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Phase separation in the two-dimensional Hubbard model:
A fixed-node quantum Monte Carlo study
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Fixed-node Green’s-function Monte Carlo calculations have been performed for very large 16316 two-
dimensional Hubbard lattices, large interaction strengthsU510,20, and 40, and many (15;20) densities
between empty and half-filling. The nodes were fixed by a simple Slater-Gutzwiller trial wave function. For
each value ofU we obtained a sequence of ground-state energies which is consistent with the possibility of a
phase separation close to half-filling, with a hole density in the hole-rich phase which is a decreasing function
of U. The energies suffer, however, from a fixed-node bias: more accurate nodes are needed to confirm this
picture. Our extensive numerical results and their test against size, shell, shape, and boundary-condition effects
also suggest that phase separation is quite a delicate issue, on which simulations based on smaller lattices than
considered here are unlikely to give reliable predictions.@S0163-1829~98!51746-8#
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Strongly correlated electrons and holes are expecte
play a key role in the high-Tc superconductors. Their pos
sible instability towards phase separation~PS!, initially be-
lieved to inhibit superconductivity, is attracting a lot of in
terest since a few different authors1–3 have pointed out tha
such a tendency may in fact be intimately related to the hi
Tc superconductivity. Long-range repulsive interactions m
turn the PS instability into an incommensurate char
density wave~ICDW! instability, and the very existence of
quantum critical point associated to it may be a crucial
gredient of the superconducting transition.4 PS and/or ICDW
instabilities are related to a substantial reduction of the
netic energy, which otherwise tends to stabilize uniform
distributed states; such a reduction is typical of strongly c
related electrons, both in real and model systems.

PS has been experimentally observed in La2CuO41d,5,6

where the oxygen ions can move: in the doping inter
0.01<d<0.06 the compound separates into a nearly stoich
metric antiferromagnetic phase and a superconduc
oxygen-rich phase. In generic compounds, where char
ions cannot move, the possibility of a macroscopic PS
spoiled by the long-range Coulomb repulsion, and sho
lead to an incommensurate CDW instability;7 here the iden-
tification of charge inhomogeneities with spoiled PS is le
straightforward.8 On the theoretical side, evidence for PS h
been suggested for various models of strongly correla
electrons, as thet-J model,9 the three-band Hubbard mode
the Hubbard-Holstein model and the Kondo model~see e.g.,
Ref. 4 and references therein!.
PRB 580163-1829/98/58~22!/14685~4!/$15.00
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Despite intensive studies, even for simple models ther
no general agreement on the PS boundary: for the very po
lar t-J model, PS is fully established only at largeJ, but at
small J ~which unfortunately happens to be the physica
relevant case! theoretical and numerical results are quite co
troversial. Emery, Kivelson, and Lin’s9 theory that PS occurs
at any value ofJ in the t-J model is confirmed by a recen
numerical study by Hellberg and Manousakis,10 but is in
contrast with Dagottoet al.’s3 exact numerical results on
small clusters, suggesting no tendency toward PS for b
the Hubbard model and thet-J model below a critical value
J,Jc;t, and with Shih, Chen, and Lee’s11 numerical re-
sults. We also mention the recent suggestion by Gang S12

according to which the Hubbard model does not show PS
any value ofU/t for any finite temperature, although it doe
not apply to ground-state properties.

PS is a thermodynamic instability associated with the v
lation, in a given density rangen1,n,n2, of the stability
conditionx215]2E/]n2.0, which requires the energy den
sity E of an infinite electronic system to be a convex functi
of the electron densityn. The system will therefore separa
into two subsystems with electron densitiesn1 and n2. For
the two-dimensional~2D! t-J and Hubbard models, PS,
any, is expected to occur in a density range close to h
filling ( n.1), and to yield a hole-rich phase with densi
n1,1 and a hole-free phase with densityn251.9 In a truly
infinite system such a PS would be associated with a van
ing inverse compressiblityx21 in the whole density range
R14 685 ©1998 The American Physical Society
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TABLE I. Ground-state energy per site~in units of the hopping parametert! for a 434 Hubbard lattice
and various values ofU. Ne is the number of electrons andn is the corresponding average density. VMC
variational Monte Carlo, this work; FNMC: fixed-node Green’s-function Monte Carlo, this work; CP
constrained-path Monte Carlo, Ref. 21; EXACT: exact diagonalization results, Ref. 20~see text!.

