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Fixed-node Green’s-function Monte Carlo calculations have been performed for very laxdes 1@/0-
dimensional Hubbard lattices, large interaction strengihs10,20, and 40, and many (#20) densities
between empty and half-filing. The nodes were fixed by a simple Slater-Gutzwiller trial wave function. For
each value ofJ we obtained a sequence of ground-state energies which is consistent with the possibility of a
phase separation close to half-filling, with a hole density in the hole-rich phase which is a decreasing function
of U. The energies suffer, however, from a fixed-node bias: more accurate nodes are needed to confirm this
picture. Our extensive numerical results and their test against size, shell, shape, and boundary-condition effects
also suggest that phase separation is quite a delicate issue, on which simulations based on smaller lattices than
considered here are unlikely to give reliable predictid®0163-18208)51746-§

Strongly correlated electrons and holes are expected to Despite intensive studies, even for simple models there is
play a key role in the high-. superconductors. Their pos- no general agreement on the PS boundary: for the very popu-
sible instability towards phase separati@S, initially be-  lar t-J model, PS is fully established only at largebut at
lieved to inhibit superconductivity, is attracting a lot of in- small J (which unfortunately happens to be the physically
terest since a few different author$ have pointed out that relevant casetheoretical and numerical results are quite con-
such a tendency may in fact be intimately related to the hightroversial. Emery, Kivelson, and Lir’sheory that PS occurs
T, superconductivity. Long-range repulsive interactions maygt any value ofJ in the t-J model is confirmed by a recent
turn the PS instability into an incommensurate chargeyn,merical study by Hellberg and Manousalisbut is in
density wave(ICDW) instability, and the very existence of @ ¢qntrast with Dagotteet al’s® exact numerical results on

guantum critical point associated to it may be a crucial in'small clusters. su :

. . . , suggesting no tendency toward PS for both
gredient of the superconducting transitibRS and/or ICDW the Hubbard model and theJ model below a critical value
instabilities are related to a substantial reduction of the kij<3 —t and with Shih. Chen. and Ledsnumerical re-
netic energy, which otherwise tends to stabilize uniformly ¢ X '

distributed states; such a reduction is typical of strongly corSults. We also mention the recent suggestion by Gantf Su,

related electrons, both in real and model systems. according to which the Hubbard model does not show PS at
PS has been experimentally observed in@a0, , 5% any value ofU/t for any finite temperature, although it does
where the oxygen ions can move: in the doping intervaf®t @PPly to ground-state properties. _ _ _
0.01=5<0.06 the compound separates into a nearly stoichio- S i & thermodynamic instability associated with the vio-
metric antiferromagnetic phase and a superconductinéftion, in a given density range;<<n<n,, of the stability
oxygen-rich phase. In generic compounds, where chargegPnditiony™*=g%¢/9n*>0, which requires the energy den-
ions cannot move, the possibility of a macroscopic PS issity € of an infinite electronic system to be a convex function
spoiled by the long-range Coulomb repulsion, and shouldf the electron density. The system will therefore separate
lead to an incommensurate CDW instabilityere the iden- into two subsystems with electron densitiesandn,. For
tification of charge inhomogeneities with spoiled PS is lesghe two-dimensional2D) t-J and Hubbard models, PS, if
straightforward® On the theoretical side, evidence for PS hasany, is expected to occur in a density range close to half
been suggested for various models of strongly correlatefilling (n=1), and to yield a hole-rich phase with density
electrons, as the-J model? the three-band Hubbard model, n;<1 and a hole-free phase with density=1.° In a truly
the Hubbard-Holstein model and the Kondo mo@&le e.g., infinite system such a PS would be associated with a vanish-
Ref. 4 and references thergin ing inverse compressiblity ! in the whole density range
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TABLE I. Ground-state energy per siten units of the hopping parametérfor a 4<4 Hubbard lattice
and various values df). N, is the number of electrons andis the corresponding average density. VMC:
variational Monte Carlo, this work; FNMC: fixed-node Green’s-function Monte Carlo, this work; CPMC:
constrained-path Monte Carlo, Ref. 21; EXACT: exact diagonalization results, RéeBaexkt

