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Emission of correlated electron pairs following single-photon absorption by solids and surfaces

Jamal Berakdar
Max-Planck Institute for Microstructure Physics, Weinberg 2, 06120 Halle, Saale, Germany

~Received 23 March 1998!

The simultaneous emission of two electrons from condensed matter following the absorption of a linearly
polarized photon is studied in the first order-perturbation theory for the radiation field, and within the dipole
approximation. The double emission from localized and delocalized electronic states is considered. It is shown
that spectra of the emitted pairs obey propensity rules expressed by the scalar product of the center-of-mass
vector momentum of the pair and the photon’s polarization vector. Furthermore, it is shown that diffraction of
the pair from the lattice occurs when the pair’s center-of-mass wave vector changes by a lattice reciprocal
vector during the photoemission. For semi-infinite solids with delocalized valence electrons, an initial state is
constructed from single-particle orbitals. Following the absorption of the photon the valence-band electron pair
propagates into the vacuum within the screened electron-electron Coulomb potential. Numerical results for a
clean Cu crystal are analyzed for photon polarization parallel and perpendicular to the surface.
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I. INTRODUCTION

Over the last few decades angular- and spin-resolved
traviolet single-photoemission spectroscopy~ARUPS!
emerged as a powerful and widely used method to inve
gate the electronic structure of crystalline materials.1,2 This
development has been driven by the growing demand fo
detailed knowledge of technologically relevant physic
properties of solids and their surfaces, e.g., catalytic re
tions are mainly controlled by the electronic and geome
structure of surfaces.

Theoretical treatments of ARUPS are of special imp
tance as they provide the linkage between the photocur
measurements and the corresponding band structure.1–3 A
standard successful scheme for band-structure calcula
relies on density-functional theory~DFT!,4 in which the elec-
tronic many-body problem is solved in a one-electron p
ture. Spatially uncoupledsingle-particlestates are then de
termined self-consistently using an approximate expres
for the exchange and correlation term.5 Many aspects of the
emission process are described within this single-part
picture, as a transition from an occupied one-electron orb
to a state describing the propagation of the photoelect
The complicated many-body nature of the solid is then c
lectively subsumed in the screening and decay of the ph
electron, and the hole left behind. These screened, deca
quasiparticles can still be described by a single-particle w
equation. Experimental evidence for many-body effe
shows up as subsidiary features in the photoelectron spe

In contrast, and as explicitly shown in the present work
simultaneous two-orbital excitation by one photon is proh
ited if spatial coupling between these orbitals is abse
Therefore, dealing with this process, the description of
electron-electron interaction must go beyond regarding i
a collective, spatially independent perturbation of the sing
particle orbitals. Thus it seems worthwhile to employ dou
photoemission~DPE! as an investigative tool for strongl
correlated systems, such as Mott insulators, ferromagn
materials withd andf levels, and high-temperature superco
ductors. In fact, as shown in this paper, to some extent D
can be regarded as single photoemission of a ‘‘quasipartic
PRB 580163-1829/98/58~15!/9808~9!/$15.00
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formed by the electron pair. In addition to the known fe
tures of ARUPS, the spectra of this photoemitted ‘‘quasip
ticle’’ reveal a dependence on the pair’s internal degree
freedom that characterizes the mutual interaction of the
emitted electrons. Therefore, DPE experiments are expe
to provide a direct insight into the influence of electron
correlation on initial and final many-body states.

In atomic and molecular physics, the explicit dependen
of DPE on the interelectronic correlation is well establishe6

The first experiment of this kind on a He(1Se) target was
performed in 1993,7 followed by a series of experiments o
different targets at a variety of scattering geometries.8–12The
theoretical treatments stimulated by these experiments
vealed the strong dependence of this reaction on the deta
mutual electronic coupling,8,13,15,14,16as well as on properties
of the radiation field.17,18 Very recently DPE from He(1Se)
with circularly polarized photons has been observed.19,20

DPE from Ni~001! and Cu~001! has just been reported.21

Thus it is appropriate to consider DPE theoretically fro
solids and surfaces. Starting from the first-order perturba
theory and the dipole approximation for the photon field
formal expression for the cross section of DPE is deriv
~transition rate normalized to the incoming photon-flux de
sity!. Subsequently, DPE from localized bulk states is st
ied and propensity rules are inferred. DPE from delocaliz
valence electrons is then investigated, and the selection r
in this case are discussed. Numerical examples for DPE f
a clean Cu crystal are presented forp and s polarizations.
Atomic units ~a.u.! are used throughout.