Size Ne n U VMC FNMC CPMC EXACT

434 10 0.625 4 21.211~2! 21.220~2! 21.2238~6! 21.2238
434 10 0.625 8 21.066~2! 21.086~2! 21.0925~7! 21.0944
434 14 0.875 8 20.681~2! 20.720~2! 20.728~3! 20.742
434 14 0.875 12 20.546~2! 20.603~2! 20.606~5! 20.628

16316 202 0.789 4 21.096~2! 21.107~5! 21.1193~3! 2
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n1,n,n2; in a finite systemx21 may even become nega
tive, because of surface effects. So for finite systems i
preferable to pinpoint the PS using a Maxwell’s construct
~originally suggested by Emery, Kivelson, and Lin,9 see also
below!. But even such a procedure can give reliable res
only for medium-large finite systems; really small syste
~for which most numerical results have been up to now av
able! can attain so few and coarse densities, and suffer f
so large finite-size errors, that their predictions on the
evant trends remains largely inconclusive.

Under these circumstances the availability of the fixe
node Green’s-function Monte Carlo~FNMC!, a powerful nu-
merical technique13 which allows the study of~previously
unfeasible! large lattice-fermion systems, provides us with
powerful tool to further investigate the Hubbard mod
Whether the 2D Hubbard Hamiltonian, a prototype for int
acting electrons with no long-range repulsion, shows any
stability towards PS, is a very interesting open question
numerical study may also shed some indirect light on t
related issues: thet-J model in the physical region of sma
J, and the adequacy of the one-band Hubbard Hamiltonia
catch an essential aspect of high-Tc superconductors.

To evaluate the ground-state energy of the Hubb
Hamiltonian

H52t (
^ i , j &s

~cis
† cj s1H.c.!1U(

i
ni↑ni↓ , ~1!

we thus implemented the FNMC method recently propo
for lattice fermions by van Bemmel and co-workers,13,14

which has been used by Boninsegni for frustrated Heis
berg systems15 and by Gunnarsson, Koch, and Martin f
orbitally-degenerate Hubbard models.16

The Green’s-function Monte Carlo, after a sufficient
long imaginary time, projects out the ground-state com
nent of any initial wave function; apart from transient es
mates, which for large systems appear to be hazardous u
the initial variational wave function is sufficiently close
the exact one, this method is therefore not directly usable
fermions in our Hubbard model~as well as any other mode
whose Green’s function is not positive everywhere!. The
FNMC13,14 replaces the true Hamiltonian by an effecti
Hamiltonian which confines the Monte Carlo random wa
within a single nodal region~a region of the configuration
space where the guiding wave function never changes s!,
and, in analogy with the continuum case,17,18 it provides an
upper bound for the true ground-state energy.14
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We also implemented the tecnique proposed in Ref.
which allows us to reproduce with a relatively small fixe
number ~100;200! of walkers equally accurate results a
those obtained by means of standard Monte Carlo runs
more than 2000 walkers. The variational wave functions
use to guide the random walks and to fix the nodes are
product of a Gutzwiller factor and two Slater determinants
single-particle, mean-field wave functions for up- and dow
spin electrons. The optimal Gutzwiller parameter and me
field wave functions~whose only parameter is the stagger
magnetization! were preliminarly obtained, for eachU and
density, by variational Monte Carlo~VMC! runs.

A few representative variational and FNMC energies
shown in Table I for the 434 Hubbbard lattice, for which
exact results20 are available. As expected, the VMC energy
always above the FNMC energy, which for these coupl
strengths is slightly~;3%! above the exact energy. For com
parison we show the constrained-path Monte Carlo~CPMC!
energies of Zhang, Carlson, and Gubernatis,21 which also
include a larger 16316 lattice~last row!. Especially at large
U’s our results appear of comparable quality as theirs. As
as the 434 results are concerned, we notice that forNe
510, which corresponds to a closed-shell configuration, b
FNMC and CPMC are much closer to the exact energy t
for Ne514, which corresponds to an open-shell configu
tion. This could be a serious problem when numerica
studying the behavior of the energy as a function of the d
sity; the results presented here fortunately show that, for
tices larger than 12312, the shell effects become almost i
relevant.

