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Phases of the one-dimensional Bose-Hubbard model
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The zero-temperature phase diagram of the one-dimensional Bose-Hubbard model with nearest-neighbor
interaction is investigated using the density-matrix renormalization group. Recentlynormal phases without
long-range order have been conjectured between the charge-density wave phase and the superfluid phase in
one-dimensional bosonic systems without disorder. Our calculations demonstrate that there is no intermediate
phase in the one-dimensional Bose-Hubbard model but a simultaneous vanishing of crystalline order and
appearance of superfluid order. The complete phase diagrams with and without nearest-neighbor interaction are
obtained. Both phase diagrams show reentrance from the superfluid phase to the insulator phase.
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Quantum phase transitions in strongly correlated syst
have attracted a lot of interest in recent years. Usually
basic particles are electrons, but in some interesting case
relevant particles are not fermions but bosons. Example
experimental systems with superfluid and insulating pha
are Cooper pairs in thin granular superconducting films1 and
Cooper pairs or fluxes in Josephson-junction arrays.2 While
in dimensions greater than one the existence of supersol3

i.e., phases with simultaneous superfluid and crystalline
der, has been established in theoretical work, the situatio
one dimension is less clear. Recently normal phases tha
neither crystalline nor superfluid have been found in a o
dimensional model of Josephson-junction arrays4 in the re-
gion where supersolids are found in higher dimensions
this paper we will verify whether supersolids or norm
phases exist in the more general Bose-Hubbard model in
dimension.

The Bose-Hubbard model contains the basic physics
interacting bosons on a lattice. It is a minimal bosonic ma
particle model that cannot be reduced to a single-part
model. The bosons have repulsive interactions, and they
gain energy by hopping to neighboring sites on the latti
The Hamiltonian with on-site and nearest-neighbor inter
tions is

HBH52t(
i

~bi
†bi 111bibi 11

† ! 2(
i

mni

1U(
i

ni~ni21!/21V(
i

nini 11 , ~1!

wherebi are the annihilation operators of bosons on sitei,
n̂i5bi

†bi the number of particles on sitei, t is the hopping
matrix element.U and V are on-site and nearest-neighb
repulsion, andm is the chemical potential. The energy sca
is set by choosingU51.

The range of the interactions depends on the individ
experimental situation. In general the lattice underlying
system is not an atomic lattice, but a larger structure lik
Josephson junction array or a grain in a superconducto
Josephson junctions the relevant bosons can be Cooper
or fluxes, resulting in different interactions.
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s
e
the
of
es

s,
r-
in
re
-

n
l
ne

of
-
le
an
.
-

al
e
a
In
irs

As a starting point we first consider the case of on-s
repulsion only. In the (m,t) plane Mott-insulating regions
are surrounded by the superfluid phase.5 These phases ar
separated by two types of phase transitions. On the cons
density line the transition is driven by phase fluctuations a
is of the Berezinskii-Kosterlitz-Thouless~BKT! type. The
phase transition at the sides of the insulator, the gen
phase transition,5 is driven by density fluctuations.

The Mott-insulating phases have integer densities and
incompressible; at the generic phase transition to the c
pressible superfluid phase the density of the system cha
from commensurate to incommensurate. The character
energyEg

p(h) of this transition is the energy it costs to crea
a particle~p! or hole ~h! excitation in the system. To calcu
late this energy we use defect states6 with the density of the
Mott insulator plus one additional particle or hole. Since t
defect states and the insulator ground state have fixed de
ties, a change in the chemical potential byDm does not
change the states themselves, but shifts their energy
DmN, whereN is the total particle number. Taking into ac
count that the characteristic energy is zero at the phase
sition, this givesEg

p(h)(m,t)5um(t)c
p(h)2muzn, wheremc(t)

is the chemical potential at the phase transition and the c
cal exponentzn51.5

We use the infinite-size algorithm of the density-mat
renormalization group~DMRG! ~Ref. 7! with periodic
boundary conditions to determineEg

p(h) . While the maxi-
mum number of particles per site in the Bose-Hubbard mo
is n5`, it has to be cut off for practical calculations wit
the DMRG. A maximum occupation number ofn55 ~Ref.
8! turned out to be sufficient.

Since the two defect states, one with an additional p
ticle, one with an additional hole, are needed to calculate
energyEg

p(h) , they are used as additional target states in
DMRG. Systems of up to 76 sites are calculated, keep
128 states in each iteration. The chemical potentialmc

p(h)(t)
5uEg

p(h)(t)2m(t)u of the phase transition is calculated fo
various system sizes. The thermodynamic limit is found
extrapolating to infinite system size~Fig. 1!. Repeating this
calculation for varioust gives the phase boundaries.
R14 741 ©1998 The American Physical Society
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At the tips of the insulator lobes the phase transition
driven by phase fluctuations. The characteristic length of
transition is the correlation length

j25(
r

r 2G~r !Y (
r

G~r ! ~2!

of the correlation function

G~r !5^b†~0!b~r !& . ~3!

