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Using a Boltzmann-like kinetic equation derived in the semiclassical approximation for the partial Wigner
distribution function, we determine the ac admittance of a two-dimensional quantum point contact~QPC! for
applied ac fields in the frequency rangev'0 – 50 GHz. We solve self-consistently an integral equation for the
spatial distribution of the potential inside the QPC, taking into account the turning points of the semiclassical
trajectories. The admittance of the QPC is a strong function of the gate voltage. This gate voltage can be used
to ‘‘tune’’ the number of open channels~N! for electron transport. We show that, for most values of gate
voltage, the imaginary part of the total admittance is positive forN.1, so that the QPC has an inductive
character, because of the predominant role of the open channels. In contrast, forN50 or 1, for most values of
the gate voltage, the imaginary part of the admittance is negative, corresponding to capacitive behavior. For
gate voltages near values at which channels open or close, very strong nonlinear effects arise, and the admit-
tance oscillates rapidly~with its imaginary part sometimes changing sign! both as the function of gate voltage
~at fixed frequency! and as a function of frequency~at fixed gate voltage!. Experimental observation of these
oscillations would provide an important test of our semiclassical approach to the ac response of a QPC. We
explore the low-frequency regime and investigate the extent to which one can understand the admittance in
terms of a static conductance and a ‘‘quantum capacitance’’ and a ‘‘quantum inductance.’’ We show that it is
possible to choose the gate voltage so that there is a large, low-frequency regime in which the admittance is
well approximated by a linear function of frequency. In this regime, the admittance can be treated by ‘‘equiva-
lent circuit’’ concepts. We study how this approach breaks down at higher frequencies, where strongly non-
linear behavior of the admittance arises. We estimate the value of frequency,vc , at which the crossover from
the low-frequency linear regime to the high-frequency nonlinear behavior occurs. For chosen parameters of a
QPC,vc'10 GHz. @S0163-1829~98!02339-X#
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I. INTRODUCTION

The quantum point contact~QPC! is one of the fundamen
tal nanocircuit elements. QPC’s are typically made by p
ting a split gate on the top of a GaAs-AlxGa12xAs hetero-
structure and applying a voltage to the gate to creat
constriction of variable width in a two-dimensional electr
gas~2DEG! ~see Fig. 1!. QPC’s display many unusual be
haviors, including steplike oscillations of the conductance
a function of the gate voltage. The intense interest in th
QPC’s is reflected in the large literature, both experimen
and theoretical, that has arisen in the decade since thei
troduction~see, for example, Refs. 1–22!.
PRB 580163-1829/98/58~15!/9894~13!/$15.00
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Recently, it was shown1–5 that a QPC displays interestin
quantum effects not only in dc transport but also in respo
to an ac field, where it exhibits quantum inductive20 and
capacitive17,20 behavior ~see also Ref. 23, where quantu
inductance was introduced for mesoscopic systems and
plied to a resonant tunneling device!. This suggests that a
QPC can be considered as an elementary circuit of extrem
small size,;0.1–1mm.

In a previous paper,20 we developed an approach, bas
on a variant of the Wigner distribution function~WDF! for-
malism, for calculating the ac transport through a QPC. U
ing this method, we were able to demonstrate20 that in the
low-frequency regimethe admittance of the QPC can indee
9894 © 1998 The American Physical Society
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be calculated using a simple equivalent circuit that inclu
resistive, capacitive, and inductive components. In particu
in the low-frequency regime, the QPC’s admittance cons
of a conductance~the real part of the admittance! and an
emittance17 that includes inductive and capacitive effec
which we shall henceforth call quantum capacitance17 and
quantum inductance.20 The emittance is sensitive to the g
ometry of the QPC and can be controlled by the gate volta
We also showed20 that stepwise jumps in the quantum indu
tance are determined by the harmonic mean of the veloc
of the propagating modes~open channels! through the QPC,
whereas the quantum capacitance is a mesoscopic man
tation of the reflected electron modes.

Importantly, as introduced, the concepts of quantumin-
ductanceand quantumcapacitanceapply for the QPConly
in the regime of low frequency and for values of the ga
voltage far from the voltages where the electron modes
pear or disappear~‘‘opening points’’!. In the high-frequency
regime, and near the gate voltages at which new elec
modes appear~or disappear!, the frequency dispersion of th
admittance becomes nonlinear and complicated. In this c
the QPC cannot be described~at least not using a simpl
circuit as in Ref. 20! by static~i.e., frequency-independen!
conductance, inductance, and capacitance. Consequent
understand the QPC response to an ac field, it is necessa
investigate the frequency dependence of the admittance
distributed mesoscopic characteristic of the QPC.

In this paper, we investigate the frequency dependenc
the admittance for the symmetric QPC in the form of
smooth constriction~adiabatic geometry! without making a
low-frequency approximation. In Sec. II, we derive the in
gral equation for the spatial distribution of the electric pote
tial inside the QPC and use it to determine an explicit
pression for the admittance. In Sec. III, we study numerica
the integral equation for the potential for frequencies in
rangev'0 – 50 GHz, as a function of the width of the QP
and the number of open and closed channels. We find
there is a characteristic value of frequencyvc at which the
system crosses over from a linear dependence on frequ
characterized by static conductance, capacitance, and in
tance to a strongly nonlinear dependence on frequency.
chosen values of QPC parameters,vc;10 GHz. In the fre-
quency regionv.vc;10 GHz, the admittance of the QP

FIG. 1. The geometry of the constriction. The width is deno
by 2d(x), the narrowest width is 2d(0), and theeffective length is
2L.
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displays several characteristic nonlinear features. In
neighborhood of channel openings, the admittance exhi
oscillations as a function of the parameterq52kFd(0)/p
@wherekF is a Fermi wave vector and 2d(0) is the minimum
width of the QPC#. In our approach, these oscillations ari
from the behavior of trajectories close to the ‘‘separatrix’’
the semiclassical motion. Experimental confirmation~or
refutation! of the existence of these oscillations would pr
vide an important test of our approach to the ac transpor
the QPC. In Sec. IV, we summarize our results.

