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Finite-size scaling of multifractal wave functions: The metal-insulator transition
in two-dimensional symplectic systems
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A finite-size scaling analysis of wave functions near the metal-insulator trangkdbh) point has been
developed, and applied to the MIT in a two-dimensional disordered electron system in the presence of spin-
orbit interaction. The present method has the following advantggeQuantities characterizing the critical
behavior, such as the critical disordét, or the localization exponent, are multiply calculated from inde-
pendent scaling analyses of spatial parts with different intensities in wave fundiigrithese quantities and
the multifractality of the critical wave function are determined simultaneouiy It is not necessary to treat
many samples with different sizgs/) Much computing time is saved, and the scaling analysis can be done up
to very large sizes. Using this method, we obtaiM#g=5.86+0.04 andv=2.41+0.24 for a model of a
two-dimensional symplectic systefi50163-18268)08039-4

[. INTRODUCTION stant. Furthermore, since the system dizenly plays the
role of the scaling measure, it is necessary to calculte
The metal-insulator transitiofMIT) in disordered elec- for many systems with different sizes.

tron systems is one of the most exciting topics in condensed- In a finite-size scaling analysis of quasi-one-dimensional
matter physics. Although significant effort was made for re-systems, all critical properties are presented by the response
vealing the critical behavior of the MIT during the last two function G, . Rich information involved in the amplitude
decades, fundamental problems still remain to be clarified.distribution of a wave function is discarded. This is so with
In theoretical studies of the MIT, numerical approaches ar@ther finite-size scaling schem&$;” such as the size scaling
crucial for understanding this continuous quantum phasef level statistic$® for instance, which in recent years has
transition. In actual calculations, however, the limitation ofbeen used extensively to determine the nature of the MIT
finite system sizes demands some devices to extract precif®m a sequence of eigenvalues, not from eigenfunctions. In
information on the MIT. The finite-size scaling analysis is this paper, we present a finite-size scaling method that ex-
the existing most effective way, which assumes that all crititracts information on the critical behavior from amplitude
cal quantities are scaled only by the localization correla- distributions of wave functions. This technique is based on
tion) length. Several schemes based on the finite-size scalinge jdea that amplitudes of the critical wave function have a
idea have been proposed so afThe most popular scheme 1 jifractal distributior®® and evermnot atthe critical point
was developed by MacKinnon and Kramien this scheme, .t in the critical region the amplitude distribution is also
one prepares a quasi-one-dimensional system with a width multifractal in a scale less thah As explained in Sec. Il, in

.an?. a I?ngt:‘rl? (D?ﬂl“.)' It Its pofssmlethto ést|me,1tef thet!ocal- the present technigue a small amount of samples with differ-
;ﬁi Iggngggtaﬁég In Isesri/:rglmthrgmuaﬁﬁ rEeiZZ #ﬂ}i&?}or ent sizes is enough for accurate calculations. This superiority
-ng ' d o enables us to analyze systems up to large sizes. In our

of L andW, whereW is an external parameter driving the . O :
MIT, such as the strength of disorder or the energy. Themethod, the amplitude distribution is characterized by the

scaling hypothesis insists thatlifis large enough, this func- gth moment of squared amplitudes of a wave function. Each

. . . ! scaling analysis for a fixed value gfgives information on
tion can be written by a s_lngle argument functiongok (_the the MIT. Since changing the value gfcorresponds to ana-
scaling function, where¢ is the localizationor correlation

S S lyzing a different part of the wave function, and the critical
length of thenfinite system, i.e.£=lim __¢& . Thevalue of oy 5501t and the critical value of the external parameéter

¢ is obtained in a fitting procedure of the scaling function forare independent af, these quantities can be multiply evalu-
many differentL and W. This technique, however, requires ated by alternating.