The corresponding energyEg is the energy gap between th
ground state and the first excited state with the same den
Eg;j2z with the critical dynamical exponentz51.

The correlation length in the thermodynamic limit can
found by extrapolating from finite systems:jL5j`1a/L
1b exp(2L/c), whereL is the system size anda, b, andc
are fitting constants. The exponential term is small (a/b
.2), with c'3; the results are not changed significantly
neglecting the exponential term. The phase transition is
the BKT type, where the correlation length diverges as

j;expS const

Atc2t
D . ~4!

One way to find the critical point is fitting Eq.~4! to the
calculated data.9–11 But by changing the fitting parameter
this function can go to zero arbitrarily slow, hence th
method is very sensible to numerical errors and the choic
data points, and we will not use it.

Instead we locate the BKT transition using the analogy
the superfluid phase to the Luttinger liquid.12 In the super-
fluid phase the correlation functionG decays algebraically:

GSF~r !}r 2K/2 . ~5!

The exponentsKc at the phase transitions are known fro
Luttinger liquid theory~Fig. 2!.13 At the BKT transition with
r51, K is expected to beKc51/2. An algebraic function is
fitted to the correlation functions calculated with DMRG f
different system sizes. Due to the periodic boundary con
tions the decay ofG is very close to algebraic even in sma
systems. The thermodynamic limit ofK is found by extrapo-

FIG. 1. The particle and hole excitation gaps plotted against
inverse system size. The straight lines are fitted to findmc in the
thermodynamic limit. The same scaling behavior has been foun
all cases~r51,t50.25,U51,V50.4!.
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lating K(L)5K2const/L. Since the decay ofGSF(r ) is very
close to Eq.~5!, the main source of errors inK is this ex-
trapolation from finite system sizes. We find the phase tr
sition at tc50.27760.01.

This is in good agreement withtc50.27560.005 found in
an exact diagonalization approach,9 and in qualitative agree
ment with the Bethe-Ansatz solutiontc

BA51/(2A3)'0.289
for the truncated model with a maximum ofn52 particles
per site.14 Three works find somewhat larger value
tc50.298,11 tc50.30460.002 ~Ref. 15! and t50.300
60.005.10 Early quantum Monte Carlo simulations resulte
in tc50.21560.01.16 The range of these results demo
strates that determining the location of the BKT transition
ill conditioned.

Figure 3 shows the phase diagram in the (m,t)-plane, in-
cluding the generic phase boundaries and the location of
BKT transition. Fort*0.225 we find that the lower phas

e

in

FIG. 2. K plotted againstt. Kc51/2 at tc50.27760.1 ~U51,
V50!.

FIG. 3. The phase diagram without nearest-neighbor interac
~MI: Mott-insulator with density one; SF: superfluid phase!. The
solid lines show a Pade analysis of 12th order strong coup
expansions,17 the boxes show quantum Monte Carlo data.16 The
circles are the DMRG results, the dashed lines indicate the
with integer density. The error bars in them direction are smaller
than the circles, the error bar in thet direction is the error of the
BKT transition ~U51,V50!.
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boundary is bending down. This means that the Mo
insulator phase is reentrant as a function oft, an unusual
feature that has not been observed before. It implies
increasingt, which corresponds to increasing the kinetic e
ergy, can lead to areentrancephase transition from the su
perfluid phase to the insulator phase.

In a study inspired by this work a high-order stron
coupling expansion17 was used to determine the phase d
gram. The phase boundaries found in that work are in ex
lent agreement with our DMRG results, demonstrating
high numerical accuracy that can be achieved with
DMRG. The strong coupling expansion study confirms
existence of the reentrant phase transition first found in
work.

One experimental realization of a one-dimensio
bosonic lattice system is provided by fluxes in a Josephs
junction array. In a recent experiment2 Mott-insulators with
flux densities 1/3, 1/2, 2/3,1 . . . . were found. In the Bose
Hubbard model insulators with these densities can only
pear in the presence of longer ranged interactions. A
step in understanding these longer ranged interaction
studying the effect of repulsion between nearest neighbo

In the presence of nearest-neighbor interaction a new
sulator phase appears at half integer densities. It is a cha
density wave phase~CDW! with a wavelength of two sites
and like the Mott insulator at integer density it has an ex
tation gap and is incompressible. The crystalline order
characterized by the nonzero structure factor

Sp5
1

N2(i j ~21! u i 2 j u^n̂i n̂ j& . ~6!

