the lowest 1D subband is occupied by
electrons, we obtain the interaction matrix elements by t
ing the quantizing confinement potential to be of infin
square-well type5,10 and the LO-phonon mediated electro
electron interaction is dependent on wave vector and
quency,Vph(q,v)5Mq

2D0(v), whereMq is the effective 1D
Fröhlich interaction matrix element andD0(v) the unper-
turbed retarded bare LO-phonon propagator.10 Since our sys-
y
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tem is a two-component system~electron-hole plasma!, the
polarizability function is a sum of electron and hole polar
abilities P0(q,v)5P0e(q,v)1P0h(q,v). The formalism
for holes, within our parabolic band approximation, is t
same as that for electrons and the only modification nee
in Eq. ~2! is the substitution ofme by mh . The self-energy
calculation is standard and more details can be found in
literature.10

In Fig. 1~a! we show our calculated exchange-correlatio
induced band-gap renormalization for quasi-1D quant
wires, which is scaled by the effective 3D RydbergE0
5e2/(2aBe0), as a function of the effective electron-ho
plasma density parameterr s51/(2naB). We also show in
Fig. 1~a! the band-gap renormalization for various quantu

FIG. 1. ~a! The calculated band-gap renormalizationD as a
function of the effective electron-hole pair density parameterr s

51/(2naB) for different quantum-wire widths, whereaB is the bulk
effective Bohr radius. The BGR is scaled by the 3D exciton bind
energyE05e2/(2aBe0). In the inset we show the BGR for th
quasi-1D GaAS-AlGaAs system as a function of the electron-h
plasma densityn. The experimental points are taken from Ref.
The middle thick line is for confinement widtha5600 Å and the
upper~lower! thin line for a5650 Å (a5550 Å). ~b! Comparison
of our calculatedGW theory BGR with less sophisticated calcul
tions ~Refs. 5 and 6! for the quasi-1D GaAS-AlGaAs system (a
5500 Å). Here, the solid line represents ourGW result, and the
dashed~dot-dashed! line is from Ref. 6~Ref. 5!.
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wire widths. The BGR increases with decreasing wire wid
The QW BGR depends rather strongly on the wire wid
because the 1D Coulomb interaction matrix element is a s
sitive function of the width even in the long waveleng
limit. We have carried out the calculation of BGR as a fun
tion of carrier density and wire width for a number of III-V
semiconductor materials. We find that when expressed
suitable dimensionless units~the effective 3D Rydberg and
the effective 1D density parameterr s) as shown in Fig. 1~a!,
the band-gap renormalization in quasi-1D systems is an
proximate two-parameter universal function, i.e., a univer
function of the effective density and the wire confineme
width. ~Since the lowest exciton state is not well defined
the ideal zero width limit of the 1D electron-hole system11

we use the effective 3D Rydberg to scale the band-gap re
malization.! The inset in Fig. 1~a! shows the BGR for the
quasi-1D GaAS-AlGaAs system as a function of t
electron-hole plasma densityn together with the available
experimental data from Ref. 4, in which the BGR is me
sured in confined quantum well structures with lateral wid
of 600650Å. For GaAs we use the parametersme
50.067m0 , mh50.45m0 , and the background dielectri
constante0513. We find that the calculated BGR using th
full RPA dielectric function agrees well with the availab
experimental data.4 The comparison of our fullGW calcula-
tion result with less sophisticated approximations5,6 is shown
in Fig. 1~b!. We find that the BGR inGW dynamical ap-
proximation including both carrier-carrier Coulomb an
carrier–LO-phonon interaction increases about 10%. Si
the BGR as shown in Fig. 1~a! depends strongly on the la
eral width, the qualitative comparisons for different widt
may give different results. However, the only exchang
correlation-induced BGR’s in all different models show t
quantitatively similar dependence of a density and a confi
ment width, that is, BGR’s increase as the density increa
or the width decreases. It is very difficult to directly compa
the theories with the existing experiments4 because the ex
perimental data for BGR are extracted from the obser
luminescence spectra by neglecting the phase-space fi
effects~population of higher subbands! and the electron-hole
Coulomb correlation effects. Thus, to get better quantita
agreement between experiment and theory we need to
clude not only the exchange-correlation effects due to
screening of the interaction but the higher subband fill
effects, which have been neglected in this calculation.

