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Defect energy with conjugate boundary conditions in spin-glass models in two dimensions
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We calculate the naive defect enelyi of Ising spin glas§SG) models in two dimensions using conjugate
boundary conditions. We predict that, in the] model, the averaged valu‘e?:onverges to some nonzero
value in the thermodynamic limit in contrast withE=0 in the Gaussian model. This prediction supports a
recent Monte Carlo prediction of the presence of the SG phase at finite temperatures-id ksieg model.
We also calculate the interface free energy to confirriS0163-182608)50842-9

Spin glasses have attracted great challenge for computaaetric for small systems antthe conventional estimation of
tional physics in these two decades. It is widely believed thapg by means of the size dependence of the average Wdfue
in two dimensions the spin glagSG) transition occurs at could take the risk for misleading the conclusim()iﬁ.)m
zero temperatur@.=0. This belief arises from the study of e estimated for both Gaussian model and discrete models
the stiffness exponents which has a positive or negative for different sizes of the lattice and the following predictions
value when the phase transition occurs at a finite, nonzergre given for large systems. In the Gaussian mode)E)
temperatureT,#0 or T,=0, respectively. McMillar, and  ghrinks to a sharp one AE=0. ThereforeAE=0 andés is
Bray and Mooré estimated a value obs~—0.28 for the negative as predicted previously but its value is larger than
Ising model with Gaussian distribution of bondSaussian that of the previous estimations. In the discrete models,
mode) by calculating the defect energyE of finite lattices  p(AE) exhibits discrete peaks whose weightsAdE~0 as
and predicted that the model exhibits the SG transition ajvell as those at largA E never increase with increasing the

T.=0 with the correlation exponent of= —1/6s~3.5. This  gjze of the lattice. Therefor&E converges to some nonzero
value of 65 was confirmed by a recent estimation usingyalue, i.e.,fs=0, in contrast with the recent predictiofiv)
|arger Iatticeé. It Should be nOted, hOWeVer, that the Value OfThusthe prediction Of I;&O for the discrete mode|s is not
v is significantly different from direct estimations of  incompatible with the results of the defect energy analysis.
~2.0%7®The problem is subtle in a discrete model wittl  The interface free energy is also calculated to confirm the
and —J bonds ¢J mode) for which the value offs was  presence of the SG phase at finite temperatures.
first estimated asis~0."~° However, a recent estimation We start with an Ising model on a square lattlex (L
gave a small negative value @fs~—0.051° From these +1) described by the Hamiltonian
results and an idea that the nature of the phase transition at a
finite temperature would not depend on details of the bond
distribution, one believes thd,=0 in any two-dimensional
SG modelalthough no direct evidence ©f=0 has yet been
obtained for every model, especially for theJ model!!
Recently, Shirakura and Matsubara made a Monte Carl
(MC) simulation of thexJ model at low temperatur&sand
that of an asymmetric discrete model withJ and —aJ(a
#1) bonds at very low temperatufésind predicted ,#0. P(J,)= Lexq—J?IZ) )
Obviously, their prediction and the belief are incompatible. N e

In this paper, we carefully reexamine the defect energy of
Ising SG models in two dimensions and find that the results 1
support the prediction 6f .+ 0. Our findings are as follows. P(Jij) = 5[8(Jij= )+ 83 +ad)]. )
(i) The conventional boundary conditions used for estimating
the defect energ\AE are inadequate in some cases, espeThe model1) with the distribution(2) is the Gaussian model
cially in delicate problems such as the phase transition of thand that with Eq(3) is a discrete model. Hereafter we refer
+J model. A naive defect energy is calculated for the first to the direction for [+1) spins as the direction and the
time in the SG problem using conjugate boundary condi-other as they direction. The defect energgqE has been
tions. (i) The distribution ofAE, P(AE), is highly asym-  conventionally defined bhE=E,,—E,, whereE, andE,

