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Frequency dependence of the admittance of a quantum point contact
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Using a Boltzmann-like kinetic equation derived in the semiclassical approximation for the partial Wigner
distribution function, we determine the ac admittance of a two-dimensional quantum point d@®&atfor
applied ac fields in the frequency range-0—50 GHz. We solve self-consistently an integral equation for the
spatial distribution of the potential inside the QPC, taking into account the turning points of the semiclassical
trajectories. The admittance of the QPC is a strong function of the gate voltage. This gate voltage can be used
to “tune” the number of open channel®) for electron transport. We show that, for most values of gate
voltage, the imaginary part of the total admittance is positiveNor1, so that the QPC has an inductive
character, because of the predominant role of the open channels. In contrist Goor 1, for most values of
the gate voltage, the imaginary part of the admittance is negative, corresponding to capacitive behavior. For
gate voltages near values at which channels open or close, very strong nonlinear effects arise, and the admit-
tance oscillates rapidlgwith its imaginary part sometimes changing igpoth as the function of gate voltage
(at fixed frequencyand as a function of frequendwt fixed gate voltage Experimental observation of these
oscillations would provide an important test of our semiclassical approach to the ac response of a QPC. We
explore the low-frequency regime and investigate the extent to which one can understand the admittance in
terms of a static conductance and a “quantum capacitance” and a “quantum inductance.” We show that it is
possible to choose the gate voltage so that there is a large, low-frequency regime in which the admittance is
well approximated by a linear function of frequency. In this regime, the admittance can be treated by “equiva-
lent circuit” concepts. We study how this approach breaks down at higher frequencies, where strongly non-
linear behavior of the admittance arises. We estimate the value of frequencgt which the crossover from
the low-frequency linear regime to the high-frequency nonlinear behavior occurs. For chosen parameters of a
QPC, w.~10 GHz.[S0163-18208)02339-X

. INTRODUCTION Recently, it was shown® that a QPC displays interesting
quantum effects not only in dc transport but also in response

The quantum point contaé@PO is one of the fundamen- to an ac field, where it exhibits quantum induct¥end
tal nanocircuit elements. QPC’s are typically made by put-capacitivé’?° behavior (see also Ref. 23, where quantum
ting a split gate on the top of a GaAssMa, _,As hetero- inductance was introduced for mesoscopic systems and ap-
structure and applying a voltage to the gate to create glied to a resonant tunneling devjcélhis suggests that a
constriction of variable width in a two-dimensional electron QPC can be considered as an elementary circuit of extremely
gas(2DEQ) (see Fig. L QPC's display many unusual be- small size,~0.1-1 um.
haviors, including steplike oscillations of the conductance as In a previous papet’ we developed an approach, based
a function of the gate voltage. The intense interest in thesen a variant of the Wigner distribution functidlVDF) for-
QPC'’s is reflected in the large literature, both experimentamalism, for calculating the ac transport through a QPC. Us-
and theoretical, that has arisen in the decade since their iing this method, we were able to demonstfathat in the
troduction(see, for example, Refs. 1-22 low-frequency regiméhe admittance of the QPC can indeed
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A displays several characteristic nonlinear features. In the
y neighborhood of channel openings, the admittance exhibits
\ | oscillations as a function of the parametpr2k:d(0)/7
| [wherekg is a Fermi wave vector andd20) is the minimum
width of the QPQ. In our approach, these oscillations arise
from the behavior of trajectories close to the “separatrix” of
L1 2d(x) L x the semiclassical motion. Experimental confirmati¢or
refutation of the existence of these oscillations would pro-
vide an important test of our approach to the ac transport in
the QPC. In Sec. IV, we summarize our results.

II. SPATIAL DISTRIBUTION OF THE POTENTIAL
IN THE QPC AND THE ADMITTANCE

FIG. 1. The geometry of the constriction. The width is denoted We have previously showh how to use the partial
by 2d(x), the narrowest width is@®0), and theeffective length is  Wigner distribution functionfPWDPF formalism, to find the
2L. charge,p,(x), and the currentj,(x), densities in the QPC.

For open channels, we have

be calculated using a simple equivalent circuit that includes

resistive, capacitive, and inductive components. In particular, 2¢? 1 L ,

in the low-frequency regime, the QPC’s admittance consists pn(X)= = v (%) f_de E(X")sgrix—x’)

of a conductancdthe real part of the admittancend an

emittancé’ that includes inductive and capacitive effects, Xexdiw®* m(x,x")sgnx—x")], @

which we shall henceforth call quantum capacitah@nd
quantum inductanc®. The emittance is sensitive to the ge- and
ometry of the QPC and can be controlled by the gate voltage.
We also showed that stepwise jumps in the quantum induc- 2e2 L

tance are determined by the harmonic mean of the velocitiesjn(X) = =~ f dx'E(x")exfio* 7y(x,x")sgnx—x")].
of the propagating moddgspen channejsthrough the QPC, -t @
whereas the quantum capacitance is a mesoscopic manifes-

tation of the reflected electron modes. _ In Eq. (2), E(x) is the spatial envelope of the electric field
Importantly, as introduced, the concepts of quantiam inside the QPC: E(x,t)=—[ad(x)/dx]exp(—iat); 2L is
ductanceand quantuntapacitanceapply for the QPQNlY b jength of the constriction shown in Fig. &% = w-+iv
in the regime of low frequency and for values of the gate ith 1/, being the momentum relaxation time’ '
voltage far from the voltages where the electron modes ap- '
pear or disappedt‘opening points”). In the high-frequency
regime, and near the gate voltages at which new electron , _fx dx” 3
modes appedor disappedr the frequency dispersion of the (X X")= 3)

