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Electric-field distribution in composite media
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Spatial fluctuations of the local electric field induced by a constant applied electric field in composite media
are studied analytically and numerically. It is found that the density of states for the fields exhibit sharp peaks
and abrupt changes in the slope at certain critical points which are analogous to van Hove singularities in the
density of states for phonons and electrons in solids. As in solids, these singularities are generally related to
saddle and inflection points in the field spectra and are useful in characterizing field fluctuations. The critical
points are very prominent in dispersions with a regular, ‘‘crystal-like,’’ structure. However, they broaden and
eventually disappear as the disorder increases.@S0163-1829~98!50542-5#
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In the study of heterogeneous materials, the prepon
ance of work has been devoted to finding the effective tra
port, electromechanical, and mechanical properties of
material,1 which amounts to knowing only the first mome
of the local field. When composites are subjected to cons
applied fields, the associated local fields exhibit strong s
tial fluctuations. The analysis and evaluation of the distrib
tion of the local field has received far less attention. No
theless, the distribution of the local field is of gre
fundamental and practical importance in understanding m
crucial material properties such as breakdown phenome2

and the nonlinear behavior of composites.3 Much of the work
on field distributions has been carried out for lattice mod
using numerical4,5 and perturbation methods.6 Recently, con-
tinuum models have been also addressed using nume
techniques.7

In this paper, we study the local electric field fluctuatio
by analyzing the density of states for the fields. To illustr
the procedure, we evaluate the density of states for th
different continuum models of dielectric composites: t
Hashin-Shtrikman~HS! construction,8 periodic, and random
arrays of cylinders. It is found that the density of states
the fields exhibits sharp peaks and abrupt changes in
slope at certain critical points which are analogous to v
Hove singularities in the density of states for phonons a
electrons in solids. This analogy is useful in quantifying fie
fluctuations in composites. In the case of the Hash
Shtrikman construction, we obtain an exact analytical
pression for the density of states. We first describe the b
equations and then determine the density of states for
aforementioned examples.

Consider a composite material composed of (n21)
isotropic inclusions with dielectric constantse i and
volume fractionsf i ( i 52,...,n) in a uniform reference
matrix of dielectric constante1 with volume fractionf1 .
Clearly, the local dielectric constant at positionr is e(r )
5( i 51

n e i I
( i )(r ), where I ( i )(r ) is the characteristic function

of phasei which has nonvanishing valueI ( i )(r )51 only if r
lies inside the volumeVi occupied by phasei . Let E0(r )
denote an applied electric field. The local electric fieldE~r !,
and the dielectric displacementD~r ! are related via the rela
tion D(r )5e(r )E(r ). The potential fieldu(r ) is related toE
by E(r )52¹u(r ). The local fields are obtained from th
PRB 580163-1829/98/58~18!/11829~4!/$15.00
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solution of the governing relation¹•D(r )50 subject to ap-
propriate boundary conditions.

Since the local dielectric constant of the composite ma
rial is a piecewise continuous function, we can solve
following equivalent equations:

¹2u~r !50, rPVi , ~1!

u~r !ur25u~r !ur1, rP]Vi , ~2!

e i]nu~r !ur25e j]nu~r !ur1, rP]Vi , ~3!

wherei 52,...,n. The indexj denotes neighboring phases
contact with a given inclusioni . We denote the outward
normal derivative to the interface]Vi by ]n and the interface
points approached from inside or outside inclusion byr2,
and r1, respectively. The numerous interfaces between
inclusions and matrix are, in general, irregular and random
distributed in space. In most cases solutions of Eqs.~1!–~3!
can be found only numerically.

In order to show the salient features of the field distrib
tion, we first consider an analytically tractable model
composite media: the HS composite-cylinder constructio8

Although the effective dielectric constantee of this model is
known exactly, its local field distribution has heretofore n
been investigated. The HS two-phase model is made u
composite cylinders consisting of a core of dielectric co
stant e2 and radiusa, surrounded by a concentric shell o
dielectric constante1 and radiusb. The ratio (a/b)2 equals
the phase 2 volume fractionf2 and the composite cylinder
fill all space, implying that there is a distribution in the
sizes ranging to the infinitesimally small. For this spec
construction, it is enough to consider the electric field with
a single composite cylinder in a matrix having the effecti
dielectric constantee5e1@122a2b/(a2b1b2)#, where b
5(e22e1)/(e21e1). Let the constant applied field point i
the x direction,E0(r )5Eox̂. Under this condition, the pres
ence of the composite cylinder does not change the distr
tion of the fields in the composite forr .b nor the total
energy stored in the region occupied by the cylinder.

Within a cylindrical inclusion, the solution of Eqs.~1!–
~3! with the boundary conditionu(r )52E0r cos(u) reads
R11 829 ©1998 The American Physical Society
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u~r !5H Ar cos~u!, for r<a,

S Br1
C

r D cos~u!, for a<r<b.
~4!

