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Transport through quantum dots: A supersymmetry approach
to transmission eigenvalue statistics
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We study quantum transport through ballistic cavities coupled to two electron reservoirs by point contacts.
We develop a powerful method, based on supersymmetry, to calculate exactly transmission eigenvalue statis-
tics in the presence of tunnel barriers and for a small number of open scattering channels. We calculate the
transmission eigenvalue density for ballistic point contacts and find it to be consistent with a distribution of
transmission eigenvalues given by the Jacobi ensemble from random-matrix theory. We also calculate explic-
itly the transmission eigenvalue density for quantum dots with tunneling point contacts.
@S0163-1829~98!51044-2#
a
re
o

uc
o

ar
o
on
rt
ep
g
t
o

ys
o

r

iv
tic
ti
ly

tri
o

im
an
o

pin

ld
ich
nt
e

re
ym
d
a
a

the
e

s
f
me-

the
een
in

ng
to

is
t in
imi-
ys-
on
ter-
ad-
the

ue
uate
duc-

n

ular
al
,

-
is-

ore
iers
son

atic
Modern submicrometer electron beam lithography h
been used to manufacture devices in which phase-cohe
electrons can travel ballistically at low temperature. One
such devices is a quantum dot, which consists of a cond
ing island, spatially confined by electrostatic gates, and c
nected to electron reservoirs by point contacts.1–5 A great
deal of the interest in such systems stems from the rem
able connection between quantum chaos and mesosc
transport. Several experiments and numerical simulati
have to date produced convincing evidence that transpo
ballistic quantum dots can be understood by using conc
and models from the theory of quantum chaotic scatterin

Motivated by these results, the first theoretical efforts
account for transport characteristics in ballistic quantum d
have made use of semiclassical methods6 akin to those of the
fairly successful periodic orbit theory of closed chaotic s
tems. More recently, other approaches such as rand
matrix theory7 and Efetov’s supersymmetry8,9 have been
used to describe transport in quantum dots in various
gimes.

In this work, we describe a systematic nonperturbat
method for studying certain transport functions in ballis
quantum dots. The method is based on a known combina
of random-matrix theory with supersymmetry. Specifical
we construct a map of the density of eigenvalues oftt†,
where t is the transmission matrix, onto a supersymme
nonlinears model. We thus calculate exactly the density
these transmission eigenvalues for systems with broken t
reversal symmetry, with a small number of scattering ch
nels, and in the presence of tunnel barriers. Extensions of
method to systems with time-reversal symmetry and/or s
orbit scattering are straightforward.

The random-matrix theory that we shall be using bui
on a phenomenological maximum-entropy principle, wh
applies whenever the dynamics of the system is sufficie
complex for the existence of an intrinsic equilibration tim
scale beyond which most microscopic details become ir
evant. In this situation, the presence of certain universal s
metries are sufficient to establish a complete statistical
scription of the system’s observables by means of
appropriate distribution function that maximizes the inform
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tion entropy. In quantum dots the ergodic timeterg plays the
role of this equilibration time and thus the replacement of
Hamiltonian of the system by a random matrix, with th
same universal symmetries, is justified on time scalet
@terg . A rigorous microscopic proof of the validity o
random-matrix theory on such time scales for disordered
tallic grains has been put forward by Efetov.8 Extensions of
the zero-dimensional supersymmetric nonlinears model in-
troduced in Ref. 8 have been used in connection with
problem of chaotic scattering. Such extensions have b
particularly successful in describing quantum transport
quantum dots.9–12

An altogether different way of studying chaotic scatteri
in quantum dots is to use the maximum-entropy principle
obtain directly the distribution of theS-matrix elements,
without any reference to an underlying Hamiltonian. Th
has been put forward in Ref. 13. It was demonstrated tha
chaotic scattering transmission eigenvalues play a role s
lar to that of the energy eigenvalues in closed chaotic s
tems. It was shown that the joint-distribution of transmissi
eigenvalues exhibits level repulsion and is completely de
mined by universal symmetries of the system. The great
vantage of this approach is that, as a consequence of
Landauer-Bu¨ttiker scattering theory, transmission eigenval
densities and correlation functions can be used to eval
averages and correlators of several observables. The con
tance, for instance is simplyG5G0(n51

