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Scattering approach to parametric pumping
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A dc current can be pumped through a quantum dot by periodically varying two independent parametersX1

and X2 , like a gate voltage or magnetic field. We present a formula that relates the pumped current to the
parametric derivatives of the scattering matrixS(X1 ,X2) of the system. As an application we compute the
statistical distribution of the pumped current in the case of a chaotic quantum dot.@S0163-1829~98!52240-0#
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An electron pump is a device that generates a d.c. cur
between two electrodes that are kept at the same bias
recent years, electron pumps consisting of small semic
ductor quantum dots have received considerable experim
tal and theoretical attention.1–11 A quantum dot is a smal
metal or semiconductor island, confined by gates, and c
nected to the outside world via point contacts. Several
ferent mechanisms have been proposed to pump ch
through such systems, ranging from a low-frequency mo
lation of gate voltages in combination with the Coulom
blockade1,2,11 to photon-assisted transport at or near a re
nance frequency of the dot.5–8 Their applicability depends on
the characteristic size of the system and the operation
quency.

Most experimental realizations of electron pumps in se
conductor quantum dots made use of the principle of C
lomb blockade. If the dot is coupled to the outside world v
tunneling point contacts, the charge on the dot is quantiz
and~apart from degeneracy points! transport is inhibited as a
result of the high energy cost of adding an extra electron
the dot. Pothieret al. constructed an electron pump that o
erates at arbitrarily low frequency and with a reversib
pumping direction.2 The pump consists of two weakl
coupled quantum dots in the Coulomb blockade regime
operates via a mechanism that closely resembles a peris
pump: Charge is pumped through the double dot array fr
the left to the right and electron-by-electron as the volta
U1}sin(vt) of the left dot reaches its minima and maxim
before the voltageU2}sin(vt2f) of the right one.2 The
pumping direction can be reversed by reversing the ph
differencef of the two gate voltages.

A similar mechanism was proposed by Spivak, Zhou, a
Beal Monod for an electron pump consisting of single qu
tum dot only.4 In this case a d.c. current is generated
adiabatic variation of two different gate voltages that det
mine the shape of the nanostructure, or any other pai
parametersX1 andX2 , like magnetic field or Fermi energy
that modify the~quantum mechanical! properties of the sys
tem, see Fig. 1~a!. The magnitude of the current is propo
tional to the frequencyv with which X1 andX2 are varied
and ~for small variations! to the product of the amplitude
dX1 and dX2 . The direction of the current depends on m
croscopic~quantum! properties of the system, and need n
be knowna priori from its macroscopic properties. As in th
case of the double-dot Coulomb blockade electron pump
Ref. 2, the direction of the current in the single-dot param
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ric pump of Spivaket al.4 can be reversed by reversing th
phases of the parametersX1 andX2 . An important difference
between the two mechanisms is that a parametric elec
pump like the one in Ref. 4 does not require that the quan
dot is in the regime of Coulomb blockade; it operates if t
dot is open, i.e., well coupled to the leads by means of b
listic point contacts. Experimentally, an electron pump in
open quantum dot has been realized only very recently.12 A
measurement of the pumped current provides a promis
tool to study properties of open mesoscopic systems at
bias or at zero current.

In this paper we consider a parametric electron pu
through an open system in a scattering approach. Our m
result is a formula for the pumped current in terms of t
scattering matrixS(X1 ,X2). Such a formula is the analogu
of the Landauer formula, which relates the conductanceG
5dI /dV of a mesoscopic system with two contacts to a s
over the~squares of! matrix elementsSab ,

dI 5GdV5
2e2

h
dV (

aP1
(
bP2

uSabu2. ~1!

The indicesa andb are summed over all channels in the le
and right contacts, respectively, anddV is the applied volt-
age. For the case of the parametric electron pump, where
parametersX1 and X2 are varied periodically,dX1(t)
5dX1sin(vt) and dX2(t)5dX2sin(vt2f), we find that the
d.c. component of the currentI depends on thederivatives
]Sab /]X,

FIG. 1. ~a! A quantum dot with two parametersX1 andX2 that
describe a deformation of the shape of the quantum dot. AsX1 and
X2 are varied periodically, a dc currentI is generated.~b! In one
period, the parametersX1(t) and X2(t) follow a closed path in
parameter space. The pumped current depends on the enclose
A in (X1 ,X2) parameter space.
R10 135 © 1998 The American Physical Society
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dI 5
ve sinfdX1dX2

2p (
aP1

(
b

Im
]Sab*

]X1

]Sab

]X2
. ~2!