quite a longD. If the lengthD is not sufficient, the energy at Using this finite-size scaling analysis, we have determined
which the Green'’s function or the conductar@eis defined the critical exponent and the critical disorder of two-
has a finite width. This means that several states whose egimensional symplectic systems. It is widely accepted that
ergies are contained in this width contribu®g . As a con- the critical behavior at the MIT is cast into three different
sequence, we tend to evaluale and ¢ as large compared universality classes by their fundamental symmethigsit
with their true values. The length for an accurate calcula- When systems have time-reversal and spin-rotational sym-
tion is extremely long even for smdll, and increases dsis  metries, the universal characters of the transition are the
increased. A long computing time due to the Idhgrevents same as those of the usual Anderson transition, and an or-
us from treating largé.. For exampleL is usually less than thogonal class of the MIT is observed. If time-reversal sym-
100a for two-dimensional systems, wheagis a lattice con- metry is broken by a magnetic field, the MIT belongs to the
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unitary class. The third symplectic class is that in whichwave function, we introduce a quantif, defined by
systems do not have a spin-rotational symmetry but a time-
reversal one, which is realized by spin-orbit interaction in 7 = (
actual systems. In two-dimensional noninteracting electrons, T pexdh) \iehox)
it is believed that only the symplectic system exhibits the ) . , .
MIT. Although recent experimental findings of metallic Where#i is the amplitude O,I the wave function at the sife
phases in two-dimensional electron/hole system@=ap in  and is normalized ag;|y;|°=1 (the summation is taken
Si  metal-oxide field-effect transistdfs or GaAs OVer all sites in the systemThe symbolZy,,, represents
heterostructuré&*encourage one to study the MIT in sym- thé summation over small boxes with a linear sizeto
plectic systems, a fundamental understanding of the MIT ofvhich one divides the whole system. The second summation
this class is still insufficient. This is because numerical mod!n EG- (1) is taken over sites in the box. The quantfys an
els of symplectic systems have not appeared until compar&'pitrary constant. It is well known that if the quantity is
tively recently. It is quite important to obtain precise infor- Proportional to (/L)™@, whereL is the system size and
mation on the MIT in symplectic systems by applying the 7(d) is @ nonlinear function ofj, amplitudes of the wave
present scaling technique. function havg a mqufracth distributiol¥. The gth-order
This paper is organized as follows. In Sec. II, we intro-moment of distributed amplitudes, depends ort, |, and
duce our finite-size scaling method. Asymptotic behaviors ofXternal parameters such as the strength of the disuvdsr
the scaling function are also discussed in this section. In Seéle energyE. If we apply the scaling hypothesis to the am-
lll, the nature of the MIT in two-dimensional disordered plitude distribution of the wave function near the critical
electrons with spin-orbit interaction are studied by applyingPoint, the quantityZ, can be written as
our method. The localization length exponerdnd the criti- Zo= £t (LIENE) @
cal disordenW, are calculated by analyzing wave functions q q R
in very large systems. The mass exponent which charactewhere« is an exponentf is the correlatior{or localization
izes the multifractality of the critical wave function has beenlength of the infinite system, anig, is a two-argument scal-
also obtained. Conclusions are given in Sec. IV. ing function which depends og. Since the length is al-
ways larger tham, the scaling functiorf,(x,y) is defined in
the regime ofx=y.
Il. FINITE-SIZE SCALING ANALYSIS Let us consider asymptotic forms of the scaling function.
In the newly developed finite-size scaling analysis, weAt first, we concentrate on the sc_aling function for localized
extract information on the critical behavior of the metal- States. If the localization length is smaller than both the
insulator transition(MIT) from amplitude distributions of System sizé and the box siz¢, i.e.,x>1 andy>1, a box
wave functions. This scaling analysis is based on the fact th&nly contributes the quantity,. ThereforeZ, does not de-
the spatial distribution of a squared wave function is multi-pend onL andl, a=0, andfy(x,y) is a constant. From the
fractal, which gives rise to a spectrum of critical exponents afiormalization condition, this constant should be unity. For
the critical point of the MIT®® Although it is impossible to  X>1 buty<1, Z, does not depend ob, because the wave
realize either amnfinite System or a critical wave function at function is localized inside of the System. The distribution of
the true critical point in numerical calculations, many works amplitudes is, however, multifractal within a scale much less
have numerically confirmed the multifractality of wave func- than the localization lengté. This means thaZ, is propor-
tions near the critical point infinite system<® This implies  tional to (/£€)™@ and f,(x,y)cy™@. If x andy are small
that the multifractality of a wave function is not even valid at enough compared with unity, the whole wave function in the
the critical point if the length scale is less than a charactersystem is multifractal. The asymptotic form of the scaling
istic length. According to the one-parameter scaling theorfunction f,, is proportional to ¥/x) ™ in this limit. For ex-
of the MIT, this scale should be the correlatitor localiza- tended states, we will have a different scaling function than
tion) length &. In fact, Fal’ko and Efetotf showed that lo- that for localized states. >1 andy>1, one can replace

calized wave functions are multifractal if the system size is| |2 in Eq. (1) with an averaged valug?, because the cor-
smallefr than theh_|0r$§|lzlat|0:) ledngt'hh It ||S pllaus!blelthat harelation length of the extended state is much smaller than the
wave function which is localized with a localization lengt . Lo d1d2ng i

