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Phases of the one-dimensional Bose-Hubbard model
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Physikalisches Institut der Universtt&8onn, D-53115 Bonn, Germany
(Received 26 August 1998

The zero-temperature phase diagram of the one-dimensional Bose-Hubbard model with nearest-neighbor
interaction is investigated using the density-matrix renormalization group. Reaworiyal phases without
long-range order have been conjectured between the charge-density wave phase and the superfluid phase in
one-dimensional bosonic systems without disorder. Our calculations demonstrate that there is no intermediate
phase in the one-dimensional Bose-Hubbard model but a simultaneous vanishing of crystalline order and
appearance of superfluid order. The complete phase diagrams with and without nearest-neighbor interaction are
obtained. Both phase diagrams show reentrance from the superfluid phase to the insulator phase.
[S0163-182608)50346-3

Quantum phase transitions in strongly correlated systems As a starting point we first consider the case of on-site
have attracted a lot of interest in recent years. Usually theepulsion only. In the 4,t) plane Mott-insulating regions
basic particles are electrons, but in some interesting cases thge surrounded by the superfluid phasehese phases are
relevant particles are not fermions but bosons. Examples dfeparated by two types of phase transitions. On the constant
experimental systems with superfluid and insulating phasegensity line the transition is driven by phase fluctuations and
are Cooper pairs in thin granular superconducting filred  is of the Berezinskii-Kosterlitz-Thoules®KT) type. The
Cooper pairs or fluxes in Josephson-junction arfayhile . phase transition at the sides of the insulator, the generic
in dimensions greater than one the existence of supers°’ol|dsphase transitioR,is driven by density fluctuations.

i.e., phases with simultaneous superfluid and crystalline or- The Mott-insulating phases have integer densities and are
; R [ﬁcompressible; at the generic phase transition to the com-
one dimension is less clear. Recently normal phases that a[)‘?essible superfluid phase the density of the system changes

neither crystalline nor superfluid have been found in a one; . e
) : ; . . from commensurate to incommensurate. The characteristic
dimensional model of Josephson-junction arfaysthe re-

gion where supersolids are found in higher dimensions. |r§nergyEg( ) of this transition is the energy it costs to create
this paper we will verify whether supersolids or normal @ particle(p) or hole (h) excitation in the system. To calcu-

phases exist in the more general Bose-Hubbard model in orf@te this energy we use defect statedth the density of the
dimension. Mott insulator plus one additional particle or hole. Since the
The Bose-Hubbard model contains the basic physics oflefect states and the insulator ground state have fixed densi-
interacting bosons on a lattice. It is a minimal bosonic manydies, a change in the chemical potential hy. does not
particle model that cannot be reduced to a single-particlehange the states themselves, but shifts their energy by
model. The bosons have repulsive interactions, and they cabuN, whereN is the total particle number. Taking into ac-
gain energy by hopping to neighboring sites on the latticecount that the characteristic energy is zero at the phase tran-
The Hamiltonian with on-site and nearest-neighbor interacsition, this givesEg(h)(,u,t)=|,u(t)§(h)—,u|z”, where u(t)
tions is is the chemical potential at the phase transition and the criti-
cal exponenzy=12°
Hgn=—t>, (bib;,1+bbl, ;) —> un, We use the infinite-size algorithm of the density-matrix
i i renormalization group(DMRG) (Ref. 7 with periodic
boundary conditions to determirg)"™ . While the maxi-
+ UZ ni(n;—1)/2+ VZ nini 1, 1) mum number of particles per site in the Bose-Hubbard model
! : is n=o, it has to be cut off for practical calculations with

whereb; are the annihilation operators of bosons on site the DMRG. A maximum occupation number b5 (Ref.

