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Wigner crystallization in semiconductor quantum wires
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We study the Wigner crystallization in semiconductor quantum wires within the density-functional ap-
proach. As the density of electrons in quasi-one-dimensional structures is lowered, we find that the system
favors the crystalline phase as envisioned by Wigner. The dependence of the critical density on the lateral
width of the quantum wire is also investigated. In a structure consisting of two parallel quantum wires, the
Wigner transition to the solid phase is enhanced similarly to the bilayer systems.@S0163-1829~98!01039-X#
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One-dimensional~1D! electron-gas models are of gre
interest because of theoretical and technological impl
tions. The motion of electrons confined to move freely on
in one spatial dimension gives rise to a variety of interest
phenomena. The prospect of observing non-Fermi-liq
~i.e., Luttinger liquid! characteristics has been a large imp
tus on part of the current research in 1D electron syste
Various transport and optical properties are important top
of investigation for our understanding and potential utiliz
tion in mesoscopic devices.1 Because of the reduced scatte
ing and energy-loss rates, quasi-one-dimensional~Q1D!
electron systems as realized in semiconductor structures
also under intense study.2 Many-body effects in quantum
wires have recently gained importance as the fabrica
techniques continue to improve.

In this work we investigate the possibility of fluid to soli
phase transition in a Q1D electron system at low densit
The so-called Wigner transition3,4 occurs at zero
temperature,5 and at a critical density when the Coulom
energy is much larger than the kinetic energy. This ma
body phenomenon originally envisaged for a thre
dimensional system has been observed in a 2D layer of e
trons on the surface of liquid helium.6 The realization of a
Wigner crystal in the quantum regime is largely hindered
disorder-induced localization effects. Although a number
researchers have investigated the properties of o
dimensional electrons in the crystalline phase,7–10 no esti-
mate was given for the transition density at zero temperat
Our chief aim in this work is to provide an estimate on t
1D electron density at which a Wigner solid forms within
simple jellium model and available exchange-correlation
ergies. We find that semiconductor-based heterostruct
out of which Q1D electronic systems can be formed pro
ises to be a likely candidate to observe the quantum free
transition of a 1D electron system. It is interesting to no
that the existence of excitonic crystals in Q1D semicond
tor quantum wires were predicted by Ivanov and Haug11 for
densities 1,r s<5.5. Our calculations are in qualitativ
agreement with this result for the comparable structures.

The density-functional theory of freezing of quantum li
uids has been quite successful in predicting the critical v
ues of thermodynamic parameters at the liquid-solid tra
tion and in describing the nature of the transition. T
pioneering work of Ramakrishnan and Yussouff,12 as devel-
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oped by Senatore and Pastore,13 with application to quantum
systems sets the theoretical framework for the present st
In the density-functional theory of freezing,14 first a suitable
energy functional of the charge density is set up. Then
homogeneous and inhomogeneous phases~treated on an
equal footing! are identified through some energ
minimization procedure. Below, we briefly outline th
method we use, and present our results for the Wigner c
tallization in single- and double-wire electron systems.

The ground state energyE0 of a many-electron system
can be written as a functional of the electron densityr(rW) as

E0@r#5E drW$t@r~rW !#1u@r~rW !#1Ex@r~rW !#1Ec@r~rW !#%

1E drW Vext@r~rW !#, ~1!

where t is the kinetic energy,u is the Coulomb interaction
potential, Ex and Ec are the exchange and the correlati
energies, respectively. They are all functionals of the den
r. Vext is the externally applied potential, which is taken
be zero in this work. We employ the above energy functio
to a Q1D electron gas, modeled by a quantum wire w
infinite length along thez axis. The explicit form of the
functionals to be used in Eq.~1! depends on the nature of th
problem at hand. As remarked by Choudhury and Ghos15

the success of the method relies on various cancellations
choose to follow the previous examples15–17which yield rea-
sonable estimates for Wigner crystallization in higher dime
sions.

The kinetic energy functional within the Thomas-Ferm
Weizsäcker approximation in one dimension can be d
scribed in atomic units~a.u.! as

t@r#5Ckr~z!31
1

8

¹W r~z!¹W r~z!

r~z!
, ~2!

whereCk5p2/24, and the potential energy by

u~z!5
1

2E dz8
@r~z8!2r0#@r~z8!2r0#

@ b21~z2z8!2 #1/2
, ~3!

wherer0 is the homogeneous electron density, andb is the
model-dependent quantum wire width. The above form
9886 © 1998 The American Physical Society
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PRB 58 9887WIGNER CRYSTALLIZATION IN SEMICONDUCTOR . . .
the kinetic energy is supposed to work well for highly inh
mogeneous systems. In this work, we use the cylindr
quantum wire model developed by Gold and Ghazali;18 thus
the electrons are confined to have free motion in the a
direction of the cylinder with radiusR5b. We also assume
that only the lowest subband of the 1D electron gas is po
lated, which becomes valid forr s*b/4aB* .

For the exchange and correlation energies we emplo
Padéapproximation to obtain an analytical fit to the groun
state energy results obtained by Calmels and Gold19 for a
Q1D electron gas. We obtain~in a.u.!

