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Emission of correlated electron pairs following single-photon absorption by solids and surfaces
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The simultaneous emission of two electrons from condensed matter following the absorption of a linearly
polarized photon is studied in the first order-perturbation theory for the radiation field, and within the dipole
approximation. The double emission from localized and delocalized electronic states is considered. It is shown
that spectra of the emitted pairs obey propensity rules expressed by the scalar product of the center-of-mass
vector momentum of the pair and the photon’s polarization vector. Furthermore, it is shown that diffraction of
the pair from the lattice occurs when the pair's center-of-mass wave vector changes by a lattice reciprocal
vector during the photoemission. For semi-infinite solids with delocalized valence electrons, an initial state is
constructed from single-particle orbitals. Following the absorption of the photon the valence-band electron pair
propagates into the vacuum within the screened electron-electron Coulomb potential. Numerical results for a
clean Cu crystal are analyzed for photon polarization parallel and perpendicular to the surface.
[S0163-182698)09439-9

[. INTRODUCTION formed by the electron pair. In addition to the known fea-
tures of ARUPS, the spectra of this photoemitted “quasipar-
Over the last few decades angular- and spin-resolved ulicle” reveal a dependence on the pair's internal degree of
traviolet single-photoemission spectroscopyARUPS  freedom that characterizes the mutual interaction of the two
emerged as a powerful and widely used method to investiemitted electrons. Therefore, DPE experiments are expected
gate the electronic structure of crystalline matertflhis  to provide a direct insight into the influence of electronic
development has been driven by the growing demand for aorrelation on initial and final many-body states.
detailed knowledge of technologically relevant physical In atomic and molecular physics, the explicit dependence
properties of solids and their surfaces, e.g., catalytic reacef DPE on the interelectronic correlation is well established.
tions are mainly controlled by the electronic and geometricThe first experiment of this kind on a H&F) target was
structure of surfaces. performed in 1993 followed by a series of experiments on
Theoretical treatments of ARUPS are of special impor-gifferent targets at a variety of scattering geomet#i¢&The
tance as they provide the linkage between the photocurreRfeoretical treatments stimulated by these experiments re-

measurements and the corresponding band Sttt yeajed the strong dependence of this reaction on the detail of
standard successful scheme for band-structure calculatlor;lﬁutum electronic couplin@“*lf"“*laas well as on properties

relies on density-functional theofpFT),” in which the elec- of the radiation field” 18 Very recently DPE from HEE®)

tronic many-body problem is solved in a one-electron pic- ., circularly polarized photons has been obsertd.
ture. Spatially uncoupledsingle-particlestates are then de-

termined self-consistently using an approximate expressiOIilhDPI.E f_rom N(OOD and CuiOO]_) has just been re_porté&i.
for the exchange and correlation tePriviany aspects of the us It Is appropriate to_ consider DP.E theoretically fro_m
emission process are described within this single-particléonds and surfac_es. Starting f_rom_the first-order pertu_rbatlon
picture, as a transition from an occupied one-electron orbitai€0ry and the dipole approximation for the photon field, a
to a state describing the propagation of the photoelectroformal expression for the cross section of DPE is derived
The complicated many-body nature of the solid is then CO|_(t_ranS|t|on rate normalized to the incoming photon-fqu den-
lectively subsumed in the screening and decay of the photdsity). Subsequently, DPE from localized bulk states is stud-
electron, and the hole left behind. These screened, decayin@d and propensity rules are inferred. DPE from delocalized
quasiparticles can still be described by a single-particle wav&alence electrons is then investigated, and the selection rules
equation. Experimental evidence for many-body effectdn this case are discussed. Numerical examples for DPE from
shows up as subsidiary features in the photoelectron spectra.clean Cu crystal are presented foand s polarizations.