II. SPATIAL DISTRIBUTION OF THE POTENTIAL
IN THE QPC AND THE ADMITTANCE

We have previously shown20 how to use the partia
Wigner distribution function~PWDF! formalism, to find the
charge,rn(x), and the current,j n(x), densities in the QPC
For open channels, we have

rn~x!5
2e2

h

1

vn~x!
E

2L

L

dx8E~x8!sgn~x2x8!

3exp@ iv* tn~x,x8!sgn~x2x8!#, ~1!

and

j n~x!5
2e2

h E
2L

L

dx8E~x8!exp@ iv* tn~x,x8!sgn~x2x8!#.

~2!

In Eq. ~2!, E(x) is the spatial envelope of the electric fie
inside the QPC: E(x,t)52@]F(x)/]x#exp(2ivt); 2L is
the length of the constriction shown in Fig. 1;v* 5v1 in,
with 1/n being the momentum relaxation time,

tn~x,x8!5E
x8

x dx9

vn~x9!
; ~3!

andvn(x) is the velocity of an electron in thenth channel.
For the closed channels~reflecting modes! we have

rn~x!5
2e2

h

sgn~x!

vn~x!
E

xn

L

dx8E„x8 sgn~x!…

3$sgn~ uxu2x8!exp@ iv* tn~ uxu,x8!sgn~ uxu2x8!#

2exp@ iv* „tn~ uxu,xn!1tn~x8,xn!…#%u~ uxu2xn!,

~4!

j n~x!5
2e2

h E
xn

L

dx8E„x8 sgn~x!…

3$exp@ iv* tn~ uxu,x8!sgn~ uxu2x8!#

2exp@ iv* „tn~ uxu,xn!1tn~x8,xn!…#%u~ uxu2xn!.

~5!

Here xn is the absolute value of the critical~turning! point,
which is determined by the condition,
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9896 PRB 58I. E. ARONOV et al.
«n~xn!5m. ~6!

The velocitiesvn are defined by

vn5A~2/m!„m2«n~x!…. ~7!

In Eqs.~6! and~7!, m is the effective mass of the electron,m
is the chemical potential, and

«n~x!5
p2n2\2

8md2~x!
~8!

is a transverse electron energy in the QPC, with 2d(x) being
the width of the~assumed adiabatic! constriction~see Fig. 1!.
Here, as in Ref. 20, we focus on ballistic transport only. T
means that we assume that the effects of disorder and d
pation on the transport characteristics of the QPC are
significant and can be neglected to leading order asn→0.
For sufficiently high frequencies of the electric field, sm
corrections to the transport characteristics caused by w
disorder and dissipation effects are taken into account in E
~1!–~5! by havingnÞ0. We assume that the relaxation fr
quencyn satisfiesn!vF /L andn!v, wherevF is the Fermi
velocity.

One can see from Eqs.~1!–~5! that the transport through
QPC is described by highly nonlocal~integral! operators.
This ~correctly! suggests that the charge and current dens
at a given pointx are influenced by the electric field gene
ated throughout the whole constriction. Thus, the PWDF f
malism allows us to derive the charge and the current de
ties as nonlocal functions of the electric field.

In Eqs. ~1! and ~2! the electric field can be calculate
using the Poisson equation for the two-dimensional~2D!
electron layer,24

DF~x,y,z!52
4p

e
r~x,y!d~z!, ~9!

wherer(x,y) is the charge density,

r~x,y!5(
n

rn~x!Cn
2~y!, ~10!

and e is the dielectric constant. For simplicity, we do n
indicate explicitly dependence on time in Eqs.~9! and ~10!.
In Ref. 9, F(x,y,z) is the electric potential;Cn(y) is the
transverse wave function of an electron in the adiabatic Q
satisfyingCn„6d(x)…50.20

The Fourier transform and the inverse transform in thx
direction are

F~kx ,y,z!5E
2`

`

dxF~x,y,z!exp~2 ikxx!,

~11!

F~x,y,z!5
1

2p E
2`

`

dkxF~kx ,y,z!exp~ ikxx!.

The d function in Eq.~9! allows24 the Fourier transform of
the electric potential,F(x,y,z), in the QPC to be repre
sented as

F~kx ,ky ,z!5F~kx ,ky ,z50!exp~2kuzu!, ~12!
s
si-
ot

l
ak
s.

s

-
i-

C,

where k5Akx
21ky

2. The expression for F(kx ,y)
[F(kx ,y,z50) is

F~kx ,y!5~1/e!E
2d~x!

d~x!

dy8

3E
2`

`

dky

exp@ iky~y2y8!#

Akx
21ky

2
r~kx ,y8!.

~13a!

