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Finite-size scaling of multifractal wave functions: The metal-insulator transition
in two-dimensional symplectic systems
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Department of Applied Physics, Hokkaido University, Sapporo 060, Japan

~Received 26 May 1998!

A finite-size scaling analysis of wave functions near the metal-insulator transition~MIT ! point has been
developed, and applied to the MIT in a two-dimensional disordered electron system in the presence of spin-
orbit interaction. The present method has the following advantages:~i! Quantities characterizing the critical
behavior, such as the critical disorderWc or the localization exponentn, are multiply calculated from inde-
pendent scaling analyses of spatial parts with different intensities in wave functions.~ii ! These quantities and
the multifractality of the critical wave function are determined simultaneously.~iii ! It is not necessary to treat
many samples with different sizes.~iv! Much computing time is saved, and the scaling analysis can be done up
to very large sizes. Using this method, we obtainedWc55.8660.04 andn52.4160.24 for a model of a
two-dimensional symplectic system.@S0163-1829~98!08039-4#
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I. INTRODUCTION

The metal-insulator transition~MIT ! in disordered elec-
tron systems is one of the most exciting topics in condens
matter physics. Although significant effort was made for
vealing the critical behavior of the MIT during the last tw
decades, fundamental problems still remain to be clarifie1

In theoretical studies of the MIT, numerical approaches
crucial for understanding this continuous quantum ph
transition. In actual calculations, however, the limitation
finite system sizes demands some devices to extract pre
information on the MIT. The finite-size scaling analysis
the existing most effective way, which assumes that all cr
cal quantities are scaled only by the localization~or correla-
tion! length. Several schemes based on the finite-size sca
idea have been proposed so far.2–7 The most popular schem
was developed by MacKinnon and Kramer.3 In this scheme,
one prepares a quasi-one-dimensional system with a widL
and a lengthD (D@L). It is possible to estimate the loca
ization lengthjL of this system from the Green’s function o
the conductance. In general, the quantityjL /L is a function
of L and W, whereW is an external parameter driving th
MIT, such as the strength of disorder or the energy. T
scaling hypothesis insists that ifL is large enough, this func
tion can be written by a single argument function ofj/L ~the
scaling function!, wherej is the localization~or correlation!
length of theinfinite system, i.e.,j5 lim

L→`
jL . The value of

j is obtained in a fitting procedure of the scaling function
many differentL andW. This technique, however, require
quite a longD. If the lengthD is not sufficient, the energy a
which the Green’s function or the conductanceGL is defined
has a finite width. This means that several states whose
ergies are contained in this width contributeGL . As a con-
sequence, we tend to evaluatejL and j as large compared
with their true values. The lengthD for an accurate calcula
tion is extremely long even for smallL, and increases asL is
increased. A long computing time due to the longD prevents
us from treating largeL. For example,L is usually less than
100a for two-dimensional systems, wherea is a lattice con-
PRB 580163-1829/98/58~15!/9767~6!/$15.00
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stant. Furthermore, since the system sizeL only plays the
role of the scaling measure, it is necessary to calculateGL

for many systems with different sizes.
In a finite-size scaling analysis of quasi-one-dimensio

systems, all critical properties are presented by the respo
function GL . Rich information involved in the amplitude
distribution of a wave function is discarded. This is so w
other finite-size scaling schemes,2,4–7such as the size scalin
of level statistics,4–6 for instance, which in recent years ha
been used extensively to determine the nature of the M
from a sequence of eigenvalues, not from eigenfunctions
this paper, we present a finite-size scaling method that
tracts information on the critical behavior from amplitud
distributions of wave functions. This technique is based
the idea that amplitudes of the critical wave function hav
multifractal distribution,8,9 and evennot at the critical point
but in the critical region the amplitude distribution is als
multifractal in a scale less thanj. As explained in Sec. II, in
the present technique a small amount of samples with dif
ent sizes is enough for accurate calculations. This superio
enables us to analyze systems up to large sizes. In
method, the amplitude distribution is characterized by
qth moment of squared amplitudes of a wave function. Ea
scaling analysis for a fixed value ofq gives information on
the MIT. Since changing the value ofq corresponds to ana
lyzing a different part of the wave function, and the critic
exponent and the critical value of the external parameteW
are independent ofq, these quantities can be multiply evalu
ated by alternatingq.

Using this finite-size scaling analysis, we have determin
the critical exponent and the critical disorder of tw
dimensional symplectic systems. It is widely accepted t
the critical behavior at the MIT is cast into three differe
universality classes by their fundamental symmetries.1,10,11

When systems have time-reversal and spin-rotational s
metries, the universal characters of the transition are
same as those of the usual Anderson transition, and an
thogonal class of the MIT is observed. If time-reversal sy
metry is broken by a magnetic field, the MIT belongs to t
9767 © 1998 The American Physical Society
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9768 PRB 58K. YAKUBO AND M. ONO
unitary class. The third symplectic class is that in whi
systems do not have a spin-rotational symmetry but a ti
reversal one, which is realized by spin-orbit interaction
actual systems. In two-dimensional noninteracting electro
it is believed that only the symplectic system exhibits t
MIT. Although recent experimental findings of metall
phases in two-dimensional electron/hole systems atB50 in
Si metal-oxide field-effect transistors12 or GaAs
heterostructures13,14encourage one to study the MIT in sym
plectic systems, a fundamental understanding of the MIT
this class is still insufficient. This is because numerical m
els of symplectic systems have not appeared until comp
tively recently. It is quite important to obtain precise info
mation on the MIT in symplectic systems by applying t
present scaling technique.