In contrast, and as explicitly shown in the present work, aAtomic units(a.u) are used throughout.
simultaneous two-orbital excitation by one photon is prohib-
ited if spatial coupling between these orbitals is absent.
Therefore, dealing with this process, the description of the Il. THEORETICAL FRAMEWORK
electron-electron interaction must go beyond regarding it as
a collective, spatially independent perturbation of the single- For the derivation of the transition amplitude for simulta-
particle orbitals. Thus it seems worthwhile to employ doubleneous electron ejection, it is instructive to specify the prop-
photoemission(DPE) as an investigative tool for strongly erties of the radiation field. In what follows we assume a
correlated systems, such as Mott insulators, ferromagnetiarge photon density, so that the electromagnetic field can be
materials withd andf levels, and high-temperature supercon-treated classicallyan upper limit for the photon density of
ductors. In fact, as shown in this paper, to some extent DPEoncern here is given belowWe operate in the Coulomb
can be regarded as single photoemission of a “quasiparticlegauge, i.e.V-A=0, so that, in vacuum, we can sét=0,
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2
o(Ef—EpdB.  (7)

where A and ® are the field vector and scalar potentials, By making use of the canonical commutation relations
respectively. It should be noted from the outset, however;—i[rj,H]=p;, and assuming that) and|f) are eigenfunc-
that near a surfac& may change rapidly which invalidates tions of thesameHamiltonianH, the velocity formEg. (5)
the assumptiorV-A=0 unless the dielectric constastis ~ can be converted into tHength form
unity 2223 To avoid this case the photon energies have to be N
well above the plasmon energi#sFor A we assume a 2 .
monochromatic, plane-wave solution with a wave vedtor do=4m a“’; 2 (Flrli)
which is related to the photon frequeney via k=cw, '
wherea is the fine-structure constant. The energy density In practice,|i) and|f) are derived using different approxi-
of the (classical radiation field averaged over the peridd mate procedures foH, and thus the velocity and length
=27lw is given by p=w?A?/(27). Thus the energy-flux forms yield, in general, different predictions. Conversely,
density, i.e., the intensity, is given byl =p/a. For a low-  equivalent cross sections, calculated within the length and
intensity field we can seA?~0 (for A~0.01 and a photon Velocity forms, mean merely that the same approximations
energy of 50 eV we arrive at a maximum intenslty5 have been made in the initial and final channel, but they say,
x 10 W/m?). We assume the unperturbed system to bdhowever nothing about the quality of these approximations.
described by the HamiltoniaH, and to be in the stationary Nevertheless, it is desirable to chodspand|f) as eigen-
state|i) with energye;, i.e., states of the samépproximate Hamiltonian to preclude
spurious transitions in the absence of the perturbafign
(H—¢)]i)=0. (1) Regardless of the form in which the dipole operator is
, ) ) presented, its mathematical structure is always a sum of
Under the time-dependent action of the photon field the Sysgjngie-particle operators. This has the following important
tem performs, W|th|n.a.t|me Igp, a transition into vacuum consequence: If we assurfi¢ and|f) to be written in terms
stateg f) which lay within the intervajg and+dg, where ot rthonormal single-particle orbital;(r;), in the simplest
B stands for collective quantum numbers that specify thgg5e a5
final channel.

In a time-dependent first-order perturbation treatment N
(only photoabsorption is considered hera transition prob- (ry---ryiy=11 &ii(ry),
ability dw;; can be derived® Thus we can define a transition i
rated P;; =dw;; / 7 that can be deduced to

N
|l _ (ry--ralfy=11 &1,i(ri), (8)
dPi=(2m)2 52 [(fIWoli)|28(Es—Ends, (2 :
W then the matrix elemer(®) is finite for single-orbital excita-

tion, only, e.g., single photoemission. In other words, DPE is
prohibited in a single-particle picture. This is readily con-
cluded in the simplest case of two orbital excitatiép, ¢, ,
which is the minimal requirement for DPE:

whereE; is the total energy in the final channel akg= o
+¢;. Equation(2) sums over the unresolved quantum num-

bers a; in the initial state. The perturbatioW, in Eq. (2)

amounts to
N M (i =( bt kbr.il€ DIl i cbi )+ b kbr. i € Pl bi kb )
Wo=AY, exdi(k-r))]e-p;, 3 -
0 121 xdi(k-1))Je-p, @ =( b1l bi ) Drile-pl i)
wherep; are the one-particle momentum operators aris +( el i) brle pil i i)
the polarization vector. B ~ -

As the differential cross sectiodo/dg8 we define the =0.1((Srule Pl b +{(brilepildi ), ©)
transition rate normalized to the incoming flux dendity, whered; ,#i, (¢r,b1) are the participating single par-
1.e., ticle orbitals in the initial(final) channel. From Eq(9) it

follows that DPE is a direct signature of coupling between
do=wdPi¢/l. (4) single-particle orbitals, at least those of the electrons simul-