From Eq.~13a!, we see thatF(kx ,y) also depends~weakly,
given our assumption of adiabaticity! on x through the inte-
gration limits,6d(x). For uyu@d and uyu!1/kx , the poten-
tial F(kx ,y) decreases exponentially withuyu: F(kx ,y)
;exp(2ukxyu). Indeed, if we integrate overky in Eq. ~13a!,

F~kx ,y!5~2/e!E
2d~x!

d~x!

K0~ ukx~y2y8!u!r~kx ,y8!dy8,

~13b!

and setuy2y8u.uyu(uy8u<d,uyu@d) we find

F~kx ,y!.~2/e!K0~ ukxyu!E
2d~x!

d~x!

r~kx ,y8!dy8. ~13c!

One can see from Eq.~13c! that outside the constriction th
dependence of the potentialF(kx ,y) on the transverse coor
dinate y is determined by the MacDonald function
K0(ukxyu).25 ReplacingK0(ukxyu) by its asymptotic form for
ukxyu@1, we obtain

F~kx ,y!.e21A2p/ukxyuexp~2ukxyu!

3E
2d~x!

d~x!

r~kx ,y8!dy8. ~13d!

For our further calculations, we need the value ofF(x,y)
averaged over the transverse coordinate,y. From Eq.~13a!
we find

F̄~kx![
1

2d~x!
E

2d~x!

d~x!

dyF~kx ,y!. ~14!

We define

rn~kx!5E
2`

`

dxrn~x!exp~2 ikxx!. ~15!

We shall use the following boundary conditions for the Po
son Eq.~9!:

F~2L !5V/2, F~L !52V/2. ~16!

The expression forF(x) is

F~x![
1

2p E
2`

`

dkxF̄~kx!exp~ ikxx!

5
1

2pe (
n
E

2`

`

dx8rn~x8!Qn~x,x8!, ~17!

where
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Qn~x,x8!5
~2pn!2

d~x!
E

0

`

dj
sin2 j

j2@~pn!22j2#
K0F ux2x8u

d~x!
jG .
~18!

In Eq. ~18!, K0@z# is again the MacDonald function. Reca
that we have assumed that the electric field inside the Q
has the formE(x,t)52@]F(x)/]x#exp(2ivt).

The admittance is determined from

Y5
I tot

V
5

1

V (
n

j n~2L !

5
1

V (
n51

N

j n
~o!~2L !1

1

V (
n5N11

N1Ñ

j n
~c!~2L !, ~19!

whereI tot is the total current through the QPC, and

N5F2kFd~0!

p G , Ñ5F2kFd~0!

p
exp~L/L̃ !2G2N,

d~x!5d~0!exp@~x/L̃ !2#. ~20!

In Eq. ~20!, \kF5A2mm, @z# is the integer part ofz, N is the
number of open channels,Ñ is the number of closed chan
nels, andL̃ is a parameter that characterizes the smoothn
of the QPC.

From Eq. ~19! we see clearly that one must know th
spatial distributionof the electric field inside the QPC i
order to calculate the admittance. To solve this problem,
introduce the following dimensionless parameters and v
ables:

F~x!5Vf~z!, x5Lz, x85Lz8, xn5Lzn ,

a5
e2

hvF
, b5b81 ib95

v* L

vF
, q5

2kFd~0!

p
,

N5@q#, Ñ5@q exp~L/L̃ !2#2N, ~21!

f n~z![
vn~z!

vF

5H 12
n2

q2
expF22S L

L̃
D 2

z2G J 1/2

, ~22!

and the dimensionless functions

Qn~z,z8!5
L

d~z!
~2pn!2E

0

`

dt
sin2 t

t2@~pn!22t2#

3K0F tuz2z8u
L

d~z!G ,
d~z!5d~0!expF S L

L̃
D 2

z2G ,

cn~z!5 1
2 $exp@ ibtn~z,21!#2exp@2 ibtn~z,1!#%,

c̃n~z!52 1
2 sign~z!$exp@2 ibtn~ uzu,1!#

1exp@ ib„tn~ uzu,zn!1tn~1,zn!…#%,
C

ss

e
i-

tn~z1 ,z2![E
z2

z1 dz

f n~z!
,

Pn~z,z8![exp@ ib sign~z2z8!tn~z,z8!#,

qn~z,z8!5exp@ ibtn~ uzu,z8!sign~ uzu2z8!#

1exp$ ib@tn~ uzu,zn!1tn~z8,zn!#%.

The integral equation for the electric potentialf~z! follows
from Eqs.~1! and ~17! and has the form

f~z!5
a

pe
$F~z!1F̂1@f~z!#2 ibF̂2@f~z!#%. ~23!

In Eq. ~23!,

F~z!5 (
n51

N E
21

1

dz8Qn~z,z8!
cn~z8!

f n~z8!

1 (
n5N11

N1Ñ E
21

1

dz8Qn~z,z8!
c̃n~z8!

f n~z8!
Q~ uz8u2zn!,

~24!

F̂1@f~z!#522(
n51

N E
21

1

dz8Qn~z,z8!
f~z8!

f n~z8!

22 (
n5N11

N1Ñ E
21

1

dz8Qn~z,z8!Q~ uz8u2zn!

3
f~z8!

f n~z8!
, ~25!

F̂2@f~z!#5 (
n51

N E
21

1

dz8Qn~z,z8!
1

f n~z8!

3E
21

1

dz2f~z2!
Pn~z8,z2!

f n~z2!

1 (
n5N11

N1Ñ E
21

1

dz8Qn~z,z8!
Q~ uz8u2zn!

f n~z8!

