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Exactly solvable models of unconventional magnetic alloys:
Bethe ansatz versus renormalization-group method
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We propose toy models of unconventional magnetic alloys, in which the density of band gtadesand
hybridization,t(€), are energy dependent; it is assumed, howevertfia=p (), and hence an effective
electron-impurity couplind™ (€)= p(€)t?(¢e) is energy independent. In the renormalization-group approach,
the physics of the system is assumed to be governdd(ky only rather than by separate formsmfe) and
t(e). However, an exact Bethe ansatz solution of the toy Anderson model demonstrates a crucial role of a form
of inverse band dispersidi(€). [S0163-18208)51642-§

The Kondo problem in “unconventional” Fermi systems, only by an effective particle-impurity couplingl’(e€)
where an effective density of states of band electrons van=p(€)t?(e). However, BA equations contain both an effec-
ishes either precisely at the Fermi ley&yapless” systemps  tive coupling and an inverse band dispersigi). The latter
or on some interval around the Fermi ley&fjapped” sys-  describes the spatial behavior of wave functions and enters
temg, has been attracting a significant theoretical interestBA equations via periodic boundary conditions imposed on
Using poor-man’s scaling, Withoff and Fradkihave found System’s eigenfunctions. A form of inverse dispersion plays
that the Kondo effect in gapless systems takes place only &N extremely important role in the physics of the system.
an effective electron-impurity coupling exceeds some critical !N this paper, we study a toy model describing an Ander-
value. Numerical renormalization-groujRG) calculations, SON impurity embedded in a gapless Fermi system. In this
largeN studies, and quantum Monte Carlo simulations of theT'0d€l, the density of states and hybridization are energy
gaples&” and gappei 4 systems have confirmed this pre- déPendent. It is assumed, however, ttide) = 21"~ *(e),

diction and revealed a number of additional features of thé’vzere F; cct)ns_i_tﬁ an;j an _efft(ra]cu:(/e coupllrllg ]|cthgus energ;r/]
physics of unconventional magnetic alloys. independent. Theretore, in the framework o approach,

In a conventional metallic system with a linear disper- physical properties of the toy and Anderson models are ob-

. ) .. viously identical.
sion of band electrons near the Fermi level &ihdan energy y ide

) . . e L . As in many publications on the Kondo problem in gapless
independent electron-impurity hybridization, basic impurity =, . systems, we assume a simple form of the density of

models are exactly solved by the Bethe an$Bx).">®Itis  pand states
well known that the Wilson’s numerical R&?° and BA ’
methods lead to identical results. Moreover, renormalizabil-
ity of the Kondo and Anderson models proved, respectively, pl€)= ——,
by Abrikoso#! and Haldan® has been reproven in the le|"+ B
course of a BA solution. Therefore, it is reasonable to study
the Kondo problem in unconventional Fermi systems, wheravhere the energy is taken relative to the Fermi level. The
the BA technique cannot be straightforwardly used, by makparameteiB determines the size of a region with an uncon-
ing use of scaling arguments and the numerical RG apventional behavior of the density of states. A&=0, we
proach. come back to the Anderson model. In the region near the
However, it has recently been fouidhat integrability of ~ Fermi level, |e|< 3, the density of the states exhibits a
the U—o nondegenerate and degenerate Anderson modefower-law variationp(e)~|e|".
is not destroyed because of a nonlinear dispersion of par- The toy model is obviously integrable. It is clear also that
ticles and an energy dependent hybridization, but it becomes corresponding integrable toy version can be constructed in
only hidden?® The developed BA approach has allowed us tothe above-described manner for any conventional integrable
study?® the thermodynamics of bl—co Anderson impurity  impurity model. The physical properties of the toy versions
in a BCS superconductor, and can be used to obtain an exagt the exchange models, such as thel (Kondo and
solution of the Kondo problem in other unconventional Cogblin-Schrieffer models, are not affected by a form of
Fermi systems. dispersion, because in these models charge and spin excita-
The results obtainéd?® demonstrate a discrepancy be- tions of a system are decoupled from each otfief The
tween the RG and BA approaches to the Kondo problem iphysics of the toy versions of the Anderson model, where
unconventional Fermi systems. In the RG approach, theharge and spin excitations strongly interact, is shown to be
separate forms of the density of stateée), and an energy governed by a form of inverse dispersikfe).
dependent hybridizatiort(e), are assumed to benimpor- We start with a general Anderson model with the arbitrary
tant It is assumed that the impurity properties are governedand electron dispersiong(k), and hybridization,t(k).
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In terms of the energy dependent Fermi operators w0 N
c:r,(e) [c,(€)] which create(annihilate an electron with a \I’Ul,_,UN(xl, . ,xN)=f dry ... TNH u(xj|rj)
spin o=1,] in an swave state of energy, the model _°° =1
Hamiltonian is written as X®, (11, ..., (33
H=H.+Hy+H,. (280  where the “dressing” functioru(x|7) is found to be
Here = dk(/de(k)\¥? . ) o
U(X|T)_f_w5 dk exp{l[ X_E( )T]} (3 )
D de +
He= ﬁDﬂ €cy(€)cy(e), (2D |n the Anderson model, where(k) =k, the dressing func-
tion is nothing but the Dirac delta functiomy(x|7)= §(x
o N —7), and hence th& and 7 representations coincide.
Hy=eqd,d,+Ud;did/d,, (20) In what follows, we confine ourselves to the caselbf