In this work we consider moderate photon energies taneously detected in the fjna_l state, e, th? two photoelgc—
(<500 eV), and we can thus operate within the dipole alo_trons must be correlated in initial and/or final state. This
proximation. In this case Edd) reduces to conqluspn is also valld_for an antlsymm'etrlzed product of
spatially independent single-particle orbitals. It should be
o stressed that Eq9) and the single-particle nature of the
dg:4772_2 IMi|28(E;—E;)dg, (5) perturbation Eq. (3)] do not mean that the photon can only
@ a; be absorbed by one electron, and the other electron is emitted
by means of coupling or inelastic scattering with the former
one. To see this, let us assume the holes created by the pro-
N cess to be long lived on the scale of the characteristic inter-
MfiZE <f|é. pjli). 6) action timer and neg_lect any phonon excitation. In .this case
] a frozen-core approximation is appropriate. In addition, if the

where the dipole-matrix element is given by
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photoelectrons are represented by the correlated ifiitell) In Eqg. (13) |p,p’) denotes a complete set of plane waves,

statey;(ry,r) [+(r).r) ] we can always canonically trans- and ¢;(k, k) is the double Fourier transform of the initial

form to the coordinate system’ =(r|+r)/2, r”=r—r..  state. Note that Eq$12) and(13) do not factorize in single-

In this case the photoabsorption matrix elemi@ttakes on  particle contributions due to the correlated staigr,r’).

the (length form Mg =(y(r*,r7)|er*|gi(r*,r7))/2  From Egs(11)—(13), three important conclusions are drawn.

which means that the photon is absorbed by the center-of- (a) According to the von Laue-like conditions in Ed.1),

mass coordinate™ of the two-electron system. Th@mul-  diffraction of the pair occurs when the center-of-mass mo-

taneousphotoabsorption is fundamentally distinct from the mentum of the pair changes by a reciprocal bulk vector due

process of single photoemission accompanied by secondaty the emission process. Thiand the selection rules stated

vacuum-electron creation. below) is equivalent to assuming the pair as a quasiparticle
with momentumk,+ Kk, (the pair's center-of-mass momen-

Ill. DOUBLE PHOTOEMISSION FROM LOCALIZED tum) and performing single photoemission of this quasipar-

ELECTRONIC STATES ticle. _ atom o
(b) The selection rules foM{;°™ can be summarized in

In the rest of this work we assume a frozen-core approxiype equatione- (k,+k,) =0, i.e., double photoemission is

mation, i.e., only the degrees of freedom of the two emittedorhigden if the momentum of the two-electron center of
electrons are affected by the photoabsorption process. Tg

obtain an insight into the structure of the matrix element 1255 1S perpgndmular to the poINar|zat|on vecetgnr ',f Ka=

M, we consider first the DPE of localized electrons, e.g.,” Ko In addition the structure of;(ka,kp), which is very
core electronic states or valence-band electrons of insulator@Uch dependent on the symmetry of the investigated core
The initial state can then be described by a tight-bindind®€l: imposes additional restrictions on the DPE spectra.
two-electron wave function. whereas the vacuum motion ofl N€se conclusions remain valid if we allow for mutual repul-
the electrons is assumed to be free and characterized by tfion Of the outgoing electrons, but disregard the final-channel
momentak, andk,, as measured in a coincidence eXperi_couplln_g to the cores. This can be deduced in a similar man-
ment (uncorrelated final-state Bloch waves lead basically td'€" @S in Eq(22). In cases where the motion of the vacuum

the same conclusignEquation(6) can be written in the form glectrons is influenced by the core p_otentials_, atomic selec-
tion rules for the double photoionization appligs®1’

(c) If the magnetic sublevels of the two-electron orbitgl

Mfi(ka,kb)=C2 f f d3r,d%ry, are statistically populate@vhich is usually the cagethen
! |M¢;|?, and hence the cross section, shows in genecal-a
% K —iKe- i(k'+Kk)-R cular dichroismwith respect to inversion of the helicity of
X —Tka:ra~Tko-ro)extli(katky) R the incoming radiation. This is readily deduced from the
X[ (Pat+Pp)]bi(ra—R;,Ip—R)). (10) analysis performed in Refs. 17 and 18. Note that, in the

absence of a preferential orientation of the initial state and a
whereR, designates the core sites, apgd describes the lo- spin analysis of the photoelectrons, as assumed in this work,
calized two-electron initial state with Bloch wave vectafs the aforementioned dichroism vanishes identically for single
andk;,. The constanC derives from the normalization of photoemissiort?
the initial- and final-state wave functions. After some el-
ementary manipulation the magnitude Mf;(k, ,k;,) is re-

