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Scattering approach to parametric pumping
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A dc current can be pumped through a quantum dot by periodically varying two independent paraimeters
and X,, like a gate voltage or magnetic field. We present a formula that relates the pumped current to the
parametric derivatives of the scattering mat8x,,X,) of the system. As an application we compute the
statistical distribution of the pumped current in the case of a chaotic quanturfS@d63-18208)52240-7

An electron pump is a device that generates a d.c. curremic pump of Spivaket al# can be reversed by reversing the
between two electrodes that are kept at the same bias. phases of the parametets andX,. An important difference
recent years, electron pumps consisting of small semicorbetween the two mechanisms is that a parametric electron
ductor quantum dots have received considerable experimefpump like the one in Ref. 4 does not require that the quantum
tal and theoretical attention!! A quantum dot is a small dot is in the regime of Coulomb blockade; it operates if the
metal or semiconductor island, confined by gates, and cordot is open, i.e., well coupled to the leads by means of bal-
nected to the outside world via point contacts. Several diflistic point contacts. Experimentally, an electron pump in an
ferent mechanisms have been proposed to pump charg®en quantum dot has been realized only very recétly.
through such systems, ranging from a low-frequency modumeasurement of the pumped current provides a promising
lation of gate voltages in combination with the Coulomb tool to study properties of open mesoscopic systems at zero
blockadé*!' to photon-assisted transport at or near a resobias or at zero current.
nance frequency of the dot® Their applicability depends on  In this paper we consider a parametric electron pump
the characteristic size of the system and the operation frehrough an open system in a scattering approach. Our main
guency. result is a formula for the pumped current in terms of the

Most experimental realizations of electron pumps in semi-scattering matrixS(X,,X;). Such a formula is the analogue
conductor quantum dots made use of the principle of Couef the Landauer formula, which relates the conducta@ce
lomb blockade. If the dot is coupled to the outside world via= 8l/8V of a mesoscopic system with two contacts to a sum
tunneling point contacts, the charge on the dot is quantizedver the(squares gfmatrix elementsS,,
and(apart from degeneracy pointsansport is inhibited as a
result of the high energy cost of adding an extra electron to 2e?
the dot. Pothlget <'_;1I. constructed an electron_ pump that op- Sl=GsV= i5\/2 E E ﬂ|2. )
erates at arbitrarily low frequency and with a reversible h pe2
pumping directiorf. The pump consists of two weakly
coupled quantum dots in the Coulomb blockade regime and, . )
operates via a mechanism that closely resembles a peristaltld'€ indicesa and are summed over all channels in the left
pump: Charge is pumped through the double dot array fronqnd right contacts, respectively, :_mcr is the applied volt-
the left to the right and electron-by-electron as the voltagé®d€: For the case of the parametric electron pump, where two
U,=sin(wt) of the left dot reaches its minima and maxima ParametersX, and X, are varied periodically,5Xy(t)
before the voltage,sin(wt—a) of the right oné The = 0XiSin(wt) and 6X(t) = 6X;sin(wt—4), we find that the
pumping direction can be reversed by reversing the phas%-c- component of the currehtdepends on théerivatives
difference of the two gate voltages. ISapl IX,

A similar mechanism was proposed by Spivak, Zhou, and
Beal Monod for an electron pump consisting of single quan-
tum dot only? In this case a d.c. current is generated by
adiabatic variation of two different gate voltages that deter-
mine the shape of the nanostructure, or any other pair of
parameters(; andX,, like magnetic field or Fermi energy,
that modify the(quantum mechanicaproperties of the sys-
tem, see Fig. (B). The magnitude of the current is propor- (a) (b)
tional to the frequency with which X; and X, are varied

and (for small variation$ to the product of the amplitudes FIG. 1. (@) A quantum dot with two parameteks, andX, that