Ex@r#52
1

2
a0E dz r~z!

11a1r s1a2r s
2

11a3r s1a4r s
21a5r s

3
~4!

and

Ec@r#52
1

2
c0E dz r~z!

211c1r s1c2r s
2

11c3r s1c4r s
21c5r s

3
, ~5!

in which $ai% and $ci% are parameters that depend on t
wire radius~or lateral width!. The Wigner-Seitz radiusr s for
a one-dimensional system is defined asr s51/(2r0aB* ),
whereaB* is the effective Bohr radius. In this work the valle
degeneracygn is taken to be unity, where the electron de
sity r0 dependence ongn is given by the relationr0
52gnkF /p, andkF is the Fermi wave number in one dime
sion. The choice of the above parametrization is merel
matter of convenience, and we have checked that the num
cal data of Calmels and Gold19 are faithfully represented
even though the Pade´ form of the exchange-correlation en
ergies do not contain the suggested logarithmic terms.

To describe the inhomogeneous density distribution,
consider a small modulation of the density aroundr0 de-
scribed by

r~z!5r0@11lcos~qz!#, ~6!

wherel is a small parameter (l ! 1), andq represents a
wave vector for density modulation in one dimension. Su
an ansatz to the inhomogeneous density provided15 a good
estimate for the Wigner transition in two dimensions. W
assume that the electrons will be equidistant on a stra
line in the solid phase which givesq52p/r s . By making
use of Eqs.~1!–~5!, one obtains the energy difference b
tween the solid~inhomogeneous! and liquid ~homogeneous!
phases (DE5Es2El); the energy difference per particl
(D«5DE/r0*dz), to second order inl, in a.u., is

D«

l2
5Ckr0

21
1

16
q21

1

2
r0K0~qb!2

1

4S a0

r0
D

3FCD2BE2A~F2E!

D2 G2
1

4S c0

r0
D

3F IJ2HK2G~L2K !

J2 G , ~7!

whereK0(x) is the modified Bessel function of zeroth orde
The first set of coefficients (A2G) are explicitly given by
l
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u-
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A5r0~11 1
2 a1r01 1

4 a2r0
2!,

B5r0~11a1r01 3
4 a2r0

2!,

C5 1
2 r0~a1r01 3

2 a2r0
2!,

D511 1
2 a3r01 1

4 a4r0
21 1

8 a5r3, ~8!

E5 1
2 r0~a31a4r01 3

4 a5r0
2!,

F5 1
4 r0~a4r01 3

2 a5r0
2!,

G5r0~211 1
2 c1r01 1

4 c2ro
2!.

The second set of coefficients (H2L) can be obtained from
the first set by interchanging$ai% and $ci%. It has been
commented20 that the above procedure of using a modula
density results in a rather poor density profile, although
reasonable estimate of the fluid-solid transition is obtain
Another popular form for the density distribution is a Gaus
ian with variational parameters,15,17 which predicts the tran-
sition density rather well and gives reasonable density p
files in 2D electron systems. Since our primary aim here is
obtain an estimate for the freezing densities in 1D structu
we have not attempted a Gaussian ansatz forr(z).

Plotting Eq.~7! as a function of the density parameterr s
in Fig. 1, the freezing point is determined to occur atr sc

55.355 for wire radius 0.5aB* , and atr sc55.717 for wire
radius aB* . These values are in good agreement with
excitonic Wigner crystal calculations of Ivanov and Haug11

We were not able to obtain a transition to the ordered ph
for quantum wires of radiusb*2 aB* . This, however, may
be partly due to the approximate nature of the correlat
energy. Currently produced quantum wires have densitie
r s'1, but it is conceivable that advances in the fabricat
techniques will lead to the observation of Wigner crysta
zation in such structures. To obtain a qualitative picture
the quantum wire width dependence of the phase transit

FIG. 1. The difference in the average energy per parti
(«solid2« liquid)/l

2 ~in a.u.! as a function ofr s for a single quantum
wire of radiusb50.5aB* ~dashed line! andb5aB* ~solid line!.
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we calculate^V&/^K&5G0 in the fluid phase, whereG0 is
some constant.21 Approximating the average potential ener
of a quantum wire bŷ V&5e2/(r s

2aB*
21b2)1/2 and the ki-

netic energy~at zero temperature! by ^K&5p2n2/24m, at the
crystallization we derive the relation

1

r sc
2

5
1

2~b/aB* !2 H F11S 24

p2D 2 64~b/aB* !2

G0
2 G1/2

21J , ~9!

which shows the dependence ofr sc on the quantum wire
width b. Our numerical calculations yieldG0'50 for Q1D
electron systems. Figure 2 showsr sc as a function ofb based
on Eq.~9! for variousG0 values~also see Table I. Within this
simple approximating procedure, crystallization for all va
ues ofb is predicted. Even though there is an ambiguity
choosingG0 , making the determination ofr sc less reliable,
we believe the qualitative and quantitative picture descri
by this approach should be useful. The above dens
functional theory results for the critical density at which t
Wigner transition takes place are limited by the accuracy
the correlation energies used. In Q1D electron gas syste
there is no accurate quantum Monte Carlo~QMC! ground-
state energy calculation. The exchange-correlation ener
we use are based on the self-consistent-field method,19 which
may underestimate the exact values.