IV. DOUBLE PHOTOEMISSION OF DELOCALIZED
duced to

ELECTRONIC STATES

|Mfi|2:|C|25E?—qf oIMFoM2, (11 In this section we consider double photoemission from
' s-p bonded(simple metal surfaces like Na and Al. In this
whereq; =k, +k},,qr=k,+k, are the wave vectors of the case the cores scatter the conduction-band electrons only
pair's center of mass in the initial and final states, respecvveakly. The momentum distribution of the conduction-band

tively, andG is a bulk reciprocal-lattice vector. The atomic €lectrons can then, to a good approximation, be simulated by

matrix elementM3°™ is given by jellium states. In the jellium model th(.a. ionic cores are
smeared to a uniform constant positive “background
charge.” The electrons are bound to the metal half-space

M";‘i“’m(ka,kb):f fd3r d3r’exp(—iky-r—ikp-r’) (z<0) by the step-potential barriéf, (at z=0)

X[e (patPp)]i(r,r). (12)

In momentum-space representation

Vo=er+W, (14)

where e¢ is the Fermi energy anw/ is the work function.

M?i“’m(ka,kb)zj f d3p d3p’ (K, kp|€(Pat Pp)|p.p’) Within the metal volumeV the conduction-band electrons
are treated as free particles. The density of statess is
X(p,p’| &) given by that of the free-electron géapart from a factor 2

R _ due to electronic spin stateppos=V/(47°). As the bind-
=e- (kyt+kp) di(ky,Kkp). (13 ing potentialV, is steplike, the single-particle jellium wave
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function ¢Ej(kj,)’kj,(rj), with binding energye; (k/) and wave The final statef) is then obtained by the time-reversed evo-

vector ki, can be represented in terms of reflection ano]lJtlon (back to ﬂje time le abzzqrptu)nﬂemated by the
e - i Mdller operatorQQ™ =(1+G~ V), i.e,,
transmission coefficients:

1 o, fY=[1+G (H—K)]|ky,kp)=(1+G V)|kg.Kp),
¢fj(kj’>,kj’(ri):J_veXp('ki,ll'rj,H) | > [ ( )]| a b> ( )l a b>
" " whereG™ is the resolvantGreen operatgrof total Hamil-
e'iZi+Re .4 z<0, 15 tonianH which satisfies the Dyson equation
Te "4 z>0,

wherek| , andz; are, respectively, the componentskgf,r; G =Gy +Gy VG, (20)
with respect to the normal of the surfa@@ointing into the

vacuum, and kj,r; are the corresponding components anq G, is the Green operator of the noninteracting system
parallel to the surface. The reflection and transmission coef(With outgoing wave boundary conditionsContrasting the
ficientsRand T are given by state vecto(19) with that used in single photoemissibi,
can be said thdf) is the time-reversed low-energy electron-
diffraction (LEED) state of the coupled electron pAfr.

From Egs.(19) and (20), it is evident that, after absorp-
tion of the photon, the two electrons interact with all degrees
of freedom of the system, described lysuch as diffraction
from the lattice, elastic, and inelastic collisions and collec-
and y= \/2Vo—k’j2. tive excitation$ before emerging with the asymptotic mo-

As in the jellium model the electrons are considered to bementak, andk,. These interactions are basically contained
quasifree, for the two-electron initial stafie we employ a in the complex two-particle self-energy that appears in
(singled symmetrized direct product of two jellium single- Egs. (20) and (19).>?"?8 The non-Hermitian character af
particle states, i.e., accounts for damping processes of the photoelectron flux and

energetic shifts in the quasi-particle spectrum. Considering
the difficulties encountered in adequately estimating the

ki —i 2k/
_ J,,z .7, T= : J,.z (16)
kj,Z+|7 kJ,Z+Iy

1 singleparticle self energy,it is obvious that calculating the
|, ;k;,k()(ra:rb»“EH¢ea,k;(ra)>®|¢eb,ké(rb)> two-particle self-energy is a very delicate problem. Hence,
we replace it in the rest of this work by titeeal) potential. In
e, k(1)@ e, r(ra))]. (17)  addition, as the electron-electron interactity is inevitable