&, or extended with a correlation lenggh is multifractal on box size. The quantityq is written asZq>«(L/1)*(I7y7)" in

a scale much smaller thah If the system is in the critical this case. The normalization condition leads y8<L ™.
region, the spectrum of critical exponents describing thefhus the scaling function in this regime is given by
multifractality of the wave function coincides with that of the fq(X.¥)>(y/x)*). Whenx>1 buty<1, the whole wave
critical wave function. This speculation is supported by anfunction can be divided into L(/¢)? equivalent parts &
analogy to usual critical phenomena. In percolation probboxes whose linear size ig. Since quantityZ, receives
lems, for example, the infinite cluster at the percolationequal contributions from thesgboxes,Zqx(L/£)%, where
threshold has a fractal structureThe same fractality can be zis theqth-order moment of the amplitude distribution i a
attributed to finite clusters not at the threshold within abox, i.e.,zis defined by Eq(1) replacing the first summation
length scale less than the correlation length. Our method exXPy the summation over small boxes with the dizmntained
tracts information on the critical behavior by analyzing howin the ¢ box. The quantityz is calculated as follows. We
the multifractality of wave functions in the vicinity of the introduce a rescaled wave functiaff =r; which is nor-
critical point changes with length scales. malized within the¢ box. Since all¢ boxes are equivalent,
In order to characterize the amplitude distribution of a|r|?=(L/£)Y. On a scale less than the correlation length

q
|'ﬂi|2> : 1)
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the distribution of| ¢/ |? is multifractal. Thus the momemt ~ This means that we do not need to calculate eigenstates of

of |/]2, which is defined by the same definition as thazof many samples with different sizes. .In fact, as mentjoned in

except for summing upy;|? instead of|¢;|?, becomes’ Sec. Ill, we havg trgated only two sizes of systems in ac_tual

a(1/£)7@, Substituting|1//i’|2:>c(L/§)d|¢i|2 into the defini- Numerical investigation of the MIT in atwo—dlrn_ensmpa_ll dis-

tion of z', one obtainsz «(L/£)%% Therefore, Z, Qrdered_electron system in the_z presence of spln-orb_lt interac-

oo (L/€)4A-9(1/£) 7D andf,(x,y)xd-Dy@  Finally, in tion. This feature contrasts with previous methods in which
a ' the scaling is done only by the system slzeDue to this

the case ofx<1 andy<1, the wave function cannot be d h hod bl h
distinguished from the localized one whose localization® vantage, the present method enables us to save much com-

length is much larger than the system size. The asymptotiBUtIng _t|me an_d a_llows us t_o treat larger systems. Using re-
form of the scaling function in this limit is the same as that ©Nt d|agonalll_zat|(.)n te;ch_mques and_ an advanqed parallel
for localized states fox<<1 andy<1. In conclusion, we will C°§“P“ter facility, in principle, the finite-size scaling up to
have the following asymptotic forms of the scaling function 10'-site systems would be possible.

fq(x,y). For localized states,
I1l. DELOCALIZATION TRANSITION

1 if x>1 andy>1 IN TWO-DIMENSIONAL SYMPLECTIC SYSTEMS
y™(@ if x>1 andy<<1 The scaling theory of noninteracting disordered electrons
fa(xy)e () 3 without spin-orbit interaction predicts that all states are lo-
—) if x<1 andy<1, calized in two dimensions. If the spin-orbit interaction be-
X comes strong, the quantum interference acts upon an antilo-
and, for extended states, calization eﬁegﬁo It is widely accepted that the metal-
insulator transition exists in a two-dimensional electron
y\d@-1 _ system in the presence of spin-orbit interaction. Since the
;) if x>1 andy>1 structure of the Hamiltonian describing this system is invari-
ant under a symplectic transformation, the set of Hamilto-
fa(x,y)ocd XA~ Dy™@ if x>1 andy<1 (4)  nians with this symmetry is called the symplectic ensemble.
y) @ Disordered electron systems with symplectic symmetry are
; if x<1 andy<1. the only systems which exhibit the MIT in two-dimensional

noninteracting electrons. We apply the present scaling tech-

It should be noted that a scaling analysis of the inverse paf?idué to the MIT in two-dimensional disordered electrons

ticipation ratid® is included as a special case of our analysisWith Spin-orbit interaction. o
The inverse participation ratio defined lﬂf1=2-|¢-|4 is Several models have been proposed for numerical inves-
I I

coincident withZ, for =2 andl=a, wherea is a lattice tigationsszo_g;‘ the MIT in two-dimel,wsionalasymplectic
constant. Thereforé/¢ is always less than unity in thie~1  Systeéms. = Here we employed Ando's model,that has
analysis. From Eqs(3) and (4), the asymptotic forms of a been studied most extensively. The Hamiltonian on a square

scaling functiong(x) describing the system size dependence?attice is given by

of P! are expected as follows. For localized staigss)