II. THEORETICAL FRAMEWORK

For the derivation of the transition amplitude for simult
neous electron ejection, it is instructive to specify the pro
erties of the radiation field. In what follows we assume
large photon density, so that the electromagnetic field can
treated classically~an upper limit for the photon density o
concern here is given below!. We operate in the Coulomb
gauge, i.e.,¹•A50, so that, in vacuum, we can setF50,
9808 © 1998 The American Physical Society
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PRB 58 9809EMISSION OF CORRELATED ELECTRON PAIRS . . .
where A and F are the field vector and scalar potentia
respectively. It should be noted from the outset, howev
that near a surfaceA may change rapidly which invalidate
the assumption¹•A50 unless the dielectric constante is
unity.22,23 To avoid this case the photon energies have to
well above the plasmon energies.24 For A we assume a
monochromatic, plane-wave solution with a wave vectork,
which is related to the photon frequencyv via k5av,
wherea is the fine-structure constant. The energy densitr
of the ~classical! radiation field averaged over the periodT
52p/v is given by r5v2A2/(2p). Thus the energy-flux
density, i.e., the intensityI , is given byI 5r/a. For a low-
intensity field we can setA2'0 ~for A'0.01 and a photon
energy of 50 eV we arrive at a maximum intensityI'5
31017 W/m2). We assume the unperturbed system to
described by the HamiltonianH, and to be in the stationar
stateu i & with energye i , i.e.,

~H2e i !u i &50. ~1!

Under the time-dependent action of the photon field the s
tem performs, within a time lapt, a transition into vacuum
statesu f & which lay within the intervalb andb1db, where
b stands for collective quantum numbers that specify
final channel.

In a time-dependent first-order perturbation treatm
~only photoabsorption is considered here!, a transition prob-
ability dwi f can be derived.25 Thus we can define a transitio
ratedPi f 5dwi f /t that can be deduced to

dPi f 5~2p!2
Ia

v2(a i

u^ f uW̃0u i &u2d~Ef2Ei !db, ~2!

whereEf is the total energy in the final channel andEi5v
1e i . Equation~2! sums over the unresolved quantum nu
bersa i in the initial state. The perturbationW̃0 in Eq. ~2!
amounts to

W̃05A(
j 51

N

exp@ i ~k•r j !#ê•pj , ~3!

wherepj are the one-particle momentum operators andê is
the polarization vector.

As the differential cross sectionds/db we define the
transition rate normalized to the incoming flux densityI /v,
i.e.,

ds5vdPi f /I . ~4!

In this work we consider moderate photon energie
(,500 eV), and we can thus operate within the dipole
proximation. In this case Eq.~4! reduces to

ds54p2
a

v(
a i

uM f i u2d~Ei2Ef !db, ~5!

where the dipole-matrix element is given by

M f i5(
j

N

^ f uê•pj u i &. ~6!
,
r,

e

e

s-

e

t

-

-

By making use of the canonical commutation relation
2 i @r j ,H#5pj , and assuming thatu i & andu f & are eigenfunc-
tions of thesameHamiltonianH, the velocity formEq. ~5!
can be converted into thelength form

ds54p2av(
a i

U(
j

N

^ f ur j u i &U2

d~Ef2Ei !db. ~7!

In practice,u i & and u f & are derived using different approx
mate procedures forH, and thus the velocity and lengt
forms yield, in general, different predictions. Converse
equivalent cross sections, calculated within the length
velocity forms, mean merely that the same approximatio
have been made in the initial and final channel, but they s
however nothing about the quality of these approximatio
Nevertheless, it is desirable to chooseu i & and u f & as eigen-
states of the same~approximate! Hamiltonian to preclude
spurious transitions in the absence of the perturbationW̃0 .

Regardless of the form in which the dipole operator
presented, its mathematical structure is always a sum
single-particle operators. This has the following importa
consequence: If we assumeu i & andu f & to be written in terms
of orthonormal single-particle orbitalsf j (r j ), in the simplest
case as

^r1•••rNu i &5)
j

N

f i , j~r j !,

^r1•••rNu f &5)
j

N

f f , j~r j !, ~8!

then the matrix element~6! is finite for single-orbital excita-
tion, only, e.g., single photoemission. In other words, DPE
prohibited in a single-particle picture. This is readily co
cluded in the simplest case of two orbital excitationf l ,fk ,
which is the minimal requirement for DPE:

M f i5^f f ,kf f ,l uê•pl uf i ,kf i ,l&1^f f ,kf f ,l uê•pkuf i ,kf i ,l&

5^f f ,kuf i ,k&^f f ,l uê•pl uf i ,l&

1^f f ,l uf i ,l&^f f ,kuê•pkuf i ,k&

5d i , f~^f f ,kuê•pkuf i ,k&1^f f ,l uê•pl uf i ,l&!, ~9!