Sp in the thermodynamic limit is determined by extrapola
ing from DMRG calculations for finite systems. A maximu
particle number of four particles per site is chosen
r5 1

2 . Since the ground state and the first excited state in
CDW are degenerate in the thermodynamic limit, and cl
to degeneracy in finite systems, the first excited state is u
as an additional target state.Sp is found to scale like
Sp(L)5Sp1a/L1b exp(2c/L). The exponential term give
only a very small contribution (a/b.10), c is of the order
10–20.

In contrast to the transition from the Mott insulator to t
superfluid, which is governed by superfluid order only, t
transition from the CDW to the superfluid is governed
superfluid and crystalline order.

There are three possible scenarios for this transition:~a!
There is a direct phase transition—the vanishing of crys
line order and the appearance of superfluid order coinc
~b! There is an intermediate phase with simultaneous su
fluid and crystalline order, the so-called supersolid pha3

~c! There is an intermediatenormal phase with neither su
perfluid nor crystalline order.

In higher dimensional bosonic systems supersolids ex
but they have not been observed in one-dimensional sys
so far.18 Recently anormalphase~scenario c! was found in a
numerical study of the one-dimensional quantum-ph
model,4 which is the high-density limit of the Bose-Hubba
model. This raises the question whether such anormalphase
also exists in the Bose-Hubbard model.
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The correlation lengthj ~2! characterizing superfluid or
der diverges in the superfluid phase. If the structure factorSp

is also governed by this correlation length, there is a dir
phase transition from the CDW phase to the superfl
phase. In that case, close to the phase transi
Sp;jg/nF(j/L), whereF is a scaling function. Note tha
this functional form cannot be transformed to a power-l
behavior depending ont due to the BKT behavior ofj ~4!.
To verify the existence ofF at the CDW to superfluid tran
sition, we plotSp versusj ~Fig. 4!. We find Sp;j20.460.1,
which shows that there is a direct phase transition and
normal or supersolid phase.

The superfluid stiffness in the Luttinger liquid is alway
nonzero, even for largeK.5 It has been shown that fo
K.1 a single weak link or barrier19,20 becomes relevant
reducing the superfluid stiffness to zero by effectively c
ting the system in two parts. SinceK54 at the sides and
K52 at the tip of the CDW,13 this means that the CDW is
surrounded by a region withK.1. The normal phase found

FIG. 5. The phase diagram of the Bose-Hubbard model w
nearest-neighbor interaction~MI: Mott-insulator with density one;
CDW: charge-density wave with density one half; SF: sup
fluid phase!. The error bars in them direction are smaller than the
circles, the error bars in thet direction indicate the errors of the
BKT transitions~U51,V50.4!.

FIG. 4. Sp plotted againstj at the BKT transition of the charge
density wave phase~U51,V50.4!. The slope is 0.460.1.
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by Baltin and Wagenblast4 was observed in a quantum
Monte Carlo study at finite temperatures, where the ze
temperature phase diagram was extracted with finite-
scaling. Baltin and Wagenblast suggested that the nor
phase might be the region of the Luttinger liquid withK
.1. But since their calculations were for a system witho
impurities, which at incommensurate densities always ha
superfluid stiffness, they should not have observed an ef
caused by an impurity. A possible explanation of their res
is that thermal fluctuations might have a similar effect a
weak link. This is supported by the fact that Baltin a
Wagenblast could not determine the scaling function for
dependence of the superfluid stiffness on system size
temperature.

The onset of superfluidity is again determined by the
cay of the correlation functions. At the CDW the critic
exponent isKc

CDW52. The BKT transition is found a
(t/U)c

CDW50.11860.004. This is in agreement wit
tc'0.1 found with QMC.18 For the Mott insulator with den-
sity r51 the exponentK is found to change very slowly
close to the phase transition, causing a high error margi
our calculation. We find the critical valueKc51/2 at tc
'0.32560.05. This indicates that the critical point is shifte
ite
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t
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to higher ratios oft by increasingV. Within the numerical
accuracy the critical point may also be independent ofV.
This contradicts QMC results thattc is reduced if V is
increased.18 For V50.4 they foundtc'0.17.

Figure 5 shows the phase diagram of the Bose-Hubb
model with nearest-neighbor interaction in one dimensi
To our knowledge this is the first time this phase diagram
been calculated. The tips of the insulating regions are be
ing down towards smaller chemical potentials, which sho
the reentrant behavior already observed in the case with
nearest-neighbor interaction.

In conclusion, we have presented methods to determ
the generic as well as the BKT phase transitions of the Bo
Hubbard model with the DMRG. At the tips of the insulatin
regions we found a reentrant phase transition from the su
fluid phase to the insulator. Including nearest-neighbor in
actions we obtained the new phase diagram and dem
strated that there is nonormal or supersolid phase, but
direct phase transition from the CDW to the superflu
phase.
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