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Exactly solvable models of unconventional magnetic alloys:
Bethe ansatz versus renormalization-group method
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We propose toy models of unconventional magnetic alloys, in which the density of band states,r(e), and
hybridization,t(e), are energy dependent; it is assumed, however, thatt2(e)}r21(e), and hence an effective
electron-impurity couplingG(e)5r(e)t2(e) is energy independent. In the renormalization-group approach,
the physics of the system is assumed to be governed byG(e) only rather than by separate forms ofr(e) and
t(e). However, an exact Bethe ansatz solution of the toy Anderson model demonstrates a crucial role of a form
of inverse band dispersionk(e). @S0163-1829~98!51642-6#
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The Kondo problem in ‘‘unconventional’’ Fermi system
where an effective density of states of band electrons v
ishes either precisely at the Fermi level~‘‘gapless’’ systems!
or on some interval around the Fermi level~‘‘gapped’’ sys-
tems!, has been attracting a significant theoretical inter
Using poor-man’s scaling, Withoff and Fradkin1 have found
that the Kondo effect in gapless systems takes place on
an effective electron-impurity coupling exceeds some criti
value. Numerical renormalization-group~RG! calculations,
large-N studies, and quantum Monte Carlo simulations of
gapless2–7 and gapped8–14 systems have confirmed this pr
diction and revealed a number of additional features of
physics of unconventional magnetic alloys.

In a conventional metallic system with~i! a linear disper-
sion of band electrons near the Fermi level and~ii ! an energy
independent electron-impurity hybridization, basic impur
models are exactly solved by the Bethe ansatz~BA!.15–18It is
well known that the Wilson’s numerical RG19,20 and BA
methods lead to identical results. Moreover, renormaliza
ity of the Kondo and Anderson models proved, respective
by Abrikosov21 and Haldane22 has been reproven in th
course of a BA solution. Therefore, it is reasonable to stu
the Kondo problem in unconventional Fermi systems, wh
the BA technique cannot be straightforwardly used, by m
ing use of scaling arguments and the numerical RG
proach.

However, it has recently been found23 that integrability of
the U→` nondegenerate and degenerate Anderson mo
is not destroyed because of a nonlinear dispersion of
ticles and an energy dependent hybridization, but it beco
only hidden.24 The developed BA approach has allowed us
study25 the thermodynamics of aU→` Anderson impurity
in a BCS superconductor, and can be used to obtain an e
solution of the Kondo problem in other unconvention
Fermi systems.

The results obtained23,25 demonstrate a discrepancy b
tween the RG and BA approaches to the Kondo problem
unconventional Fermi systems. In the RG approach,
separate forms of the density of states,r(e), and an energy
dependent hybridization,t(e), are assumed to beunimpor-
tant. It is assumed that the impurity properties are govern
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only by an effective particle-impurity couplingG(e)
5r(e)t2(e). However, BA equations contain both an effe
tive coupling and an inverse band dispersionk(e). The latter
describes the spatial behavior of wave functions and en
BA equations via periodic boundary conditions imposed
system’s eigenfunctions. A form of inverse dispersion pla
an extremely important role in the physics of the system

In this paper, we study a toy model describing an And
son impurity embedded in a gapless Fermi system. In
model, the density of states and hybridization are ene
dependent. It is assumed, however, thatt2(e)52Gr21(e),
where G5const, and an effective coupling is thus ener
independent. Therefore, in the framework of RG approa
physical properties of the toy and Anderson models are
viously identical.

As in many publications on the Kondo problem in gaple
Fermi systems, we assume a simple form of the density
band states,

r~e!5
ueur

ueur1b r
, ~1!

where the energye is taken relative to the Fermi level. Th
parameterb determines the size of a region with an unco
ventional behavior of the density of states. Atb50, we
come back to the Anderson model. In the region near
Fermi level, ueu!b, the density of the states exhibits
power-law variation,r(e);ueur .