H:_E Jijo'ia-ja (1)
(i,j)
where oi(= £ 1) are Ising spins andij) runs all nearest-

eighbor pairs. We consider the following two bond distri-
utions:
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are the ground-state energies for the periodic and antiperi- 3 y 1 T
odic boundary conditions in the direction. The boundary
condition in thex direction is chosen to be either periotiar
free31% Note that the defect energy calculated in this way is
either positive or negative and one considers the absolute x

value |AE|. Bray and Mooré applied somewhat different 2 | x x X% g
boundary conditions. They considered the lattice with the
periodic boundary condition in thedirection. The spin con-
figurations on the surfaces in thxedirection, which are de-
noted as{S,} for x=1 and{S,} for x=(L+1), are put at . ° o
random. They define&, as the ground-state energy of the . 5

lattice with {S,} and{S,}, andE,, as that with{S,} and ¢
{—Sy}, where{—S,} is the spin configuration obtained re- 0.20.198
versing all the spins dfS,}. These different sets of boundary o

conditions would be essentially the same for evaluatifig 1 : 5 — | 2'0
In fact, the same value dfs~—0.28 has been obtained in LIO

the Gaussian modéf3 However, it is not obvious whether

these sets give the true defect energy ortAdtor example, FIG. 1. The defect energi&¥(L) as functions of the lattice size
we consider the boundary conditions by Bray and Moorel-

For neither boundary condition will the system have its . , )

ground-state spin configuration of the lattice without any refion function P (AE) is obtained. The defect energy
striction. That is, some defect linésr defect pointsalready =~ W(L)(=AE) for the lattice withL is obtained fromW(L)
exist in those ground states. Therefore, it is doubtful whether fAEP (AE)dAE. o _

AE gives true defect energy or not. This problem would not The results ofW(L) are shown in Fig. 1 in a log-log
be so serious wheAE has a strong dependence bras in scale. The;e size dependence8Wt ) are quite d!fferent. In
the ferromagnetic case. However, in the two dimensional SEN€ Gaussian model, IOU(HL) decreases almost linearly with
model, the size dependence is slight, eAfE~J even for 109 L suggesting/V(L)~L"s with #s<0 as predicted previ-
L~30319That is, the value would considerably change everPUsly- However, the value afs— 10;20 1S Egger than+that
when only one position of the defect line changes. To relieveOf the previous estlmatlons oﬁ; 0.28. !n the =J
this difficulty, Ozek? used a replica boundary condition for mogl_el,_W(IB) sllghtly |hncreases n colntt;rast dW'th the dfte}ge”t
one end but still used the random boundary condition for th rediction based on the conventional boundary conditions.

’ n the other hand, in the asymmetric model witll and
ot.her end. It should be noted that he thalned a valu@sof —0.8J bonds,W(L) decreases. These results in the discrete
slightly larger than that of the conventional metHod.

. , _models are quite mysterious, because the MC stiftds
We consider the_ Iattlce_ treat_ed by_ Bray and Moore: It ISsuggested .+ 0 for both the models.
obvious that the spin configuration without any defect is the 75 axamine this problem, we consider (AE) itself. In
ground state without any restriction. Then it is quite natural,:ig_ 2, we presenP (AE) of the Gaussian modeP, (AE)
to choose the spin configuratiofS,} and{S,} as ones in  has a continuous weight in a finite range ®E. As L is
the ground state for the free boundaries. We call this boundncreased, the weight &tE~ 0 increases, while that at larger
ary condition a conjugate boundary condition, because i\E decreases. This fact implies that it collapses to

gives the true ground-state energy. By the use of the bounds, (AE)~ §(AE). On the other hand, in theJ model, AE
ary conditions of{S,} and{—S,}, we may certainly con-

struct one defect line, if it could occur. The defect energy L L R S D B S B B R I L
AE obtained using these sets of boundary conditions is, of
course, non-negative in contrast to the conventional one. The ¢35
problem is how to ge{S,} and{S,}. We can readily get
them by using a cluster heat batBHB) method>1>®for
both T=0 andT+#0. Some comments should be given. For
the Gaussian model, the ground state can be uniquely deteqm
mined. ThenAE for each sample can be uniquely deter- <
mined. On the other hand, in the discrete models, there arf-
many different sets ofS,} and{S,}. Then we choose one of
them for{S,}, and{S;} is chosen so as to give the minimum
value of AE.}” These calculations may be readily done by
using the transfer matrix methdd?®

