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Transport through quantum dots: A supersymmetry approach
to transmission eigenvalue statistics
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We study quantum transport through ballistic cavities coupled to two electron reservoirs by point contacts.
We develop a powerful method, based on supersymmetry, to calculate exactly transmission eigenvalue statis-
tics in the presence of tunnel barriers and for a small number of open scattering channels. We calculate the
transmission eigenvalue density for ballistic point contacts and find it to be consistent with a distribution of
transmission eigenvalues given by the Jacobi ensemble from random-matrix theory. We also calculate explic-
itly the transmission eigenvalue density for quantum dots with tunneling point contacts.
[S0163-18298)51044-2

Modern submicrometer electron beam lithography hagion entropy. In quantum dots the ergodic timg, plays the
been used to manufacture devices in which phase-cohererdle of this equilibration time and thus the replacement of the
electrons can travel ballistically at low temperature. One ofHamiltonian of the system by a random matrix, with the
such devices is a quantum dot, which consists of a conductame universal symmetries, is justified on time scales
ing island, spatially conflneq by elect_rostatlc g_ates, and cons. Terg- A rigorous microscopic proof of the validity of
nected to electron reservoirs by point contdcfsA great  random-matrix theory on such time scales for disordered me-
deal of the mjterest in such systems stems from the remarlia"ic grains has been put forward by EfetbExtensions of
able connection between quantum chaos and MesOSCoRite zero-dimensional supersymmetric nonlineanodel in-

transport. Several experiments and numerical simulationﬁoduced in Ref. 8 have been used in connection with the
have to date produced convincing evidence that transport % )

ballistic auantum dots can be understood by USING conce roblem of chaotic scattering. Such extensions have been
4 y using cep articularly successful in describing quantum transport in
and models from the theory of quantum chaotic scattering.

-12
Motivated by these results, the first theoretical efforts toquaAnturll: dOtti‘ i i £ studvi haoti tteri
account for transport characteristics in ballistic quantum dots h altogether ditferent way ot studying chaotic scattering

have made use of semiclassical metfiasn to those of the N duantum dots is to use the maximum-entropy principle to
fairly successful periodic orbit theory of closed chaotic sys-oPtain directly the distribution of the&s-matrix elements,

tems. More recently, other approaches such as randorvithout any reference to an underlying Hamiltonian. This
matrix theory and Efetov's supersymmeft§ have been has been put forward in Ref. 13. It was demonstrated that in

used to describe transport in quantum dots in various rechaotic scattering transmission eigenvalues play a role simi-
gimes. lar to that of the energy eigenvalues in closed chaotic sys-

In this work, we describe a systematic nonperturbativd€ms. It was shown that the joint-distribution of transmission
method for studying certain transport functions in ballistic €igenvalues exhibits level repulsion and is completely deter-
quantum dots. The method is based on a known combinatiofined by universal symmetries of the system. The great ad-
of random-matrix theory with supersymmetry. Specifically, vantage of this approach is that, as a consequence of the
we construct a map of the density of eigenvaluesttdf Landg_uer—Bttiker scattering theory, transmission eigenvalue
wheret is the transmission matrix, onto a supersymmetricdenS't'eS and correlation functions can be used to evaluate
nonlinearo model. We thus calculate exactly the density of averages and correlators of several observables. The conduc-
these transmission eigenvalues for systems with broken timdance, for instance is simpl¢=Go=_,7,, wherer, are
reversal symmetry, with a small number of scattering chanthe transmission eigenvalue, is the number of scattering
nels, and in the presence of tunnel barriers. Extensions of o@hannels an,= 2e*/h. Many other useful observables can
method to systems with time-reversal symmetry and/or spinbe written in the general ford=3)_,a(r,). This approach
orbit scattering are straightforward. has been successful in describing some important particular