0Xy and 6X,. The direction of the current depends on mi- describe a deformation of the shape of the quantum doXAand
croscopic(quantum properties of the system, and need notx, are varied periodically, a dc currehtis generated(b) In one

be knowna priori from its macroscopic properties. As in the period, the parameter¥;(t) and X,(t) follow a closed path in

case of the double-dot Coulomb blockade electron pump ofarameter space. The pumped current depends on the enclosed area
Ref. 2, the direction of the current in the single-dot parametA in (X;,X,) parameter space.
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552,3 IS,p Similarly, for a simultaneous infinitesimal variation of two
2 parameter¥; andX,, the emitted chargéQ(m,t) through

51— e SiN @ 6X41 06X,

> > Im

2 acl B X1 9% contactmis (m=1,2)
Like the Landauer formula, Eq2) is valid for a phase co- dn(m) dn(m)
herent system at zero temperature andbiglinear response SQ(M,t)=e—— Xy (1) +e———Xy(t).  (5)
in the amplitudes5X; and 6X,. [The nonlinear response is dX dX;

given by Eq.(8) below] It captures both a classical contri-

bution to the current and the quantum interference correc: Next, we consider énite variation of both parametep,
q and X,. The total charge emitted through contacin one

tions. Quantum corrections can be important in the mesos-_ . _ . . .
copic regime, especially if there is no ‘“classical” period 7= 27/ w is found from integration of Eq5) to X;

) : . - d X,, bearing in mind that the scattering mati$and
mechanism that dominates the pumping proééégquation 3¢ *2 9
(2) is valid to first order in the frequenay. This is sufficient hence the emissivitiedn(m)/dX, anddn(m)/dX; are func-

if the periodr= 2/ w is much larger than the time particles tions of X, and Xy,
spend inside the quantum dot. For such low frequencies, we dn(m) dX, dn(m) dX,
can assume that equilibrium is maintained throughout the Q(m,r):ef dt ax W-ﬁ- ax W) (6)
pumping process. The scattering matrix formula does not 0 1 2

capture effects of orden? (or highe) that rely on the exis- In one period, the pair of parametetg(t) andX,(t) follows
tence of a nonequilibrium distribution inside the quantumg closed path in theXy,X,) parameter space, see Figbl
dot* The existence of a scattering approach to parametrighe total charge expelled from the dot through contactn

pumping allows us to borrow from the vast literature dealingpe rewritten as a surface integral over the akemclosed by
with scattering matrices of disordered and chaotic microthe path in parameter space using Green'’s theorem,

structures and their parameter dependéf@ad to directly
relate the pumped current to other transport properties like,
e.g., the conductance. Q(mvT):efAXmdXZ
The system under consideration is shown schematically in
Fig. 1(a). It consists of a quantum dot, coupled to two elec-Note that the surface ared, and hence the transported
tron reservoirs by ballistic point contacts. The two electroncharge, vanish, if the parametetg and X, vary in phase, or
reservoirs are held at the same voltage. Two external paranwith a phase differencer. The surface area is maximal if
etersX;(t) andX,(t) of the dot are varied periodically, see their phases differ byr/2. Substitution of Eq(3b) for the
Fig. 1(a). They can be, e.g., the voltage of a plunger gategmissivities yields
parameters that characterize the shape, or a magnetic field. o 3S* 25
The two point contacts, which haw channels at the Fermi _c ap Oap
level E¢, are labeled 1 and 2. The scattering maSiaf the Q(m,7)= wJAdxldXZEﬁz ;E:m m Xy Xy ™
system has dimensionN2< 2N and is a function of the pa-
rametersX,; andX,. Since the system is well coupled to the
leads, the charge is no longer quantized, the Coulomb block- iwe
ade is In‘ted_, and t(_) a first approximation, we can use a pic- |m=_22 dX1dX[ Ry, Ry loar » (8a)
ture of noninteracting electrors. 4 dicm Ja v
The starting point of our theory is a formula due totBu
iker, Thomas, and Pue™ for the current in the contacts 1 Ro— i a—SST 8h
and 2 that results from an infinitesimal change of a param- X=X (8b)
eter X: For a small and slow harmonic variatiof(t) = X,
+ 6X,€e'*“!, the chargedQ(m) entering the cavity through
contactm (m=1,2) reads as

IX, dXp X, dXg

g dn(m) 4 dn(m))

Hence the d.c. currert, through contaci is given by

One verifies that,= —1,, indicating that no charge is accu-
mulated. The response matricl@;:(l and Rx, are hermitian

2NX 2N matrices. For thedbi)linear response to the varia-
dn(m) tions of the parameters; and X,, Eqg. (8) simplifies to the
oQ(m,w) =e—g5— X, (3@  result(2) above. Note that, since the paramet&gsand X,
are dimensionless, the current formula contains no fagtor
unlike the Landauer formuldl). Planck’s constant may
dn(m) _ 1 S S m 9Syp - (3b) however appear in the typical scales for the parameter de-
dxX 279G dem ax ek’ pendence of the scattering mat&¢X,,X,).

