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Electric-field distribution in composite media

D. Cule and S. Torquato
Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
(Received 15 June 1998

Spatial fluctuations of the local electric field induced by a constant applied electric field in composite media
are studied analytically and numerically. It is found that the density of states for the fields exhibit sharp peaks
and abrupt changes in the slope at certain critical points which are analogous to van Hove singularities in the
density of states for phonons and electrons in solids. As in solids, these singularities are generally related to
saddle and inflection points in the field spectra and are useful in characterizing field fluctuations. The critical
points are very prominent in dispersions with a regular, “crystal-like,” structure. However, they broaden and
eventually disappear as the disorder increas#3163-18208)50542-5

In the study of heterogeneous materials, the prepondesolution of the governing relatiok - D(r)=0 subject to ap-
ance of work has been devoted to finding the effective transpropriate boundary conditions.
port, electromechanical, and mechanical properties of the Since the local dielectric constant of the composite mate-
material; which amounts to knowing only the first moment rial is a piecewise continuous function, we can solve the
of the local field. When composites are subjected to constanfbllowing equivalent equations:
applied fields, the associated local fields exhibit strong spa-
t?al fluctuations. T_he analysis gnd evaluation of the distribu- V2u(r)=0, reV,, 1)
tion of the local field has received far less attention. None-
theless, the distribution of the local field is of great
fundamental and practical importance in understanding many
crucial material properties such as breakdown phenonfenon
and the nonlinear behavior of compositdduch of the work €pU(r)|-=€;dqu(r)|+, redV;, 3)
on field distributions has been carried out for lattice models
using numeric&l® and perturbation methodsRecently, con- wherei=2,...,n. The indexj denotes neighboring phases in
tinuum models have been also addressed using numericg®ntact with a given inclusiom. We denote the outward
techniques. normal derivative to the interfac®/; by d, and the interface

In this paper, we study the local electric field fluctuationspoints approached from inside or outside inclusionrby
by analyzing the density of states for the fields. To illustrateandr ™, respectively. The numerous interfaces between the
the procedure, we evaluate the density of states for thre@clusions and matrix are, in general, irregular and randomly
different continuum models of dielectric composites: thedistributed in space. In most cases solutions of Etjs=(3)
Hashin-Shtrikmar(HS) constructiorf periodic, and random can be found only numerically.
arrays of cylinders. It is found that the density of states for In order to show the salient features of the field distribu-
the fields exhibits sharp peaks and abrupt changes in thén, we first consider an analytically tractable model of
slope at certain critical points which are analogous to varcomposite media: the HS composite-cylinder construction.
Hove singularities in the density of states for phonons andhlthough the effective dielectric constaat of this model is
electrons in solids. This analogy is useful in quantifying fieldknown exactly, its local field distribution has heretofore not
fluctuations in composites. In the case of the Hashinbeen investigated. The HS two-phase model is made up of
Shtrikman construction, we obtain an exact analytical excomposite cylinders consisting of a core of dielectric con-
pression for the density of states. We first describe the basitante, and radiusa, surrounded by a concentric shell of
equations and then determine the density of states for thdielectric constant,; and radiusb. The ratio @/b)? equals
aforementioned examples. the phase 2 volume fractiofi, and the composite cylinders

Consider a composite material composed of—(l) fill all space, implying that there is a distribution in their
isotropic inclusions with dielectric constantg; and  Sizes ranging to the infinitesimally small. For this special
volume fractions¢; (i=2,...n) in a uniform reference construction, it is enough to consider the electric field within
matrix of dielectric constant; with volume fraction ¢, . a single composite cylinder in a matrix having the effective
Clearly, the local dielectric constant at positionis e(r)  dielectric constante,= e[ 1—2a%8/(a’s+b?)], where 8
=3" . 1M(r), wherel®(r) is the characteristic function = (€2~ €1)/(€x+€;). Let the constant applied field point in
of phase which has nonvanishing valué€’(r)=1 only if r the x direction,Eq(r) = Eoi. Under this condition, the pres-
lies inside the volume/; occupied by phasé. Let Ey(r) ence of the composite cylinder does not change the distribu-
denote an applied electric field. The local electric field), tion of the fields in the composite far>b nor the total
and the dielectric displacemebir) are related via the rela- energy stored in the region occupied by the cylinder.
tion D(r) = e(r)E(r). The potential fieldi(r) is related toE Within a cylindrical inclusion, the solution of Eq$l)—
by E(r)=—Vu(r). The local fields are obtained from the (3) with the boundary condition(r) = —Eyr cos@) reads