wheref i ,k ,f i ,l (f f ,k ,f f ,l) are the participating single par
ticle orbitals in the initial~final! channel. From Eq.~9! it
follows that DPE is a direct signature of coupling betwe
single-particle orbitals, at least those of the electrons sim
taneously detected in the final state, i.e., the two photoe
trons must be correlated in initial and/or final state. Th
conclusion is also valid for an antisymmetrized product
spatially independent single-particle orbitals. It should
stressed that Eq.~9! and the single-particle nature of th
perturbation@Eq. ~3!# do not mean that the photon can on
be absorbed by one electron, and the other electron is em
by means of coupling or inelastic scattering with the form
one. To see this, let us assume the holes created by the
cess to be long lived on the scale of the characteristic in
action timet and neglect any phonon excitation. In this ca
a frozen-core approximation is appropriate. In addition, if t
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9810 PRB 58JAMAL BERAKDAR
photoelectrons are represented by the correlated initial~final!
statec i(r l ,r k) @c f(r l ,r k)# we can always canonically trans
form to the coordinate systemr15(r l1r k)/2, r25r l2r k .
In this case the photoabsorption matrix element~6! takes on
the ~length! form M f i5^c f(r

1,r2)uê•r1uc i(r
1,r2)&/2

which means that the photon is absorbed by the cente
mass coordinater1 of the two-electron system. Thissimul-
taneousphotoabsorption is fundamentally distinct from th
process of single photoemission accompanied by secon
vacuum-electron creation.

III. DOUBLE PHOTOEMISSION FROM LOCALIZED
ELECTRONIC STATES

In the rest of this work we assume a frozen-core appro
mation, i.e., only the degrees of freedom of the two emit
electrons are affected by the photoabsorption process
obtain an insight into the structure of the matrix eleme
M f i , we consider first the DPE of localized electrons, e
core electronic states or valence-band electrons of insula
The initial state can then be described by a tight-bind
two-electron wave function, whereas the vacuum motion
the electrons is assumed to be free and characterized b
momentaka and kb , as measured in a coincidence expe
ment ~uncorrelated final-state Bloch waves lead basically
the same conclusion!. Equation~6! can be written in the form

M f i~ka ,kb!5C(
l
E E d3rad3rb

3exp~2 ika•ra2 ikb•rb!exp@ i ~ka81kb8!•Rl #

3@ ê•~pa1pb!#f i~ra2Rl ,rb2Rl !. ~10!

whereRl designates the core sites, andf i describes the lo-
calized two-electron initial state with Bloch wave vectorska8
and kb8 . The constantC derives from the normalization o
the initial- and final-state wave functions. After some
ementary manipulation the magnitude ofM f i(ka ,kb) is re-
duced to

uM f i u25uCu2d~qi2qf ,G!
~3! uM f i

atomu2, ~11!

where qi5ka81kb8 ,qf5ka1kb are the wave vectors of th
pair’s center of mass in the initial and final states, resp
tively, andG is a bulk reciprocal-lattice vector. The atom
matrix elementM f i

atom is given by

M f i
atom~ka ,kb!5E E d3r d3r 8exp~2 ika•r2 ikb•r 8!

3@ ê•~pa1pb!#f i~r ,r 8!. ~12!

In momentum-space representation

M f i
atom~ka ,kb!5E E d3p d3p8^ka ,kbuê~pa1pb!up,p8&

3^p,p8uf i&

5ê•~ka1kb!f̃ i~ka ,kb!. ~13!
f-
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In Eq. ~13! up,p8& denotes a complete set of plane wave
and f̃ i(ka ,kb) is the double Fourier transform of the initia
state. Note that Eqs.~12! and~13! do not factorize in single-
particle contributions due to the correlated statef i(r ,r 8).
From Eqs.~11!–~13!, three important conclusions are draw

~a! According to the von Laue-like conditions in Eq.~11!,
diffraction of the pair occurs when the center-of-mass m
mentum of the pair changes by a reciprocal bulk vector d
to the emission process. This~and the selection rules state
below! is equivalent to assuming the pair as a quasipart
with momentumka1kb ~the pair’s center-of-mass momen
tum! and performing single photoemission of this quasip
ticle.