This paper is organized as follows. In Sec. II, we intr
duce our finite-size scaling method. Asymptotic behaviors
the scaling function are also discussed in this section. In S
III, the nature of the MIT in two-dimensional disordere
electrons with spin-orbit interaction are studied by apply
our method. The localization length exponentn and the criti-
cal disorderWc are calculated by analyzing wave functio
in very large systems. The mass exponent which charac
izes the multifractality of the critical wave function has be
also obtained. Conclusions are given in Sec. IV.

II. FINITE-SIZE SCALING ANALYSIS

In the newly developed finite-size scaling analysis,
extract information on the critical behavior of the meta
insulator transition~MIT ! from amplitude distributions of
wave functions. This scaling analysis is based on the fact
the spatial distribution of a squared wave function is mu
fractal, which gives rise to a spectrum of critical exponents
the critical point of the MIT.8,9 Although it is impossible to
realize either aninfinite system or a critical wave function a
the true critical point in numerical calculations, many work
have numerically confirmed the multifractality of wave fun
tions near the critical point infinite systems.15 This implies
that the multifractality of a wave function is not even valid
the critical point if the length scale is less than a charac
istic length. According to the one-parameter scaling the
of the MIT, this scale should be the correlation~or localiza-
tion! length j. In fact, Fal’ko and Efetov16 showed that lo-
calized wave functions are multifractal if the system size
smaller than the localization length. It is plausible that
wave function which is localized with a localization leng
j, or extended with a correlation lengthj, is multifractal on
a scale much smaller thanj. If the system is in the critica
region, the spectrum of critical exponents describing
multifractality of the wave function coincides with that of th
critical wave function. This speculation is supported by
analogy to usual critical phenomena. In percolation pr
lems, for example, the infinite cluster at the percolat
threshold has a fractal structure.17 The same fractality can b
attributed to finite clusters not at the threshold within
length scale less than the correlation length. Our method
tracts information on the critical behavior by analyzing ho
the multifractality of wave functions in the vicinity of th
critical point changes with length scales.

In order to characterize the amplitude distribution of
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wave function, we introduce a quantityZq defined by

Zq5 (
box~ l !

S (
i Pbox~ l !

uc i u2D q

, ~1!

wherec i is the amplitude of the wave function at the sitei,
and is normalized as( i uc i u251 ~the summation is taken
over all sites in the system!. The symbol(box(l ) represents
the summation over small boxes with a linear sizel into
which one divides the whole system. The second summa
in Eq. ~1! is taken over sites in the box. The quantityq is an
arbitrary constant. It is well known that if the quantityZq is
proportional to (l /L)t(q), where L is the system size and
t(q) is a nonlinear function ofq, amplitudes of the wave
function have a multifractal distribution.18 The qth-order
moment of distributed amplitudesZq depends onL, l , and
external parameters such as the strength of the disorderW or
the energyE. If we apply the scaling hypothesis to the am
plitude distribution of the wave function near the critic
point, the quantityZq can be written as

Zq5ja f q~L/j,l /j!, ~2!

wherea is an exponent,j is the correlation~or localization!
length of the infinite system, andf q is a two-argument scal
ing function which depends onq. Since the lengthL is al-
ways larger thanl , the scaling functionf q(x,y) is defined in
the regime ofx>y.

Let us consider asymptotic forms of the scaling functio
At first, we concentrate on the scaling function for localiz
states. If the localization lengthj is smaller than both the
system sizeL and the box sizel , i.e., x@1 andy@1, a box
only contributes the quantityZq . Therefore,Zq does not de-
pend onL and l , a50, andf q(x,y) is a constant. From the
normalization condition, this constant should be unity. F
x@1 but y!1, Zq does not depend onL, because the wave
function is localized inside of the system. The distribution
amplitudes is, however, multifractal within a scale much le
than the localization lengthj. This means thatZq is propor-
tional to (l /j)t(q) and f q(x,y)}yt(q). If x and y are small
enough compared with unity, the whole wave function in t
system is multifractal. The asymptotic form of the scali
function f q is proportional to (y/x)t(q) in this limit. For ex-
tended states, we will have a different scaling function th
that for localized states. Ifx@1 andy@1, one can replace

uc i u2 in Eq. ~1! with an averaged valuec̄ 2̄, because the cor
relation length of the extended state is much smaller than

