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Defect energy with conjugate boundary conditions in spin-glass models in two dimensions
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We calculate the naive defect energyDE of Ising spin glass~SG! models in two dimensions using conjugate

boundary conditions. We predict that, in the6J model, the averaged valueDĒ converges to some nonzero

value in the thermodynamic limit in contrast withDĒ50 in the Gaussian model. This prediction supports a
recent Monte Carlo prediction of the presence of the SG phase at finite temperatures in the6J Ising model.
We also calculate the interface free energy to confirm it.@S0163-1829~98!50842-9#
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Spin glasses have attracted great challenge for comp
tional physics in these two decades. It is widely believed t
in two dimensions the spin glass~SG! transition occurs at
zero temperatureTc50. This belief arises from the study o
the stiffness exponentuS which has a positive or negativ
value when the phase transition occurs at a finite, nonz
temperatureTcÞ0 or Tc50, respectively. McMillan,1 and
Bray and Moore2 estimated a value ofuS;20.28 for the
Ising model with Gaussian distribution of bonds~Gaussian
model! by calculating the defect energyDE of finite lattices
and predicted that the model exhibits the SG transition
Tc50 with the correlation exponent ofn521/uS;3.5. This
value of uS was confirmed by a recent estimation usi
larger lattices.3 It should be noted, however, that the value
n is significantly different from direct estimations ofn
;2.0.4–6 The problem is subtle in a discrete model with1J
and 2J bonds (6J model! for which the value ofuS was
first estimated asuS;0.7–9 However, a recent estimatio
gave a small negative value ofuS;20.05.10 From these
results and an idea that the nature of the phase transition
finite temperature would not depend on details of the bo
distribution, one believes thatTc50 in any two-dimensiona
SG model, although no direct evidence ofTc50 has yet been
obtained for every model, especially for the6J model.11

Recently, Shirakura and Matsubara made a Monte C
~MC! simulation of the6J model at low temperatures12 and
that of an asymmetric discrete model with1J and 2aJ(a
Þ1) bonds at very low temperatures13 and predictedTcÞ0.
Obviously, their prediction and the belief are incompatibl

In this paper, we carefully reexamine the defect energy
Ising SG models in two dimensions and find that the res
support the prediction ofTcÞ0. Our findings are as follows
~i! The conventional boundary conditions used for estimat
the defect energyDE are inadequate in some cases, es
cially in delicate problems such as the phase transition of
6J model.A naive defect energy is calculated for the fir
time in the SG problem using conjugate boundary con
tions. ~ii ! The distribution ofDE, P(DE), is highly asym-
PRB 580163-1829/98/58~18!/11821~4!/$15.00
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metric for small systems andthe conventional estimation o

uS by means of the size dependence of the average valueDĒ

could take the risk for misleading the conclusion.~iii ! DĒ’s
are estimated for both Gaussian model and discrete mo
for different sizes of the lattice and the following predictio
are given for large systems. In the Gaussian model,P(DE)
shrinks to a sharp one atDE50. ThereforeDĒ50 anduS is
negative as predicted previously but its value is larger th
that of the previous estimations. In the discrete mod
P(DE) exhibits discrete peaks whose weights atDE;0 as
well as those at largeDE never increase with increasing th
size of the lattice. ThereforeDĒ converges to some nonzer
value, i.e.,uS50, in contrast with the recent prediction.~iv!
Thus the prediction of TcÞ0 for the discrete models is no
incompatible with the results of the defect energy analy
The interface free energy is also calculated to confirm
presence of the SG phase at finite temperatures.

We start with an Ising model on a square latticeL3(L
11) described by the Hamiltonian

H52(
^ i , j &

Ji j s is j , ~1!

wheres i(561) are Ising spins and̂i j & runs all nearest-
neighbor pairs. We consider the following two bond dist
butions:

P~Ji j !5
1

A2p
exp~2Ji j

2 /2!, ~2!