. . ) . x! Un(X”),
admittance becomes nonlinear and complicated. In this case,

the QPC cannot be describgdt least not using a simple andy,(x) is the velocity of an electron in theth channel.

circuit as in Ref. 2D by static(i.e., frequency-independent Eqr the closed channelgeflecting modeswe have
conductance, inductance, and capacitance. Consequently, to

understand the QPC response to an ac field, it is necessary to 262

investigate the frequency dependence of the admittance as g, (x)= —

distributed mesoscopic characteristic of the QPC. h
In this paper, we investigate the frequency dependence of / - , ,

the admittance for the symmetric QPC in the form of a X {sgn(|x| =x")exdiw* m(|x|,x")sgr|x| =x")]

smooth constrictior(adiabatic geometyywithout making a —exd i o* (7(]X],Xn) + 7 (X", X)) T} O(| X[ — Xp),

low-frequency approximation. In Sec. Il, we derive the inte-

gral equation for the spatial distribution of the electric poten- (4)

tial inside the QPC and use it to determine an explicit ex-

pression for the admittance. In Sec. lll, we study numerically . 2e? (L e

the integral equation for the potential for frequencies in the Jn(*)= T~ fx dx'E(x" sgr(x))

rangew~0-50 GHz, as a function of the width of the QPC "

S

X) (L

and the number of open and closed channels. We find that x{exdiw* m(|x],x")sgn(|x| —x")]

there is a characteristic value of frequensy at which the - ,

system crosses over from a linear dependence on frequency —expli * (7a(|x],%0) + (X", X )T} O([X]| = Xn) .
characterized by static conductance, capacitance, and induc- (5)

tance to a strongly nonlinear dependence on frequency. For
chosen values of QPC parametaig;~10 GHz. In the fre- Herex,, is the absolute value of the critic&urning point,
guency regionw>w.~ 10 GHz, the admittance of the QPC which is determined by the condition,
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en(Xy) = . (6) where k= \/kX2+ kyz. The expression for ®(k,,y)
The velocitiesv,, are defined by =®kayz=0)is
d(x)
va=V(2Im)(u—e,(X)). (7 CD(kX,y)I(lle)f " )dy’
—a(x
In Egs.(6) and(7), mis the effective mass of the electrq, _
is the chemical potential, and » exfiky(y—y")] )
x| yWﬁ’(kMy)-
W2n2h2 X y
X)=——— 8 13
=0= ®) (133

_ _ _ _ From Eq.(13a, we see thatb(k,,y) also dependéweakly,
Is a transverse electron energy in the QPC, will’d being  given our assumption of adiabaticitgn x through the inte-
the width of thefassumed adiabajiconstriction(see Fig. 1. gration limits, = d(x). For|y|>d and|y|<1/k,, the poten-
Here, as in Ref. 20, we focus on ballistic transport only. Thisa| ¢ (k,,y) decreases exponentially witly: @ (ky,y)
means that we assume that the effects of disorder and dissj;exp(_|k v)). Indeed, if we integrate ovék, in Eq. (133
pation on the transport characteristics of the QPC are not * ’ Y '
significant and can be neglected to leading ordew-as0. d(x)

For sufficiently high frequencies of the electric field, small fI)(kx,Y)=(2/6)f Ko([kx(y=y" ) p(ke,y")dy’,
corrections to the transport characteristics caused by weak ) (13b)
disorder and dissipation effects are taken into account in Egs.

(1)—(5) by havingv+0. We assume that the relaxation fre- and sefy—y’|=|y|(|y’|<d,|y|>d) we find

guencyv satisfiesv<vg /L andv<w, wherev is the Fermi
velocity.

One can see from Eqgl)—(5) that the transport through a
QPC is described by highly nonlocéintegra) operators. . o
This (correctly suggests that the charge and current densitie®ne can see from E¢13q that outside the constriction the
at a given poini are influenced by the electric field gener- dependence of the potenti@i(k,,y) on the transverse coor-
ated throughout the whole constriction. Thus, the PWDF fordinate y is determined by the MacDonald function,

d(x)
q)(kx,Y):(Z/e)Ko(lkxyl)fd(x)p(kx,Y')dy’- (139

malism allows us to derive the charge and the current densKo(lky[)-?> ReplacingKo([k,y]) by its asymptotic form for
ties as nonlocal functions of the electric field. |key[>1, we obtain