Like the Landauer formula, Eq.~2! is valid for a phase co-
herent system at zero temperature and to~bi!linear response
in the amplitudesdX1 anddX2 . @The nonlinear response i
given by Eq.~8! below.# It captures both a classical contr
bution to the current and the quantum interference cor
tions. Quantum corrections can be important in the mes
copic regime, especially if there is no ‘‘classical
mechanism that dominates the pumping process.4,12 Equation
~2! is valid to first order in the frequencyv. This is sufficient
if the periodt52p/v is much larger than the time particle
spend inside the quantum dot. For such low frequencies
can assume that equilibrium is maintained throughout
pumping process. The scattering matrix formula does
capture effects of orderv2 ~or higher! that rely on the exis-
tence of a nonequilibrium distribution inside the quantu
dot.4 The existence of a scattering approach to parame
pumping allows us to borrow from the vast literature deal
with scattering matrices of disordered and chaotic mic
structures and their parameter dependence,13 and to directly
relate the pumped current to other transport properties l
e.g., the conductance.

The system under consideration is shown schematicall
Fig. 1~a!. It consists of a quantum dot, coupled to two ele
tron reservoirs by ballistic point contacts. The two electr
reservoirs are held at the same voltage. Two external par
etersX1(t) andX2(t) of the dot are varied periodically, se
Fig. 1~a!. They can be, e.g., the voltage of a plunger ga
parameters that characterize the shape, or a magnetic
The two point contacts, which haveN channels at the Ferm
level EF , are labeled 1 and 2. The scattering matrixSof the
system has dimension 2N32N and is a function of the pa
rametersX1 andX2 . Since the system is well coupled to th
leads, the charge is no longer quantized, the Coulomb blo
ade is lifted, and to a first approximation, we can use a p
ture of noninteracting electrons.14

The starting point of our theory is a formula due to Bu¨tt-
iker, Thomas, and Preˆtre15 for the current in the contacts 1
and 2 that results from an infinitesimal change of a para
eter X: For a small and slow harmonic variationX(t)5X0
1dXveivt, the chargedQ(m) entering the cavity through
contactm (m51,2) reads as

dQ~m,v!5e
dn~m!

dX
dXv , ~3a!

dn~m!

dX
5

1

2p(
b

(
aPm

Im
]Sab

]X
Sab* . ~3b!

The indexa is summed from 1 toN for contact 1 and from
N11 to 2N for contact 2. The quantitydn(m)/dX is the
emissivityinto contactm.15 Equation~3! is valid to first order
in the frequencyv and assumes that the scattering proper
follow the time-dependent potentials instantaneously. A
Fourier transformation one obtains

dQ~m,t !5e
dn~m!

dX
dX~ t !. ~4!
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Similarly, for a simultaneous infinitesimal variation of tw
parametersX1 andX2 , the emitted chargedQ(m,t) through
contactm is (m51,2)

dQ~m,t !5e
dn~m!

dX1
dX1~ t !1e

dn~m!

dX2
dX2~ t !. ~5!

Next, we consider afinite variation of both parametersX1
and X2 . The total charge emitted through contactm in one
period t52p/v is found from integration of Eq.~5! to X1
and X2 , bearing in mind that the scattering matrixS and
hence the emissivitiesdn(m)/dX1 anddn(m)/dX2 are func-
tions of X1 andX2 ,

Q~m,t!5eE
0

t

dtS dn~m!

dX1

dX1

dt
1

dn~m!

dX2

dX2

dt D . ~6!

In one period, the pair of parametersX1(t) andX2(t) follows
a closed path in the (X1 ,X2) parameter space, see Fig. 1~b!.
The total charge expelled from the dot through contactm can
be rewritten as a surface integral over the areaA enclosed by
the path in parameter space using Green’s theorem,

Q~m,t!5eE
A
dX1dX2S ]

]X1

dn~m!

dX2
2

]

]X2

dn~m!

dX1
D .