In bulk semiconductors the exchange-correlation ene
is essentially independent12,3 of band-structure details whe
expressed in appropriate dimensionless units. This leads
universal form for the BGR when the self-energy correctio
and the carrier density are expressed in appropriate resc
units of the effective excitonic Rydberg and the normaliz
interparticle separationr s , respectively.12 A similar univer-
sality holds for two-dimensional~2D! systems when the
band gap is expressed in effective 2D Rydberg and
electron-hole density in the 2Dr s parameter.13 In quasi-2D
quantum well systems, however, the BGR depends on
well width and is found to be a two-parameter univer
function of the effective 2Dr s parameter and well width. I
was shown3 that this two-parameter universality can be r
duced to an approximate one-parameter universality
choosing a suitablequasi-2D Bohr radius and an effectiv
.
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Rydberg as the effective length unit and energy scaling u
respectively. In order to investigate whether the tw
parameter universality of the quasi-1D BGR in Fig. 1 can
reduced to a one-parameter universality by suitably resca
energy and length units, we calculate the quasi-1D exc
binding energy, which would be used as a suitable ene
rescaling unit. The exciton energy of the quasi-1D syst
has earlier been calculated in the cylindrical wire with a
nite radius smaller than the bulk exciton radius.14 However,
in order to be consistent with our BGR calculation we u
the quasi-1D Coulomb interaction of the quantum wire w
a zero thickness in thez direction and a finite widtha in the
y direction to calculate the 1D excitonic binding ener
within our confinement model. In this approximation an
within the one subband extreme quantum limit the effect
quasi-1D Coulomb interaction is given by

Vq1d~x2x8!5E E dydy8V2D~x2x8,y2y8!

3uf~y!u2uf~y8!u2, ~3!

FIG. 2. The two lowest effective exciton binding energies o
quasi-1D GaAs QW system as a function of the confinement w
a. n51 (n52) is for the ground~the first excited! state. The dia-
mond represents a data point from Ref. 15.

FIG. 3. The approximate one-parameter universality of
band-gap renormalization of the quasi-1D system as a functio
the effective density parameterr s . We rescale the BGR in Fig. 1 in
the unit of the effective quasi-1D exciton binding energy of Fig.
The experimental points from Ref. 4 are also shown.
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where V2D(x,y)5e2/(e0Ax21y2) is the 2D Coulomb po-
tential andf(y) is the single-particle wave function in th
unperturbed quantum well wire with infinite barriers. Th
Fourier transform of Eq.~3! is used as the bare Coulom
interaction to calculate the self-energy of the electron-h
plasma in Eq.~2!. If we neglect the motion of carriers in th
y direction, the relative motion of a quasi-1D electron-ho
pair is described by the 1D Schro¨dinger equation with the
effective quasi-1D Coulomb interaction given in Eq.~3!. In
Fig. 2 we show our numerically calculated two lowest ex
tonic binding energiesEb(a) for a GaAs-AlGaAs quantum
well wire as a function of the widtha ~the ground staten
51 and the first excited staten52). Comparing with the
measured exciton energy (Eb'12 meV) for a GaAs quan
tum wire with the lateral widtha5600650 Å,15 our calcu-
lation gives reasonable agreement. Using the calculated
fective exciton binding energy~Fig. 2! we rescale the
calculated QW band-gap renormalization to investigate
applicability of a one-parameter QW BGR universality.
Fig. 3, we show the rescaled BGR in the unit of the effect
binding energy of the exciton as a function of the dens
parameterr s . As one can see from Fig. 3, this rescaling
-

o
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units in terms ofquasi-1D effective parameters produces a
approximate one-parameter universality.~Note that we use
the 3D Bohr radiusaB to rescale the lengths.! In order to
check the general applicability of our universal BGR resu
experimental data on different III-V quasi-1D semiconduc
QW systems are needed. It would be interesting to verify
predicted one-parameter BGR universality by measuring
BGR in different III-V materials for QW of different widths

In conclusion, we investigate the band-gap renormali
tion of quasi-1D electron-hole plasma systems in semic
ductor QW structures including the full dynamical effects
both the electron-electron and electron-phonon interacti
treating electrons and phonons on an equal footing. Our
culated BGR agrees well with the available experimen
data. We derive an approximate one-parameter univers
in the band-gap renormalization~rescaled by the effective
quasi-1D excitonic Rydberg! as a function of the effective
1D density parameterr s , which should be experimentally
checked.
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