In Egs. (1) and (2) the electric field can be calculated B
using the Poisson equation for the two-dimensio(D) D(ky,y)=e"1V2m/[ky|exp — k)

electron layef? 40
Xf p(ky,y" )dy’. (13d
AD(xY, 2=~ pixy)8(2 © o

Y e P ’ For our further calculations, we need the valuedafx,y)
averaged over the transverse coordingteirom Eq.(138

wherep(x,y) is the charge density, we find

= 2 — 1 d(x)
POGY) =2 pa()WR(Y), (10 k)= J dyD (k. .y). 4
2d(x) J-ax)
and e is the dielectric constant. For simplicity, we do not
indicate explicitly dependence on time in E¢8) and (10).
In Ref. 9, d(x,y,2z) is the electric potential¥,(y) is the -
transverse wave function of an electron in the adiabatic QPC, pn(Ky) = J dxpn(x)exp —ikyX). (15
satisfying¥,,(+d(x))=0.2° -
The Fourier transform and the inverse transform inxhe
direction are

We define

We shall use the following boundary conditions for the Pois-
son Eq.(9):

d)(kx,y,z)=fx dx®(x,y,z)exp( —ikyX), B(—L)=V/2, D(L)=—VI2. 16
(11)  The expression fo(X) is

1 (= .
@(x,y,z)zzfﬁwdeCD(kX,y,z)eprkxx). @(x)z%j dkxtg(kx)exp(ikxx)

The & function in Eq.(9) allows? the Fourier transform of

the electric potential®(x,y,z), in the QPC to be repre- _ 1 f‘” , , ,
sented as e 2 | OXpa(X)Quxx), ()

D (ky ky,2)=D(ky ky,z=0)exp( —k|z]), (12)  where
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i d
Tn( gl €2) f n(i)

P 1= : : et '
In Eq. (18), K[ z] is again the MacDonald function. Recall (&L =exiBsign{= L) m(4. 0],
that we have assumed that the electric field inside the QPC " ; Neai o
has the formE(x,t) = — [ 4 (x)/ax|exp(iawt). an(¢.¢"=exidifra(l2].£)sio |l =€)

|[x=x']
0 d(X) g
(18)

. (2mn)? (= sir? &
Qn(X,X )— d(X) fod 52[(7]_”)2_52]

The admittance is determined from +exp{i Bl (| 2],&n) + (", 0 1}
lot 1 The integral equation for the electric potentigl?) follows
Y=V "¢y En: jn(—L) from Egs.(1) and(17) and has the form
1 N 1 NN _a - e .
IS eeuel 3 e, as $(O=—{F(O)+FL D] BFLS(D]}. (23
In Eqg. (23),
wherel is the total current through the QPC, and
(L")
[P0 RL[2990) o, F0-3 | deanee
- vy (L)
d(x) =d(0)exi{ (x/L)2]. 20 v 3 [ acieen P edel -,
In Eq. (20), fike = v2mu, [z] is the integer part of, N is the (24
number of open channeldl is the number of closed chan-
nels, andL is a parameter that characterizes the smoothness N S
of the QPC. £ __5 J Aoz, 2L
From Eq.(19) we see clearly that one must know the (0] 2 LA n({")
spatial distributionof the electric field inside the QPC in
order to calculate the admittance. To solve this problem, we N+N
introduce the following dimensionless parameters and vari- _2 2 f dZ'Qn(£,¢)O(|"[=£n)
ables:
")
D(x)=Vp(), x=L¢ x'=L{¢, x=Ln, X%, (25
e’ g @b 2kgd(0)
=—, = | = , = ,
Thoe PEETIEES AT 2[¢<§>]—2fdm(u>f(g)
N=[q], N=[q expL/L)2]-N, (21)
f dEo(p) e 2
2 12 fn(L2)
va() |, 02 L
n(g)_ v l_gex -2 "E §2 ’ (22) N+N (|§I|_§ )
F +2 J’den(gg)W
and the dimensionless functions "
1 !
N S, f sir? t x L dZ>£>sign(¢)] q”f(j g’ff). (26
S ¥4 I P ey ”
Assuming that the electric potentidl({) is the solution of
Kt R Egs.(23)—(26), we can represent the admittance in Etp)
0 |§_§|@' in the form
L)2 2e?
d(§)=d(0)exr{(f) 52], Y=Y @)
where the dimensionless admittancis given by the follow-
() =3{exdiBr,({,—1)]—exd —iBr(Z, D]}, ing expression, which depends functionally é(Y):
()= = 3sign ) {exd i Ba(|¢],1)] N NN

= (0 + (C). 28
+exn:|:8(7n(|§|a§n)+Tn(lgn))]}a y ”Z n%‘*ly 28)
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In Eq. (28), y\ is the contribution to the admittance from
the open channels and® is the contribution to the admit-

tance from the closed channels, and their functional deper

dence ong({) is given by
v =3{exliBry(1,- 1)1+ 1}+iB
exdiBr({,—1)]

1

xfﬁldw(z) @
y©=3{1—-ex 2i B7,(1.{0) 1}

(Y o) )

—I,BLndZ fn(—g){eXFIIBTn(l,Z)]

+exqi:87n(1r§n)+Tn(gaé’n)]}- (30)

[ll. RESULTS OF NUMERICAL SIMULATIONS

We solved the integral equatiof23) for the potential,
d(O)=d' () +i¢"(¢) and numerically evaluated the ex-
pressions(28)—(30) for the admittancey=y’'+iy”. Here

and henceforth, we follow the convention that a superscript

indicates the real part, and superscfipndicates the imagi-

I. E. ARONOV et al.
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08,0 08 06 02 02 00

0.2

¢ll

nary part, of the corresponding quantity. For the parameter
of the QPC, we used values that correspond to the
GaAl;_,As/GaAs heterostructure studied experimentally by

_0'2 L L L 1 ]
-1.0 -08 -06 -04 -02 0.