A, =b'b; the number of particles on sifet is the hopping 9 turned out to be sufficient. _ o

matrix elementU and V are on-site and nearest-neighbor . SiNCe the two defect states, one with an additional par-

repulsion, andy is the chemical potential. The energy scaleficle, one \{]VIth an additional hole, are needed to calculate the

is set by choosing) = 1. energyEg( ) they are used as a_dditional target states in t_he
The range of the interactions depends on the individuaPMRG. Systems of up to 76 sites are calculated, keeping

experimental situation. In general the lattice underlying thel28 states in each iteration. The chemical potentfl’(t)

system is not an atomic lattice, but a larger structure like a=|E§(h)(t)—,u(t)| of the phase transition is calculated for

Josephson junction array or a grain in a superconductor. Imarious system sizes. The thermodynamic limit is found by

Josephson junctions the relevant bosons can be Cooper pa@strapolating to infinite system siZ€ig. 1). Repeating this

or fluxes, resulting in different interactions. calculation for varioug gives the phase boundaries.

0163-1829/98/5@2)/147414)/$15.00 PRB 58 R14 741 ©1998 The American Physical Society



RAPID COMMUNICATIONS

R14 742 T. D. KUHNER AND H. MONIEN PRB 58

1-10 T T T T l T T T T l T T T T I T T =T T \ I T T T T I T T T T |

e )l 070 ~ ¢ 1
”"’
1.00 | - . - |
' ,/""“ 060 F I’
o "y 1 i \E ]

h K \
ko090 | %%@e% oL T ¥

———- fitted lines 0.50 T

0.80 | el T 0.40 |- \‘E \\\\\\ I .
0.70 Y T W N S T WA EN T N S W AT N T 0.30 | 1 1 1 1 | 1 1 1 1 ]
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1L t

FIG. 1. The particle and hole excitation gaps plotted against the FIG. 2. K plotted against. K.=1/2 att,=0.277+0.1 (U=1,
inverse system size. The straight lines are fitted to findn the  V=0).
thermodynamic limit. The same scaling behavior has been found in
all casesp=1t=0.25U=1V=0.4). lating K(L) =K —constL. Since the decay dfSf(r) is very
close to Eq.(5), the main source of errors i is this ex-

At the tips of the insulator lobes the phase transition istrapolation from finite system sizes. We find the phase tran-
driven by phase fluctuations. The characteristic length of thigition att,=0.277+0.01.

transition is the correlation length This is in good agreement wit=0.275+ 0.005 found in
an exact diagonalization approathnd in qualitative agree-
2=> rzl“(r)/ > T(r) (2)  ment with the Bethe-Ansatz solutiaff*=1/(2,/3)~0.289
' ' for the truncated model with a maximum pf2 particles
of the correlation function per site!* Three works find somewhat larger values
t.=0.2981! t.=0.304+0.002 (Ref. 15 and t=0.300
I'(r)=(b"(0)b(r)). (3 +0.005° Early quantum Monte Carlo simulations resulted

in t;=0.215-0.011 The range of these results demon-
trates that determining the location of the BKT transition is
Il conditioned.
Figure 3 shows the phase diagram in thet-plane, in-
cluding the generic phase boundaries and the location of the
BKT transition. Fort=0.225 we find that the lower phase

The corresponding enerdyj is the energy gap between the
ground state and the first excited state with the same densit
Eg~ &% with the critical dynamical exponeut=1.

The correlation length in the thermodynamic limit can be
found by extrapolating from finite systemg; =¢&.,+a/L
+b exp(~L/c), wherelL is the system size ana, b, andc
are fitting constants. The exponential term is smallb(

>2), with c~3; the results are not changed significantly by Ll N B R B B
neglecting the exponential term. The phase transition is of -
the BKT type, where the correlation length diverges as 08 | ]
[ SF
§~exp( const) @ I
Vt—t 06 ]
One way to find the critical point is fitting Eq4) to the " [ ]
calculated datd-!! But by changing the fitting parameters, 04 F ]
this function can go to zero arbitrarily slow, hence this - M 1
method is very sensible to numerical errors and the choice of I ]
data points, and we will not use it. 02 LR .
Instead we locate the BKT transition using the analogy of [ SF ]
the superfluid phase to the Luttinger liqdfdin the super- I | | |\\
. . H H . 0.0 1 i 1 1 1 1 i 1 1 1 1 1 1 i~
fluid phase the correlation functidn decays algebraically: 0.0 0.1 02 03
FSF(r)OcerIZ' (5) t