N tn , wheretn are
the transmission eigenvalues,N is the number of scattering
channels andG052e2/h. Many other useful observables ca
be written in the general formA5(n51

N a(tn). This approach
has been successful in describing some important partic
cases, such as~i! ballistic point contacts, where orthogon
polynomial methods can be used,~ii ! single mode leads
where transmission eigenvalue correlations vanish, and~iii !
semiclassical limit, whereN@1 and perturbation theory ap
plies. Unfortunately not much is known about the transm
sion eigenvalue density and correlation functions in m
general situations, such as quantum dots with tunnel barr
and a small number of scattering channels. The main rea
for this state of affairs seems to be the lack of a system
R13 379 ©1998 The American Physical Society
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nonperturbative approach to calculate them. This situatio
rather unsatisfactory since many relevant experiments
performed under these more general conditions. In this w
we present such a method.

Our model system for the quantum dot consists of a b
listic cavity coupled by nonideal point contacts to two sem
infinite perfectly conducting leads. Following the approa
of Ref. 14, we write the scattering matrix of the system a

S5122p iW†D21W, ~1!

in which D[EF2H1 ipWW†1 i01, EF is the Fermi en-
ergy, H is a complex Hermitian random matrix, andW is a
nonrandomM3(N11N2) rectangular matrix describing th
coupling between theM states inside the dot and the mod
in the two leads. The structure ofW is

~W!mn5H ~W1!mn ; n51,2,. . . ,N1

~W2!mn ; n5N111, . . . ,N11N2 ,

whereW1 and W2 describe the coupling to leads 1 and
respectively, andN1 andN2 are the number of modes in eac
lead. It is convenient to reduce the number of coupling
rameters by defining transmission coefficientsTn

(1)51
2u^r &nnu2 and Tn

(2)512u^r 8&nnu2, wherer and r 8 are ran-
dom reflection matrices defined by the identity

S5S r t 8

t r 8
D , ~2!

and by assuming the orthogonality conditions:W1
†W1

5MX, W2
†W25MY, W1

†W2505W2
†W1 , where X

5diag(x1, . . . ,xN1
) andY5diag(y1, . . . ,yN2

).
In the usual supersymmetry approach the next step wo

be to use the Landauer theory and write observables, suc
the conductanceG5G0tr(tt†), in terms of the random ele
ments of theS matrix. After an appropriate field-theoreti
representation of the product of elements of theS matrix is
constructed, a mapping onto a supersymmetric nonlineas
model follows by takingM→`.

In this work we shall instead construct a representat
for the density of transmission eigenvalues. Consider the
lowing generating function:

Z~P!5Sdet21~D1J! ~3!

5exp@2tr ln~12n1tt†!1tr ln~12n0tt†!#, ~4!

where D5diag(D,D,D†,D†), J5 ip(W1W1
†) ^ (P2L), L

5diag(1,1,21,21) and

P5S 122n 22iAn~12n!

2iAn~12n! 2n21
D , ~5!

in which n5diag(n1,n0). The operator Sdet above stands f
the superdeterminant~we use the$1,2%-block notation of Ref.
14!. The density of transmission eigenvalues, which by d
nition is the averager(t)5^(nd(t2tn)&, can be generated
from Z(P) as follows:

r~t!52
1

pt2 Im$h@1/~t1 i01!#%, ~6!
is
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where

h~z!5
]^Z~P!&

]n1
U

n15z5n0

5 K trS tt†

12ztt†D L . ~7!

We remark that a similar generating function has been u
in Refs. 15 and 16 for studying a different system.

We proceed by representing the average ofZ(P) as an
integral over a supermatrix fields

^Z~P!&5E ds exp„L~P,s!…, ~8!

where

L~P,s!52
M

2
Strs22Str ln„EF1 ip~WW†! ^ L

1J2MsD/p…,

with D denoting the mean energy-level spacing in the cav
The integration measureds in Eq. ~8! is the usual flat Be-
rezin measure of supermathematics.17 The great advantage o
this supersymmetry representation is that sinceZ(0)51, we
can circumvent the need to use the replica trick, which,
shown in Ref. 18, fails to describe the nonperturbative
gime of this system. In the limit ofM→` the massive lon-
gitudinal components ofs can be integrated out and we a
left with massless transverse fieldsQ that define a manifold
of saddle points~a coset space!. The final result can be writ-
ten as the coset integral

^Z~P!&5E
Q251
DQZP~Q!,

whereQ is a 434 supermatrix and

ZP~Q!5 )
n51

N1

Sdet21~11bn
~1!QP! )

m51

N2

Sdet21~11bm
~2!QL!.