02 04 06 08 10

Mailly, Chapelier, and Benoft®

€=13, ve=2.6x10" cm/s, kg=1.5x10° cm™?,

d(0)~10% cm, L~10"2 cm. (31)

The integral equatioi23) is a Fredholm equation of the

FIG. 2. Spatial distribution of the potentig¢) ({=x/L) in the
QPC for different values of frequeney. (a) The real part of the
potential ¢’ ({); (b) the imaginary partg$”({). Curves 1-5 corre-
spond toB'=0 (v=0), 8'=0.5(w=1.3x10"s™1), '=1.0 (w
=2.6x10°s™Y, B'=15(w=3.9x10s™Y), and B'=2.0(w
=5.2x10 s™Y), respectively. In Fig. @), curve 1 is not shown

second kind, and we solved it using the Nystrom methodecause in the static cagi({)=0. The parameters of the QPC

with the Gauss-Legendre quadrattfé® For calculating
F(¢) and the kernels of the integral operatéis,F, in Eq.

are d(0)=1.5x10"°cm,L=L=10"3cm (so q=2ked(0)/m
=1.43,N=1, N=2), andv=0. The value ofg is not close to an

(23), it is necessary to consider that the integrals in Eqgsinteger. The potential is a stepwise function of the longitudinal

(24)—(26) contain integrable singularities. Ag—{¢'—0,
Qn(¢,¢") is proportional to Ifg—¢'|. Moreover, for the
closed channelsN+N=n=N+ 1), when|{| approaches the
turning point,, we have

UEa(D)~ 0(1Z1 = L) INEn([ £l = ).

(32

In the neighborhood of the singularities, we replace th

functionsQ,(¢,¢’) and 1f,(¢) in the integrand by the ap-
propriate asymptotic expressions. In the integrals in Eq
(24)—(26), for ¢ near one of the turning pointst {,, (n
=N+1,... N+N), the square root singularity in fl{{)
and the logarithmic singularity iQ,(£,{') reinforce each
other, and hence the potentia)((), has a peak type at the
turning points(see Figs. 2 and)3The potential curves 1-5

coordinate?, with the steps having peaks at the turning points.

this is that in deriving the integral E¢23) for the potential,
we assumed that the boundary conditidi§) are actually
the equations for the edges< =L, or for the dimensionless
parameterL./L) of the constriction shown in Fig. 1. To ex-
eolore the effects of the boundary conditions more carefully,
we calculated numerically the value of the parameter for
Jwhich the boundary conditionsvere satisfied. Compared
with the numerical results fop’({) shown in Figs. 2a) and

3, which were obtained foc=L or L/L=1, we found[see
Figs. 4a) and 4b)] that forL/L = 1.4 the required boundary
conditions, ¢(+1)=*1/2, were more accurately satisfied.
Importantly, our numerical results show that the details of

in Fig. 2 correspond to the different values of the frequencythe behavior of the potential in the vicinity of the edges (

w [or the dimensionless frequengd, in Eq. (21)]. The po-

==*L) of the QPC shown in Fig. 1 influence only weakly

tential curves 1-3 in Fig. 3 correspond to the different valueghe behavior of the admittanceg, in Eq. (28). This is dem-
of the relaxation frequency (or the dimensionless parameter onstrated in Figs. @ and §b), where the curves 1-3 in

BU) .

As one can see from Figs(& and 3a), the values of the

each of these figures correspond to different values of the
parametet./L. As usual, the indice®) and(c) indicate the

real part of the potential at the boundary of the QPCcontribution to the admittance from open and closed chan-
[#'(=1)] are slightly different from the values required by nels, respectively.

the boundary conditiond 6), ¢(+ 1)= *=1/2. The reason for

Our numerical simulations show that if the value af
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FIG. 4. Spatial distribution of the potentig({) ({=x/L) in the
QPC for different values of frequency when L/L=1.4,L
=102 cm,q=1.7 [d(0)=1.5x10"% cm,N=1,N=11] and »

FIG. 3. Dependence of the potential profi€{) on the relax-
ation frequencyv (or B8"=wvL/vg). (8) The real part ofg; (b) the

imaginary part of¢. The curves are presented for=0,8"=0
(curve 10; »=1.0x10°s%, B"=0.038 (curve 2; v=5.0
x10° s7%, B"=0.19 (curve 3 at B'=0.5(w=1.3x10°s™Y). As
in Fig. 2, the values of the parameters ai@®)=1.5x 10 % cm,
L=L=10"3%cm [so q=2kgd(0)/7=1.43N=1,N=2], and v

=0. (a) The real part of the potentiad’ (¢); (b) the imaginary part,
¢"({). Curves 1-5 correspond tB'=0 (w=0),B'=0.5

(0=0.9x10"s1, B'=1.0(w=1.9x10°sY, B'=1.5(w=2.8

x10° s, and B’ =2.0 (w=3.7X10'° s %) In Fig. 4(b), curve 1
is not shown because in the static case€{)=0.