—oo, Then, imposing periodic boundary conditions on the
wave function\lfgl”_UN(xl, ... Xy) results in the follow-

ing BA equations:

Hp= f DDde¢F<e)[cf,(e>da+d$cg(e>] (2d)

are the conduction band, impurity and hybridization terms, (| @)~ €g/2l —i/2 M wj—N\,—i/2

respectively. All notation in Eqg2) are standard. The elec- e o —ed2l+i12 o N 112 (43
tron energies and momenta are taken relative to the Fermi I s e

values, which are set to be equal to zero. The integration N i M ,

over the energy variableis restricted by the band half width 11 No= =112 5 A= Np—i (ab)
D. In what follows, we assume th&t is the largest param- jC1 N2 goi Ny Ngti]

eter on an energy scalB,—oc. In the energy representation, ) ) _ .

the effective particle-impurity couplind’ (€)= p(€)t3(e) whereM is the number of particles with spin “down,k;

combines the density of band statege) =[de(k)/dk] ™, =k(wj), andw=€/2I". The particle-impurity and effective
and the energy dependent hybridizatige). particle-particle scattering amplitudes coincide with those in

The metallic version of the general Anderson model the Anderson model, because they are really determined only

wherep(e) = const t(e) = const, is solved by BA. Hereafter by the .effective particle-impurity coupling’, as it i§ as-
we call this model the Anderson model. In this paper weSUmed in the RG approach. However, the BA equations con-

study a toy version of the general Anderson model assumin%ain also the phase factors eigl) accounting for the spatial
that ehavior of wave functions, which are essentially different in

the metallic and toy cases. A form of the inverse dispersion
t2(e)=2Ip (e, 26 k(w) is cl_ear to play a very |mportanF role in both further
(€) p e (29 mathematical BA constructions and in the physics of the

whereT =const, and hence the effective coupling is energySysStem. _ o
independent as in the Anderson model. Therefore, the toy AS in the ATderson model, in the thermodynamic limit
model is also integrable at an arbitraty. Indeed, let us SPin “rapidities” \ , are grouped into bound spin complexes

introduce the Fourier images of the electron operators, ~ ©f sizen,

A=)\ +i(n+1-2j)/2, j=1,...n. (5)

de .
Co( )= f ZC"(G)EXWGT)’ Apart from charge excitations with real charge “rapidities”

w;, the spectrum of the system contains also charge com-

and transform thus Eq¢2) to the auxiliaryr space. In this  plexes with complex rapidities