) _ Equation(8) is the main result of this paper. It establishes
N+1 to 2N for contact 2. The quantitin(m)/dX is the  derjvatives of the scattering matr& Several qualitative ob-
emiSSiVityinto Contactm.ls Equation(3) is valid to first order servations can a|ready be reached on the basis Of(aq
in the frequency» and assumes that the scattering propertiegirst, for a phase coherent quantum system, the out-of-phase
follow the time-dependent potentials instantaneously. Aftekariation ofany pair of independent parameters will give rise

Fourier transformation one obtains to a dc current to orden. Second] is not quantized, unlike
in the case of the electron pumps that operate in the regime
5Q(m t):edn(m) SX(1) (4 ©f Coulomb blockadé. Third, if the size of the variations
’ dX ' OX4(t) = 6X4sin(wt) and 6X,(t) = X, sin(wt—¢) is small



RAPID COMMUNICATIONS

PRB 58 SCATTERING APPROACH TO PARAMETRIC PUMPING R10 137

(i) 2

T 4
frie o

(b)

(i) (iii)
{ 1 f 1~

x=0 x=L (a) vy U (b)

FIG. 2. (@) An electron pump, consisting of a one-dimensional
wire with a tunnel barrier ak=0 and an adjustable electrostatic 0
potentialU for 0<x<L. (b) Charge is pumped through the wire by
varying the heighty of the tunnel barrier and the potentidlin the j j
following order: (i) y—o (close barrier, (i) U— U (raise poten-
tial), (i) y—0 (open barriex, (iv) U—0 (lower potential. FIG. 3. (a) Distribution of current = wj sin ¢8X;,8X, for single-

channel point contacts. The case of presefa®sencg of time-

compared to the characteristic correlation scXlgsandX,, ~ reversal symmetry is shown as a sdlithshediline. (b) The same,
needed to change the scattering properties of the sample, Wt with capacitive interactions taken into account by a self-
may neglect theX,; and X, dependence of the integrand in Consistent Hartree approach, in the lirgit< pe?.
Eq. (8), and recover thé¢bi)linear response formulé2). On L ) ) ] ] )
the other hand, fopX;>X;. (j=1,2), the integrand in Eq. ence and its size and.dlrecuon depend on microscopic deFa|Is
(8) may have multiple sign changes within the integrationOf the system. Pumping occurs l_)ecause the wave functions
area A, and the typical value ofl is proportional to N€ar the two point contacts'are different and strongly param-
(8X1 86X, X1 X2eSiN )2 [Although the typical value of the eter dependent, so that o!lfferent amounts of current flow
current scales as (si)'2 the ¢ dependence of the sample- thrqugh the two contacts if the parametets and X, are
specific current may be quite randdm. varied. , o

Like the Landauer formula, the scattering matrix formula . FOr @ disordered or chaotic quantum dot, the statistical
(8) describes both a classical contribution to the current andistribution of the scattering matr&(X, ,X;) and its depen-
the quantummechanical corrections. Their roles are illusdence orX; andX; are given by the random matrix theory.
trated below in two examples. First, we consider a simple/Vithin random matrix theory, the parameter-dependent
pump in a one dimensional wire. The wire contains a tunneamiltonian(Xy,X;) of the quantum dot is replaced by a
barrier atx=0 and for 0<x<L a region where the electro- argeé M xM hermitian matrixH (X1, Xz)
static potentialJ can be varied, e.g. by varying the voltage _ _
of a nearby gate, see Fig(@. The Schrdinger equation for H(X1,Xp) =H+M 5 H M ¥3XH,, - (1D)

this system reads as where the matrix elements &f, H;, andH, are indepen-
P dently and identically distributed Gaussian random numbers.
kZ,/,(X):( - —2+V(x)) H(X), A distinction is made between the cases that time-reversal