Note that the surface areaA, and hence the transporte
charge, vanish, if the parametersX1 andX2 vary in phase, or
with a phase differencep. The surface area is maximal
their phases differ byp/2. Substitution of Eq.~3b! for the
emissivities yields

Q~m,t!5
e

pEA
dX1dX2(

b
(

aPm
Im

]Sab*

]X1

]Sab

]X2
. ~7!

Hence the d.c. currentI m through contactm is given by

I m5
ive

4p2 (
aPm

E
A
dX1dX2@RX1

,RX2
#aa , ~8a!

RX52 i
]S

]X
S†. ~8b!

One verifies thatI 152I 2 , indicating that no charge is accu
mulated. The response matricesRX1

and RX2
are hermitian

2N32N matrices. For the~bi!linear response to the varia
tions of the parametersX1 andX2 , Eq. ~8! simplifies to the
result ~2! above. Note that, since the parametersX1 andX2
are dimensionless, the current formula contains no factoh,
unlike the Landauer formula~1!. Planck’s constant may
however appear in the typical scales for the parameter
pendence of the scattering matrixS(X1 ,X2).

Equation~8! is the main result of this paper. It establish
the link between the pumped currentI and the parametric
derivatives of the scattering matrixS. Several qualitative ob-
servations can already be reached on the basis of Eq.~8!.
First, for a phase coherent quantum system, the out-of-ph
variation ofanypair of independent parameters will give ris
to a dc current to orderv. Second,I is not quantized, unlike
in the case of the electron pumps that operate in the reg
of Coulomb blockade.2 Third, if the size of the variations
dX1(t)5dX1sin(vt) and dX2(t)5dX2sin(vt2f) is small
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compared to the characteristic correlation scalesX1c andX2c
needed to change the scattering properties of the sample
may neglect theX1 and X2 dependence of the integrand
Eq. ~8!, and recover the~bi!linear response formula~2!. On
the other hand, fordXj@Xjc ( j 51,2), the integrand in Eq
~8! may have multiple sign changes within the integrati
area A, and the typical value ofI is proportional to
(dX1dX2X1cX2csinf)1/2. @Although the typical value of the
current scales as (sinf)1/2, thef dependence of the sample
specific current may be quite random.#

Like the Landauer formula, the scattering matrix formu
~8! describes both a classical contribution to the current
the quantummechanical corrections. Their roles are ill
trated below in two examples. First, we consider a sim
pump in a one dimensional wire. The wire contains a tun
barrier atx50 and for 0,x,L a region where the electro
static potentialU can be varied, e.g. by varying the voltag
of a nearby gate, see Fig. 2~a!. The Schro¨dinger equation for
this system reads as

k2c~x!5S 2
]2

]x2 1V~x! Dc~x!,

~9!
V~x!5gd~x!1Uu@x~L2x!#,

whereu(z)51 if z.0 and 0 otherwise. We pump electron
through the system by opening and closing the tunnel ba
and raising and lowering the potentialU as indicated in Fig.
2~b!. This system operates as a classical ‘‘peristaltic’’ ele
tron pump. To find the dc currentI, we compute the scatter
ing matrix S and apply the scattering matrix formula~8!,

I 5
eLv

8p2k
dU1

evdU

16p2k2~p sin2kL2sin 2kL!. ~10!

The first term is the classical contribution to the pump
current. @Note that the local density of states for this on
dimensional system is 1/(2pk).# The second term is the cor
rection due to quantum interference.

As a second example, we consider the case where e
trons are pumped through a disordered or chaotic quan
dot. This application is relevant for the experiments of R
12. The two~dimensionless! parametersX1 and X2 charac-
terize two different deformations of the shape of the dot,
Fig. 1~a!. Unlike in the previous example, where the pum
ing mechanism was of a mainly classical origin, for a chao
quantum dot, there is no ‘‘classical’’ contribution to th
pumped current. The current results from quantum inter

FIG. 2. ~a! An electron pump, consisting of a one-dimension
wire with a tunnel barrier atx50 and an adjustable electrostat
potentialU for 0,x,L. ~b! Charge is pumped through the wire b
varying the heightg of the tunnel barrier and the potentialU in the
following order:~i! g→` ~close barrier!, ~ii ! U→dU ~raise poten-
tial!, ~iii ! g→0 ~open barrier!, ~iv! U→0 ~lower potential!.
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ence and its size and direction depend on microscopic de
of the system. Pumping occurs because the wave funct
near the two point contacts are different and strongly para
eter dependent, so that different amounts of current fl
through the two contacts if the parametersX1 and X2 are
varied.