~b! The selection rules forM f i
atom can be summarized in

the equationê•(ka1kb)50, i.e., double photoemission i
forbidden if the momentum of the two-electron center
mass is perpendicular to the polarization vectorê or if ka5

2kb . In addition the structure off̃ i(ka ,kb), which is very
much dependent on the symmetry of the investigated c
level, imposes additional restrictions on the DPE spec
These conclusions remain valid if we allow for mutual rep
sion of the outgoing electrons, but disregard the final-chan
coupling to the cores. This can be deduced in a similar m
ner as in Eq.~22!. In cases where the motion of the vacuu
electrons is influenced by the core potentials, atomic se
tion rules for the double photoionization applies.13,16,17

~c! If the magnetic sublevels of the two-electron orbitalf i
are statistically populated~which is usually the case!, then
uM f i u2, and hence the cross section, shows in general acir-
cular dichroismwith respect to inversion of the helicity o
the incoming radiation. This is readily deduced from t
analysis performed in Refs. 17 and 18. Note that, in
absence of a preferential orientation of the initial state an
spin analysis of the photoelectrons, as assumed in this w
the aforementioned dichroism vanishes identically for sin
photoemission.18

IV. DOUBLE PHOTOEMISSION OF DELOCALIZED
ELECTRONIC STATES

In this section we consider double photoemission fro
s-p bonded~simple! metal surfaces like Na and Al. In thi
case the cores scatter the conduction-band electrons
weakly. The momentum distribution of the conduction-ba
electrons can then, to a good approximation, be simulated
jellium states. In the jellium model the ionic cores a
smeared to a uniform constant positive ‘‘backgrou
charge.’’ The electrons are bound to the metal half-sp
(z,0) by the step-potential barrierV0 ~at z50)

V05eF1W, ~14!

whereeF is the Fermi energy andW is the work function.
Within the metal volumeV the conduction-band electron
are treated as free particles. The density of statesrDOS is
given by that of the free-electron gas~apart from a factor 2
due to electronic spin states! rDOS5V/(4p3). As the bind-
ing potentialV0 is steplike, the single-particle jellium wav
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PRB 58 9811EMISSION OF CORRELATED ELECTRON PAIRS . . .
functionfe j (k j8),k
j8
(r j ), with binding energye j (k j8) and wave

vector k j8 , can be represented in terms of reflection a
transmission coefficients:

fe j ~k
j8!,k j8

~r j !5
1

AV
exp~ ik j ,i8 •r j ,i!

3H eik j ,z8 zj1Re2 ik j ,z8 zj z,0,

Te2gzj z.0,
~15!

wherek j ,z8 andzj are, respectively, the components ofk j8 ,r j

with respect to the normal of the surface~pointing into the
vacuum!, and k j ,i8 ,r j ,i are the corresponding componen
parallel to the surface. The reflection and transmission c
ficientsR andT are given by

R5
k j ,z8 2 ig

k j ,z8 1 ig
, T5

2k j ,z8

k j ,z8 1 ig
~16!

andg5A2V02k8 j
2.

As in the jellium model the electrons are considered to
quasifree, for the two-electron initial stateu i & we employ a
~singlet! symmetrized direct product of two jellium single
particle states, i.e.,

uce i ;k
a8 ,k

b8
~ra ,rb!&'

1

A2
@ ufea ,k

a8
~ra!& ^ ufeb ,k

b8
~rb!&

1ufea ,k
a8
~rb!& ^ ufeb ,k

b8
~ra!&]. ~17!

The total binding energy e i of this state is
e i5ea(ka8)1eb(kb8) with parabolic dispersion for thesingle
particle states. State~17! is energetically favored with re
spect to its antisymmetric~triplet! counterpart.

As the initial state@Eq. ~17!# does not contain any inter
electronic coupling, it is essential to incorporate the int
electronic interaction in the final state. To this end we n
that the asymptotic two-electron vacuum stateuka ,kb&, that
is defined by the measured momentaka and kb , whereEf

5Ea1Eb and Ea5ka
2/2, Eb5kb

2/2 are the electrons’ ener
gies, is an eigenstate of the two-electron kinetic-energy
eratorK, i.e.,

Kuka ,kb&5 1
2 ~pa

21pb
2!uka ,kb&5Ef uka ,kb&. ~18!
d

f-

e

-
e

p-

The final stateu f & is then obtained by the time-reversed ev
lution ~back to the time of absorption! mediated by the
Mo” ller operatorV25(11G2V),26 i.e.,

u f &5@11G2~H2K !#uka ,kb&5~11G2V!uka ,kb&,
~19!

whereG2 is the resolvant~Green operator! of total Hamil-
tonianH which satisfies the Dyson equation

G25G0
21G0

2VG2, ~20!

and G0 is the Green operator of the noninteracting syst
~with outgoing wave boundary conditions!. Contrasting the
state vector~19! with that used in single photoemission,1 it
can be said thatu f & is the time-reversed low-energy electro
diffraction ~LEED! state of the coupled electron pair.24