2 symmetry (TRS) is present{H(Xq,X,) is real or absent

(9)  [H(X1,X,) is comple§. We now compute the distribution of

V(X)=yd8(x)+Ufx(L—x)], the pumped currertin the regime of small parametric varia-
whered(z)=1 if z>0 and 0 otherwise. We pump electrons tions 8X;<X;c (m=1,2)** Using the distribution of the
through the system by opening and closing the tunnel barrighatricesRy, andRy, from Ref. 17, we find that for many-
and raising and lowering the potentladlas indicated in Fig. channel leadsN>1), the current is Gaussian distributed
2(b). This system operates as a classical “peristaltic” elec-with (1)=0 and r.m.sl =ew sin $8X;8X,/2mN, both with
tron pump. To find the dc curreiht we compute the scatter- and without TRS. In the opposite case of single-channel
ing matrix S and apply the scattering matrix formu(@), leads N=1), the distribution is highly non-Gaussian, see
Fig. 3. It has a logarithmic singulariticusp at zero current

| = e'—;" SU+ ew(zuz(wsinsz—sin KL).  (10) in the prgsence{absenc)a of t'ime—reversal symmetry. The
87’k 16m°k asymptotics for largél| are given by
The first term is the classical contribution to the pumped 1|94 RS
current.[Note that the local density of states for this one- P(1)oi 5 ’ ’ (12)
dimensional system is 1/¢#).] The second term is the cor- 13, no TRS.

rection due to quantum interference.

As a second example, we consider the case where elec- The scattering matrix formulé8) allows us not only to
trons are pumped through a disordered or chaotic quantufind the statistical distribution of the pumped currénbut
dot. This app"cation is relevant for the experiments of Ref_also the Stat.iStical correlation betWebanq the conductance
12. The two(dimensionlessparametersX; and X, charac- G of a chaotic quantum dot. The correlation betwéandG
terize two different deformations of the shape of the dot, se§hows a remarkable dependence on the presence or absence
Fig. 1(a). Unlike in the previous example, where the pump-©f tl_rng-reve;rsql symmetry: In Ref. 17, itwas show_n that the
ing mechanism was of a mainly classical origin, for a chaoticStatistical distribution oRy, andRy_ is correlated with that
guantum dot, there is no “classical”’ contribution to the of the conductance in the presence of TRS only. Therefore,
pumped current. The current results from quantum interferwithout TRS,I andG are statistically uncorrelated for a cha-
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otic quantum dot, while they are correlated in the presence ofhe derivativedE/ 9X; reads®
TRS. In the latter case, we find that the width of the current
distribution at a fixed conductané is proportional toG? JE trRy, _
for single-channel lead$. aX. m' =12 (14)

Our main result, Eq(8), is readily extended to include the ! m E
effect of a capacitive interaction in the quantum dot within awhereC is the geometrical capacitance of the dot. For many-
self-consistent Hartree treatméfit® Following Ref. 19, the channel contacts, inclusion of the interactions has no effect
effect of the capacitive interaction is described by a self-On the currentdistributiqn. _For_single-channel Ie_zads, we have
consistent electric potenti&). The potentiall is related to ~ cOmputed the current distribution for the experimentally rel-
the (kinetic) energyE and the Fermi energfs via E;.=E  Evantcas€<e’p, wherep is the(averaggdensity of states
+U. Variation of X; and X, will cause a change dfl and !n the dot, using the d'StT'_bU“_O“ of the matrlcléﬁj and RE
hence ofE=Eg—U. (The Fermi energyEr is kept con- in the presence of capacitive mtera_ctﬁﬂﬂ’.he result, which
stant) Hence we have to deal with a simultaneous variation$ N0t much different from the non-interacting case, is shown
of E, X;, andX,. These simultaneous variations can still bein Fig. 3(b).
described by the scattering matrix formu provided we
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