=const forx>1 andg(x)=x""? for x<1. For extended H=Y &li,o)iol+ X V(i,o0ij,0")i,0)],0'],

statesg(x) x4 for x>1 andg(x)=x~ " for x<1. In this ho

analysis, only system sizes are the scaling measure, and thus 5)

it is necessary to prepare many samples with different sizesvheree; is a on-site random potential at the sitand dis-
The quantityZ, is calculated from an eigenfunction of a tributes uniformly between-W/2 and W/2. The indexo

disordered electron system. From the scaling analys,0of =1 or | denotes the spin-up or -down. If we represent spin

one obtains the critical disord&¥, (or critical energyE.),  states({| and (|| in (i,o|=(i|®{o| as (1,0) and (0,1),

the localization length exponent, and the mass exponent respectively, the matrix forms of the hopping term are

7(q) at the same time. This is one of the prominent features

[
1,03),0

of our method, while exponents and 7(q) have been cal- R ViV,

culated separately in previous analyses. In particular, we can V@Ii+x)={ v, v, (6a)
calculateW, and v multiply for differentq’s, because these

quantities do not depend ap The scaling analysis for a 4

fixed value ofg implies that a part of the amplitudes with a

fixed intensity is analyzed. For largg a part of large am- VvV, —iV,

plitudes is analyzed, and an analysis for a small-amplitude V(@i,i+y)= Y Vv (6b)
part is done by choosing a small or negative valueqof 2 1

Since amplitude distributions of these parts with different R R

intensities are independefftevaluations ofV, or v by dif-  Herex andy represent the unit vectors of theandy direc-

ferentq’s are independent. Averaging these values, one cafions. The strength of the spin-orbit interaction is character-

determine the precise values of the critical disorder and thized by V,/V, with V=(V2+V3)2 We have chosen this

critical exponent. parameter a¥,/V=0.5. All energies and length scales are
In this method, the scaling measure is changed by the sizmeasured in units o¥/ and the lattice spacing, respec-

| of small boxes in addition to the siteof the whole system. tively. Periodic boundary conditions are applied in both di-
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FIG. 1. Box-size dependences of quantitiés for q=2. Marks correspond to different strengths of disorder. Each point has been
obtained by averaging, over ten realizations of disordered potentidh. and (b) represent results for systems with=128 and 256,

respectively.

rections. We concentrate on the band center en&g¥, much smaller than the system size. If the box siielarge
and search the critical disord®Y, above which all energy compared withé, Z, does not depend oh Thus thel de-
states are localized. pendence ofZ, is weak in this regime. Wheh becomes

In order to calculate eigenstates of the HamiltorfiEg.  smaller thar¢, Z, seems to be proportional t6®), because
(5)], we used the forced oscillator meth®dThis numerical the wave function is multifractal on this length scale. For
algorithm makes it possible to compute eigenvalues anaveak disordesmall W), we find concave curveg,(l). In
eigenvectors of very large matrices. In the present work onleach line,Z, is proportional tol?> when| is large. Dashed
two sizes (=128 and 256) of systems have been treatedlines in Fig. 1 showZ,x12. This implies that amplitudes of
because in our scaling analysis box sizes play a role of théhe wave function distribute almost uniformly on a scale of
scaling measure in addition to system sizes. Figure 1 indimuch larger thaF. The slope of the line decreases for small
cates the box size dependence of the quaitfor q=2. |, which indicates the multifractal character of the wave
Results for. =128 and 256 are shown in Figgaland 1b), function on this scale. The line shape is almost straight for
respectively. Different marks correspond to differentW~5.75. This intimates that the critical disordat; is close
strengths of disorder. Each data point has been obtained g this value.
averagingZ, over ten realizations of disordered potentials. The scaling functions are calculated from obtained data
Profiles of these lines are consistent with the scaling arguef Z,(W,L,I) by a fitting procedure. To this end the
ment. For strong disordeflarge W), we expect that the scaling function fq(L/&,1/¢) is expanded asfq(x,y)
eigenstate is strongly localized whose localization lergth =3, ja,x™"y"”. We expand this function up to the fifth
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FIG. 2. Two-argument scaling functions|€2) for (a) localized and(b) extended states. Flat surfaces in the reginey have no
meaning because the domainfgx,y) is x=y. CalculatedZ, in Fig. 1 are also plotted in these figures.
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FIG. 3. Asymptotic behaviors of the calculated scaling functions. Solid and dashed lines represanrtdielependences of the scaling
functions for fixed values of andx (indicated near lines respectively(a) The scaling function for localized states in the regimexof
>1 andy>1. (b) The scaling function for localized states in the regimexafl andy<1. Thin dashed line indicates the slope fof
«y™? with 7(2)=1.62. (c) The scaling function for localized states in the regimexefl andy<1. Thin solid and thin dashed lines
indicate slopes of ,ocx™ " and f,«y™? with 7(2)=1.62, respectively(d) The scaling function for extended states in the regime of
>1 andys>1. Thin solid and thin dashed lines indicate slopes.pfx41~% and f,cy¥ =1 with d=2 andq=2, respectively(e) The
scaling function for extended states in the regimex®fl andy<1. Thin solid and thin dashed lines indicate sloped pfx41-9 and
f,ocy™@ with d=2, q=2, and+(2)=1.62, respectively(f) The scaling function for extended states in the regime<éf. andy<1. Thin
solid and thin dashed lines indicate slopes gfx~ "2 and f,ocy™@ with 7(2)=1.62, respectively.