Consequently, the magnitude of the electric field is cons
uE(r )u5uAu for r<a, and

uE~r !u5uBuA11S a

r D 4

b212bS a

r D 2

cos~2u! ~5!

for a<r<b. The coefficientsA, B, and C depend on the
geometry and material properties:

A5E0~12b!/~bf221!, ~6!

B5E0 /~bf221!, ~7!

C52E0a2b/~bf221!. ~8!

In the study of electric-field fluctuations, it is convenie
to introduce a density of states per unit volume,g(E), de-
fined so thatg(E)dE is the total number of states in th
range betweenE andE1dE, divided by the total volume of
the inclusion:

g~E!5
1

pb2 E d@E2uE~r !u#dr . ~9!

Substituting Eq.~5! into Eq. ~9! yields

g~E!5f2d~E2uAu!1
2f2E

pB2 E
f2

1

dx
1

x2AgE~x!
Q@gE~x!#,

~10!

whereQ(x) is the Heaviside step function, and

gE~x!54~bx!22@11~bx!22~E/B!2#2, ~11!

where x5(a/r )2 is the integration variable. We note th
gE(x) is bounded from above, and that the integrand
Eq. ~10! is nonzero only if gE(x)>0, implying that the
density of statesg(E) is nonzero only for fields in the
finite bandwidth: EP@Emin ,Emax#. The extremal field values
for the problem at hand areEmin5uBu(12ubu), and Emax
5uBu(11ubu).

The highest field determines the electrical breakdo
properties. Equally important are the fields at whichg(E)
has its maxima, i.e., the fields that occur most frequently
the composite. To identify them, note that the dominant c
tributions to the integral in Eq.~10! come from regions close
to the pointsx05ubu21u16uE/Buu which are solutions of
gE(x0)50. Expandingg(E) aboutx0 , and integrating Eq.
~10! yields g(E);(x2x0)1/2ux05f2

1 or g(E);@(12x0)1/2

2(f22x0)1/2#. Thus, the density of statesg(E) is not an
analytic function since its derivatives are singular atE
5EVH for which x051 or f2 :

EVH5H Emin ,
uBuu12bf2u,
uBuu11bf2u,
Emax.

~12!
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n
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n
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These singularities are very similar to the van Hove sin
larities found in the density of states for phonons and el
trons in solids.9 As in the case of solids, the singularities
g(E) are generally associated with saddle and inflect
points on the surface of generated fieldsuE~r !u. At these
points, g(E) exhibits characteristic sharp local maxima
minima, with abrupt changes in the slope. This is illustra
in Figs. 1 and 2. Because the HS construction lacks tran
tional symmetry~unlike the subsequent periodic example!,

FIG. 1. The upper half of a composite cylinder of outer rad
b51 with inner core of radiusa50.5 @i.e., f25(a/b)250.25#,
dielectric constante2510, and outer concentric shell of dielectr
constante151: ~a! Electric field plot in which lighter shades~gray-
scale representation! correspond to increasing field magnitude
and associated contours of equipotential linesu(r )5const. ~b!
Distribution of fields contributing to van Hove singularities
the density of field statesg(E). Dotted lines show positions
of EVH5uBuu12bf2u5E0 while dashed lines identifyEVH

5uBu(11bf2). The thick lines denote the boundaries of the c
inders.

FIG. 2. Density of statesg(E) for the HS construction with
f250.25 for contrast valuesa5e2 /e152, 10, and 100.
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only inflection points are present in the plot ofuE~r !u shown
in Fig. 1~a!. They occur in phase 1 along the linesu50 and
u5p/2.

Figure 1~a! shows the plot of local electric fields togeth
with the contours of the equipotential lines. Insider<a re-
gion, the magnitude of electric field is constant. This gen
ates thed function in the density of states~10!. To locate
spatial coordinates of the singular fieldsEVH , we first con-
sider the casee2.e1 . From Eq. ~5! it follows that EVH
5Emin where (r 5a,u5p/2). SinceEmin5uAu, the position
of this van Hove singularity overlaps with position of thed
function in g(E). The highest electric fields are expected
occur at the two-phase interface. InsertingEVH5Emax into
Eq. ~5! gives the corresponding coordinates (r 5a1, u50)
and (r 5a1,u5p). Notice that atr 5a, the surfaceuE~r !u
has finite jump due to the discontinuity in normal compon
of uEu given by Eq.~3!.

The locations of the singularitiesEVH5uBuu16bf2u are
not obvious. In this case, the solution of Eq.~5! are the
curves

u56arccosH 1

2
bFa2

r 2 2
a2r 2

b4 G2~6 !
r 2

b2J 1kp, ~13!

k50,61,62,..., and r P@a,b# which are plotted in Fig.
1~b!. The dotted central curves correspond toEVH5uBuu1
2bf2u5E0 . The field strength on the dashed curves
EVH5uBuu11bf2u.

The case in whiche2,e1 can be studied using simila
considerations. For example, the peak of thed function will
be atEVH5Emax since the highest fields are always gen
ated in the less conducting phase.