3E
zn

1

dz2f@z2sign~z8!#
qn~z8,z2!

f n~z2!
. ~26!

Assuming that the electric potentialf~z! is the solution of
Eqs.~23!–~26!, we can represent the admittance in Eq.~19!
in the form

Y5
2e2

h
y, ~27!

where the dimensionless admittancey is given by the follow-
ing expression, which depends functionally onf~z!:

y5 (
n51

N

yn
~o!1 (

n5N11

N1Ñ

yn
~c! . ~28!
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In Eq. ~28!, yn
(o) is the contribution to the admittance from

the open channels andyn
(c) is the contribution to the admit

tance from the closed channels, and their functional dep
dence onf~z! is given by

yn
~o!5 1

2 $exp@ ibtn~1,21!#11%1 ib

3E
21

1

djf~z!
exp@ ibtn~z,21!#

f n~z!
, ~29!

yn
~c!5 1

2 $12exp@2ibtn~1,zn!#%

2 ibE
zn

1

dz
f~z!

f n~z!
$exp@ ibtn~1,z!#

1exp@ ibtn~1,zn!1tn~z,zn!#%. ~30!

III. RESULTS OF NUMERICAL SIMULATIONS

We solved the integral equation~23! for the potential,
f(z)5f8(z)1 if9(z) and numerically evaluated the ex
pressions~28!–~30! for the admittance,y5y81 iy9. Here
and henceforth, we follow the convention that a superscri8
indicates the real part, and superscript9 indicates the imagi-
nary part, of the corresponding quantity. For the parame
of the QPC, we used values that correspond to
GaxAl12xAs/GaAs heterostructure studied experimentally
Mailly, Chapelier, and Benoit:26

e513, vF52.63107 cm/s, kF51.53106 cm21,

d~0!;1026 cm, L;1023 cm. ~31!

The integral equation~23! is a Fredholm equation of th
second kind, and we solved it using the Nystrom meth
with the Gauss-Legendre quadrature.27,28 For calculating
F(z) and the kernels of the integral operatorsF̂1 ,F̂2 in Eq.
~23!, it is necessary to consider that the integrals in E
~24!–~26! contain integrable singularities. Asz2z8→0,
Qn(z,z8) is proportional to lnuz2z8u. Moreover, for the
closed channels (N1Ñ>n>N11), whenuzu approaches the
turning pointzn we have

1/f n~z!;u~ uzu2zn!/Azn~ uzu2zn!. ~32!

In the neighborhood of the singularities, we replace
functionsQn(z,z8) and 1/f n(z) in the integrand by the ap
propriate asymptotic expressions. In the integrals in E
~24!–~26!, for z near one of the turning points,6zn , (n
5N11, . . . ,N1Ñ), the square root singularity in 1/f n(z)
and the logarithmic singularity inQn(z,z8) reinforce each
other, and hence the potential,f~z!, has a peak type at th
turning points~see Figs. 2 and 3!. The potential curves 1–5
in Fig. 2 correspond to the different values of the frequen
v @or the dimensionless frequency,b8 in Eq. ~21!#. The po-
tential curves 1–3 in Fig. 3 correspond to the different valu
of the relaxation frequencyn ~or the dimensionless paramet
b9).

As one can see from Figs. 2~a! and 3~a!, the values of the
real part of the potential at the boundary of the QP
@f8(61)# are slightly different from the values required b
the boundary conditions~16!, f(71)561/2. The reason for
n-

rs
e
y

d

.

e

s.

y

s

this is that in deriving the integral Eq.~23! for the potential,
we assumed that the boundary conditions~16! are actually
the equations for the edges (x56L, or for the dimensionless
parameter,L/L̃) of the constriction shown in Fig. 1. To ex-
plore the effects of the boundary conditions more careful
we calculated numerically the value of the parameterL/L̃ for
which the boundary conditionswere satisfied. Compared
with the numerical results forf8(z) shown in Figs. 2~a! and
3, which were obtained forL̃5L or L/L̃51, we found@see
Figs. 4~a! and 4~b!# that for L/L̃51.4 the required boundary
conditions,f(71)561/2, were more accurately satisfied
Importantly, our numerical results show that the details
the behavior of the potential in the vicinity of the edges (x
56L) of the QPC shown in Fig. 1 influence only weakl
the behavior of the admittance,y, in Eq. ~28!. This is dem-
onstrated in Figs. 5~a! and 5~b!, where the curves 1–3 in
each of these figures correspond to different values of
parameterL/L̃. As usual, the indices~o! and~c! indicate the
contribution to the admittance from open and closed cha
nels, respectively.

Our numerical simulations show that if the value ofq

FIG. 2. Spatial distribution of the potentialf~z! (z5x/L) in the
QPC for different values of frequencyv. ~a! The real part of the
potentialf8(z); ~b! the imaginary part,f9(z). Curves 1–5 corre-
spond tob850 (v50), b850.5 (v51.331010 s21), b851.0 (v
52.631010 s21), b851.5 (v53.931010 s21), and b852.0 (v
55.231010 s21), respectively. In Fig. 2~b!, curve 1 is not shown
because in the static casef9(z)[0. The parameters of the QPC
are d(0)51.531026 cm, L5L̃51023 cm ~so q52kFd(0)/p
51.43,N51, Ñ52), andn50. The value ofq is not close to an
integer. The potential is a stepwise function of the longitudin
coordinatez, with the steps having peaks at the turning points.
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52kFd(0)/p is not close to an integer, the potential profi
has the characteristic form shown in Figs. 2 and 3. In
spatial region between the first turning points2zN11 and
zN11 ~the closest turning points to the center of the QPCz
50), the real part of the potential,f8(z), is a monotonic
function of the longitudinal coordinatez. If the number of
open channelsN is not equal to 0, the electric field~the slope
of the potential curve! in this spatial region is approximatel
constant and homogeneous. The characteristic behavio
the imaginary part of the electric potential is shown in Fig
2~b!, 3~b!, and 4~b!. Note that both parts of the potentia
f8(z) and f9(z), give a significant contribution to the ad
mittancey.