. FIG. 3. The phase diagram without nearest-neighbor interaction
The exponent& ; at the phase transitions are known from (MI:  Mott-insulator with density one; SF:  superfluid phasehe

Luttinger liquid theory(Fig. 2.** At the BKT trgnsmon_Wlth solid lines show a Pade analysis of 12th order strong coupling
p=1,Kis expected to b&.=1/2. An algebraic function is expansiond the boxes show quantum Monte Carlo dtaThe
fitted to the correlation functions calculated with DMRG for circles are the DMRG results, the dashed lines indicate the area
different system sizes. Due to the periodic boundary condiwith integer density. The error bars in thedirection are smaller
tions the decay of is very close to algebraic even in small than the circles, the error bar in thelirection is the error of the
systems. The thermodynamic limit Kfis found by extrapo- BKT transition (U=1V=0).
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boundary is bending down. This means that the Moit- 10" ey
insulator phase is reentrant as a functiontpfan unusual E ]
feature that has not been observed before. It implies that
increasingt, which corresponds to increasing the kinetic en- i o
ergy, can lead to aeentrancephase transition from the su- 107 600° ¢ 3
perfluid phase to the insulator phase. E Oooo ]
In a study inspired by this work a high-order strong- S - o0
coupling expansiolf was used to determine the phase dia- i o °
gram. The phase boundaries found in that work are in excel- 107 | o E
lent agreement with our DMRG results, demonstrating the o ]
high numerical accuracy that can be achieved with the
DMRG. The strong coupling expansion study confirms the . T
existence of the reentrant phase transition first found in this 10 107 107 107 107 10° 10
work. 1€
One experimental realization of a one-dimensional
bosonic lattice system is provided by fluxes in a Josephson- FIG. 4. S, plotted against at the BKT transition of the charge-
junction array. In a recent experimé@miott-insulators with ~ density wave phas@J=1V=0.4). The slope is 0.£0.1.
flux densities 1/3, 1/2, 2/3, ... .were found. In the Bose-
Hubbard model insulators with these densities can only ap- The correlation lengtl (2) characterizing superfluid or-
pear in the presence of longer ranged interactions. A firstler diverges in the superfluid phase. If the structure fe@tor
step in understanding these longer ranged interactions is also governed by this correlation length, there is a direct
studying the effect of repulsion between nearest neighborsphase transition from the CDW phase to the superfluid
In the presence of nearest-neighbor interaction a new inphase. In that case, close to the phase transition
sulator phase appears at half integer densities. It is a chargs; ~ £”"®(£/L), where® is a scaling function. Note that
density wave phas€CDW) with a wavelength of two sites, this functional form cannot be transformed to a power-law
and like the Mott insulator at integer density it has an exci-behavior depending ondue to the BKT behavior of (4).
tation gap and is incompressible. The crystalline order isTo verify the existence o at the CDW to superfluid tran-
characterized by the nonzero structure factor sition, we plotS, versus¢ (Fig. 4). We find S, ~ ¢ %404,
which shows that there is a direct phase transition and no
normal or supersolid phase.
s :iz (_1)\i—j|<ﬁiﬁ,>. (6) The superfluid stiffness in the Luttinger liquid is always
TN : nonzero, even for larg«.® It has been shown that for
K>1 a single weak link or barrié¥?° becomes relevant,

S, in the thermodynamic limit is determined by extrapolat- "eéducing the superfluid stiffness to zero by effectively cut-

ing from DMRG calculations for finite systems. A maximum ting the system in two parts. Sinde=4 at the sides and

particle number of four particles per site is chosen forK=2 at the tip of the CD\_/\}? this means that the CDW is

p=1. Since the ground state and the first excited state in thgurrounded by a region witk>1. The normal phase found