The toy model is obviously integrable. It is clear also th
a corresponding integrable toy version can be constructe
the above-described manner for any conventional integra
impurity model. The physical properties of the toy versio
of the exchange models, such as thes-d ~Kondo! and
Coqblin-Schrieffer models, are not affected by a form
dispersion, because in these models charge and spin ex
tions of a system are decoupled from each other.15–18 The
physics of the toy versions of the Anderson model, wh
charge and spin excitations strongly interact, is shown to
governed by a form of inverse dispersionk(e).

We start with a general Anderson model with the arbitra
band electron dispersion,e(k), and hybridization,t(k).
R11 845 ©1998 The American Physical Society
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In terms of the energy dependent Fermi operat
cs

†(e) @cs(e)# which create~annihilate! an electron with a
spin s5↑,↓ in an s-wave state of energye, the model
Hamiltonian is written as

H5Hc1Hd1Hh . ~2a!

Here

Hc5E
2D

D de

2p
ecs

†~e!cs~e!, ~2b!

Hd5edds
†ds1Ud↑

†d↑d↓
†d↓ , ~2c!

Hh5E
2D

D

deAG~e!@cs
†~e!ds1ds

†cs~e!# ~2d!

are the conduction band, impurity and hybridization term
respectively. All notation in Eqs.~2! are standard. The elec
tron energies and momenta are taken relative to the Fe
values, which are set to be equal to zero. The integra
over the energy variablee is restricted by the band half widt
D. In what follows, we assume thatD is the largest param
eter on an energy scale,D→`. In the energy representation
the effective particle-impurity couplingG(e)5r(e)t2(e)
combines the density of band states,r(e)5@de(k)/dk#21,
and the energy dependent hybridizationt(e).

The metallic version of the general Anderson mod
wherer(e)5const,t(e)5const, is solved by BA. Hereafte
we call this model the Anderson model. In this paper
study a toy version of the general Anderson model assum
that

t2~e!52Gr21~e!, ~2e!

whereG5const, and hence the effective coupling is ene
independent as in the Anderson model. Therefore, the
model is also integrable at an arbitraryU. Indeed, let us
introduce the Fourier images of the electron operators,

cs~t!5E de

2p
cs~e!exp~ i et!,

and transform thus Eqs.~2! to the auxiliaryt space. In this
space related to the particle energy, the model Hamilton
coincides with the Hamiltonian of the Anderson model wr
ten in terms of the operators in the auxiliaryx space,

cs~x!5E dk

2p
cs~k!exp~ ikx!,

related to the particle momentum. Therefore, in thet space
the N-particle wave functions of the system
Fs1 . . . sN

(t1 , . . . ,tN), are given by the standard Bethe a
satz formulas derived by Wiegmann.26 However, periodic
boundary conditions must be imposed on a wave func
Cs1 . . . sN

(x1 , . . . ,xN) on an interval of sizeL in thex space

rather than in thet space. These different representations
wave functions are related by
s

,

mi
n

l,

e
g

y
y

n

n

f

Cs1 . . . sN
~x1 , . . . ,xN!5E

2`

`

dt1 . . . tN)
j 51

N

u~xj ut j !

3Fs1 . . . sN
~t1 , . . . ,tN!, ~3a!

where the ‘‘dressing’’ functionu(xut) is found to be

u~xut!5E
2`

` dk

2pS de~k!

dk D 1/2

exp$ i @kx2e~k!t#%. ~3b!

In the Anderson model, wheree(k)5k, the dressing func-
tion is nothing but the Dirac delta function,u(xut)5d(x
2t), and hence thex andt representations coincide.

In what follows, we confine ourselves to the case ofU
→`. Then, imposing periodic boundary conditions on t
wave functionCs1 . . . sN

(x1 , . . . ,xN) results in the follow-
ing BA equations:

eik jL
v j2ed/2G2 i /2

v j2ed/2G1 i /2
5 )

a51

M
v j2la2 i /2

v j2la1 i /2
, ~4a!