From Eqs.~19! and ~20!, it is evident that, after absorp
tion of the photon, the two electrons interact with all degre
of freedom of the system, described byH ~such as diffraction
from the lattice, elastic, and inelastic collisions and colle
tive excitations! before emerging with the asymptotic mo
mentaka andkb . These interactions are basically contain
in the complex two-particle self-energyV that appears in
Eqs. ~20! and ~19!.3,27,28 The non-Hermitian character ofV
accounts for damping processes of the photoelectron flux
energetic shifts in the quasi-particle spectrum. Consider
the difficulties encountered in adequately estimating
single-particle self energy,3 it is obvious that calculating the
two-particle self-energy is a very delicate problem. Hen
we replace it in the rest of this work by the~real! potential. In
addition, as the electron-electron interactionVee is inevitable
for coherent DPE we regard this interaction as the ‘‘stron
potential with respect to the surface-photoelectron coupli
i.e., we employ the approximationV'Vee. For Vee we as-
sume a screened Coulomb potential, with the screening c
stant derived from the Thomas-Fermi model.29 Under these
circumstances Eq.~19! reduces to

u f &'~11Gee
2 Vee!uka ,kb&, ~21!

with Gee
2 being the propogator within the potentialVee. With

Eqs. ~21! and ~17!, we can now obtain an estimate of th
transition probabilityM f i , given by Eq.~6!. SinceVee and
Gee are dependent on interelectronic degrees of freed
only, properties ofM f i are most transparent in the represe
tation r1

^ r2 that, as previously mentioned, can be cano
cally mapped onto ra^ rb @r15(ra1rb)/2,r25ra2rb#.
Equation~6! reads
M f i~k2,k1!5E E d3q2d3q1^k2,k1u~11VeeGee
1 !~ ê•p1!uq2,q1&^q2,q1uc&

5ê•k1F c̃~k1,k2!1E d3q2^k2uVeeGee
1 uq2&^q2,k1uc&G , ~22!

wherek25(ka2kb)/2, k15ka1kb , anduq2,q1& is a complete set in the space reciprocal tor1
^ r2.
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According to Eq.~22! the propensity rulesê•k150, as discussed in Sec. III, apply. As it is clear from the derivation of
~22! these rules do not depend on the structure of the initially bound stateuc&. They are rather an immediate consequence
the approximation made to arrive at Eq.~21!.

V. CALCULATION OF THE DIPOLE-MATRIX ELEMENT

In spite of the simple analytical structure of the wave function~17!, the evaluation of the transition amplitude~22! is
mathematically involved and, till now, only possible within the approximationGee

1 'G0
1 , i.e., in LEED language, within the

kinematical approximation.30 The derivation ofM f i is presented in the Appendix. The final result can be written as

M f i~ka ,kb!5^ka ,kbu~11VeeG0
1!@ ê•~pa1pb!#uce i

&5Tspe1Tdpe, ~23!

where

Tspe5^ka ,kbuê•~pa1pb!uce i
&

52~ ê•ka1ê•kb!d~2!~ka,i8 2ka,i!d
~2!~kb,i8 2kb,i!

pA2

V
@Lk

a8
~ka!Lk

b8
~kb!1Lk

b8
~ka!Lk

a8
~kb!# ~24!

and

Tdpe5^ka ,kbuVeeG0
1@ ê•~pa1pb!#uce i

&

5ê•~ka1kb!d~2!@~ka,i8 1kb,i8 !2~ka,i1kb,i!#
1

A8pV
@ I ~ea ,ka8 ,eb ,kb8 ;ka ,kb!1I ~eb ,kb8 ,ea ,ka8 ;ka ,kb!#. ~25!
n
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The functionsI (ea ,ka8 ,eb ,kb8 ;ka ,kb) andLk
j8
(k j ), j 5a,b,

are given by Eqs.~A9! and ~A4!, respectively. Equations
~24! and~25! reflect the basic difference between single a
simultaneous double photoemission: Term~24! contains no
final-state correlation of the pairs. The DPE is then regar
as two independent single photoemission processes. Co
quently, the surface components of the wave vectors of
individual electrons is conserved during the ejection, and
each absorption process the selection rules for the si
photoemission apply. In contrast, as a result of includ
electronic correlation in Eq.~25! only the surface componen
of the pair’s center-of-mass wave vector is invariant dur
the reaction. Under this constraint the surface componen
the wave vectors of the individual electrons may well not
conserved~due to momentum exchange!. As mentioned in
the preceding sections, the amplitude@Eq. ~24!# must vanish,
for initial- and final-state electronic correlation are disr
garded. In fact extensive numerical calculations have sho
that uTspeu is negligible with respect touTdpeu ~typically six
order of magnitudes smaller!.