The random-matrix theory that we shall be using buildscases, such &a8) ballistic point contacts, where orthogonal
on a phenomenological maximum-entropy principle, whichpolynomial methods can be use(i,) single mode leads,
applies whenever the dynamics of the system is sufficientlywhere transmission eigenvalue correlations vanish, (&nd
complex for the existence of an intrinsic equilibration time semiclassical limit, wher&>1 and perturbation theory ap-
scale beyond which most microscopic details become irrelplies. Unfortunately not much is known about the transmis-
evant. In this situation, the presence of certain universal synsion eigenvalue density and correlation functions in more
metries are sufficient to establish a complete statistical degeneral situations, such as quantum dots with tunnel barriers
scription of the system’s observables by means of amnd a small number of scattering channels. The main reason
appropriate distribution function that maximizes the informa-for this state of affairs seems to be the lack of a systematic

0163-1829/98/5@0)/133794)/$15.00 PRB 58 R13 379 ©1998 The American Physical Society



RAPID COMMUNICATIONS

R13 380 J. E. F. ARAUWIO AND A. M. S. MACEDO PRB 58

nonperturbative approach to calculate them. This situation isvhere
rather unsatisfactory since many relevant experiments are
performed under these more general conditions. In this work h(z)= HZ(P)) —<tr( tt’ )> )
we present such a method. g o 1-ztt') /-
Our model system for the quantum dot consists of a bal- E
listic cavity coupled by nonideal point contacts to two semi-We remark that a similar generating function has been used
infinite perfectly conducting leads. Following the approachin Refs. 15 and 16 for studying a different system.
of Ref. 14, we write the scattering matrix of the system as  Wwe proceed by representing the averageZ(P) as an
_ Lt g integral over a supermatrix fielat
S=1-27iW'D™ "W, 1)

in which D=Eg—H+i#WW'+i0", E¢ is the Fermi en- <Z(p)>:J do exp(L(P,a)), (8)
ergy, H is a complex Hermitian random matrix, aid is a

nonrandomM X (N1 +N,) rectangular matrix describing the \,nere

coupling between th#&! states inside the dot and the modes
in the two leads. The structure &V is

M

L(P,0)=— — Stro®—Str INEg+im(WWH®L
2

(W1)

(W)

where W, and W, describe the coupling to leads 1 and 2, with A denoting the mean energy-level spacing in the cavity.
respectively, antN; andN, are the number of modes in each The integration measuréo in Eq. (8) is the usual flat Be-
lead. It is convenient to reduce the number of coupling pafezin measure of supermathemati€3he great advantage of

rameters by defining transmission coefficient§’=1  this supersymmetry representation is that sifi¢@)=1, we
— () anl? @and T®=1—|(r"),4/?, wherer andr’ are ran- ~€an circumvent the need to use the replica trick, which, as

n:1,2,. - !Nl
n=N1+l,...,Nl+N2, +\]_MO'A/7T),

(W) o= i

pn

dom reflection matrices defined by the identity shown in Ref. 18, fails to describe the nonperturbative re-
gime of this system. In the limit oM —oo the massive lon-
rot’ gitudinal components of can be integrated out and we are
S= ( t r’) ) 2 left with massless transverse fiel@sthat define a manifold

of saddle pointga coset spageThe final result can be writ-
and by assuming the orthogonality conditiongvw,  ten as the coset integral
=MX, WIW,=MY, WIW,=0=W}W,;, where X
=diagf;, . . . ’XNl) andY=diagfy, . . . ,yNz). <Z(p)>:f DQZp(Q),
In the usual supersymmetry approach the next step would Q?*-1
be to use the Landauer theory and write observables, such g§hereQ is a 4x 4 supermatrix and
the conductanc& = Gtr(tt"), in terms of the random ele-
ments of theS matrix. After an appropriate field-theoretic Ny N2
representation of the product of elements of wmatrix is  Zp(Q)=[] Sdet(1+8YQP) [ Sdet(1+82QL).
constructed, a mapping onto a supersymmetric nonlieear n=1 m=1
model follows by takingVl — . _The parameterg!)) (j=1,2) are related to the transmission
fo the censty of ranemission eigonvalues. Consider e ot OSTIeent ViaT) =450I(1.+ A0)7.
' Since our system has broken time-reversal symmetry

lowing generating function: progress can be made by introducing Efetov’s coordirtates,