)
j 51

N
la2v j2 i /2

la2v j1 i /2
52 )

b51

M
la2lb2 i

la2lb1 i
, ~4b!

whereM is the number of particles with spin ‘‘down,’’kj
[k(v j ), andv5e/2G. The particle-impurity and effective
particle-particle scattering amplitudes coincide with those
the Anderson model, because they are really determined
by the effective particle-impurity couplingG, as it is as-
sumed in the RG approach. However, the BA equations c
tain also the phase factors exp(ikjL) accounting for the spatia
behavior of wave functions, which are essentially different
the metallic and toy cases. A form of the inverse dispers
k(v) is clear to play a very important role in both furthe
mathematical BA constructions and in the physics of
system.

As in the Anderson model, in the thermodynamic lim
spin ‘‘rapidities’’ la are grouped into bound spin complex
of sizen,

la
~n, j !5la1 i ~n1122 j !/2, j 51, . . . ,n. ~5!

Apart from charge excitations with real charge ‘‘rapidities
v j , the spectrum of the system contains also charge c
plexes with complex rapidities

va
~6 !5la6 i /2, ~6a!

provided the signs of the imaginary parts ofva
(6) and corre-

sponding momentak(6)5k(va
(6)) are the same,

sign~ Im k~6 !!5sign~ Im v~6 !!. ~6b!

In the Anderson model, due to the linear dispersion lawk
52Gv the necessary condition~NC! ~6b! is obviously satis-
fied at an arbitrarylP(2`,`). In our model, a solution of
NC is governed by a form ofk(v).

To solve Eq.~6b!, one has to specify first the powerr in
the expression for the density of states~1!. Here, we consider
two most important casesr 51 and r 52. At r 52 the in-
verse dispersion is found to be
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k

2G
5v2d arctan

v

d
, ~7a!

whered5b/2G. Solving Eq.~6b!, we find a critical value of
the parameterd,

exp~1/dcr!5
dcr11/2

dcr21/2
. ~7b!

At d,dcr , NC has a solution at alll. At d.dcr , NC has no
solution on the intervalGD5(2D,D), where

D25
2d

12exp~22/d!
2~d11/2!2. ~7c!

Thus, in a sharp contrast to the Anderson model, the s
trum of charge complexes of the system atd.dcr contains a
gap of size 2D. The gap appears atd5dcr , and grows with
increasingd. At very larged, d@1, the gap asymptotically
reaches the maximal value 2Dmax51/A3.

In a gapless Fermi system with the powerr 51, the in-
verse dispersion of band states is found to be

k

2G
5v1d ln

d2v

d
, v,0. ~8!

Solving Eq.~6b!, we find no gap in the spectrum of charg
complexes. Thus, the model with the powerr 51 is qualita-
tively equivalent to the Anderson model. Therefore, in wh
follows we confine ourselves to the model withr 52.

The thermodynamics of the system is described by a
of basic equations for the renormalized energies of elem
tary excitation«(v), j(l), andkn(l), corresponding to un-
paired charge excitations with realv, charge complexes an
spin complexes of sizen, respectively:

«~v!52Gv1a1* F @2j~v!#2 (
n51

`

an* F@2kn~v!#,

~9a!

j~l!54Gl1a1* F @2«~l!#1a2* F@2j~l!#, ~9b!

kn~l!5 (
m51

`

Anm* F @2km~l!#1an* F@2«~l!#. ~9c!

In these equations,F @ f (x)#[T ln$11exp@f(x)/T#%, an(x)
5(2n/p)(n214x2)21, and Anm(x)5aun2mu(x)1an1m(x)
12( k51

min(n,m)21aun2mu12k(x). The symbol * stands for the
convolution of functions, e.g.,

an* F @j~l!#[E dl8an~l2l8!F @j~l8!#. ~10!