For dimensionless frequencyb850, corresponding to a
dc applied field, the electric field in the regionuzu,zN11 is
small @see Figs. 2~a! and 3~a!#. For b8Þ0, the electric field
@slope of f8(z)] increases with increasing values ofb8
5Reb ~; frequencyv! andb95Im b ~; relaxation raten!.
The imaginary part of the potential,f9(z), is a nonmono-
tonic function ofb8 @see Fig. 2~b!#, and its slope increase
monotonically with increasingb9 @see Fig. 3~b!#. Outside the
interval 2zN11,z,zN11 , the potential displays stepwis
oscillations. The amplitude of these oscillations decrease
uzu increases@Figs. 2~b! and 3~b!#. We emphasize that th

FIG. 3. Dependence of the potential profilef~z! on the relax-
ation frequencyn ~or b95nL/vF). ~a! The real part off; ~b! the
imaginary part off. The curves are presented forn50,b950
~curve 1!; n51.03109 s21, b950.038 ~curve 2!; n55.0
3109 s21, b950.19 ~curve 3! at b850.5 (v51.331010 s21). As
in Fig. 2, the values of the parameters ared(0)51.531026 cm,
L5L̃51023 cm @so q52kFd(0)/p51.43,N51, Ñ52], and n
50.
e

of
.

as

potential is a nonmonotonic function of the longitudinal c
ordinatez. In particular, there are intervals ofz in which the
direction of the local electric field is opposite to the directi
of the external electric field applied to the contact.

When all channels are closed (N50), the QPC behaves
like a capacitor. In this case, the potential drop in the reg
between the first turning points,uzu,z1 , is of the order of
the total voltage applied to the contact@see Fig. 6~a!#, and the
potential distribution in this region is significantly inhomo
geneous. The imaginary part of the potential for this cas
shown in Fig. 6~b!.

Essentially new effects are observed when the value oq
is close to the integer:q;n0[N11, whereN is the last
open channel so thatN11 is the first closed channel. Figur
7 demonstrates the potential profiles for different values
b8, and whenq is slightly below an opening point@q
51.96 (q,n05N1152)#. The curves 1–6 in Figs. 7~a!
and 7~b! correspond to the different values of the scaled
plied frequencyb8. From Figs. 7~a! and 7~b!, one sees tha
both the real and imaginary parts of the potential have
frequency-dependent peak at the turning points,zn . The
physical location of the turning points is independent of f
quency. The amplitude of these oscillations has a maxim
when z is in the regionzN11<uzu<zN12 . There are inter-
vals of the frequencyb8 where the jumps of the real o

FIG. 4. Spatial distribution of the potentialf~z! (z5x/L) in the
QPC for different values of frequencyv when L/L̃51.4,L̃
51023 cm, q51.7 @d(0)51.531026 cm, N51, Ñ511# and n
50. ~a! The real part of the potentialf8(z); ~b! the imaginary part,
f9(z). Curves 1–5 correspond tob850 (v50), b850.5
(v50.931010 s21), b851.0 (v51.931010 s21), b851.5 (v52.8
31010 s21), andb852.0 (v53.731010 s21) In Fig. 4~b!, curve 1
is not shown because in the static casef9(z)[0.
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imaginary parts of the potential at the pointzN11 ~or
2zN11) are opposite in sign to the jumps at the pointszn ~or
2zn), n5N12, . . . ,N1Ñ. Moreover, there are values o
b8, at which the jumps of the real part of the potential at t
point uzu5zN11 are significantly suppressed@see Fig. 7~a!#.
For the imaginary part of the potential the jumps at the po
6zn can be suppressed by the proper choice of the
quency, and the jumps can change sign@see, e.g., curve 3 in
Fig. 7~b!#. The oscillatory behavior of the real part of th
potential as a function offrequencyis shown in Fig. 8, with
the different curves corresponding to different values oz
within the QPC, as explained in the caption.

The situation whenq is slightly abovean opening point is
illustrated in Fig. 9, whereq52.01 ~so that the number o
open channels isN52). The dependence of the potential o
b8 has many features similar to the previous case oq
51.96 ~Fig. 7!, but the actual form of the potential is som
what more complicated. Again, there are strong spatial os
lations of the potential in the region2zN11,z,zN11 . The
curves 1–4 in Figs. 9~a! and 9~b! correspond to differen
values of frequencyb8.

The solution of the integral equation~23! allows us to
calculate the admittancey5y81 iy9, using Eqs.~28!–~30!.
Figures 10~a! and 10~b! demonstrate the frequency depe
dence of the admittance whenq is not close to an integer
Figure 10 shows the case of one open channel (N51), while
in Fig. 11 the case two open channel (N52) is shown. The
contribution from open and closed channels is indicated

FIG. 5. Frequency dependence of~a! the real (y8) and ~b! the
imaginary (y9) parts of the admittancey for q51.7 (N51), n
50, L̃51023 cm and different values ofL: ~1! L/L̃51.0, ~2!