for coherent DPE we regard this interaction as the *“strong”
potential with respect to the surface-photoelectron coupling,
The total binding energy ¢ of this state is i.e., we employ the approximatioi~V... ForV,, we as-
€= €a(ky) + ep(k() with parabolic dispersion for theingle  sume a screened Coulomb potential, with the screening con-
particle states. Statél7) is energetically favored with re- stant derived from the Thomas-Fermi moéeUnder these
spect to its antisymmetrigtriplet) counterpart. circumstances Eq19) reduces to
As the initial statg Eq. (17)] does not contain any inter-
electronic coupling, it is essential to incorporate the inter- _
electronic interaction in the final state. To this end we note [F)=(1+GeeVee) ka ko), (2D)
that the asymptotic two-electron vacuum stig, k), that  with G, being the propogator within the potentidle. With
is defined by the measured momeitaandk,, whereE; Egs. (21) and (17), we can now obtain an estimate of the
=E,+E, and E,=kZ/2, E,=kZ/2 are the electrons’ ener- transition probabilityMy;, given by Eq.(6). SinceV,, and
gies, is an eigenstate of the two-electron kinetic-energy opG.. are dependent on interelectronic degrees of freedom
eratorK, i.e., only, properties oM;; are most transparent in the represen-
tationr *®r~ that, as previously mentioned, can be canoni-
cally mapped ontor,®r, [rT=(r +r,)/2r =ra—rg].
Kl ko) = B2+ PDla k) = Erka k). (18 cquationayreads  * " L L e =l

Mﬁ<k:k+>=f fd3q*d3q+<k*,k*|<1+veeG;a<é-p+>|qiq*><qiq*|¢>

—ek*

PO+ [ g IVeBida e K| (22

wherek ™ = (k,—kp)/2, k" =k, +kp,, and|q~,q") is a complete set in the space reciprocat twr ~.
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According to Eq(22) the propensity rules-k* =0, as discussed in Sec. Ill, apply. As itis clear from the derivation of Eq.
(22) these rules do not depend on the structure of the initially bound |stat€They are rather an immediate consequence of
the approximation made to arrive at E§J1).

V. CALCULATION OF THE DIPOLE-MATRIX ELEMENT

In spite of the simple analytical structure of the wave functi@), the evaluation of the transition amplitud22) is
mathematically involved and, till now, only possible within the approxima@p~Gg , i.e., in LEED language, within the
kinematical approximatiof’ The derivation ofMy; is presented in the Appendix. The final result can be written as

Myi(Ka,Kp) :<ka akb|(1+veeGg)[é' (Pa+t pb)]| ‘pei>:Tspe+ poev (23
where
Tspe:<ka -kb|é' (Pat pb)| ‘ﬂei)
R “ 2
= — (&Kot k) 0D (kY — kg ) 62 (K~ kb,|>#[Lk;<ka>Lk,;<kb> FLig (ka)L (kp)] (24)
and

Tape=(Ka Ko VeeGg [€ (Pat Po)] e,

- 1
=e- (Katkp) 6P (kg + ké,\\)—(ka,\\+kb,\|)]—8 V[l (€a,Ki . €n.KpiKa k) +1(en Ky, €a,K: Ka k). (25
T

%

The functionsl (e, ,k; , €y, K, 1 Ka,Kp) andejr(k,-), j=a,b,

are given by Eqgs(A9) and (A4), respectively. Equations
(24) and(25) reflect the basic difference between single and , , , )
simultaneous double photoemission: Tef24) contains no XF (kg T)p(Kp)F(kp, T)[Myi|“6(Ei — Ef)
final-state correlation of the pairs. The DPE is then regarded X d%k 03K ,0%K e (26)
as two independent single photoemission processes. Conse-

quently, the surface components of the wave vectors of th%herek is related to the recoil momentum of the crystal
individual electrons is conserved during the ejection, and for rec Y
free electrons cannot absorb the phgtofhe one-particle

each ab_sor_ptlon process the selection rules for Fhe 5'09' ensity of states at the temperatufeis referred to as
photoemission apply. In contrast, as a result of including

lectroni lation in E425) onlv th ; ; p(k';),j=a,b, andF(k’;,T) is the Fermi distribution. The
electronic correlation in Eq25) only the surface componen initial total energyE; can be estimated assuming the conduc-

of the pair's center-of-mass wave vector is invariant duringtion band of the pair as being formed of independent bands
the reaction. Under this constraint the surface components Q;f the single electrons, i.eE;=w—2W— e, (kL) — en(kL)
LA ] a .