u(nf-=u(n)le+, reav, @
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Ar cog 6), for r=a,

u(r)=

(4)
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cog 9), for asr=<hb. o

Consequently, the magnitude of the electric field is constant 0.6
|[E(r)|=]A| for r<a, and %

0.4
a
EI=lel 1+ 2

for a=r<b. The coefficientsA, B, and C depend on the
geometry and material properties:

7

B*+2B

2
?) cog26) (5 02

A=Eo(1-B)/(Bd,— 1), (6)
B=Eo/(Bd,—1), (7)
C=—Eo@®Bl(Bdr—1). (8)

In the study of electric-field fluctuations, it is convenient
to introduce a density of states per unit volurgéE), de-
fined so thatg(E)dE is the total humber of states in the
range betweeit andE+ dE, divided by the total volume of
the inclusion:

FIG. 1. The upper half of a composite cylinder of outer radius
b=1 with inner core of radius=0.5 [i.e., ¢,=(a/b)?=0.25),
dielectric constant,=10, and outer concentric shell of dielectric
constante; = 1: (a) Electric field plot in which lighter shaddgray-
scale representatipncorrespond to increasing field magnitudes,
2¢,E (1 1 and z;ssociat?df cI(()jntours otl; equipotential Iin15($)=cor|1$t. (b)

— _ - Distribution of fields contributing to van Hove singularities in
9(E)=¢20(E |A|)+ B2 J¢2dx xleyE(x)(a[YE(X)]’ the density of field stateg(E). Dotted lines show positions
(10 of Eyy=|B||1—B¢,/=E, while dashed lines identifyEy,
=|B|(1+ B¢,). The thick lines denote the boundaries of the cyl-
inders.

1
0(E) =~ | B~ [ECr) e ©

Substituting Eq(5) into Eq. (9) yields

where®(x) is the Heaviside step function, and

— 2 2 272
Ye(X) =4(BX)"=[1+(Bx)"~ (B/B)7]%, 1D These singularities are very similar to the van Hove singu-

where x=(a/r)? is the integration variable. We note that larities found in the density of states for phonons and elec-
ve(x) is bounded from above, and that the integrand introns in solids’ As in the case of solids, the singularities in
Eq. (10) is nonzero only if yg(x)=0, implying that the g(E) are generally associated with saddle and inflection
density of statesg(E) is nonzero only for fields in the Points on the surface of generated fiel@r)|. At these
finite bandwidth E e[ Ein.Emad- The extremal field values Points, g(E) exhibits characteristic sharp local maxima or
for the problem at hand ar&,,=|B|(1-|8)), and E,, Minima, with abrupt changes in the slope. Thls is illustrated
=|B|(1+|A3)). in Figs. 1 and 2. Because the HS construction lacks transla-

The highest field determines the electrical breakdowrfional symmetry(unlike the subsequent periodic example
properties. Equally important are the fields at whiptE)
has its maxima, i.e., the fields that occur most frequently in 40 ———
the composite. To identify them, note that the dominant con-

|
| o=
tributions to the integral in Eq10) come from regions close 30 F | S a=10 ]
to the pointsxy,=|B| 1|1+|E/B|| which are solutions of } ——— a=100
ve(xg) =0. Expandingg(E) aboutx,, and integrating Eg. ) 20 L | 1
(10) yields g(E)~(x—x0) "4y -4, OF Q(E)~[(1-x)** 8 |
—(¢o—xo)*?]. Thus, the density of stateE) is not an Lol } ]
analytic function since its derivatives are singular &t : | N
=Eyy for whichxg=1 or ¢,: ] ‘} e \\‘ .
E s %005 00 05 20 25 30
] BllL-Bes) 12
vH |B||1+,3¢2|’ FIG. 2. Density of stateg(E) for the HS construction with
E nax- ¢,=0.25 for contrast valuea=¢€,/€e;,=2, 10, and 100.