Z(P)=Sdet{(D+J) 3) in terms of which the explicit form of the integration mea-
sure reads
=exg —tr In(1—pytth)+tr In(1—wetth], (4) N
DQ=— ——— % de;deedn* dyyd b d 9
where D=diagD,D,D" DY), J=ix(W,W)He(P-L), L (N1—Ng)2 - PE oL B2 802
=diag(1,1-1,—1) and
where Ish<wo, —1<)\y<1, O0<¢q,po<2w, and
1-2v —2iJv(1—v) 7y ,m1, 75,1 are Grassmanrfanticommuting variables.
P= , 5 i i 'S i
NTEE] 2p—1 (5)  According to Zirnbauer’s integral theoretfthere are two

kinds of contributions t¢Z(P)) in these coordinates, so that

in which v=diag(v;,v). The operator Sdet above stands for We may write(Z(P))=(Z(P))s+(Z(P))max. The first term
the superdeterminafitve use the1,2}-block notation of Ref. is due to an anomaly of the Berezin integral in Efetov’s

14). The density of transmission eigenvalues, which by deficoordinates and the second term is a contribution from the
nition is the average(7)=(Z,8(7— 7)), can be generated coefficient of the term with a maximum number of Grass-

from Z(P) as follows: mann variables. Inserting this result into K@) we get

® 1 K(N1,No;
p(r):—% Im{h[1/(7+i0")]}, (6) h(2)=hs(2)—f1 dklfldhoﬁ, (10
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wherehy(z) = g?i 1Tf11)/(1—21(nl)) and We have found strong eviden@eut no formal proof that
this formula forh(z) is, in fact, valid for arbitraryN,; and
N2 MCED N,. One such evidence is the exact relation between the
k()\l,)\o;z):g()\l,)\o;z)ﬂ 'y(z)—-i-)\ (11 average  conductance  and h(z2): (G)=Ggh(0)
n=1 n 1

=GoN4N,/(N;+N,), which is correct for allN; andN,.
Other evidence comes from results of similar general validity
that can be obtained from the coefficients of the Taylor ex-
pansion ofh(z) aboutz=0.

The density of transmission eigenvalue can be obtained
using Eq(6). We find for 1=N;, N,<11 the remarkably
compact result

in which y'=2/T9—1 (j=1,2). It remains to specify
g(N1,N\g;2), which is in fact the hardest part of the calcula-
tions in this approach. The technical procedure is straightfor
ward, albeit quite cumbersome. It consists of unwrapping th%
Grassmann structure &p(Q) and collecting the term con- y
taining the maximum number of anticommuting variables,

i.e., the one proportional t@; 7,75 7,. The huge amount -1
of terms makes analytical progress only possible with. com- p(7)= Trz (2n+r+1){P§{'°)(1—27)}2, (12)
puter algebra. The computer program we used for this pur- n=0

pose has been written in the MapleV language with the help
of some optimized routiné% for Grassmann variables ma- Wherer =|N;—N,|, s=min{N; N}, andP{*”(x) is the Ja-
nipulations. cobi polynomial. Just as before, we belietathough we
Although the formulas obtained thus far are exact andhave no formal progfthat Eq.(12) is valid for arbitraryN;
completely general, we shall hereafter give explicit expresand N,. This result is consistent with the random-matrix
sions only in the extreme quantum limit, which means tha@pproach of Ref. 13, which predicts for the same system a
we assumeN; and N, to be small integers. The physical joint distribution of transmission eigenvalues given by the
meaning of this limit can be easily understood by considerJacobi ensemble, from which E¢L2) can be derived. We
ing the time scales of the prob|em: the ergodic tm@% for have thus found independent evidence for the application of
a wavepacket to become uniformly spread throughout théhe Jacobi ensemble in this problem.
available phase space, the decay timefor emission of Using Eq.(12) we can calculate the average of several
electrons from the dot, and the Heisenberg time Quan-  Useful observables, such as the conductance
tum dots that in the classical limit have nonintegrable chaotic
dynamics satisfy the conditiory,g< 74,7 . The dimensio_n- (GIGg) - flp(f) e NlNz,
less conductance of the dgt;- 7 / 74, can be used to define 0 N
some regimes of interedi) the semiclassical limitd>1);
(i) the extreme quantum limitg= 1), which is considered whereN=N;+ N, and the shot noise power
in this work, and(iii) the Coulomb blockade regimeg (
<1). 1 (N;Ny)?
We remark that while the semiclassical and the Coulomb (PIPo)= jo p(7)7(1-7)dr= N(NZ—1)’
blockade regimes have been studied in a great nhumber of
theoretical works and an essentially complete understandinig which Po=2¢e|V|G, (V is the applied voltage
has emerged, much less is known about the extreme quantum This simple example illustrates the power of our approach
limit. to get exact and explicit results for quantities that so far have
For the sake of simplicity, we shall present explicit resultsonly been accessible by combined maximum entropy-
only for some interesting particular values of the couplingorthogonal polynomials methods. We shall next consider
parameters. systems for which such methods may prove inadequate.
(i) We consider first a quantum dot with ballistic point (i) Let us assume that there is a tunnel barrier in one of
contacts, which means that the transmission coefficients hawhe contacts between the quantum dot and the leads. For
maximum value, i.e.T{V=1=T@. We gethy(z)=N;/(1  simplicity we setT¥=1 andT®=2/(1+y). We still get