Double emission probabilities

In a recent double photoemission experiment21 on
Cu~001! and Ni~001!, the coincidence rate has been me
sured as function ofka , kb, andv. The Bloch wave vectors
of the initially bound electronic states were not specifi
@actually a Bloch wave vector of the electron pair is a mo
appropriate designation of these states~cf. Eq. ~25!#. Thus,
Eq. ~5! yields
d

d
se-
e
r
le

g

g
of
e

-
n

-

e

ds54p2
a

vE E d3ka8d
3kb8r~ka8!

3F~ka8,T!r~kb8!F~kb8,T!uM f i u2d~Ei2Ef !

3d3kbd3kad3krec, ~26!

wherekrec is related to the recoil momentum of the cryst
~free electrons cannot absorb the photon!. The one-particle
density of states at the temperatureT is referred to as
r(k8j ), j 5a,b, andF(k8j ,T) is the Fermi distribution. The
initial total energyEi can be estimated assuming the condu
tion band of the pair as being formed of independent ba
of the single electrons, i.e.,Ei5v22W2ea(ka8)2eb(kb8).
~In contrast to atomic systems, this approximation is reas
able due to the collective screening of the electron-elect
interaction!. In Eq. ~26! the dependence ofs on krec is fixed
by the conservation of linear momentum.

For the approximate initial state@Eq. ~17!# which leads to
the matrix element~23! and atT50, Eq. ~26! simplifies to

ds5
V2a

4p4v
F E

ka8<kF

E
kb8<kF

d3ka8d
3kb8uM f i u2

3d~Ei2Ef !Gd3kbd3ka , ~27!

where kF is the Fermi momentum for the single-partic
band. The six-dimensional integral in Eq.~27! can be ana-
lytically reduced to three-dimensional ones that have b
performed numerically.
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Employing Eq.~27!, we consider the energy sharing
the two-photoelectron pair emitted from Cu~001! for s-
photon polarization~see the inset in Fig. 1!. As the electron
detectors have the same relative angles with respect to
wave vector of the photons~the inset in Fig. 1!, the vector

FIG. 2. Same energies as Fig. 1; however, as demonstrate
the inset, the photon beam is now in grazing incidence (10° w
respect to the surface!. One of the electron detectors~say detector
a) is fixed right to the surface normal at an angle of 50°, wher
the other detector is positioned left the surface normal at an ang
30°. The coordinate system and the geometry are sketched in
inset.

FIG. 1. The double-photoemission cross section@Eq. ~27!# as
function of the energy sharing of two electrons emitted from a cl
Cu monocrystal upon the absorption of a linearly polarized pho
The photon’s wave vectork is normal to the surface, whereas th
electron detectors are fixed at 40° to the left and right ofk ~see the
inset!. The photon incident energy isv545 eV, and the total ex-
cess energy of the pair is chosen asEtot5Ea1Eb534 eV.
he

momentum of the pairka1kb is perpendicular to the surface
and hence to the polarization vector, for equal-energy e
trons. Consequently, double photoemission is forbidden
ka5kb , as is obvious from Eq.~25!. The corresponding
experiment21 shows an evident decrease of the cross sec
at ka5kb . However, these data cannot be directly compa
with the predictions of Fig. 1, since another competing ch
nel for the double emission is not considered here, nam
that of single photoelectron emission followed by electro
electron inelastic collision. In contrast to gaseous targ
like in atomic physics, this channel is expected to be qu
strong for metallic samples due to the much higher density
the active electrons.

In the second example we consider the case of Fig. 1
grazing photon incidence, i.e., for nearlyp polarization. As is
evident from Eq.~25!, the factorê•(ka1kb) implies a maxi-
mum intensity when the center-of-mass momentum is pa
lel to the polarization vector, which is clearly confirmed b
Fig. 2.

For the two-electron band, we define a Fermi energyEF
52eF . In Fig. 1, the double emission occurred from sta
just belowEF . For double emission from the bottom of th
two-electron band, we observe a squeezing of the distr
tion toward equal energy sharing, as seen in Fig. 3. T
effect has also been experimentally observed. Till now I ha
no profound explanation for this trend that also showed up
equivalent calculations for Al and Ni targets.