=0.
potential is a nonmonotonic function of the longitudinal co-

=2ked(0)/7r is not close to an integer, the potential profile ordinateZ. In particular, there are intervals ¢fin which the
has the characteristic form shown in Figs. 2 and 3. In thalirection of the local electric field is opposite to the direction
spatial region between the first turning point<y,, and  of the external electric field applied to the contact.
{n+1 (the closest turning points to the center of the QPC, When all channels are closeti€0), the QPC behaves
=0), the real part of the potentiaf)’ (), is a monotonic like a capacitor. In this case, the potential drop in the region
function of the longitudinal coordinatg If the number of between the first turning point$f| <{¢;, is of the order of
open channelbdl is notequal to O, the electric fielthe slope  the total voltage applied to the contgsee Fig. 6a)], and the
of the potential curvein this spatial region is approximately potential distribution in this region is significantly inhomo-
constant and homogeneous. The characteristic behavior geneous. The imaginary part of the potential for this case is
the imaginary part of the electric potential is shown in Figs.shown in Fig. &b).
2(b), 3(b), and 4b). Note that both parts of the potential, Essentially new effects are observed when the valug of
¢' () and ¢"(), give a significant contribution to the ad- is close to the integerg~ny,=N+1, whereN is the last
mittancey. open channel so th&t+1 is the first closed channel. Figure

For dimensionless frequengy’ =0, corresponding to a 7 demonstrates the potential profiles for different values of
dc applied field, the electric field in the regidfi<{n.1is 8’7, and whenq is slightly below an opening point[q
small[see Figs. @) and 3a)]. For B8’ #0, the electric field =1.96 (<ny=N+1=2)]. The curves 1-6 in Figs.(@
[slope of ¢'({)] increases with increasing values @ and 71b) correspond to the different values of the scaled ap-
=Re B (~ frequencyw) and 8”"=Im B (~ relaxation ratey).  plied frequencyB’. From Figs. 7a) and 1b), one sees that
The imaginary part of the potentiafy”’(¢), is a nonmono- both the real and imaginary parts of the potential have a
tonic function of 8’ [see Fig. &b)], and its slope increases frequency-dependent peak at the turning poidts, The
monotonically with increasing” [see Fig. &)]. Outside the  physical location of the turning points is independent of fre-
interval — ¢y 1<{<{n+1, the potential displays stepwise quency. The amplitude of these oscillations has a maximum
oscillations. The amplitude of these oscillations decreases aghen { is in the region{y,1<|{|<{n.». There are inter-
|¢| increasedFigs. 4b) and 3b)]. We emphasize that the vals of the frequency3’ where the jumps of the real or
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-0.2 :

-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0

FIG. 5. Frequency dependence (af the real ') and (b) the FIG. 6. The real parfa) and the imaginary paitb) of the po-
imaginary ") parts of the admittancg for q=1.7 (N=1), v tential distributiong({) when the open channels are abséiv 0
=Q,L=1O’3 cm and different values of: (1) L/L=1.0, (2) [d(0)=0.84x10"© cm,L=L=10"3 cm,q=0.8,N=2] for v=0.
L/L=1.2, (3) L/L=1.4. Also shown are the contributions to the The curves: (1) B'=0.1 (w=2.6x10°sY), (2) B'=1.6 (w
admittance from the opefo) and the closedc) channels. =4.2x10°sY, 3) B’ =25(=6.5x10sY), and (4) B’

=2.9(w=7.5x10"sh,
imaginary parts of the potential at the poidf.., (or
— {n+1) are opposite in sign to the jumps at the poigigor  the symbols(o) and (c), respectively. The solid curves 1-3
—¢,),n=N+2,... N+N. Moreover, there are values of inFigs. 1@a) and 11a) indicate the frequency dependence of
B', at which the jumps of the real part of the potential at thethe real part of the admittancg’() at three different values
point |€|:€N+l are Signiﬁcanﬂy Suppressédee F|g ?a)] of the parametenq, whereas the solid curves 1-3 in Figs.
For the imaginary part of the potential the jumps at the pointst0(b) and 9b) reflect the behavior of the imaginary part of
+/, can be Suppressed by the proper choice of the frethe admittance}(") at the same three values of the parameter
guency, and the jumps can change digee, e.g., curve 3in J
Fig. 7(b)]. The oscillatory behavior of the real part of the As one can see from Figs. 10 and 11, the imaginary part
potential as a function dfequencyis shown in Fig. 8, with  of the admittance is approximately a linear function of the
the different curves corresponding to different values¢of frequency in the region of scaled frequengy<pg.~0.5,
within the QPC, as explained in the caption. which corresponds ta,~10 GHz for the QPC parameters