L/L̃51.2, ~3! L/L̃51.4. Also shown are the contributions to th
admittance from the open~o! and the closed~c! channels.
e

s
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il-
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the symbols~o! and ~c!, respectively. The solid curves 1–
in Figs. 10~a! and 11~a! indicate the frequency dependence
the real part of the admittance (y8) at three different values
of the parameterq, whereas the solid curves 1–3 in Fig
10~b! and 9~b! reflect the behavior of the imaginary part o
the admittance (y9) at the same three values of the parame
q.

As one can see from Figs. 10 and 11, the imaginary p
of the admittance is approximately a linear function of t
frequency in the region of scaled frequencyb8,bc8'0.5,
which corresponds tovc'10 GHz for the QPC parameter
of Ref. 26. Forb8,bc8 , the contributions to the imaginar
part of the admittance from the open channelsy9(o) and from
the closed channelsy9(c) are not only linear but have oppo
site signs: the contribution of the open channels is posit
corresponding to an inductive behavior, whereas the con
bution of the closed channels is negative, corresponding
capacitive behavior. Hence, as we have previously show20

in this frequency region one can consider a QPC as
equivalent electrical circuit consisting of a resistance and
pacitance in parallel and in series with an inductance.

For b8.bc8 ~corresponding tov.10 GHz), our numeri-
cal results show strong nonlinearities in the dependenc
both y8 andy9. In this frequency region, one cannot chara
terize the QPC as having an effective capacitance and in
tance, at least not using a simple equivalent circuit with sta
conductance, inductance, and capacitance, as in Ref. 20

FIG. 6. The real part~a! and the imaginary part~b! of the po-
tential distributionf~z! when the open channels are absent,N50
@d(0)50.8431026 cm, L5L̃51023 cm, q50.8, Ñ52] for n50.
The curves: ~1! b850.1 (v52.63109 s21), ~2! b851.6 (v
54.231010 s21), ~3! b852.5 (v56.531010 s21), and ~4! b8
52.9 (v57.531010 s21).
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Note that even in the frequency range where the lin
approximation fory9(b8) applies well, the nonlinearity o
the frequency dependence ofy8(b8) is not negligible. In-
deed, nearb850, the curvey8(b8) as well as the curves
y8(o)(b8) and y8(c)(b8) are approximately quadratic i
most cases.@See Figs 10~a! and 11~a!.# Note that the contri-
bution of the nonpropagating modesy8(c) increases with in-
creasing b8, and the amount of the nonlinearity o
y8(c)(b8) increases whenq approachesN11. Note also that
the nonlinear parts of the contributions of the open a
closed channels haveoppositesigns. Thus, it is possible to
choose a value ofq such that the nonlinearities o
y8(o)(b8) and y8(c)(b8) approximately compensate one a
other. In this case, the approximationy8(b8).const5y8(0)
~the approximation of static conductance! can be used in a
wide frequency range@curve 3 in Fig. 11~a!#. For the imagi-
nary part ofy, the nonlinear components ofy9(o) and y9(c)

depend onq in a more complicated manner. However, t
value ofq can be chosen such that the nonlinearities of th
two contributions are partially compensated, and the
proximation of the effective inductance and capacitance
valid for a wide range ofb8.

FIG. 7. The real~a! and the imaginary~b! parts of the potential
distribution when the gate voltage is close to an opening poin
that the value ofq ~hereq51.96) is close to an integern0 ~here
n052), q,n0 . The opening point is the point where a new mo
opens or closes. Curves 1–6 correspond to the following value
the frequency: ~1! b850.01 (v52.63108 s21), ~2! b850.23 (v
56.03109 s21), ~3! b850.47 (v51.231010 s21), ~4! b8
50.60 (v51.631010 s21), ~5! b850.70 (v51.831010 s21), ~6!
b850.85 (v52.231010 s21). The parameters of the QPC a
d(0)52.0531026 cm, L5L̃51023 cm (N51, Ñ54), n50.
r
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We have already shown that there are strong oscillat
effects inf~j! for q close to values at which channels op
(n05N11) or close (n05N). It is thus not surprising tha
we also find that the admittance oscillates as a function of
frequency~see Figs. 12 and 13! near these values ofq. In-
deed, asq approachesn0 , the frequency of these oscillation
~in the casen50) increases without bound, and the range
b8 where the linear approximation fory(b8) is valid be-
comes smaller. Figures 12 and 13 show that the oscilla
part of y(b8) is given by the contribution to the admittanc
from then0th channel@see curve 4 in Fig. 12~a!#, i.e., byyn0

.
Note that although the number of open channels in Fig. 1
only N51, nonetheless the conductance increases
y8(0.5)'2. At this value of the frequency, effectively tw
open channels give a contribution to the conductance. Fig
12~b! shows that ifn05N11, then in the low-frequency
region, theclosedchannels can give a positive~inductive20!
contribution toy9(b8). This is in contrast to the case whenq
is not close toN or N11, for which the closed channels a
low frequencies are described by an effective capacita
@see Figs. 10~b! and 11~b!#. This surprising inductive contri-
bution of the closed channels originates from the spec
form of the potential distribution~see Fig. 7!, in particular,
from the fact that there are large spatial regions in the Q
in which the local electric field is opposed to the appli
field.