VI. CONCLUSION

In this work a theory has been presented for the treatm
of one-photon–two-electron excitation from solids and s
faces. It has been argued that this process is a footprin
electron-electron coupling in the final and/or initial sta

by
h

s
of
he

FIG. 3. Same geometry as in Fig. 1, with the same incid
photon energy; however, the total excess energy of the pair is l
ered toEtot524 eV.

n
.
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From the mathematical analysis, it has been inferred that
pairs’ spectra are subject to certain selection rules that lea
vanishing emission intensity when the vector momentum
the pair is perpendicular to the polarization vector. In ad
tion, it has been shown that the excited pair undergoe
diffraction from the lattice when their center-of-mass vec
momentum changes by multiples of a reciprocal vec
Starting from single-particle jellium states for the delocaliz
conduction electrons, the optical transition amplitude h
been derived analytically. Numerical examples for clean
crystal have been presented.
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APPENDIX: ANALYTICAL EVALUATION
OF DIPOLE-TRANSITION AMPLITUDE

In this appendix I derive an expression for the transit
amplitude M f i @Eq. ~6!# using the approximate initial an
final states, given by Eqs.~17! and~21!, respectively. For the
electron-electron interactionVee I assume a screened Co
lomb potential with a screening constantl, i.e.,

Vee5
exp~2lura2rbu!

ura2rbu
. ~A1!

Upon inserting a complete set of plane wavesuq1 ,q2&, M f i
can be written in the form
he
to
f

i-
a

r
r.

s
u

,
nd

M f i~ka ,kb!5E E d3q1d3q2^ka ,kbu~11VeeGee
1 !

3@ ê•~pa1pb!#uq1 ,q2&^q1 ,q2uce i
&

5ê•~ka1kb!c̃~ka ,kb!1M f i
ab1M f i

ba ,

~A2!

where the double Fourier transformc̃(ka ,kb) is easily con-
structed from the Fourier transform of the single-particle j
lium wave functionsf̃(k j ), j 5a,b,

f̃k
j8
~k j !5 iA2p

V
d~2!~k j8i2k j i!Lk

j8
~k j !, ~A3!

where

Lk
j8
~k j !5S 1

k j ,z2k j ,z8 1 id
1

Rj

k j ,z1k j ,z8 1 id
2

Tj

k j ,z2 ig j
D .

~A4!

The infinitesimal real variabled.0 has been introduced t
account for the finite extension of the surface in the direct
z,0, and can be set to zero~infinite extension! in the final
result. Formally, the first term in expression~A2! should
vanish, since initial and final states are combinations of
dependent single-particle states. In fact, numerical invest
tions have shown that magnitude of this term is negligib
small with respect to the termsuM f i

mnu; m,n5a,b.
The termsuM f i

mnu; mÞnP$a,b% are defined as
has not
M f i
mn5

1

A2
E E d3q1d3q2^ka ,kbuVeeGee

1 @ ê•~pa1pb!#uq1 ,q2&f̃em ,k
m8
~q1!f̃en ,k

n8
~q2!;mÞnP$a,b%. ~A5!

The two-body Green operatorGee
1 satisfies an interative integral equation similar to Eq.~20! with V being replaced byVee.

That is, in a perturbative sense, the interelectronic interaction is taken into account to infinite order. Unfortunately, it
yet been possible to evaluate Eq.~A5! with the full Gee

1 . Thus we replaceGee
1 by the free Green operatorG0

1 , andVee is
treated to first order@this approximation is less severe than in atomic and molecular reactions since the potential~A1! is
screened#. The expressions~A5! are obtained from the integral

J5E E d3q1d3q2^ka ,kbuVeeG0
1~ ê•pa!uq1 ,q2&f̃ea ,k

a8
~q1!f̃eb ,k

b8
~q2!

5 lim
h→01

E E d3q1d3q2~ ê•q1!^ka ,kbuVeeuq1 ,q2&
f̃ea ,k

a8
~q1!f̃eb ,k

b8
~q2!

ka
21kb

22q1
22q2

22 ih

5
limh→01

2p2 E E d3q1d3q2~ ê•q1!@~q22kb!21l2#21~ka
21kb

22q1
22q2

22 ih!21

3f̃ea ,k
a8
~q1!f̃eb ,k

b8
~q2!d~3!~q11q22ka2kb!. ~A6!

Writing ê•q152 i limb→0]bexp(ibê•q1), and using thed function to perform one of the integration, Eq.~A6! reduces to

J5
limh,b→01

i2p2
]bE d3q@~q22kb!21l2#21@22q222ka•kb12q•~ka1kb!2 ih#21f̃ea ,k

a8
~q!f̃eb ,k

b8
~L!exp~ ibê•q1!,

~A7!

whereLªka1kb2q. Making use of Eq.~A3!, and upon some elementary algebraic manipulation, Eq.~A7! is transformed to
the one-dimensional integral on the real axis:
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J5
limh,b,d→01

i2pV
]b@exp~ ibêi•ka,i8 !d~2!~ka,i8 1kb,i8 2ka,i1kb,i!I #. ~A8!