Size N, n U VMC FNMC CPMC EXACT
4x4 10 0.625 4 —-1.21%2) -1.2202) —1.22386) —-1.2238
4x4 10 0.625 8 —1.0662) —1.0862) —1.09257) —1.0944
4x4 14 0.875 8 —0.6812) -0.7202) —0.7283) -0.742
4x4 14 0.875 12 —0.5442) —0.6032) —0.6065) -0.628
16X 16 202 0.789 4  —1.0962) —1.1075) —1.11933) -

n;<n<n,; in a finite systemy ! may even become nega- We also implemented the tecnique proposed in Ref. 19,
tive, because of surface effects. So for finite systems it isvhich allows us to reproduce with a relatively small fixed
preferable to pinpoint the PS using a Maxwell's constructionnumber (100~200 of walkers equally accurate results as
(originally suggested by Emery, Kivelson, and Pisge also  those obtained by means of standard Monte Carlo runs of
below). But even such a procedure can give reliable resultgnore than 2000 walkers. The variational wave functions we
only for medium-large finite systems; really small systemsyse to guide the random walks and to fix the nodes are the
(for which most numerical results have been up to now availproduct of a Gutzwiller factor and two Slater determinants of
ablg can attain so few and coarse densities, and suffer frongjngje-particle, mean-field wave functions for up- and down-
so large finite-size errors, that their predictions on the re spin electrons. The optimal Gutzwiller parameter and mean-

e e oty o r. 163 Yave ntonscse orypaameter s h staggrc
; ‘magnetization were preliminarl ined, for n
node Green’s-function Monte CarfleNMC), a powerful nu- agnetizatioh were pre arly obtained, for eadd and

merical techniqu¥ which allows the study ofpreviously density, by varlatlona_u Mont_e _CarIO/MC) runs. .
. . . ) ; A few representative variational and FNMC energies are
unfeasiblg large lattice-fermion systems, provides us with a

powerful tool to further investigate the Hubbard model.s’hown In 'Il'éi)ble ! for_lthbel Xi Hubbbar(c:lj Iz?]ttlc\?f\/lfgr Wh'Ch.
Whether the 2D Hubbard Hamiltonian, a prototype for inter-EXact results are available. As expected, the energy 1S

acting electrons with no long-range repulsion, shows any in2/ways above the FNMC energy, which for these coupling
stability towards PS, is a very interesting open question. AStrengths is slightly~3%) above the exact energy. For com-
numerical study may also shed some indirect light on twgP@rison we show the constrained-path Monte C4IBMC)
related issues: theJ model in the physical region of small €nergies of Zhang, Carlson, and Guberndtishich also

J, and the adequacy of the one-band Hubbard Hamiltonian tficlude a larger 1616 lattice(last row. Especially at large
catch an essential aspect of hi§ip-superconductors. U’s our results appear of comparable quality as theirs. As far

To evaluate the ground-state energy of the Hubbar@S the 44 results are concerned, we notice that fé
Hamiltonian =10, which corresponds to a closed-shell configuration, both

FNMC and CPMC are much closer to the exact energy than
for N¢=14, which corresponds to an open-shell configura-
H=—t > (Ci‘rUCJ_GJr H.c)+UD NNy (1)  tion. This could be a serious problem when numerically
(.o i studying the behavior of the energy as a function of the den-
sity; the results presented here fortunately show that, for lat-
we thus implemented the FNMC method recently proposedices larger than 1212, the shell effects become almost ir-
for lattice fermions by van Bemmel and co-workéts?  relevant.
which has been used by Boninsegni for frustrated Heisen- To study the energy as a function of the electron density
berg system’S and by Gunnarsson, Koch, and Martin for we have first tried out the less usual way of varying the
orbitally-degenerate Hubbard modéfs. density suggested by Ref. 10 to avoid spurious Fermi-surface
The Green’s-function Monte Carlo, after a sufficiently shape effectgkeep the number of electromé, fixed while
long imaginary time, projects out the ground-state compothe size of the underlying lattice is being vanighlut discov-
nent of any initial wave function; apart from transient esti- ered that either the number of electrons is really srtead.
mates, which for large systems appear to be hazardous unleg=16), and then artificial changes in the convexity of the
the initial variational wave function is sufficiently close to curve may occur, or the system is large enolgly. 12<12
the exact one, this method is therefore not directly usable folattices or larger, and then it doesn’t matter how the density
fermions in our Hubbard modéhs well as any other model is being varied. So for our systematic stugiyany densities
whose Green’s function is not positive everywherghe and threeU valueg we stick to a large 1816 lattice (g
FNMC®4 replaces the true Hamiltonian by an effective =256 siteg, and vary the number of electromg, to yield
Hamiltonian which confines the Monte Carlo random walkelectronic densitiesi=Ng/Ng ranging from emptyn=0 to
within a single nodal regioria region of the configuration half filling n=1. In the first panel of Fig. 1 we show the
space where the guiding wave function never changes,signelectronic ground-state energy per site, obtained by FNMC
and, in analogy with the continuum ca<eit provides an  runs as a function of the density Energies are in units of
upper bound for the true ground-state enefty. the hopping parametérthroughout this paper; the statistical
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FIG. 1. The first panel, to the very left, shows the ground-state energy peinsitaits of the hopping parametéras a function of the
electronic density, for a 2D Hubbard lattice Nf= 16X 16=256 sites withU =10 (lower), 20 (middle), and 40(upper data Errors are
smaller than the marker size. Full markers correspond to closed shells and empty markers correspond to open shells. The dashed curves
correspond to twganalytically given U=0 results: the fully spin-polarized cagepper curvg whose total energy per site is symmetric
with respect to quarter filling, and the unpolarized cdswer curvg, whose total energy per site is symmetric with respect to half filling.
Triangles(corresponding to a smaller ¥A2 lattice andJ =40) and crosses (12X 11,2 lattice andU = 10) are shown for comparison
(see text The second, third, and fourth panel to the right contain ploe(rf vs x (see text for U= 10, 20, and 40, respectively. The data
markers have the same meaning as in the first panel; obviously at srtt@l error bar associated &(x), Ae(x) =[Ae,(X)+Aey(x
=0)]/x, becomes significant even if the statistical FNMC euhag;,(X) is tiny (see text