RAPID COMMUNICATIONS

PRB 58 ELECTRIC-FIELD DISTRIBUTION IN COMPOSITE MEDIA R11 831
only inflection points are present in the plot |&fr)| shown 5 . 1 5 . .

in Fig. 1(@). They occur in phase 1 along the lineés 0 and | =2 | N =5 |
0=ml2.

Figure 1a) shows the plot of local electric fields together 3 [ i
with the contours of the equipotential lines. Insidea re- 5
gion, the magnitude of electric field is constant. This gener- 2| [ ]
ates thes function in the density of stated0). To locate :
spatial coordinates of the singular fieldsg,, we first con-

&E)

sider the cases,>e€;. From Eg.(5) it follows that Ey 0 LA ‘ !
=Enin Where ¢=a,f6=m/2). SinceE,=|Al, the position o 1 E/ZE 34 34
of this van Hove singularity overlaps with position of tie 5 o ,
function ing(E). The highest electric fields are expected to
occur at the two-phase interface. InsertiBg, = E 4 into ar a=10 . 4 o= 100
Eg. (5) gives the corresponding coordinates=@@*, 6=0) 3 1 .| ]
and (=a",6=m). Notice that atr =a, the surfacgE(r)| ) )
has finite jump due to the discontinuity in normal component 2 |- 1 2t .
of |E| given by Eq.(3).
The locations of the singularitiegy,=|B||1= B¢,| are tr VAN ] Mt ]
not obvious. In this case, the solution of E&) are the o L gt 0 bl N
curves 0o 1 2 3 4 o 1 2 3 4
E/E, B/E,
1 [a? a?r2 2 _ , ;
f= iarcco%—ﬁ — == | = (£) = +km, (13 FIG. 3._ Density of field stateg(E) for square arrays of cylin-
27 b b ders for different contrasta=¢€,/e,, and different volume frac-

) . . tions: ¢,~0.2 (full lines), 0.4 (dotted line$. Potential and electric
k=0,£1,£2,..., andre[a,b] which are plotted in Fig. fields are calculated by the finite difference method with resolution
1(b). The dotted central curves correspondBgy=|(B||1 | /400, L=1.