the wave vectors of the individual electrons may well not be(ln contrast to atomic system

conserveddue to momentum exchangeAs mentioned in - g5p1e due to the collective screening of the electron-electron
the preceding sections, the amplit&®. (24)] must vanish,  inieraction. In Eq. (26) the dependence af on k.. is fixed

for initial- and final-state electronic correlation are disre-py the conservation of linear momentum.

garded. In fact extensive numerical calculations have shown' For the approximate initial staf&q. (17)] which leads to
that | Tg,d is negligible with respect t¢Tqpd (typically six  the matrix element23) and atT=0, Eq.(26) simplifies to
order of magnitudes smaller

d0'=4772%J fd3k;d3kgp(k;)

s, this approximation is reason-

V2
do=
47w

d3k.d3k{|Myi|?
fkésk;:fkésk,: S

In a recent double photoemission experimi&nbn X 5(Ei_Ef)}d3kbd3kar (27)
Cu(001) and Ni001), the coincidence rate has been mea-

sured as function df,, k,, andw. The Bloch wave vectors

of the initially bound electronic states were not specifiedwhere kg is the Fermi momentum for the single-particle
[actually a Bloch wave vector of the electron pair is a moreband. The six-dimensional integral in EQ7) can be ana-
appropriate designation of these statels Eq. (25)]. Thus, Iytically reduced to three-dimensional ones that have been
Eq. (5) yields performed numerically.

Double emission probabilities
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w=45eV,E_=34eV w=45eV,E_=24¢eV
4.0 . 1.0
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(Eb_Ea)/Etot (Eb_Ea)/Etot

FIG. 1. The double-photoemission cross secfiin. (27)] as FIG. 3. Same geometry as in Fig. 1, with the same incident
function of the energy sharing of two electrons emitted from a clearphoton energy; however, the total excess energy of the pair is low-
Cu monocrystal upon the absorption of a linearly polarized photonered toE,,;=24 eV.
The photon’s wave vectdr is normal to the surface, whereas the
electron detectors are fixed at 40° to the left and righit ¢fee the . .
insed. The photon incident energy is=45 eV, and the total ex- momentum of the pak, +k;, is perpendicular to the surface,
cess energy of the pair is chosenEs=E,+ E,=34 eV. and hence to the polarization vector, for equal-energy elec-

trons. Consequently, double photoemission is forbidden for

Employing Eq.(27), we consider the energy sharing of kazkt_,, as is obvious fr_om Eq(25). The correspondlng'
the two-photoelectron pair emitted from ©01) for s experimert' shows an evident decrease of ';he cross section
photon polarizatior(see the inset in Fig.)1As the electron atka=k,. However, these data cannot be directly compared
detectors have the same relative angles with respect to ti¥th the predictions of Fig. 1, since another competing chan-
wave vector of the photonghe inset in Fig. 1, the vector neél for the double emission is not considered here, namely,

that of single photoelectron emission followed by electron-

T T T electron inelastic collision. In contrast to gaseous targets,
like in atomic physics, this channel is expected to be quite
strong for metallic samples due to the much higher density of
20.0 4 the active electrons.

In the second example we consider the case of Fig. 1 for
grazing photon incidence, i.e., for neagyolarization. As is

evident from Eq(25), the factore- (kat+Kkp) implies a maxi-
mum intensity when the center-of-mass momentum is paral-
lel to the polarization vector, which is clearly confirmed by
Fig. 2.

For the two-electron band, we define a Fermi endegy
=2eg. In Fig. 1, the double emission occurred from states
just belowEg . For double emission from the bottom of the
two-electron band, we observe a squeezing of the distribu-
tion toward equal energy sharing, as seen in Fig. 3. This
effect has also been experimentally observed. Till now | have
0.0_5 - - == - - no profound explanation for this trend that also showed up in

(E,~E,)/E_, equivalent calculations for Al and Ni targets.

100

Cross Section [10_8 a.u.]