errors are smaller than the marker size, and thus are nabnstant, and the fingerprint of a PS is thus a horizontal plot
visible here. The calculated points are shown as full markersf e(x) below x;. For a finite system, instead, the PS fin-
for closed shells, and as empty markers for open shells. Fromerprint is a minimum o&(x) atx=x..° In some sense(x)
Fig. 1 (see captiohit appears that the open-shell error, sig- works like a magnifying lens of PS. It should be stressed that
nificant for a small &4 lattice (see Table), becomes of the in a consistent definition oé(x) the half-filling energyey
order of the statistical errofand thus negligiblefor our  must be obtained as,(x=0) from the same calculation as
large lattice$’. any othere,(x+0) (in this work, from our FNMG. If that is

At all densities our three sets of data 10r=10 (lower), ot the case, thea(x) may tend to diverge near=0, with

20 (middle), and 40(upper curvgare bracketed by the non- e ganger of artificially creating, rather than magnifying, the
interacting unpolarized energy and the fully spin-polarized

f PS. In the th ight Is of Fig. 1 find
energy (both dashed in Fig.)1 and display a smooth and OCCUITence o i “he ree right paneis o Fig. -~ we fin

reasonable behavior. To evaluate the absolute accurac ots ofe(x) for U=10, 20, and 40; these values, as well as
) Lo Y e associated error bars, are obtained from those of the first
our results, we can rely on two exact limits: the low-density

(n=0) regime, where we expeét= —4n, and the half filled panel(original FNMC energies and tiny error bar®espite
case i=1) fér which the strong-couf)ling expansion pro- the error bars, a common trend is evident for all the calcu-
vides the cé)rrect larg&) behavior: to leading order ityU, lated coupling strenght(x) has a positive slope for large

the model maps onto a Heisenberg model, whose groun&‘-O'e densities, far from half filling, but then it clearly

state energy has been evaluated with great accdfééyve changes slope below some small critical density Such a
can also consider the next correction term 8%183.2> At~ Minimum ine(x) implies that, at least for the FNMC effec-

low density our results are essentially exact; at half fillingtive Hamiltonian determined by our choice of wave function,

our error is small £3%) for U=10 but(as already seen in PS occurs below=x..>” Although a finer grid of hole den-
Table | it tends to grow withU: ~9% for U=20 and Sities would be required to locate with high precision the
~11% for U=40. We have made Su[(eee markers other critical denSityXC as a function olU, we already see thxc
than dots in Fig. 1 and Ref. 22hat such an energy discrep- decreases ad is increased; this qualitatively agrees with the
ancy is not due to finite-size, Shape’ Open-she”, and)riginal pTEdiCtiong and with some preViOUS calculations on
boundary-condition effects; as far as systematic errors are t-J model at corresponding values &# 4t%/U.*°
concerned, we are thus left with the fixed-node approxima- In summary, our extensive FNMC numerical simulations
tion: as U grows, more flexible trial wave functions than of the Hubbard model for 1816 two-dimensional lattices
adopted here are required to obtain accurate ntfdes. suggest PS folu>t. If confirmed by further fixed-node
Keeping in mind the virtues and limitations of our nu- Simulations based on different nodesand possibly even
merical study, we can now turn to PS in the Hubbard modellarger latticed"), this result would imply that the-J model
It has been shown in Ref. 9 that the Maxwell construction igS also likely to show PS in the physically relevant regime
equivalent to study, as a function of the hole densityl =~ J<0.4, and that even a single-band Hubbard model is suffi-
—n, the quantitye(x) =[e(x) —ey]/x, i.e., the energy per cient to reproduce this physical tendency of highsuper-
hole e,(x) measured relative to its value at half fillirey, conductors.
=ge,(x=0). For an infinite system, if the inverse compress-
ibility x~* vanishes between some critical density<1 and We thank M. Boninsegni, S. Sorella, O. Gunnarsson, F.
half filling n=1, then for Gsx<x,; the functione(x) is a Becca, C. Lavalle, M. Grilli, and C. Castellani for useful
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