—B¢,|=Ey. The field strength on the dashed curves is
Evy=|Bl||1+ B¢, are solutions of the system of equatidje; ;(u;—u;)=0,
The case in whiche,<e; can be studied using similar where indexj runs over the nodes which are the nearest
considerations. For example, the peak of &keinction will neighbors of the nodg wheree; ; is the dielectric constant
be atEy=E . Since the highest fields are always gener-of the bond betweeith andjth node. In addition to these
ated in the less conducting phase. equations, macroscopic boundary conditions are imposed.
In Fig. 2, the density of stateg(E) of the composite Because of periodicity, it is enough to consider the solution
cylinder model is plotted for several values of the contrasin a square box of size with a cylinder centered at one of
ratio a=e,/e;, at fixed volume fraction ¢,=(a/b)? its corners. Then the boundary condition on the edges along
=0.25. Increasing the contrast between inclusions leads tothe direction transverse to the applied field, saythdirec-
broadening ofg(E). With an increase o, the maximum tion, is dyu(x,y)=4d,u(x,y+L)=0. In the direction of the
field strength(in the less conducting phasicreases while applied field, there is finite gradieni(x+L,y)—u(x,y)
in the higher conducting phase, the amplitude of the constant —E,.
field decreases. The positions of van Hove singularities are The solutions for the density of statgéE) are shown in
easily identified as the minimum or maximum field, or local Fig. 3. First we notice that in addition to th&function-like
maxima ing(E). In the opposite limite— 1, the bandwidth  peak associated with the fields inside the cylinders, there are
of the allowed fields collapses to the single peald(E  three prominent local maxima. These maxima are signatures
—|Al), as expected. of van Hove singularitiegFurther details about the topologi-
Next we extend our considerations to composite materiatal properties of the field surfaces will be given elsewH@re.
with periodic microstructure. In particular, we consider aThe field fluctuations lie in the bandwidth of the density of
square array of cylinders of dielectric constaptin a matrix  states. Figure 3 illustrates how by increasing the phase con-
with dielectric constant;: a model whose effective dielec- trasta, the fluctuations grow. It is seen that the same effect is
tric constant has been well studitf! Let the distance be- found if the volume fraction, increases toward the perco-
tween the centers of neighboring cylinders hedhd assume lation threshold.
that the external fieldg, is applied along thex axis. Al- As a final example, we consider random arrays of cylin-
though analytical multipole expansion technigélesding to  ders whose density of states is distinctly different than the
an infinite set of linear equations which must be truncatedfirst two examples. Previous work on field fluctuations reveal
yield accurate estimates of the effective dielectric constangistributions with twoglobal (as opposed to locapeaks)’
they are not adequate to obtain the field distribution. Accordalthough they arose for different reasons in these two studies.
ingly, we use the finite difference scheme to solve Efjs-=  The presence of two global peaks is readily understood from
(3). our study as is explained below. In fact, we conjecture that
The essence of the numerical method is to map the conrandom multiphase composites with widely different dielec-
posite to a network of conductors in which each conductingric constants will have many well separated global peaks.
bond has the dielectric constant of the corresponding region Figure 4 shows the histogram g{E) that we have cal-
in the composite. The potential fields at each internal nodeulated for a single realization of a random distribution of 20
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3.0 , , samples, as was done in Refs. 5 and 7, additionally smears
the sharpness of the band edges and maxima. Therefore, dis-
25 UO ] |
Q order causes the local maxima to broaden and eventually
270 L OO 1 merge together, i.e_., _the chal features disappear as the (_:iis—
& % order increases. Similar disorder effects are well known in
w10 d ] the theory of electronic density of states in solids.
10 E O 3 To summarize, we find van Hove type singularities in the
L density of states for local electric fields induced by an ap-
05 ¢ E plied field in composites. We show how these singularities
0.0 LT ‘ . ] are related to the maxima and the bandwidttg¢E). The
0.0 05 1.0 L5 20 25 3.0 complex multiple-peak behavior in the density of states are
E/E, not adequately characterized by straightforward calculation

. : o of their lower moments. Analysis aj(E) at its van Hove
FIG. 4. Density of states for a single realization of a random

dispersion of nonoverlapping cylindefsee insetwith a=10, ¢, singular points represents a new approach to quantify field

~0.4, calculated by a finite difference scheme with a resolutionﬂucm"’morlS In composite medla: . .
L/400. It is noteworthy that the density-of-states analysis of field

fluctuations laid out in this paper for dielectric composites
. _ _ _ o can be applied to other field phenoméfiancluding strain
nonoverlapping disks of dielectric constant=10 in a ma-  fig|qs in elastic media, velocity fields for flow through po-

trix of €;=1. The system size is=1, so that the volume 4,5 media, and concentration fields for diffusion and reac-
fraction ¢,~0.4. Neglecting the irregularities due to insuf- tion in porous media.

ficient statistics in the number of calculated fields, the posi-

tions of the three local maximévan Hove singularitiesat We are grateful to E. J. Garboczi for sharing his code on
|E(r)|/|Eo|=1 are still evident, although significantly dimin- the finite difference method with us. This work was sup-
ished relative to the previous periodic example. Averatfing ported by the U.S. Department of Energy, OBES, under
the density of states over many realizations of randonGrant No. DE-FG02-92ER14275.
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