For the U→` Anderson model, the thermodynamic B
equations were derived by Schlottmann.27 They also can be
obtained by settingU→` in the thermodynamic BA equa
tions of the general Anderson model.15 In our case, the only
difference is the appearance of the gap in the spectrum
charge complexes atd.dcr . Therefore, the integration con
tour C in the integrals with the functionj(l) consists of two
intervals,C5(2`,2D) % (D,`).
c-

t

et
n-

of

The physical properties of the ground state of the sys
are governed by the gap size. AtD50, the ground state, a
in the Anderson model, is composed of charge comple
only. They occupy all states froml52D/2G to l5Q,
whereQ is determined by the conditionj(Q)50. In con-
ventional metallic systemsQ is a large negative value,15 Q
52(1/2p)ln(D/G). The ground state of the model is no
affected by the gap until the gap size does not exceeduQu.
WhenD exceedsDcr5uQu, the ground state of the system
reconstructed: charge complexes withlP(2D,Q) decay
into unbounded charge excitations and spin waves.

Therefore, in the continuous limit the BA equations~4!
describing the ground state of the system take the form
integral equation for the ‘‘particle,’’ r(v) @r(v)50
at v.B], s(l) @s(l)50 at l.D], h(l), and ‘‘hole,’’
r̃(v) @ r̃(v)50 atv,B], s̃(l) @s̃(l)50 atl,2D], den-
sities of distributions of charge excitations, charge co
plexes and spin waves, respectively,

1

2p

dk~v!

dv
1

1

L
a1S v2

ed

2G D5r~v!1 r̃~v!1a1* s~v!

1a1* h~v!, ~11a!

1

2p

dq~l!

dl
1

1

L
a2S l2

ed

2G D5s~l!1s̃~l!1a1* r~l!

1a2* s~l!, ~11b!

a1* r~l!5h~l!1a2* h~l!, ~11c!

whereq(l)5k(l1 i /2)1k(l2 i /2) is the momentum of the
charge complexes. The ‘‘Fermi level’’ of unbounded char
excitations,B, is found from the condition

N

L
5E

2`

B

dvr~v!12E
2`

2D

dls~l!. ~12!

In Eqs.~11!, the densities can be separated into the host
impurity parts, e.g.,r(v)5rh(v)1L21r i(v). The popula-
tion of the impurity level,nd , and the impurity spinSi

z are
then given by

nd5E
2`

B

dvr i~v!12E
2`

2D

dls i~l!, ~13a!

Si
z5

1

2E2`

B

dvr i~v!2E
2`

`

dlh i~l!. ~13b!

It is easy to see that Eqs.~11! and ~13! are analogous to
equations describing the ground state of the Anderson m
in an external magnetic fieldH. The latter, however, contain
no spin waves,h(l)50. Therefore, the impurity spin is
given by

Si
z5

1

2E2`

B8
dvr i~v!,

where the limitB8 is determined by the fieldH. In the limit
H→0, B8→2`, and the impurity spin vanishes.

In our model, unbounded charge excitations and s
waves appear in the ground state of the system in the abs



om

ly
ce

ve
th

y
e

c
t

tio
th

to

ac
y
oy
T
er

of

en
n-

nce
ap,

but
se a
and
a-
es

are
on-

ed

r

RAPID COMMUNICATIONS

R11 848 PRB 58VALERY I. RUPASOV
of an external magnetic field due to a decay of charge c
plexes. However, it is easy to show from Eqs.~11c! and
~13b! that their contributions to the impurity spin precise
compensate each other. Thus, the Kondo effect takes pla
the toy U→` Anderson model with the powersr 51 and
r 52 at any effective couplingG and gap size.

At D,uQu, unbounded charge excitations and spin wa
disappear from the ground state, and the population of
impurity level is determined by a single functions i(l), nd

52*2`
Q dls i(l). As in the Anderson model, the impurit

population is governed by the renormalized impurity lev
energyed* 5ed12GQ. At D.uQu, the limit Q is replaced by
2D, and moreover a contribution of unpaired charge ex
tations appears in Eq.~13a!. Therefore, we should expec
essential changes in the behavior of the impurity popula
and the impurity magnetic susceptibility compared to
Anderson model.