order (n+n<5). Calculated scaling functiongj&2) for  strap procedur&2® We have also calculated/, and v for
localized and extended states are shown in Figal @d  several values ofy other thanq=2. Differences between
2(b), respectively. Since box sizes are always smaller thathese quantities by varying from 1.5 to 2.5 are much
the system size, the domain f(x,y) is x=y. Flat surfaces smaller than their errors. The obtained value of the critical
for x<y in these figures have no meaning. It should be redisorder is close to previous numerical res@ft&>?’~*°The
marked thatf ;(x,x) is always unity because of the normal- value of v presented here is between two previous results
ization condition of wave functions. All calculated datazgf ~ =2.05(Ref. 22 and 2.75Ref. 27, for which scaling analy-
are well embedded onto these scaling surfaces. As shown ses of quasi-one-dimensional systems have been applied to
Fig. 3, asymptotic behaviors of the calculated scaling functhe same model as that in the present work. Our resuttisf
tions are consistent with those predicted in E§s.and (4). rather close to the value=2.32 (Ref. 30 obtained by a
In these figures, solid and dashed lines represerx rely ~ scaling analysis of level statistics. The exponeff) coin-
dependences of the scaling functions for fixed valuey of cides with the generalized dimension of the wave function
and x, respectively. Figures(8) to 3(c) show profiles of D(q)=7(q)/(q—1) for = 2. Kawarabayashi and Ohtséki
fo(x,y) for localized states in three asymptotic regimes, anctalculated the dimensio®(2) numerically from the diffu-
Figs. 3d)—-3(f) those for extended states. We find the coin-sion of electrons in the same system with this work. Their
cidence between the scaling predictions and numerical raesult isD(2)=1.68, and agrees quite well with ou(2).
sults by comparing thick lineéhumerical resultswith thin
lines (scaling predictions

From the fitting procedure we obtain&d.=5.86+0.04,
v=2.41+0.24, andr(2)=1.62+£0.01. These values and We have developed a finite-size scaling method that ex-
their statistical errors have been evaluated by using the bootracts rich information about critical behavior of the metal-

IV. CONCLUSIONS
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insulator transition from amplitude distributions of wave considerable computing time is saved by this, we treated
functions, and applied the method to two-dimensional disorvery large systemsL(,,=256). To our knowledge, this is
dered electron systems in the presence of spin-orbit interaghe largest scaling analysis in numerical works for two-
tion. In contrast to previous scaling analyses in which onlydimensional symplectic systems. Therefore, the obtained val-

the system size is the scaling measure, both the system agds of W,=5.86+0.04, v=2.41+0.24, and 7(2)=1.62
box sizes are used for alternating the length scale. Due to this 0.01 are quite reliable.

peculiarity it is not necessary to diagonalize Hamiltonians of
many systems with different sizes. In this method, the am-
plitude distribution of a wave function is characterized by its
moment of thegth order. By varying the value af, multiple
and independent analyses can be performed for a single set We are grateful for valuable discussions with T. Na-
of wave functions. It is possible to obtain precise informationkayama, T. Hokari, and T. Ohtsuki. Numerical calculations
on the metal-insulator transition from such multiple analyseswere performed on the FACOM VPP 500 of the Supercom-
Applying the present technique to two-dimensional symplecputer Center, Institute for Solid State Physics, University of
tic systems, we have calculated values of the critical disordefokyo. This work was supported in part by a Grant-in-Aid
W,, the critical exponent, and the mass exponent Only  for Scientific Research from the Ministry of Education, Sci-
two sizes of systems have been analyzed in this work. Sincence, and Culture of Japan.
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