FIG. 2. Same energies as Fig. 1; however, as demonstrated by
the inset, the photon beam is now in grazing incidence (10° with VI. CONCLUSION
respect to the surfageOne of the electron detectofsay detector
a) is fixed right to the surface normal at an angle of 50°, whereas N this work a theory has been presented for the treatment
the other detector is positioned left the surface normal at an angle ¢¥f one-photon—two-electron excitation from solids and sur-
30°. The coordinate system and the geometry are sketched in tfaces. It has been argued that this process is a footprint of
inset. electron-electron coupling in the final and/or initial state.
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From the mathematical analysis, it has been inferred that the s .3 N
pairs’ spectra are subject to certain selection rules that lead to Mfi(kaakb):J J d°0;0%d2(Ka K| (1+ VeGee)
vanishing emission intensity when the vector momentum of

the pair is perpendicular to the polarization vector. In addi- X[é'(pa+ Po)1101,92)(01, 02| e )

tion, it has been shown that the excited pair undergoes a '
diffraction from the lattice when their center-of-mass vector =e- (ka+kp)P(ky,kp)+ M?ib+ M[f)ia7
momentum changes by multiples of a reciprocal vector.

Starting from single-particle jellium states for the delocalized (A2)

conduction electrons, the optical transition amplitude ha%/vhere the double Fourier transfor(k, ky) is easily con-
been derived analytically. Numerical examples for clean Cu . arnb/ y con-

structed from the Fourier transform of the single-particle jel-
crystal have been presented.

lium wave functionsé(k;),j=a,b,
ACKNOWLEDGMENTS

~ 2
— 2 ’

| am indebted to Professor J. Kirschner, Ralf Herrmann, ¢kj’(kj)—' \Y, 75( (K] II_ij)ij’(kj)r (A3)
and Serguei Samarin for many enlightening discussions and
suggestions. where

APPENDIX: ANALYTICAL EVALUATION Ler(ki)= + R]- T]-
OF DIPOLE-TRANSITION AMPLITUDE kAR kj,z_ kj’,z+i5 kj A+ kj, +is kj,z—i)’j
In this appendix | derive an expression for the transition (A4)

?m‘?”tUder‘. [Eqb(6|)5] using tgezfpproxima}telini't:ial ahnd The infinitesimal real variablé>0 has been introduced to
Inal states, given by q(;1_7) and(21), respectively. For the account for the finite extension of the surface in the direction
electron-electron interactiol,. | assume a screened Cou- 7<0, and can be set to zefofinite extensiopin the final

lomb potential with a screening constanti.e., result. Formally, the first term in expressidA2) should

exp(—\|ra—ry)) vanish, since initial and final states are combinations of in-
o= a_ b (Al)  dependent single-particle states. In fact, numerical investiga-
[Fa=Tol tions have shown that magnitude of this term is negligibly
Upon inserting a complete set of plane waygs,q,), M;;  small with respect to the term{"|; m,n=a,b.
can be written in the form The termgM{]"; m#ne{a,b} are defined as
|
1 - ~ ~
M?imzﬁf f d%q10°0a(Ka Kol VeGed € (Pa+ Pp)1101,02) b, k! (G1) b, k/(A2);m#ne{a,b}. (A5)

The two-body Green operat@®_, satisfies an interative integral equation similar to Exf)) with V being replaced by/.

That is, in a perturbative sense, the interelectronic interaction is taken into account to infinite order. Unfortunately, it has not
yet been possible to evaluate BAS5) with the full GJ,. Thus we replac&, by the free Green operat@, , andV,, is

treated to first ordefthis approximation is less severe than in atomic and molecular reactions since the péfehties
screenefl The expressionéA5) are obtained from the integral

J= f f d®0;0%dz(Ka Kol VedGo (€ Pa)|t1,02) be, k/(01) be, i/ (G)

be, K. 1) e, K (d2)

ki+ki—ai—a3—in

=i [ [ 0u0auE aik kol Veda a2

n—0"

lim 0+ ~ _ . _
T | [ adPan@ antia—kn 121 0 - ad-z-im)

X be, k2 (01) Dey k! (A2) 0¥ (A1 + 07— ka—ky). (A6)
Writing e-q;= —i IimB_,O&Bexp@,Béql), and using thes function to perform one of the integration, E@\6) reduces to
_limy g0+ 3 N2y 271 _on2_ o117 ~ -
J= o2 dp | d°AL(A2—kp) "+ A1 [ =207 2Ka- Ky +2q- (Kat kp) =i 7] " e, k/(A) by i (A)EXRI BE-Qy),
(A7)

whereA :=k,+k,—g. Making use of Eq(A3), and upon some elementary algebraic manipulation(£f). is transformed to
the one-dimensional integral on the real axis:
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(A8)