o

of

FIG. 8. The oscillating frequency dependence of~a! the real part
and ~b! the imaginary part of the potential for several specific v
ues of z related to the turning points:~1! z5zN11/2, ~2! z
5zN11 , ~3! z5(zN111zN12)/2, ~4! z5(zN1Ñ211zN1Ñ)/2,
where zn (n5N11, . . . ,N1Ñ) is the coordinate of the turning
point for thenth closed channel. As in Fig. 7, the parameters of
QPC ared(0)52.0531026 cm, L5L̃51023 cm (N51, Ñ54), n
50.
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As a function of the parameterq52kFd(0)/p ~or the
gate voltage!, the admittance exhibits stepwise variatio
that have been examined previously at low frequency.17,18,20

We have obtained the specific form of these oscillations
several values of frequency. The dependence of the ad
tance onq for the case of low frequency is shown in Fig. 1
The real part of the low-frequency admittance@Fig. 14~a!# is
determined by the number of propagating modes. Consi
ing the imaginary part of the admittance@Fig. 14~b!#, the
contribution of the open channels is positive~inductive!, and
increases as the number of open channels increases.@Com-
pare the curvesy19

(o) andy29
(o) in Fig. 14~b!.# The contribu-

tion of the closed channels,y(c), depends onq in a more
complicated manner. Forq not close toN11 this contribu-
tion is negative~capacitive, see curvey1,29(c)), but whenq
approachesN11,y1,29(c) increases and becomes positive~in-
ductive!. As mentioned above, the inductive character
y9(c)(b8) for q nearN11 can be explained by the peculiar
ties of the potential distribution inside the QPC. The ima
nary part of the total admittance,y95y9(o)1y9(c), can have
a capacitive character only forN50,1. For largerN, the total
imaginary party9 is positive~inductive! because the contri
bution of the open channels dominates. For sufficiently h
frequencies, we found oscillating behavior ofy(q) for q in
the vicinities of integers~Fig. 15!. These oscillations are con

FIG. 9. The real~a! and the imaginary~b! parts of the potential
distribution whenq (q52.01) is close to the integern052, but q
.n0 . Curves 1–4 correspond to the following values of the f
quency: ~1! b850.1 (v52.63109 s21), ~2! b850.7 (v51.8
31010 s21), ~3! b851.2 (v53.131010 s21), and ~4! b8
51.7 (v54.431010 s21). The parameters of the QPC ared(0)
52.131026 cm, L5L̃51023 cm (N52, Ñ53), andn50.
r
it-

r-

f

-

h

nected with the fact that for fixed value of frequencyv, the
characteristic residence timetn(x,x8) in Eq. ~3! increases
logarithmically as an electron approaches a separatrix@m
5«n(0), or q5n]. In this case, a small variation ofq leads
to a large variation of the phase in Eqs.~4! and ~5!.

IV. CONCLUSIONS

In the present paper, we have numerically studied the s
tial distribution of the potential,f~z! and the resulting fre-
quency dependence of the admittancey(v) in a QPC. We
employed a semiclassical, single-particle approximation,
suming ballistic electron transport and treating the effects
the Coulomb interaction in a self-consistent manner~i.e., we
neglected many-body direct Coulomb interactions!. Using
the results of transport theory based on the partial Wig
distribution function formalism,20 in combination with the
Poisson equation, we derived an integral equation for
spatial distribution of the electric field in the QPC. W
solved this equation numerically for different values of QP
parameters and for a wide range of frequencies,v
'0 – 50 GHz. We found that the electric potential inside t
QPC is a stepwise function of the dimensionless longitudi
coordinatez with peaks in the potential profile located at th
turning points6zn of the semiclassical motion. The poten

-

FIG. 10. Frequency dependence of the real~a! y8 and the imagi-
nary ~b! y9 parts of the admittancey for different values ofq
52kFd(0)/p, when N51: ~1! q51.1 (Ñ52), ~2! q51.7 (Ñ
53), ~3! q51.75 (Ñ53). The values ofq are not close to the
integer numbersN andN11. Also shown are the contributions t
the admittance from the open~o! and the closed~c! channels. The
parameters areL51023 cm andn50, as in Figs. 6–9.
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tial is not a monotonic function ofz, and indeed there ar
spatial regions in which the local electric field is opposite
the direction of the applied external field.

We studied the dependence of the potential profile on
frequency of the applied electric field. When the gate volta
is near a value at which a channel opens or closes, and i
frequency is sufficiently high, the form of the potential pr
file differs significantly from the potential profile in the stat
case. Moreover, the value of the potential for a fixed spa
point z oscillates as a function of frequency.

We considered the dependence of the admittance on
frequencyv and on the gate voltage@or the parameterq
52kFd(0)/p]. Near v50, a linear approximation for the
frequency dependence of the admittance is valid. In this lo
frequency regime, one can use the approximation of st
conductance for the real part of the admittance and the
proximation of an effective inductance and capacitance
the imaginary part to obtain an equivalent electric circ
model of the QPC.20 The size of this low-frequency regim
depends on the gate voltage, and we have shown that on
choose the value of the gate voltage so that the linear
proximation for the admittance is valid for a wide range
frequencies, up tov;10 GHz for chosen QPC parameter
Physically, the reason for the validity of the linear appro
mation over a wide range is that thenonlinear components
of the contributions to the admittance from the open a

FIG. 11. Frequency dependence of the admittance for diffe
values ofq, for N52: ~1! q52.1 (Ñ53), ~2! q52.7 (Ñ55),
~3! q52.8 (Ñ55), and for the same parametersL,L̃,n as in Fig.
10. Also shown are the contributions to the admittance from
open~o! and the closed~c! channels.
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closed channels have opposite signs and can thus com
sate each other.