CDW are degenerate in the thermodynamic limit, and close

to degeneracy in finite systems, the first excited state is used SEEE R

as an additional target stat&, is found to scale like 16 - -

S,(L)=S_.+al/L+bexp(—c/L). The exponential term gives o

only a very small contributiong/b>10), c is of the order i AN T

10-20. 12 MI \,\ i
In contrast to the transition from the Mott insulator to the '

superfluid, which is governed by superfluid order only, the s ‘,,--—4«—-::;: .

transition from the CDW to the superfluid is governed by " e **\

superfluid and crystalline order. 08 ¥ =]
There are three possible scenarios for this transitian: “~ T

There is a direct phase transition—the vanishing of crystal- . SF

line order and the appearance of superfluid order coincide. 0.4 _CDWM =

(b) There is an intermediate phase with simultaneous super- o ~~—.

fluid and crystalline order, the so-called supersolid pHase. [ ,/" 1

(c) There is an intermediateormal phase with neither su- o0&l v o b b 1w

perfluid nor crystalline order. 0.00 0.10 0.20 0.30 0.40
In higher dimensional bosonic systems supersolids exist, t

but they have not been observed in one-dimensional systems g 5. The phase diagram of the Bose-Hubbard model with

so far'® Recently anormalphase(scenario twas found in @ nearest-neighbor interactidMl:  Mott-insulator with density one;

numerical study of the one-dimensional quantum-phas€pw: charge-density wave with density one half; SF: super-

model; which is the high-density limit of the Bose-Hubbard fluid phasg. The error bars in the: direction are smaller than the

model. This raises the question whether suctoanal phase circles, the error bars in thedirection indicate the errors of the

also exists in the Bose-Hubbard model. BKT transitions(U=1V=0.4).
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by Baltin and Wagenblabtwas observed in a quantum to higher ratios oft by increasingV. Within the numerical
Monte Carlo study at finite temperatures, where the zeroaccuracy the critical point may also be independent/of
temperature phase diagram was extracted with finite-siz&his contradicts QMC results that is reduced ifV is
scaling. Baltin and Wagenblast suggested that the normaicreased® For V=0.4 they found.~0.17.
phase might be the region of the Luttinger liquid with Figure 5 shows the phase diagram of the Bose-Hubbard
>1. But since their calculations were for a system withoutmodel with nearest-neighbor interaction in one dimension.
impurities, which at incommensurate densities always has 20 our knowledge this is the first time this phase diagram has
superfluid stiffness, they should not have observed an effedt€en calculated. The tips of the insulating regions are bend-
caused by an impurity. A possible explanation of their resuling down towards smaller chemical potentials, which shows
is that thermal fluctuations might have a similar effect as dhe reentrant behavior already observed in the case without
weak link. This is supported by the fact that Baltin and nearest-neighbor interaction. _
Wagenblast could not determine the scaling function for the N conclusion, we have presented methods to determine
dependence of the superfluid stiffness on system size arf€ generic as well as the BKT phase transitions of the Bose-
temperature. Hubbard model with the DMRG. At the tips of the insulating
The onset of superfluidity is again determined by the delegions we found a reentrant phase transition from the super-

cay of the correlation functions. At the CDW the critical fluid phase to the insulator. |nC|uding nearest-neighbor inter-
exponent isKSPW=2. The BKT transition is found at @actions we obtained the new phase diagram and demon-

(t/U)SPW=0.118+0.004. This is in agreement with strated that there is noormal or supersolid phase, but a
t ~0.1 found with Q'Mcis For the Mot insulator with den. dir€ct phase transition from the CDW to the superfluid
~0. :

sity p=1 the exponenK is found to change very slowly phase.

close to the phase transition, causing a high error margin in We would like to thank T. Giamarchi, A. J. Millis, R.
our calculation. We find the critical valuK.=1/2 att.  Noack, A. v. Otterlo, G. Schg H. Schulz, and S. R. White
~0.325-0.05. This indicates that the critical point is shifted for useful and interesting discussions.
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