The situation whem is slightly abovean opening pointis  of Ref. 26. For3’ <, the contributions to the imaginary
illustrated in Fig. 9, whereg=2.01 (so that the number of part of the admittance from the open channg®) and from
open channels isl=2). The dependence of the potential on the closed channelg’(®© are not only linear but have oppo-
B’ has many features similar to the previous caseqof site signs: the contribution of the open channels is positive,
=1.96 (Fig. 7), but the actual form of the potential is some- corresponding to an inductive behavior, whereas the contri-
what more complicated. Again, there are strong spatial oscilbution of the closed channels is negative, corresponding to a
lations of the potential in the region ¢y, 1<{<{n+1. The  capacitive behavior. Hence, as we have previously sidwn,
curves 1-4 in Figs. @ and 9b) correspond to different in this frequency region one can consider a QPC as an

values of frequency’. equivalent electrical circuit consisting of a resistance and ca-
The solution of the integral equatioi23) allows us to  pacitance in parallel and in series with an inductance.
calculate the admittancg=y’ +iy”, using Eqs.(28)—(30). For B'> B/ (corresponding taw>10 GHz), our numeri-

Figures 10a) and 1@b) demonstrate the frequency depen-cal results show strong nonlinearities in the dependence of
dence of the admittance whenis not close to an integer. bothy’ andy”. In this frequency region, one cannot charac-
Figure 10 shows the case of one open chanNet ), while  terize the QPC as having an effective capacitance and induc-
in Fig. 11 the case two open channdl<2) is shown. The tance, at least not using a simple equivalent circuit with static
contribution from open and closed channels is indicated byonductance, inductance, and capacitance, as in Ref. 20.
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FIG. 7. The reala) and the imaginaryb) parts of the potential FIG. 8. The oscillating frequency dependencéafthe real part

distribution when the gate voltage is close to an opening point sand (b) the imaginary part of the potential for several specific val-
that the value ofg (hereq=1.96) is close to an integery (here  ues of ¢ related to the turning points:(1) {={n+1/2, 2) ¢
Nng=2),g<nqy. The opening point is the point where a new mode ={y.1, B {(=(Ini1tin:2)/2, (D) (=(In+R-1TIneN)/2,
opens or closes. Curves 1-6 correspond to the following values akhere ¢, (n=N+1, . N+N) is the coordinate of the turning
the frequency: (1) B'=0.01 (@=2.6x10° s™), (2) B'=0.23(@  point for thenth closed channel. As in Fig. 7, the parameters of the
=6.0x10°s™Y), (3) B'=047 (=12x10"sY, (4 B  QPC ared(0)=2.05<10"® cm,L=L=10"3 cm (N=1,N=4), v

=0.60 (w=1.6x10"s™Y), (5 8'=0.70 (@=1.8x10°sY,(6) =
B'=0.85 (@=2.2x10"s"). The parameters of the QPC are .
d(0)=2.05<10 ¢ cm, L=L=10"3cm (N=1,N=4), »=0. We have already shown that there are strong oscillatory

effects ing(¢) for q close to values at which channels open
(ng=N+1) or close ip=N). It is thus not surprising that
Note that even in the frequency range where the lineajye aiso find that the admittance oscillates as a function of the

approximation fory”(8’) applies well, the nonlinearity of frequency(see Figs. 12 and }3ear these values af In-
the frequency dependence pf(B’) is not negligible. In-  deed, ag| approaches,, the frequency of these oscillations
deed, neaiB’ =0, the curvey’(B’) as well as the curves (in the casev=0) increases without bound, and the range of
y'©(g") and y'(©(B’) are approximately quadratic in B’ where the linear approximation for(g8’) is valid b_e- _
most caseg.See Figs 1(&) and 11a).] Note that the contri- comes smaller. Figures 12 and 13 show that the oscillating
bution of the nonpropagating modg&® increases with in-  Part ofy(8’) is given by the contribution to the admittance
creasing B’', and the amount of the nonlinearity of from thenoth channe(see curve 4 in Fig. 18] i.e., byyno'

y'(©(B") increases wheq approachesl+ 1. Note also that Note that although the number of open channels in Fig. 12 is

the nonlinear parts of the contributions of the open anoo',qu N=1, nonetheless the conductance increases to

o o : y’(0.5)~2. At this value of the frequency, effectively two
closed channels haveppositesigns. Thus, it IS pos_s_lble to open channels give a contribution to the conductance. Figure
choose a value ofg such that the nonlinearities of

1(0)/ a7 [0t ) 12(b) shows that ifnp=N+1, then in the low-frequency
y"¥(B’) andy"™(B') approximately compensate one an- regjon, theclosedchannels can give a positienductive®)
other. In this case, the approximatigfi(B’)=const=y’(0)  contribution toy”(8'). This is in contrast to the case when
(the approximation of static conductanazn be used in a is not close toN or N+ 1, for which the closed channels at
wide frequency ranggcurve 3 in Fig. 118)]. For the imagi- low frequencies are described by an effective capacitance
nary part ofy, the nonlinear components gf(® andy”(® [see Figs. 1) and 11b)]. This surprising inductive contri-
depend ong in a more complicated manner. However, thebution of the closed channels originates from the specific
value ofq can be chosen such that the nonlinearities of theséorm of the potential distributiorisee Fig. 7, in particular,
two contributions are partially compensated, and the apfrom the fact that there are large spatial regions in the QPC
proximation of the effective inductance and capacitance i$n which the local electric field is opposed to the applied
valid for a wide range of3’. field.
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FIG. 9. The reala) and the imaginaryb) parts of the potential

distribution whenq (q=2.01) is close to the integer,=2, butq

>ng. Curves 1-4 correspond to the following values of the fre- =2kgd(0)/7, whenN=1: (1) q=1.1 (Kl=2), (2 g=1.7 (N

quency: (1) B'=0.1 (w=2.6x10°sY), (2) B'=0.7 (v=1.8
x10°s™), 3) B'=12 (w=3.1x10°sY), and 4 pB’
=17 (0=4.4X10"s™"). The parameters of the QPC ad¢0)
=2.1x10"% cm,L=L=10"2 cm (N=2,N=3), and»=0.