—z) and hs(z2)=N;/(1—2), but
K(Apho:z)  2NT(1+No)N2Fy —1(No;2)Fy (N132) k(v hoiz)  2NI(y+No)N2Fy —1(No;2)Fy (A1;2)
(A\1—No) (1+AN2(1—2z+ N )27t ’ (A1—No) - (y+A)N2(1—2z+\)2N1t1 '
where with F,(\,z) defined as before.

Since the explicit expressions fgs(r) become very
clumsy asN; and N, increase, we shall present here only

n

Fa(A;2)= X CIVPL(N)Pp(1-22),

=0 two particular cases. First, we 9¢{=1=N, and find
Pn(x) are the Legendre polynomials and the numerical co- 2y+(1—y)7
efficients CSQ) are determined by the binomial expansion P1(T)=4W-

(1+x)"=="_,cMp,_(x). The above formula has been ob-

tained forN, arbitrary and for &=N;=<7, which is sufficient It is interesting to note that for one scattering channel the
for our purpose since it covers well the extreme quantunconductance distribution can be obtained by using the iden-
limit. tity P(G)=p1(G/Gy)/Gy. ConsideringN;=2=N,, we get
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apta;T+a,ritagr+a,rttasr
2 3 4 pa(7)= 161 2217192 ,
( ) 64a0+a17'+a27' +a37' +a4’7' q +(7’ )T]
T)= ; . .
P2 [2+(y-D)7]° in which ay=64y?, a;=—16(1+8%+3%%), a,=24(2

+392+3%%), az;=(y?—1)(51+43y*—79y*+99°), a,
=2(y*-1)%(y*+1)(3y*+11), and as=3(y*—1)3(39?
1)

where ap=4y, a;=2—8y—6%?, a,=3(2y—1)(y+1)?
az=(1—-)(2y+1)(3y+1), anda,= y(y—1)>2.

As a nontrivial check of i)ur results, we chaznge the rolesjL In.summary, we have proposed a powerful method based
of the contacts by setting{=2/(1+y) andT{?=1.On ¢, supersymmetry for calculating exactly the transmission
physical grounds, one would expect to get the same answergygenvalue density of quantum dots in the nonperturbative,
and indeed we recover this by performing very different andhng experimentally relevant, limit of small number of scat-
apparently unrelated calculations. tering channels. As a by-product we establish a direct link

(i) As a final example, consider a quantum dot connecte@arveen the zero-dimensional nonlinearmodel and the
to the leads via two tunnel barriers, so tfP’=1/(1+y)  maximum entropy S-matrix theory. Extensions of our
=T® . Just as before we shall concentrate on small particumethod to other symmetry classes and higher order correla-
lar values ofN; andN,. For N;=1=N, we find tion functions are straightforwarlbeit much more labori-

ous and will be the subject of future works.
(Y*—1)°72+(y*— 1)1+ 4y
pa(7)= A[1+(y>—1) 1] ’ This work was partially supported by CNPqg, FACEPE,
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