The integrall can be written as the sum of nine one-dimensional integrals

9

|(ea,k;,eb,kg;ka,kb)==2}1 ~da,l1j(d,,€a Ky €n . Kp iKa k),

where

111 =exp(i Bed,) A~ (d,)B™H(d,) (d,— Kk,
1= Rpexpli Be4,) A~ (d,)B () (A~ k
I13=—Tpexp(i Be,d,)A~1(0,)B™ () (A~ Ky, +18) (A~ Ka 2= Ko Hivp)

11 4= Raexpli B&,0,) A~ 1(0,) B 1(0,) (0, + kg, +i18) (0~ ko ,—Kp ki ,—18) 7%,
Il'5=RRyexpli Be,0)A~1(0,)B (0 (dz+ Ky ,+18) (A~ Ka 2~ Ko~ K ,—16) 1,
1 6= — Ry TpeXpli B&,0,) A~ 1(0,) B~ H(0,) (A, K ,+18) (0= Ka ;= Koy Tive) %,
7= —T.expi Be,a,) A~ H(A)B (0. (G —17a) (0~ Kaz—Kp o+ kp,—18) 7%,
1=~ TaRyexpi Be,q,)A"(d,)B(q,)(q

1 o=TaTpexp(i B6,0,)A 2(0,)B 1) (A, i 7a)  2(d—Kaz— Ko +ivp) L

The functionsA(qg,) andB(q,) possess the forms

A(qz):(ka,z_qz)2+(ka,H_ké\,||)2+)\21 (AL19)

B(d,) = qg_ a( ka,z+ kb,z) +Ka Kyt krﬁ\ - k;,“ . (ka,H + kb,||)
+inl2. (A20)

To evaluate the integrald;,j=1,...,9 weconvertg, to a

complex variable, and consider the improper contour inte-

grals

9
= lim 3@ da,l1(qy,). (A21)
1=1 p J 3G,

The compact domai® is chosen as the upper half of the
complex plane, i.e.G={q,|.7(q,)>0,q,/<p}. From the
preceding analytical expressions|éf it is readily deduced

z;,z+ [ 5)_1(QZ_ ka,z_ I(b,z_ kt’),z_ [ 5)_1,

(A9)

+H18) M~ Kaz—Kp Kb ,—16) 77, (A10)
(A11)
(A12)
(A13)
(A14)
(A15)
(A16)
2= 172) (0 Ka = Kp .~k ,—16) 7Y,

(A17)

(A18)

that only isolated singularities of; occur inG, i.e.,11;(q,)
are meromorphic irG. Integral (A9) can thus be evaluated
via calculus of residues.

The poles ofll 1(q,) are deduced to

Z51=Ka 1\ (ka — ki) +A2, (A22)
5= —bl2+ \Jp,(cose/2+i sine/2), (A23)
Zy1=Ka Ky, —Kp ,+16, (A24)

where b=k, ,+Kp 2,02 =V b?—4d)%+ 5?/4,d:=k -k,
+Kij—Ka - (Kay+Kp,), and sinp=—7/(2p,)<0. In G the
functionll; possesses the pole§, ,z,,, andz,,. The poles
of I, in G are z;,=2y;, Z,,=2,,, and z,, Where z,,
=Ky, kp ot kp ,+18. The singularities ofl 3 in G arezj,
=z,; and z,;=7,,. The poles ofll, in G are deduced to
Z,=21,, /=25, andz,=2,,. |l 5 possesses G poles
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Z,:=271,, Zy5=25, andz4s=24,. llg, in G, has the poles 9

z/s=17;,, and z,z=2,,. The singularities ofil; in G are |=27Ti2_: > Res,lli(ay). (A25)

2=211, 2,772, Z37=1Ya, and z,;, where z,;=24;. =t

The singularities ofl 14 that occurr inG are zj;=71;, Z3  Upon substitution of Eq(A25) into Eq. (A8), and perform-

=27,1, Z3g=1Za7, andz,g=2z,4,. Finally, the poles oflgin G  ing the derivatives and the limits, an analytical, however

arez|y=2,,, Zy=25;, andzsg=2s. complicated, expression for the dipole-transition amplitude
The integrall can then be written in closed form (A5) is obtained(within the approximatiorG ,~Gg).
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