P~Ji j !5
1

2
@d~Ji j 2J!1d~Ji j 1aJ!#. ~3!

The model~1! with the distribution~2! is the Gaussian mode
and that with Eq.~3! is a discrete model. Hereafter we ref
to the direction for (L11) spins as thex direction and the
other as they direction. The defect energyDE has been
conventionally defined byDE5Eap2Ep , whereEp andEap
R11 821 ©1998 The American Physical Society
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are the ground-state energies for the periodic and antip
odic boundary conditions in they direction. The boundary
condition in thex direction is chosen to be either periodic1 or
free.3,10 Note that the defect energy calculated in this way
either positive or negative and one considers the abso
value uDEu. Bray and Moore2 applied somewhat differen
boundary conditions. They considered the lattice with
periodic boundary condition in they direction. The spin con-
figurations on the surfaces in thex direction, which are de-
noted as$Sa% for x51 and$Sb% for x5(L11), are put at
random. They definedEp as the ground-state energy of th
lattice with $Sa% and $Sb%, and Eap as that with$Sa% and
$2Sb%, where$2Sb% is the spin configuration obtained re
versing all the spins of$Sb%. These different sets of boundar
conditions would be essentially the same for evaluatingDE.
In fact, the same value ofuS;20.28 has been obtained i
the Gaussian model.1–3 However, it is not obvious whethe
these sets give the true defect energy or not.14 For example,
we consider the boundary conditions by Bray and Moo
For neither boundary condition will the system have
ground-state spin configuration of the lattice without any
striction. That is, some defect lines~or defect points! already
exist in those ground states. Therefore, it is doubtful whet
DE gives true defect energy or not. This problem would n
be so serious whenDE has a strong dependence onL as in
the ferromagnetic case. However, in the two dimensional
model, the size dependence is slight, e.g.,DE;J even for
L;30.3,10 That is, the value would considerably change ev
when only one position of the defect line changes. To relie
this difficulty, Ozeki9 used a replica boundary condition fo
one end but still used the random boundary condition for
other end. It should be noted that he obtained a value ouS

slightly larger than that of the conventional method.7,9

We consider the lattice treated by Bray and Moore. It
obvious that the spin configuration without any defect is
ground state without any restriction. Then it is quite natu
to choose the spin configurations$Sa% and $Sb% as ones in
the ground state for the free boundaries. We call this bou
ary condition a conjugate boundary condition, becaus
gives the true ground-state energy. By the use of the bou
ary conditions of$Sa% and $2Sb%, we may certainly con-
struct one defect line, if it could occur. The defect ener
DE obtained using these sets of boundary conditions is
course, non-negative in contrast to the conventional one.
problem is how to get$Sa% and $Sb%. We can readily get
them by using a cluster heat bath~CHB! method13,15,16 for
both T50 andTÞ0. Some comments should be given. F
the Gaussian model, the ground state can be uniquely d
mined. ThenDE for each sample can be uniquely dete
mined. On the other hand, in the discrete models, there
many different sets of$Sa% and$Sb%. Then we choose one o
them for$Sa%, and$Sb% is chosen so as to give the minimu
value of DE.17 These calculations may be readily done
using the transfer matrix method.7,18

We make the simulation using these conjugate bound
conditions. The lattices treated here areL3(L11) for L
<24 and the numbers of the samples areNs510 000
;50 000. For every size of the lattice withL, the defect
energyDE is calculated for every sample and the distrib
ri-
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tion function PL(DE) is obtained. The defect energ
W(L)([DĒ) for the lattice withL is obtained fromW(L)
5*DEPL(DE)dDE.