The parametersbn
( j ) ( j 51,2) are related to the transmissio

coefficients viaTn
( j )54bn

( j )/(11bn
( j ))2.

Since our system has broken time-reversal symme
progress can be made by introducing Efetov’s coordinat9

in terms of which the explicit form of the integration me
sure reads

DQ52
dl1dl0

~l12l0!2 dw1dw0dh1* dh1dh2* dh2 , ~9!

where 1<l1,`, 21<l0<1, 0<w1 ,w0<2p, and
h1* ,h1 ,h2* ,h2 are Grassmann~anticommuting! variables.
According to Zirnbauer’s integral theorem,19 there are two
kinds of contributions tôZ(P)& in these coordinates, so tha
we may write^Z(P)&5^Z(P)&s1^Z(P)&max. The first term
is due to an anomaly of the Berezin integral in Efetov
coordinates and the second term is a contribution from
coefficient of the term with a maximum number of Gras
mann variables. Inserting this result into Eq.~7! we get

h~z!5hs~z!2E
1

`

dl1E
21

1

dl0

k~l1 ,l0 ;z!

~l12l0!2 , ~10!
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wherehs(z)5(n51
N1 Tn

(1)/(12zTn
(1)) and

k~l1 ,l0 ;z!5g~l1 ,l0 ;z!)
n51

N2 gn
~2!1l0

gn
~2!1l1

~11!

in which gn
( j )[2/Tn

( j )21 ( j 51,2). It remains to specify
g(l1 ,l0 ;z), which is in fact the hardest part of the calcul
tions in this approach. The technical procedure is straight
ward, albeit quite cumbersome. It consists of unwrapping
Grassmann structure ofZP(Q) and collecting the term con
taining the maximum number of anticommuting variable
i.e., the one proportional toh1* h1h2* h2 . The huge amoun
of terms makes analytical progress only possible with co
puter algebra. The computer program we used for this p
pose has been written in the MapleV language with the h
of some optimized routines20 for Grassmann variables ma
nipulations.

Although the formulas obtained thus far are exact a
completely general, we shall hereafter give explicit expr
sions only in the extreme quantum limit, which means t
we assumeN1 and N2 to be small integers. The physica
meaning of this limit can be easily understood by consid
ing the time scales of the problem: the ergodic timeterg for
a wavepacket to become uniformly spread throughout
available phase space, the decay timetd for emission of
electrons from the dot, and the Heisenberg timetH . Quan-
tum dots that in the classical limit have nonintegrable cha
dynamics satisfy the conditionterg!td ,tH . The dimension-
less conductance of the dot,g;tH /td , can be used to defin
some regimes of interest:~i! the semiclassical limit (g@1);
~ii ! the extreme quantum limit (g*1), which is considered
in this work, and ~iii ! the Coulomb blockade regime (g
!1).

We remark that while the semiclassical and the Coulo
blockade regimes have been studied in a great numbe
theoretical works and an essentially complete understan
has emerged, much less is known about the extreme qua
limit.

For the sake of simplicity, we shall present explicit resu
only for some interesting particular values of the coupli
parameters.

~i! We consider first a quantum dot with ballistic poi
contacts, which means that the transmission coefficients h
maximum value, i.e.,Tn

(1)515Tn
(2) . We geths(z)5N1 /(1

2z) and

k~l1 ,l0 ;z!

~l12l0!
5

2N1
2~11l0!N2FN121~l0 ;z!FN1

~l1 ;z!

~11l1!N2~122z1l1!2N111 ,

where

Fn~l;z!5 (
m50

n

Cm
~n!Pm~l!Pm~122z!,

Pm(x) are the Legendre polynomials and the numerical
efficients Cm

(n) are determined by the binomial expansi
(11x)n5(m50

n Cm
(n)Pm(x). The above formula has been o

tained forN2 arbitrary and for 1<N1<7, which is sufficient
for our purpose since it covers well the extreme quant
limit.
r-
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We have found strong evidence~but no formal proof! that
this formula forh(z) is, in fact, valid for arbitraryN1 and
N2 . One such evidence is the exact relation between
average conductance and h(z): ^G&5G0h(0)
5G0N1N2 /(N11N2), which is correct for allN1 and N2 .
Other evidence comes from results of similar general valid
that can be obtained from the coefficients of the Taylor
pansion ofh(z) aboutz50.