space related to the particle energy, the model Hamiltonian

coincides with the Hamiltonian of the Anderson model writ- 0=\, Fil2, (6a)

ten in terms of the operators in the auxiliaryspace,
provided the signs of the imaginary partsa»f) and corre-

dk sponding moment&*)=k(w!")) are the same,
o0 | 3=eikexuikx),
T sign(Im k) = sign(Im o(*)). (6b)

related to the particle momentum. Therefore, in thepace |, e Anderson model, due to the linear dispersion law
the N-particle wave functions of the system, _o|, the necessary conditiqiNC) (6b) is obviously satis-
®o, . o7, ...,7y), are given by the standard Bethe an- o at an arbitrary, e (—,). In our model, a solution of
satz formulas derived by WiegmahhHowever, periodic NC is governed by a form df(w).

boundary conditions must be imposed on a wave function To solve Eq.(6b), one has to specify first the powein
Y, . oy(X1, ... Xn) On aninterval of sizé in thex space  the expression for the density of statés Here, we consider
rather than in the- space. These different representations oftwo most important cases=1 andr=2. At r=2 the in-
wave functions are related by verse dispersion is found to be
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k ) The physical properties of the ground state of the system
ST @ 6arctan5, (79) are governed by the gap size. A&=0, the ground state, as

in the Anderson model, is composed of charge complexes
whered= B/2I". Solving Eq.(6b), we find a critical value of only. They occupy all states frolm=—-D/2I" to A=Q,
the parametes, where Q is determined by the conditio&(Q)=0. In con-
ventional metallic system® is a large negative valug,Q
Oert1/2 =—(1/27)In(DIT). The ground state of the model is not
exp(1/der) = S—1/2° (D) affected by the gap until the gap size does not exdedd
_ WhenA exceeds\.,=|Q|, the ground state of the system is
At 6<6¢r, NC has a solution at all. At 6> 6, NChasno  reconstructed: charge complexes withe (—A,Q) decay
solution on the intervaG,=(—A,A), where into unbounded charge excitations and spin waves.
Therefore, in the continuous limit the BA equatio@®
A2= 26 —(6+1/2)2. 70 describing the ground state of the system take the form of
1—exp(—2/5) integral equation for the “particle,” p(w)[p(w)=0

Thus, in a sharp contrast to the Anderson model, the specz,i—t w>~B]’ o(\) [U()\)Zofﬂ )‘TA]’ 7(A), and “hole,
() [p(w)=0 atw<B], o(\) [6(\)=0 atA\<—A], den-

trum of charge complexes of the systemdat 5, contains a P\ R e
gap of size 2. The gap appears ak= 8., , and grows with sities of distributions of charge excitations, charge com-
. Cro»

increasingd. At very larged, 6>1, the gap asymptotically plexes and spin waves, respectively,
reaches the maximal valueAg, ,,= 1/1/3. 1 dk(w) 1

€ ~
In a gapless Fermi system with the powetr 1, the in- 57 d + Eal w— %) =p(w)+p(w)+a*o(w)
verse dispersion of band states is found to be e
+ag* , 11
K o5 w0 8 o e
or _@reinTsT e=0. ® 1 dgn) 1 € -
Z—T‘Fraz —f =U()\)+(r()\)+a1*p()\)
Solving Eq.(6b), we find no gap in the spectrum of charge ™
complexes. Thus, the model with the powet1 is qualita- +a,*o(N), (11b
tively equivalent to the Anderson model. Therefore, in what
follows we confine ourselves to the model witk 2. ar*p(N)=n(\)+a* (), (110

The thermodynamics of the system is described by a set ) ) )
of basic equations for the renormalized energies of elemerhereq(A) =k(x +i/2)+K(x —i/2) is the momentum of the
tary excitations (w), £(\), and«,(\), corresponding to un- charge complexes. The “Fermi level” of unbounded charge

paired charge excitations with real charge complexes and €Xcitations,B, is found from the condition
spin complexes of siza, respectively:

©

= * — — * —_
s(w)=2lwrarFl-Ho)] nzl Pl = ra(@)], In Egs.(11), the densities can be separated into the host and
(98  impurity parts, e.g.p(w)=pp(w)+L 1pi(»). The popula-
tion of the impurity level,ny, and the impurity spir§’ are
EN)=4lN+a*F[—e(N)]+axF[—£&(N)], (9D  then given by

g:J'Bmdwp(w)-i-Zf_:d)\O'()\). (12)

k)= 3, AnFL= k(M) ]+ g F[ =2 (V)] (89 ”d:f_xd“’”i(“’”zf_md“i(”' (133
In these equations,F[f(x)]=T In{1+exd f(x)/T]}, a,(X) 1B °°
—@UmP+ 4 and Agy(X)=an—m(X) + ns m(X) S=z) Jdenle)= | din(). (13D
+25MO Mg i+ 2k(X). The symbol * stands for the
convolution of functions, e.g., It is easy to see that Egéll) and(13) are analogous to

equations describing the ground state of the Anderson model
_ , , , in an external magnetic fieltf. The latter, however, contain
a“*':[g()‘)]:f dh'a,(A=ADFLEND] (10 g spin waves,p(\)=0. Therefore, the impurity spin is

) given by
For the U—«~ Anderson model, the thermodynamic BA
equations were derived by SchlottmairnThey also can be 1w
obtained by setting) — in the thermodynamic BA equa- S :Ef_mdwpi(w),

tions of the general Anderson modgllin our case, the only
difference is the appearance of the gap in the spectrum afthere the limitB’ is determined by the fiel@{. In the limit
charge complexes &> &, . Therefore, the integration con- H—0,B’— —«, and the impurity spin vanishes.

tour C in the integrals with the functio&(\) consists of two In our model, unbounded charge excitations and spin
intervals,C=(—o,—A)®(A,»). waves appear in the ground state of the system in the absence
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of an external magnetic field due to a decay of charge com- In the Anderson model, the ground state is composed of
plexes. However, it is easy to show from Eq$10 and charge complexes only. The toy model with the power
(13b) that their contributions to the impurity spin precisely =2 exhibits a critical values,, of the parametesd describ-
compensate each other. Thus, the Kondo effect takes place iifig an unconventional behavior of the density of states given
the toy U—o Anderson model with the powers=1 and in Eq.(1). At 5> 6, the spectrum of charge complexes con-
r=2 at any effective coupling’ and gap size. _ tains a gap. If the gap is quite small.<|Q|, it does not

At A<|Q|, unbounded charge excitations and spin wavesffect the ground state properties, however its appearance
disappear from the ground state, and the population of thenanges the thermodynamics of the system. A large gap,
impurity level is determined by a single functien(X\), ¢ A>|Q|, not only changes the thermodynamic properties, but
=2[2,.d\oi(\). As in the Anderson model, the impurity reconstructs also the ground state of the system, because a
population is governed by the renormalized impurity levelpart of charge complexes decay into unbounded charge and
energye; = eq+2I'Q. At A>|Q|, the limitQ is replaced by  spin excitations. The behavior of the impurity level popula-
—A, and moreover a contribution of unpaired charge excition is drastically changed, however the Kondo effect takes
tations appears in Eq133. Therefore, we should expect place at any gap.
essential changes in the behavior of the impurity population Finally, it should be emphasized that the toy versions are
and the impurity magnetic susceptibility compared to theinteresting not only as exactly solvable examples of uncon-
Anderson model. ventional magnetic alloys. It can be shoWwnhat an exact

In summary, we presented an exact BA analysis of the toBA solution of a model with the density of stateée) given
version of a model describing ld— Anderson impurity in Eq. (1) and an energy independent hybridizatian,

embedded in a gapless Fermi system. In the RG approacks; const, exhibits many of the qualitative features described
the physics of the system is assumed to be governed by atbove.

effective electron-impurity coupling only. Therefore, the toy
and Anderson models should be identical to each other. The
BA analysis demonstrates, however, the qualitatively differ-
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