The prohibitively large crystallization densities in 2
electron gas led to the suggestion that a double-layer sys
may enhance the possibility.22 In fact, Wigner crystallization
in double layers under high magnetic field has be
observed.23 At zero magnetic field, density-functiona
theory-based17 calculations and other approaches24 have con-
firmed this view. We extend our calculations to obtain
estimate for the critical density at which a Wigner crysta
zation occurs in a double-wire system. We conside
double-wire system consisting of two parallel quantum wi
of equal width ~radius!, separated by a distanced. The
ground-state energy functional for the systemE@r (1),r (2)#

FIG. 2. The critical density parameterr sc , at which Wigner
crystallization occurs in a single wire as a function of the w
radius b for G0510 ~dotted line!, G0550 ~dashed line!, and G0

5100 ~solid line!.
d
y-

f
s,

ies

m

n

a
s

5E@r(1)#1E@r(2)#1EI@r
(1),r(2)# includes contributions from

single wires and an interaction term describing the interw
Coulomb interaction written as

EI@r~1!,r~2!#5
1

2E dz8 E dz
@r~1!~z!2r0#@r~2!~z8!2r0#

@ d21~z2z8!2 #1/2
,

~10!

wherer ( i ) ( i 51,2) denotes the charge densities in differe
wires. The above formulation neglects the tunneling effe
between the quantum wires, which should be a good
proximation ford/b*1. Furthermore, the full correlation en
ergy of the double-wire structure is not incorporated. Sin
the interwire correlation effects are much weaker than
intrawire correlations,25 we believe that this approximation i
also justified. In Fig. 3 we show the energy differenceD«/l2

between the solid and fluid phases for a double-wire sys
as a function ofr s . As in the double-layer electron system
we observe that the critical density at which the Wigner tra
sition occurs increases as the separation distanced decreases.
In particular, for a double-wire system withb5aB* in both
wires, we locate the freezing transition atr sc55.475, r sc

55.654, andr sc55.711 for wire separationsd5aB* , 2 aB* ,

TABLE I. The exchange and correlation energy coefficients
quantum wire radius b5 0.5aB* andaB* .

b/aB* a0 a1 a2 a3 a4 a5

0.5 4.80426 22.9817 9.611592 29.2405 84.5466 15.17
1.0 2.4023 13.4298 3.5108 16.5626 26.2247 2.894

b/aB* c0 c1 c2 c3 c4 c5

0.5 0.0133105 15.6936 29.9494 0.499742 1.01564 0.132
1.0 0.00314 13.6338 61.2866 0.5366 0.63904 0.070

FIG. 3. The difference in the average energy per parti
(«solid2« liquid)/l

2 ~in a.u.! as a function ofr s for a double quantum
wire system. Radius of the individual wires isb5aB* , and the sepa-
ration distances ared5aB* ~dotted line!, 2aB* ~dashed line!, and
4 aB* .
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and 4aB* , respectively. In contrast to the large reduction
r sc with decreasingd in double-layer systems, we find tha
the crystallization density decreases only slightly by
presence of an extra quantum wire. Nevertheless, it may
more feasible experimentally to observe the crystallizat
phenomenon in double-wire structures as they are begin
to be fabricated.26 Similar considerations as in the case
single-quantum-wire systems, with the additional appro
mation of ^V&5e2/(r s

2aB*
21d2)1/2 for the average interwire

potential, yield the following relation between the critic
density parameterr sc , the lateral wire widthb, and the sepa-
ration distanced:

G05
96r sc

2

p2 F 1

Ar sc
2 1~b/aB* !2

1
1

2

1

Ar sc
2 1~d/aB* !2G , ~11!

at freezing, for some constantG0 . Such qualitative argu-
ments can also be extended to the cases where qua
wires have different radii and number densities. As for
single-quantum-wire system, the simple estimate pred
crystallization for allb andd, for large enoughG0 .

In summary, we have examined the possibility of Wign
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crystallization in single- and double-quantum-wire system
within a density-functional-theory approach, using the cor
lation energy given by the self-consistent-field scheme.19 We
have found that for experimentally attainable quantum w
widths and electron densities, freezing of a Q1D electron
should be observable. Although we have used the excha
correlation energies calculated for a specific model of a Q
electron gas, we surmise our results for the Wigner crys
lization will qualitatively remain true for other models. A
important limitation could be the self-consistent-field a
proach employed in the calculation of the exchang
correlation energies. In view of the importance of the corr
liquid state input in the density-functional theories of free
ing, it would be most useful to have accurate ground-st
energies and structure factors for Q1D electron system
the more accurate QMC and hypernetted-chain-type calc
tions. Since the disorder effects significantly alter the Wign
crystallization picture,27 it would be interesting to investigat
similar mechanisms in Q1D structures.
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