The density of transmission eigenvalue can be obtai
by using Eq.~6!. We find for 1<N1 , N2<11 the remarkably
compact result

r~t!5t r (
n50

s21

~2n1r 11!$Pn
~r ,0!~122t!%2, ~12!

wherer 5uN12N2u, s5min$N1,N2%, andPn
(a,b)(x) is the Ja-

cobi polynomial. Just as before, we believe~although we
have no formal proof! that Eq.~12! is valid for arbitraryN1
and N2 . This result is consistent with the random-matr
approach of Ref. 13, which predicts for the same system
joint distribution of transmission eigenvalues given by t
Jacobi ensemble, from which Eq.~12! can be derived. We
have thus found independent evidence for the application
the Jacobi ensemble in this problem.

Using Eq. ~12! we can calculate the average of seve
useful observables, such as the conductance

^G/G0&5E
0

1

r~t!tdt5
N1N2

N
,

whereN[N11N2 and the shot noise power

^P/P0&5E
0

1

r~t!t~12t!dt5
~N1N2!2

N~N221!
,

in which P052euVuG0 (V is the applied voltage!.
This simple example illustrates the power of our approa

to get exact and explicit results for quantities that so far h
only been accessible by combined maximum entro
orthogonal polynomials methods. We shall next consi
systems for which such methods may prove inadequate.

~ii ! Let us assume that there is a tunnel barrier in one
the contacts between the quantum dot and the leads.
simplicity we setTn

(1)51 andTn
(2)52/(11g). We still get

hs(z)5N1 /(12z), but

k~l1 ,l0 ;z!

~l12l0!
5

2N1
2~g1l0!N2FN121~l0 ;z!FN1

~l1 ;z!

~g1l1!N2~122z1l1!2N111 ,

with Fn(l,z) defined as before.
Since the explicit expressions forr~t! become very

clumsy asN1 and N2 increase, we shall present here on
two particular cases. First, we setN1515N2 and find

r1~t!54
2g1~12g!t

@~21~g21!t!#3 .

It is interesting to note that for one scattering channel
conductance distribution can be obtained by using the id
tity P(G)5r1(G/G0)/G0 . ConsideringN1525N2 , we get
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r2~t!564
a01a1t1a2t21a3t31a4t4

@21~g21!t#6 ,

where a054g, a15228g26g2, a253(2g21)(g11)2,
a35(12g)(2g11)(3g11), anda45g(g21)2.

As a nontrivial check of our results, we change the ro
of the contacts by settingTn

(1)52/(11g) and Tn
(2)51. On

physical grounds, one would expect to get the same answ
and indeed we recover this by performing very different a
apparently unrelated calculations.

~iii ! As a final example, consider a quantum dot connec
to the leads via two tunnel barriers, so thatTn

(1)51/(11g)
5Tn

(2) . Just as before we shall concentrate on small part
lar values ofN1 andN2 . For N1515N2 we find

r1~t!5
~g221!2t21~g421!t14g2

4@11~g221!t#5/2 ,

which is in agreement with the randomS-matrix approach of
Ref. 21. ForN1525N2 we get
et

,

s

rs,
d

d

u-

r2~t!5
0 1 2 3 4 5

16@11~g221!t#9/2 ,

in which a0564g2, a15216(118g213g4), a2524(2
13g213g6), a35(g221)(51143g227g419g6), a4
52(g221)2(g211)(3g2111), and a553(g221)3(3g2

11).
In summary, we have proposed a powerful method ba

on supersymmetry for calculating exactly the transmiss
eigenvalue density of quantum dots in the nonperturbat
and experimentally relevant, limit of small number of sca
tering channels. As a by-product we establish a direct l
between the zero-dimensional nonlinears model and the
maximum entropy S-matrix theory. Extensions of ou
method to other symmetry classes and higher order corr
tion functions are straightforward~albeit much more labori-
ous! and will be the subject of future works.
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