Nonlinear effects are substantially enhanced when
gate voltage is close to one of the opening points@the value
of 2kFd(0)/p is close to an integern0]. Here both the real
and imaginary parts of the admittance oscillate as the fu
tions of frequency. The period of these oscillations decrea
when the gate voltage approaches an opening point. The
cillations are mainly determined by then0th electron chan-
nel, which can be understood as follows. The oscillations
significant when the characteristic time of the effective el
tron motion along the one-dimensional trajectory~see Ref.
20! is of the order of the period of the electric field.
2kFd(0)/p is close ton0 , the time of the electron motion in
the QPC is much larger for then0th channel than for the
other channels. Thus, for then0th electron channel strong
frequency dependence can be realized at much lower
quencies.

As a function of the gate voltage, the admittance has s
wise oscillations~see Refs. 17, 18, and 20!. We obtained the
specific form of these steps. For the case of low frequenc
the contribution of the open channels is positive~inductive!.
Whenq is not close to the integer,N11, the contribution of
the closed channels is negative~capacitive!. However, asq
approachesN11, the contribution from the closed channe

nt

e

FIG. 12. Frequency dependence of the real~a! and the imagi-
nary ~b! parts of the admittance, whenq (q51.96) is close to an
integern0 (n05N1152), q,n0 . The contributions toy ~curves
1! from the open channels~curves 2!, the closed channels~curves
3!, and from the (N11)th closed channel~curves 4! are shown. As
in Fig. 7, the values of the parameters ared(0)52.05
31026 cm, L5L̃51023 cm (N51, Ñ54), n50.
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9904 PRB 58I. E. ARONOV et al.
becomes positive~inductive!. This behavior is caused by th
existence within the QPC of large spatial regions in wh
the local electric field is opposite to the applied field~see
Fig. 7!. For N.1, the frequency dependence of the ima
nary part of the total admittance has an inductive chara
because of the predominant role of the open channels.N
50 or 1, we have found that overall capacitive behavior
the QPC is possible. In this connection, it is important
compare our results with a previous study of the lo
frequency admittance of a QPC.17 We shall focus primarily
on the final results of Ref. 17 for the emittance, which a
shown in~the full curve in! Fig. 2 of Ref. 17~see p. 146!. To
compare the two sets of results, one must recall that in Fi
of Ref. 17 the authors plot theemittance E, while in Fig.
14~b! of our paper, we plot the imaginary part of theadmit-
tance: the relation isy952vE, so E andy9 have different
signs. In Fig. 2 of Ref. 17, for the barrier heighteU0
~roughly, corresponding to our gate voltage! varying from
zero~allowing three open channels! to approximately 7 meV
~allowing no open channels!, the emittance is negative, i.e
the imaginary part of the admittance is positive, and, in
terminology, the behavior of the QPC is inductive. So,
the number of open channelsN53,2,1 the admittance is in
ductive.~In Fig. 2 of Ref. 17 the number of open channelsN
is indicated by the conductance curve plotted as the das
line.! Only when the value ofeU0 approaches the openin

FIG. 13. Oscillations of the frequency dependence of the rea~a!
and the imaginary~b! parts of the admittancey ~curves 1! whenq
52.005 (q.n0 , n05N52). The contributions from the ope
channels~curves 2!, the closed channels~curves 3!, the Nth open
channel~curves 4!, and theN11st closed channel~curves 5! are
shown. As in Fig. 9, the parameters of the QPC ared(0)52.1
31026 cm, L5L̃51023 cm (N52, Ñ53), andn50.
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point at which the last open channel closes (N→0) does the
emittance curve become positive~capacitive!. Hence, only
for N50 is the total admittance capacitive in Fig. 2 in Re
17. Our more detailed calculations agree in general w
these results, showing effective inductive~positive, in our
convention! behavior forN.1. However, our self-consisten
solution leads to a spatially inhomogeneous electric fie
which in turn generates a more complicated structure
peaks in the total admittance curve than would follow fro
the approach of Ref. 17. One consequence is that we fin
small region—nearq51.8 for the other parameters we hav
chosen~so thatN51)—in which the admittance is capac
tive ~negative, in our convention!. For N50, of course, we
also have capacitive behavior, as found previously.17

In view of the importance of understanding the ac tra
port through QPC’s and related nanostructures—both for
veloping the appropriate physical picture and for sugges
or optimizing novel devices for applications—there are ma
additional studies that we plan to undertake, among th
further investigations to determine the responses of spe
experimental QPC configurations and to understand the
its of validity of the semiclassical approach adopted he
We are also hopeful that additional experimental studies
the ac admittance of QPC’s will observe the oscillations b
as a function of gate voltage~at fixed frequency! and as a
function of frequency~at fixed gate voltage! predicted by our
semiclassical theoretical considerations.

FIG. 14. Dependence of the real~a! and the imaginary~b! parts
of the low-frequency admittancey (b851025, v52.63105 s21)
on the value ofq ~the gate voltage!. In ~b! the contributions of the
open ~curves 2! and closed~curves 3! channels are shown. Th
parameters areL5L̃51023 cm andn50.
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FIG. 15. The oscillating dependence of~a! the real and~b! the imaginary parts of the admittancey on q, whenq is in the vicinity of the
integer~for b850.05,v51.33109 s21).
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