To study the energy as a function of the electron den
we have first tried out the less usual way of varying t
density suggested by Ref. 10 to avoid spurious Fermi-surf
shape effects~keep the number of electronsNe fixed while
the size of the underlying lattice is being varied!, but discov-
ered that either the number of electrons is really small~e.g.
Ne516), and then artificial changes in the convexity of t
curve may occur, or the system is large enough~e.g. 12312
lattices or larger!, and then it doesn’t matter how the densi
is being varied. So for our systematic study~many densities
and threeU values! we stick to a large 16316 lattice (Ns
5256 sites!, and vary the number of electronsNe to yield
electronic densitiesn5Ne /Ns ranging from emptyn50 to
half filling n51. In the first panel of Fig. 1 we show th
electronic ground-state energy per site, obtained by FN
runs as a function of the density.22 Energies are in units o
the hopping parametert throughout this paper; the statistic
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FIG. 1. The first panel, to the very left, shows the ground-state energy per site~in units of the hopping parametert! as a function of the
electronic density, for a 2D Hubbard lattice ofNs5163165256 sites withU510 ~lower!, 20 ~middle!, and 40~upper data!. Errors are
smaller than the marker size. Full markers correspond to closed shells and empty markers correspond to open shells. The das
correspond to two~analytically given! U50 results: the fully spin-polarized case~upper curve!, whose total energy per site is symmetr
with respect to quarter filling, and the unpolarized case~lower curve!, whose total energy per site is symmetric with respect to half filli
Triangles~corresponding to a smaller 12312 lattice andU540) and crosses (11A2311A2 lattice andU510) are shown for comparison
~see text!. The second, third, and fourth panel to the right contain plots ofe(x) vs x ~see text! for U510, 20, and 40, respectively. The da
markers have the same meaning as in the first panel; obviously at smallx the error bar associated toe(x), De(x)5@Deh(x)1Deh(x
50)#/x, becomes significant even if the statistical FNMC errorDeh(x) is tiny ~see text!.
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errors are smaller than the marker size, and thus are
visible here. The calculated points are shown as full mark
for closed shells, and as empty markers for open shells. F
Fig. 1 ~see caption! it appears that the open-shell error, si
nificant for a small 434 lattice~see Table I!, becomes of the
order of the statistical error~and thus negligible! for our
large lattices23.

At all densities our three sets of data forU510 ~lower!,
20 ~middle!, and 40~upper curve! are bracketed by the non
interacting unpolarized energy and the fully spin-polariz
energy ~both dashed in Fig. 1!, and display a smooth an
reasonable behavior. To evaluate the absolute accurac
our results, we can rely on two exact limits: the low-dens
(n.0) regime, where we expectE524n, and the half filled
case (n51), for which the strong-coupling expansion pr
vides the correct largeU behavior: to leading order int/U,
the model maps onto a Heisenberg model, whose grou
state energy has been evaluated with great accuracy.19,24 We
can also consider the next correction term 34.6t4/U3.25 At
low density our results are essentially exact; at half filli
our error is small (;3%) for U510 but~as already seen in
Table I! it tends to grow withU: ;9% for U520 and
;11% for U540. We have made sure~see markers othe
than dots in Fig. 1 and Ref. 22! that such an energy discrep
ancy is not due to finite-size, shape, open-shell, a
boundary-condition effects; as far as systematic errors
concerned, we are thus left with the fixed-node approxim
tion: as U grows, more flexible trial wave functions tha
adopted here are required to obtain accurate nodes.26

Keeping in mind the virtues and limitations of our n
merical study, we can now turn to PS in the Hubbard mod
It has been shown in Ref. 9 that the Maxwell construction
equivalent to study, as a function of the hole densityx51
2n, the quantitye(x)5@eh(x)2eH#/x, i.e., the energy pe
hole eh(x) measured relative to its value at half fillingeH
5eh(x50). For an infinite system, if the inverse compres
ibility x21 vanishes between some critical densitync,1 and
half filling n51, then for 0<x<xc the functione(x) is a
ot
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constant, and the fingerprint of a PS is thus a horizontal p
of e(x) below xc . For a finite system, instead, the PS fi
gerprint is a minimum ofe(x) at x5xc.

9 In some sense,e(x)
works like a magnifying lens of PS. It should be stressed t
in a consistent definition ofe(x) the half-filling energyeH

must be obtained aseh(x50) from the same calculation a
any othereh(xÞ0) ~in this work, from our FNMC!. If that is
not the case, thene(x) may tend to diverge nearx50, with
the danger of artificially creating, rather than magnifying, t
occurrence of PS. In the three right panels of Fig. 1 we fi
plots ofe(x) for U510, 20, and 40; these values, as well
the associated error bars, are obtained from those of the
panel~original FNMC energies and tiny error bars!. Despite
the error bars, a common trend is evident for all the cal
lated coupling strenghts:e(x) has a positive slope for larg
hole densities, far from half filling, but then it clearl
changes slope below some small critical densityxc . Such a
minimum in e(x) implies that, at least for the FNMC effec
tive Hamiltonian determined by our choice of wave functio
PS occurs belowx5xc.

27 Although a finer grid of hole den-
sities would be required to locate with high precision t
critical densityxc as a function ofU, we already see thatxc
decreases asU is increased; this qualitatively agrees with th
original predictions9 and with some previous calculations o
the t-J model at corresponding values ofJ54t2/U.10

In summary, our extensive FNMC numerical simulatio
of the Hubbard model for 16316 two-dimensional lattices
suggest PS forU@t. If confirmed by further fixed-node
simulations based on different nodes26 ~and possibly even
larger lattices27!, this result would imply that thet-J model
is also likely to show PS in the physically relevant regim
J,0.4, and that even a single-band Hubbard model is su
cient to reproduce this physical tendency of high-Tc super-
conductors.
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