As a function of the parametey=2kcd(0)/7 (or the

gate voltagg the admittance exhibits stepwise variations

that have been examined previously at low frequeric§2°

We have obtained the specific form of these oscillations for_
several values of frequency. The dependence of the admi{b
tance o for the case of low frequency is shown in Fig. 14.

The real part of the low-frequency admittariéeg. 14a)] is

14 ‘ ‘ . ;
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FIG. 10. Frequency dependence of the f@aly’ and the imagi-
nary (b) y” parts of the admittancyg for_different values ofq
=3), (3) gq=1.75 (N=3). The values ofy are not close to the
integer number® and N+ 1. Also shown are the contributions to
the admittance from the opdp) and the closedc) channels. The
parameters are=10"2 cm andv=0, as in Figs. 6-9.

nected with the fact that for fixed value of frequensythe
characteristic residence timeg,(x,x’) in Eg. (3) increases
logarithmically as an electron approaches a separ@juix
r—sn(O), org=n]. In this case, a small variation afleads
a large variation of the phase in Eqd) and (5).

determined by the number of propagating modes. Consider- IV. CONCLUSIONS

ing the imaginary part of the admittan¢€ig. 14b)], the
contribution of the open channels is positiieductive), and
increases as the number of open channels incregSem-
pare the curvey;® andy3® in Fig. 14b).] The contribu-
tion of the closed channelg(®, depends org in a more
complicated manner. Fay not close toN+1 this contribu-

tion is negative(capacitive, see curvylyg)), but whenq
approacheNJrl,y’l”(zc) increases and becomes positiie-

In the present paper, we have numerically studied the spa-
tial distribution of the potentialg({) and the resulting fre-
quency dependence of the admittaryge) in a QPC. We
employed a semiclassical, single-particle approximation, as-
suming ballistic electron transport and treating the effects of
the Coulomb interaction in a self-consistent manfer, we
neglected many-body direct Coulomb interactijondsing
the results of transport theory based on the partial Wigner

ductive. As mentioned above, the inductive character ofdistribution function formalisn?® in combination with the
y"©)(B") for qgnearN+ 1 can be explained by the peculiari- Poisson equation, we derived an integral equation for the
ties of the potential distribution inside the QPC. The imagi-spatial distribution of the electric field in the QPC. We
nary part of the total admittancg’=y"(® +y”(®) can have solved this equation numerically for different values of QPC
a capacitive character only fot=0,1. For largeiN, the total parameters and for a wide range of frequencies,
imaginary party” is positive (inductive) because the contri- ~0-50 GHz. We found that the electric potential inside the
bution of the open channels dominates. For sufficiently highQPC is a stepwise function of the dimensionless longitudinal
frequencies, we found oscillating behaviorydfg) for g in coordinate/ with peaks in the potential profile located at the
the vicinities of integer¢Fig. 15. These oscillations are con- turning points* ¢, of the semiclassical motion. The poten-
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FIG. 11. Frequency dependence of the admittance for different FIG. 12. Frequency dependence of the r@aland the imagi-
values ofg, for N=2: (1) q=2.1 (KI=3), (2 q=2.7(N=5), nary (b) parts of the admittance, when(q=1.96) is close to an
(3) g=2.8(N=5), and for the same parametdrs,» as in Fig.  integern, (ng=N+1=2),q<n,. The contributions tq (curves
10. Also shown are the contributions to the admittance from thel) from the open channelgurves 2, the closed channelgurves
open(o) and the closedc) channels. 3), and from the N+ 1)th closed channdturves 4 are shown. As

in Fig. 7, the values of the parameters a{0)=2.05
X10°® cm,L=L=10"3% cm (N=1,N=4), v=0.

tial is not a monotonic function of, and indeed there are

spatial regions in which the local electric field is opposite to o
the direction of the applied external field closed channels have opposite signs and can thus compen-
: sate each other.