We make the simulation using these conjugate boundary
conditions. The lattices treated here drx (L+1) for L ob—— v b L
<24 and the numbers of the samples ag=10 000 AE/J
~50000. For every size of the lattice with, the defect
energyAE is calculated for every sample and the distribu- FIG. 2. Distribution ofAE of the Gaussian model.
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FIG. 3. The weight#, of discrete peaks atE=1J of the £J )
model. 0 2
+1,-0.8]
takes values for everyJ4 i.e., P (AE)=2_¢4...A|6(AE
—1J). The size dependences of the coefficientsApfare &
plotted in Fig. 3. OnlyA, andA, have considerable weights. §
The most important point is thét, andA,, with n=2 never
increase withL. This means tha¥V(L) never vanishes nor
diverges forL—o, i.e., W(L) converges to some nonzero I | I
0

value. In the asymmetric modelR, (AE) also has discrete 5 ,
peaks at every 2(%a)J. In Fig. 4, we showP (AE) in a AE/]
line graph. For smallL, it has a double peak &tE~0.4]
and 3J. As L is increased, the peak AtE~3J rapidly di-
minishes andP,(AE) becomes of the single peak. The
weights of AE=0 and 0.4 components seem to converge be emphasized again that the valueégfis different from
and those atAE~J increase. Thus we think that, fdr  that of the previous estimation. The value seems to have no
—o, P (AE) has a single peak aAE~J. That is,W(L) relation with that of the correlation exponent' In the dis-
also converges to some nonzero value. The distribution funarete models, the problem is very delicate, becaier)
tions P(AE) for L—« suggested above and from the MC has a finite, nonzero value like that in the two-dimensional
studied?*3are schematically shown in Fig. 5.

We conclude, hence, that whether the SG phase transitior ———— T
occurs or not in two dimensions depends on the model. In
the Gaussian model,.=0 as predicted previously. It should

FIG. 5. Schematic pictures of distribution AfE for L —co.
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FIG. 4. Distribution ofAE of the +J and —0.8] model. Lines FIG. 6. The interface free energiesk of the +J model at

are guide to the eye. different temperatures. Note thAf at T=0 is W(L).
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xy ferromagnet. This result suggests tfiat 0 is marginally the MC method? Thus we believe that the defect energy
stable. The SG order will exist &=0 which is character- analysis gives results which are not incompatible with the
ized by a power-law decay of the spin correlatidi. MC result.

WhetherT.#0 or not should be examined separately. We Finally, we should note that the choice of the boundary
have also made it by evaluating the interface free energgondition will be crucially important also in three dimen-
AF=F,,—F,,"° whereF, and F, are the free energies SIONS. Especially, studies of the defect energy in the three-
calculated using conjugate boundary conditidig} and dimensional vector SG models under the conjugate boundary

[S,} at finite temperature¥. The result for the+ J model is conditions are desirable, because the possibility of the chiral
o ' SG ordering without in ordering i t tofic’?
presented in Fig. 6. In fact, the average vallE for T ordering witholt any spin ordering is a current toji

=0.1] seems to increase with lattice sike while that for One of the authorgT.S) wish to thank Professor H.
T=0.3] decreases. Thus we believe that the phase=af Takayama, Dr. K. Hukushima, Dr. H. Yoshino, and Dr. S.
persists up to some finite temperature. Thatisis nonzero  Todo for valuable discussions. The simulations were made
and exists between Qlland 0.3, probablyT.~0.2]. This  on SX4 at the Computer Center of Tohoku University. This
result is quite interesting, because the valuelpf-0.2) is  work was partly financed by Grant-in-Aid for Scientific Re-
compatible with the previous estimation ©f~0.24] using  search from the Ministry of Education, Science and Culture.
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