In Fig. 2, the density of statesg(E) of the composite
cylinder model is plotted for several values of the contr
ratio a5e2 /e1 , at fixed volume fraction f25(a/b)2

50.25. Increasing the contrast between inclusions leads
broadening ofg(E). With an increase ofa, the maximum
field strength~in the less conducting phase! increases while
in the higher conducting phase, the amplitude of the cons
field decreases. The positions of van Hove singularities
easily identified as the minimum or maximum field, or loc
maxima ing(E). In the opposite limit,a→1, the bandwidth
of the allowed fields collapses to the single peak;d(E
2uAu), as expected.

Next we extend our considerations to composite mate
with periodic microstructure. In particular, we consider
square array of cylinders of dielectric constante2 in a matrix
with dielectric constante1 : a model whose effective dielec
tric constant has been well studied.10,11 Let the distance be
tween the centers of neighboring cylinders be 2L and assume
that the external fieldE0 is applied along thex axis. Al-
though analytical multipole expansion techniques~leading to
an infinite set of linear equations which must be truncat!
yield accurate estimates of the effective dielectric const
they are not adequate to obtain the field distribution. Acco
ingly, we use the finite difference scheme to solve Eqs.~1!–
~3!.

The essence of the numerical method is to map the c
posite to a network of conductors in which each conduct
bond has the dielectric constant of the corresponding reg
in the composite. The potential fields at each internal n
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are solutions of the system of equation( je i , j (ui2uj )50,
where index j runs over the nodes which are the near
neighbors of the nodei , wheree i , j is the dielectric constan
of the bond betweeni th and j th node. In addition to these
equations, macroscopic boundary conditions are impo
Because of periodicity, it is enough to consider the solut
in a square box of sizeL with a cylinder centered at one o
its corners. Then the boundary condition on the edges al
the direction transverse to the applied field, say they direc-
tion, is ]yu(x,y)5]yu(x,y1L)50. In the direction of the
applied field, there is finite gradientu(x1L,y)2u(x,y)
52E0 .

The solutions for the density of statesg(E) are shown in
Fig. 3. First we notice that in addition to thed-function-like
peak associated with the fields inside the cylinders, there
three prominent local maxima. These maxima are signatu
of van Hove singularities.~Further details about the topolog
cal properties of the field surfaces will be given elsewhere13!
The field fluctuations lie in the bandwidth of the density
states. Figure 3 illustrates how by increasing the phase c
trasta, the fluctuations grow. It is seen that the same effec
found if the volume fractionf2 increases toward the perco
lation threshold.

As a final example, we consider random arrays of cyl
ders whose density of states is distinctly different than
first two examples. Previous work on field fluctuations rev
distributions with twoglobal ~as opposed to local! peaks,5,7

although they arose for different reasons in these two stud
The presence of two global peaks is readily understood fr
our study as is explained below. In fact, we conjecture t
random multiphase composites with widely different diele
tric constants will have many well separated global peak

Figure 4 shows the histogram ofg(E) that we have cal-
culated for a single realization of a random distribution of

FIG. 3. Density of field statesg(E) for square arrays of cylin-
ders for different contrastsa5e2 /e1 , and different volume frac-
tions: f2'0.2 ~full lines!, 0.4 ~dotted lines!. Potential and electric
fields are calculated by the finite difference method with resolut
L/400, L51.
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nonoverlapping disks of dielectric constante2510 in a ma-
trix of e151. The system size isL51, so that the volume
fraction f2'0.4. Neglecting the irregularities due to insu
ficient statistics in the number of calculated fields, the po
tions of the three local maxima~van Hove singularities! at
uE(r )u/uE0u>1 are still evident, although significantly dimin
ished relative to the previous periodic example. Averagin12

the density of states over many realizations of rand

FIG. 4. Density of states for a single realization of a rand
dispersion of nonoverlapping cylinders~see inset! with a510, f2

'0.4, calculated by a finite difference scheme with a resolut
L/400.
.

i-

samples, as was done in Refs. 5 and 7, additionally sm
the sharpness of the band edges and maxima. Therefore
order causes the local maxima to broaden and eventu
merge together, i.e., the local features disappear as the
order increases. Similar disorder effects are well known
the theory of electronic density of states in solids.

To summarize, we find van Hove type singularities in t
density of states for local electric fields induced by an a
plied field in composites. We show how these singularit
are related to the maxima and the bandwidth ofg(E). The
complex multiple-peak behavior in the density of states
not adequately characterized by straightforward calcula
of their lower moments. Analysis ofg(E) at its van Hove
singular points represents a new approach to quantify fi
fluctuations in composite media.

It is noteworthy that the density-of-states analysis of fie
fluctuations laid out in this paper for dielectric composit
can be applied to other field phenomena,14 including strain
fields in elastic media, velocity fields for flow through po
rous media, and concentration fields for diffusion and re
tion in porous media.

We are grateful to E. J. Garboczi for sharing his code
the finite difference method with us. This work was su
ported by the U.S. Department of Energy, OBES, un
Grant No. DE-FG02-92ER14275.
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