The integralI can be written as the sum of nine one-dimensional integrals

I ~ea ,ka8 ,eb ,kb8 ;ka ,kb!ª(
j 51

9 E
2`

`

dqzII j~qz ,ea ,ka8 ,eb ,kb8 ;ka ,kb!, ~A9!

where

II 15exp~ ibêzqz!A
21~qz!B

21~qz!~qz2ka,z8 1 id!21~qz2ka,z2kb,z1kb,z8 2 id!21, ~A10!

II 25Rbexp~ ibêzqz!A
21~qz!B

21~qz!~qz2ka,z8 1 id!21~qz2ka,z2kb,z2kb,z8 2 id!21, ~A11!

II 352Tbexp~ ibêzqz!A
21~qz!B

21~qz!~qz2ka,z8 1 id!21~qz2ka,z2kb,z1 igb!21, ~A12!

II 45Raexp~ ibêzqz!A
21~qz!B

21~qz!~qz1ka,z8 1 id!21~qz2ka,z2kb,z1kb,z8 2 id!21, ~A13!

II 55RaRbexp~ ibêzqz!A
21~qz!B

21~qz!~qz1ka,z8 1 id!21~qz2ka,z2kb,z2kb,z8 2 id!21, ~A14!

II 652RaTbexp~ ibêzqz!A
21~qz!B

21~qz!~qz1ka,z8 1 id!21~qz2ka,z2kbz1 igb!21, ~A15!

II 752Taexp~ ibêzqz!A
21~qz!B

21~qz!~qz2 iga!21~qz2ka,z2kb,z1kb,z8 2 id!21, ~A16!

II 852TaRbexp~ ibêzqz!A
21~qz!B

21~qz!~qz2 iga!21~qz2ka,z2kb,z2kb,z8 2 id!21, ~A17!

II 95TaTbexp~ ibêzqz!A
21~qz!B

21~qz!~qz2 iga!21~qz2ka,z2kb,z1 igb!21. ~A18!
te

e

d

The functionsA(qz) andB(qz) possess the forms

A~qz!5~ka,z2qz!
21~ka,i2ka,i8 !21l2, ~A19!

B~qz!5qz
22qz~ka,z1kb,z!1ka•kb1ka,i82 2ka,i8 •~ka,i1kb,i!

1 ih/2. ~A20!

To evaluate the integralsII j , j 51, . . . ,9 weconvertqz to a
complex variable, and consider the improper contour in
grals

I 5(
j 51

9

lim
r→`

R
]Gr

dqzII j~qz!. ~A21!

The compact domainG is chosen as the upper half of th
complex plane, i.e.,G5$qzu I (qz).0,uqzu,r%. From the
preceding analytical expressions ofII j it is readily deduced
-

that only isolated singularities ofII j occur inG, i.e., II j (qz)
are meromorphic inG. Integral ~A9! can thus be evaluate
via calculus of residues.

The poles ofII 1(qz) are deduced to

z11
6 5ka,z6 iA~ka,i2ka,i82 !1l2, ~A22!

z21
6 52b/26Arz~cosw/21 i sinw/2!, ~A23!

z415ka,z1kb,z2kb,z8 1 id, ~A24!

where bªka,z1kb,z ,rzªA(b224d)21h2/4, dªka•kb

1ka,i82 2ka,i8 •(ka,i1kb,i), and sinw52h/(2rz),0. In G the
function II 1 possesses the polesz11

1 ,z21
2 , andz41. The poles

of II 2 in G are z12
1 [z11

2 , z22
2 [z21

2 , and z42, where z42

5ka,z1kb,z1kb,z8 1 id. The singularities ofII 3 in G arez13
1

[z11
2 and z23

2 [z21
2 . The poles ofII 4 in G are deduced to

z14
1 [z11

2 , z24
2 [z21

2 , and z44[z41. II 5 possesses inG poles
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z15
1 [z11

2 , z25
2 [z21

2 , and z45[z42. II 6 , in G, has the poles
z16

1 [z11
2 , and z26

2 [z21
2 . The singularities ofII 7 in G are

z17
1 [z11

2 , z27
2 [z21

2 , z375 iga , and z47, where z475z41.
The singularities ofII 8 that occurr inG are z18

1 [z11
2 , z28

2

[z21
2 , z38[z37, andz48[z42. Finally, the poles ofII 9 in G

arez19
1 [z11

2 , z29
2 [z21

2 , andz39[z38.
The integralI can then be written in closed form
ion
lys

on
d

e,

s.

tz

J
s
’

-
A

A

H.
I 52p i (
j 51

9

(
n

Resn j I I j~qz!. ~A25!

Upon substitution of Eq.~A25! into Eq. ~A8!, and perform-
ing the derivatives and the limits, an analytical, howev
complicated, expression for the dipole-transition amplitu
~A5! is obtained~within the approximationGee

1 'G0
1).
J.
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