For a disordered or chaotic quantum dot, the statist
distribution of the scattering matrixS(X1 ,X2) and its depen-
dence onX1 andX2 are given by the random matrix theory.13

Within random matrix theory, the parameter-depend
HamiltonianH(X1 ,X2) of the quantum dot is replaced by
largeM3M hermitian matrixH(X1 ,X2)

H~X1 ,X2!5H1M 21/2X1H11M 21/2X2H2 , ~11!

where the matrix elements ofH, H1 , and H2 are indepen-
dently and identically distributed Gaussian random numb
A distinction is made between the cases that time-reve
symmetry ~TRS! is present@H(X1 ,X2) is real# or absent
@H(X1 ,X2) is complex#. We now compute the distribution o
the pumped currentI in the regime of small parametric varia
tions dXj!Xjc (m51,2).16 Using the distribution of the
matricesRX1

andRX2
from Ref. 17, we find that for many

channel leads (N@1), the currentI is Gaussian distributed
with ^I &50 and r.m.s.I 5ev sinfdX1dX2/2pN, both with
and without TRS. In the opposite case of single-chan
leads (N51), the distribution is highly non-Gaussian, s
Fig. 3. It has a logarithmic singularity~cusp! at zero current
in the presence~absence! of time-reversal symmetry. The
asymptotics for largeuI u are given by

P~ I !}H uI u29/4, TRS,

uI u23, no TRS.
~12!

The scattering matrix formula~8! allows us not only to
find the statistical distribution of the pumped currentI, but
also the statistical correlation betweenI and the conductance
G of a chaotic quantum dot. The correlation betweenI andG
shows a remarkable dependence on the presence or ab
of time-reversal symmetry: In Ref. 17, it was shown that t
statistical distribution ofRX1

andRX2
is correlated with that

of the conductance in the presence of TRS only. Theref
without TRS,I andG are statistically uncorrelated for a cha

l

FIG. 3. ~a! Distribution of currentI 5v j sinfdX1dX2 for single-
channel point contacts. The case of presence~absence! of time-
reversal symmetry is shown as a solid~dashed! line. ~b! The same,
but with capacitive interactions taken into account by a se
consistent Hartree approach, in the limitC!re2.
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otic quantum dot, while they are correlated in the presenc
TRS. In the latter case, we find that the width of the curr
distribution at a fixed conductanceG is proportional toG1/2

for single-channel leads.18

Our main result, Eq.~8!, is readily extended to include th
effect of a capacitive interaction in the quantum dot within
self-consistent Hartree treatment.14,19 Following Ref. 19, the
effect of the capacitive interaction is described by a s
consistent electric potentialU. The potentialU is related to
the ~kinetic! energyE and the Fermi energyEF via EF5E
1U. Variation of X1 andX2 will cause a change ofU and
hence ofE5EF2U. ~The Fermi energyEF is kept con-
stant.! Hence we have to deal with a simultaneous variat
of E, X1 , andX2 . These simultaneous variations can still
described by the scattering matrix formula~8! provided we
replace the response matricesRXj

( j 51,2) by

RXj
→RXj

1RE

]E

]Xj
, RE52 i

]S

]E
S†. ~13!
rd
of
t

-

n

The derivative]E/]Xj reads19

]E

]Xj
52

tr RXj

pC/e21tr RE

, j 51,2 ~14!

whereC is the geometrical capacitance of the dot. For ma
channel contacts, inclusion of the interactions has no ef
on the current distribution. For single-channel leads, we h
computed the current distribution for the experimentally r
evant caseC!e2r, wherer is the~average! density of states
in the dot, using the distribution of the matricesRXj

andRE

in the presence of capacitive interactions.20 The result, which
is not much different from the non-interacting case, is sho
in Fig. 3~b!.

It is a pleasure to acknowledge discussions with I.
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