The results ofW(L) are shown in Fig. 1 in a log-log
scale. These size dependences ofW(L) are quite different. In
the Gaussian model, logW(L) decreases almost linearly wit
log L suggestingW(L);LuS with uS,0 as predicted previ-
ously. However, the value ofuS;20.20 is larger than tha
of the previous estimations ofuS;20.28.1–3 In the 6J
model, W(L) slightly increases in contrast with the rece
prediction based on the conventional boundary condition10

On the other hand, in the asymmetric model with1J and
20.8J bonds,W(L) decreases. These results in the discr
models are quite mysterious, because the MC studies12,13

suggestedTcÞ0 for both the models.
To examine this problem, we considerPL(DE) itself. In

Fig. 2, we presentPL(DE) of the Gaussian model.PL(DE)
has a continuous weight in a finite range ofDE. As L is
increased, the weight atDE;0 increases, while that at large
DE decreases. This fact implies that it collapses
PL(DE);d(DE). On the other hand, in the6J model,DE

FIG. 1. The defect energiesW(L) as functions of the lattice size
L.

FIG. 2. Distribution ofDE of the Gaussian model.
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takes values for every 4J, i.e., PL(DE)5( l 50,4,•••Ald(DE
2 lJ). The size dependences of the coefficients ofAl are
plotted in Fig. 3. OnlyA0 andA4 have considerable weights
The most important point is thatA0 andA4n with n>2 never
increase withL. This means thatW(L) never vanishes no
diverges forL→`, i.e., W(L) converges to some nonzer
value. In the asymmetric model,PL(DE) also has discrete
peaks at every 2(12a)J. In Fig. 4, we showPL(DE) in a
line graph. For smallL, it has a double peak atDE;0.4J
and 3J. As L is increased, the peak atDE;3J rapidly di-
minishes andPL(DE) becomes of the single peak. Th
weights ofDE50 and 0.4J components seem to converg
and those atDE;J increase. Thus we think that, forL
→`, PL(DE) has a single peak atDE;J. That is,W(L)
also converges to some nonzero value. The distribution fu
tions P(DE) for L→` suggested above and from the M
studies12,13 are schematically shown in Fig. 5.

We conclude, hence, that whether the SG phase trans
occurs or not in two dimensions depends on the model
the Gaussian model,Tc50 as predicted previously. It shoul

FIG. 3. The weightsAl of discrete peaks atDE5 lJ of the 6J
model.

FIG. 4. Distribution ofDE of the 1J and20.8J model. Lines
are guide to the eye.
c-

on
In

be emphasized again that the value ofuS is different from
that of the previous estimation. The value seems to have
relation with that of the correlation exponentn.4 In the dis-
crete models, the problem is very delicate, becauseW(`)
has a finite, nonzero value like that in the two-dimensio

FIG. 5. Schematic pictures of distribution ofDE for L→`.

FIG. 6. The interface free energiesDF̄ of the 6J model at

different temperatures. Note thatDF̄ at T50 is W(L).
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xy ferromagnet. This result suggests thatT50 is marginally
stable. The SG order will exist atT50 which is character-
ized by a power-law decay of the spin correlation.7,18

WhetherTcÞ0 or not should be examined separately. W
have also made it by evaluating the interface free ene
DF5Fap2Fp ,1,9 where Fp and Fap are the free energie
calculated using conjugate boundary conditions$Sa% and
$Sb% at finite temperatures.19 The result for the6J model is
presented in Fig. 6. In fact, the average valueDF̄ for T
<0.1J seems to increase with lattice sizeL, while that for
T>0.3J decreases. Thus we believe that the phase atT50
persists up to some finite temperature. That is,Tc is nonzero
and exists between 0.1J and 0.3J, probablyTc;0.2J. This
result is quite interesting, because the value ofTc;0.2J is
compatible with the previous estimation ofTc;0.24J using
e

y

the MC method.12 Thus we believe that the defect energ
analysis gives results which are not incompatible with
MC result.

Finally, we should note that the choice of the bounda
condition will be crucially important also in three dimen
sions. Especially, studies of the defect energy in the thr
dimensional vector SG models under the conjugate bound
conditions are desirable, because the possibility of the ch
SG ordering without any spin ordering is a current topic.20–22
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