In summary, we presented an exact BA analysis of the
version of a model describing aU→` Anderson impurity
embedded in a gapless Fermi system. In the RG appro
the physics of the system is assumed to be governed b
effective electron-impurity coupling only. Therefore, the t
and Anderson models should be identical to each other.
BA analysis demonstrates, however, the qualitatively diff
ent behaviors of these models.
-

in

s
e

l

i-

n
e

y

h,
an

he
-

In the Anderson model, the ground state is composed
charge complexes only. The toy model with the powerr
52 exhibits a critical valuedcr of the parameterd describ-
ing an unconventional behavior of the density of states giv
in Eq. ~1!. At d.dcr the spectrum of charge complexes co
tains a gap. If the gap is quite small,D,uQu, it does not
affect the ground state properties, however its appeara
changes the thermodynamics of the system. A large g
D.uQu, not only changes the thermodynamic properties,
reconstructs also the ground state of the system, becau
part of charge complexes decay into unbounded charge
spin excitations. The behavior of the impurity level popul
tion is drastically changed, however the Kondo effect tak
place at any gap.

Finally, it should be emphasized that the toy versions
interesting not only as exactly solvable examples of unc
ventional magnetic alloys. It can be shown28 that an exact
BA solution of a model with the density of statesr(e) given
in Eq. ~1! and an energy independent hybridization,t
5const, exhibits many of the qualitative features describ
above.

I thank S. John, V. Yudson, and M. Zhitomirsky fo
stimulating discussions.
*Electronic address:rupasov@physics.utoronto.ca
1D. Withoff and E. Fradkin, Phys. Rev. Lett.64, 1835~1990!.
2L. S. Borkowski and P. J. Hirschfeld, Phys. Rev. B46, 9274

~1992!.
3C. R. Cassanello and E. Fradkin, Phys. Rev. B53, 15 079~1996!.
4K. Chen and C. Jayaprakash, J. Phys.: Condens. Matter7, L491

~1995!.
5K. Ingersent, Phys. Rev. B54, 11 936~1996!.
6C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B54, 15 614

~1996!; cond-mat/9803256~unpublished!.
7R. Bulla, Th. Pruschke, and A. C. Hewson, J. Phys.: Conde

Matter 9, 10 463~1997!.
8T. Saso, J. Phys. Soc. Jpn.61, 3439~1992!.
9T. Saso and J. Ogura, Physica B186-188, 372 ~1993!.

10J. Ogura and T. Saso, J. Phys. Soc. Jpn.62, 4364~1993!.
11K. Takegahara, Y. Shimizu, and O. Sakai, J. Phys. Soc. Jpn.61,

3443 ~1993!.
12K. Takegahara, Y. Shimizu, N. Goto, and O. Sakai, Physica

186-188, 381 ~1993!.
13L. Cruz, P. Phillips, and A. H. Castro Neto, Europhys. Lett.29,

389 ~1995!.
ns.

B

14K. Chen and C. Jayaprakash, Phys. Rev. B57, 5225~1998!.
15A. M. Tsvelick and P. B. Wiegmann, Adv. Phys.32, 453 ~1983!.
16N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys.55,

331 ~1983!.
17P. Schlottmann, Phys. Rep.181, 1 ~1989!.
18A. C. Hewson,The Kondo Effect to Heavy Fermions~Cambridge

University Press, Cambridge, 1993!.
19K. G. Wilson, Rev. Mod. Phys.47, 773 ~1975!.
20H. R. Krishna-Murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. Lett.35, 1101 ~1975!; Phys. Rev. B21, 1003 ~1980!; 21,
1044 ~1980!.

21A. A. Abrikosov, Physica~Amsterdam! 2, 5 ~1965!.
22F. D. M. Haldane, Phys. Rev. Lett.40, 416 ~1978!.
23V. I. Rupasov, Phys. Lett. A237, 80 ~1997!.
24V. I. Rupasov and M. Singh, J. Phys. A29, L205 ~1996!; Phys.

Rev. Lett.77, 338 ~1996!; Phys. Rev. A54, 3614~1996!.
25V. I. Rupasov, Phys. Rev. Lett.80, 3368~1998!.
26P. B. Wiegmann, Phys. Lett.80A, 163 ~1980!.
27P. Schlottmann, Z. Phys. B49, 109 ~1982!; 52, 127 ~1983!.
28V. I. Rupasov, cond-mat/9810014~unpublished!.