We studied the dependence of the potential profile on thé Nonli > iall h h h
frequency of the applied electric field. When the gate voltag onlinear effects are substantially en anced when the
: | t which a ch | ) | qift ate voltage is close to one of the opening poftte value
IS hear a vaiue at which a channel opens or closes, and | 2ked(0)/ is close to an integemg]. Here both the real

frequency is sufficiently high, the form of the potential pro- 54 imaginary parts of the admittance oscillate as the func-
file differs significantly from the potentlal_proﬂle in the statu; tions of frequency. The period of these oscillations decreases
case. More_over, the value pf the potential for a fixed spatia)yhen the gate voltage approaches an opening point. The os-
point £ oscillates as a function of frequency. cillations are mainly determined by thgth electron chan-
We considered the dependence of the admittance on thes| which can be understood as follows. The oscillations are
frequencyw and on the gate voltagkor the parameteq  significant when the characteristic time of the effective elec-
=2kgd(0)/m]. Near w=0, a linear approximation for the tron motion along the one-dimensional trajectésge Ref.
frequency dependence of the admittance is valid. In this low20) is of the order of the period of the electric field. If
frequency regime, one can use the approximation of stati@kzd(0)/7 is close ton,, the time of the electron motion in
conductance for the real part of the admittance and the aghe QPC is much larger for thegth channel than for the
proximation of an effective inductance and capacitance foother channels. Thus, for theyth electron channel strong
the imaginary part to obtain an equivalent electric circuitfrequency dependence can be realized at much lower fre-
model of the QPC° The size of this low-frequency regime quencies.
depends on the gate voltage, and we have shown that one canAs a function of the gate voltage, the admittance has step-
choose the value of the gate voltage so that the linear apwise oscillationgsee Refs. 17, 18, and RONe obtained the
proximation for the admittance is valid for a wide range of specific form of these steps. For the case of low frequencies,
frequencies, up taw~10 GHz for chosen QPC parameters. the contribution of the open channels is positiireductive.
Physically, the reason for the validity of the linear approxi- Whenq is not close to the integeN+ 1, the contribution of
mation over a wide range is that tm@nlinear components the closed channels is negatit@pacitivg. However, ag
of the contributions to the admittance from the open andapproache&+ 1, the contribution from the closed channels
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FIG. 13. Oscillations of the frequency dependence of the(eal FIG. 14. Dependence of the re@) and the imaginaryb) parts
and the imaginaryb) parts of the admittance (curves 2 whenq  of the low-frequency admittance (8'=10"°, 0=2.6x10° s
=2.005@>n,, Nnp=N=2). The contributions from the open oOn the value ofj (the gate voltage In (b) the contributions of the
channels(curves 3, the closed channelgurves 3, the Nth open  open(curves 2 and closed(curves 3 channels are shown. The
channel(curves 4, and theN+1st closed channdcurves 5 are  parameters are=L=10"3 cm and»=0.
shown. As in Fig. 9, the parameters of the QPC d(8)=2.1
X108 ecm,L=L=10"3% cm (N=2,N=3), andv=0.

point at which the last open channel closés+0) does the
emittance curve become positieapacitive. Hence, only
. o . . ) .~ for N=0 is the total admittance capacitive in Fig. 2 in Ref.
existence within the QPC of large spatial regions in WhICh17. Our more detailed calculations agree in general with

the local electric field is opposite to the applied fidkke : L . . :
Fig. 7). For N>1, the frequency dependence of the imagi-these results, showing effective inductiyeositive, in our

nary part of the total admittance has an inductive characte?onvgm'o') behavior forN}l. However, our self-cons!ste.nt
because of the predominant role of the open channe. If solution leads to a spatially inhomogeneous electric field,

=0 or 1, we have found that overall capacitive behavior ofWhiCh .in turn generatgs a more complicated structure of
the QPC is possible. In this connection, it is important toPeaks in the total admittance curve than wom_JId follow frpm
compare our results with a previous study of the low-the apprqach of Ref. 17. One consequence is that we find a
frequency admittance of a QPCWe shall focus primarily ~Small region—neaq=1.8 for the other parameters we have
on the final results of Ref. 17 for the emittance, which arechosen(so thatN=1)—in which the admittance is capaci-
shown in(the full curve in Fig. 2 of Ref. 17(see p. 145 To  tive (negative, in our conventionFor N=0, of course, we
compare the two sets of results, one must recall that in Fig. 2/so have capacitive behavior, as found previodly.

becomes positivéinductive). This behavior is caused by the

of Ref. 17 the authors plot themittance E while in Fig. In view of the importance of understanding the ac trans-
14(b) of our paper, we plot the imaginary part of tadmit-  port through QPC’s and related nanostructures—both for de-
tance the relation isy” = — wE, soE andy” have different veloping the appropriate physical picture and for suggesting

signs. In Fig. 2 of Ref. 17, for the barrier heigketJ,  or optimizing novel devices for applications—there are many
(roughly, corresponding to our gate voltagearying from  additional studies that we plan to undertake, among them
zero(allowing three open channgl® approximately 7 meV further investigations to determine the responses of specific
(allowing no open channélsthe emittance is negative, i.e., experimental QPC configurations and to understand the lim-
the imaginary part of the admittance is positive, and, in ouiits of validity of the semiclassical approach adopted here.
terminology, the behavior of the QPC is inductive. So, forWe are also hopeful that additional experimental studies of
the number of open channdis=3,2,1 the admittance is in- the ac admittance of QPC’s will observe the oscillations both
ductive.(In Fig. 2 of Ref. 17 the number of open channils as a function of gate voltag@t fixed frequencyand as a

is indicated by the conductance curve plotted as the dashddnction of frequencyat fixed gate voltagepredicted by our
line.) Only when the value o&U, approaches the opening semiclassical theoretical considerations.
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