box size. The quantityZq is written asZq}(L/ l )d( l dc 2̄)q in

this case. The normalization condition leads toc 2̄}L2d.
Thus the scaling function in this regime is given b
f q(x,y)}(y/x)d(q21). Whenx@1 buty!1, the whole wave
function can be divided into (L/j)d equivalent parts (j
boxes! whose linear size isj. Since quantityZq receives
equal contributions from thesej boxes,Zq}(L/j)dz, where
z is theqth-order moment of the amplitude distribution in aj
box, i.e.,z is defined by Eq.~1! replacing the first summation
by the summation over small boxes with the sizel contained
in the j box. The quantityz is calculated as follows. We
introduce a rescaled wave functionc i85rc i which is nor-
malized within thej box. Since allj boxes are equivalent
ur u25(L/j)d. On a scale less than the correlation lengthj,
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the distribution ofuc i8u
2 is multifractal. Thus the momentz8

of uc i8u
2, which is defined by the same definition as that oz,

except for summing upuc i8u
2 instead ofuc i u2, becomesz8

}( l /j)t(q). Substitutinguc i8u
2}(L/j)duc i u2 into the defini-

tion of z8, one obtains z8}(L/j)dqz. Therefore, Zq

}(L/j)d(12q)( l /j)t(q) and f q(x,y)}xd(12q)yt(q). Finally, in
the case ofx!1 and y!1, the wave function cannot b
distinguished from the localized one whose localizat
length is much larger than the system size. The asympt
form of the scaling function in this limit is the same as th
for localized states forx!1 andy!1. In conclusion, we will
have the following asymptotic forms of the scaling functi
f q(x,y). For localized states,

f q~x,y!}5
1 if x@1 andy@1

yt~q! if x@1 andy!1

S y

xD t~q!

if x!1 andy!1,

~3!

and, for extended states,

f q~x,y!}5
S y

xD d~q21!

if x@1 andy@1

xd~12q!yt~q! if x@1 andy!1

S y

xD t~q!

if x!1 andy!1.

~4!

It should be noted that a scaling analysis of the inverse
ticipation ratio19 is included as a special case of our analys
The inverse participation ratio defined byP215( i uc i u4 is
coincident withZq for q52 and l 5a, wherea is a lattice
constant. Therefore,l /j is always less than unity in theP21

analysis. From Eqs.~3! and ~4!, the asymptotic forms of a
scaling functiong(x) describing the system size dependen
of P21 are expected as follows. For localized states,g(x)
5const for x@1 and g(x)}x2t(2) for x!1. For extended
states,g(x)}x2d for x@1 andg(x)}x2t(2) for x!1. In this
analysis, only system sizes are the scaling measure, and
it is necessary to prepare many samples with different si

The quantityZq is calculated from an eigenfunction of
disordered electron system. From the scaling analysis ofZq ,
one obtains the critical disorderWc ~or critical energyEc),
the localization length exponentn, and the mass exponen
t(q) at the same time. This is one of the prominent featu
of our method, while exponentsn and t(q) have been cal-
culated separately in previous analyses. In particular, we
calculateWc andn multiply for different q’s, because these
quantities do not depend onq. The scaling analysis for a
fixed value ofq implies that a part of the amplitudes with
fixed intensity is analyzed. For largeq, a part of large am-
plitudes is analyzed, and an analysis for a small-amplit
part is done by choosing a small or negative value ofq.
Since amplitude distributions of these parts with differe
intensities are independent,18 evaluations ofWc or n by dif-
ferentq’s are independent. Averaging these values, one
determine the precise values of the critical disorder and
critical exponent.

In this method, the scaling measure is changed by the
l of small boxes in addition to the sizeL of the whole system.
tic
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This means that we do not need to calculate eigenstate
many samples with different sizes. In fact, as mentioned
Sec. III, we have treated only two sizes of systems in ac
numerical investigation of the MIT in a two-dimensional di
ordered electron system in the presence of spin-orbit inte
tion. This feature contrasts with previous methods in wh
the scaling is done only by the system sizeL. Due to this
advantage, the present method enables us to save much
puting time and allows us to treat larger systems. Using
cent diagonalization techniques and an advanced par
computer facility, in principle, the finite-size scaling up
107-site systems would be possible.

III. DELOCALIZATION TRANSITION
IN TWO-DIMENSIONAL SYMPLECTIC SYSTEMS

The scaling theory of noninteracting disordered electro
without spin-orbit interaction predicts that all states are
calized in two dimensions. If the spin-orbit interaction b
comes strong, the quantum interference acts upon an an
calization effect.10 It is widely accepted that the meta
insulator transition exists in a two-dimensional electr
system in the presence of spin-orbit interaction. Since
structure of the Hamiltonian describing this system is inva
ant under a symplectic transformation, the set of Hamil
nians with this symmetry is called the symplectic ensemb
Disordered electron systems with symplectic symmetry
the only systems which exhibit the MIT in two-dimension
noninteracting electrons. We apply the present scaling te
nique to the MIT in two-dimensional disordered electro
with spin-orbit interaction.

Several models have been proposed for numerical inv
tigations of the MIT in two-dimensional symplecti
systems.20–23 Here we employed Ando’s model,22 that has
been studied most extensively. The Hamiltonian on a squ
lattice is given by

H5(
i ,s

« i u i ,s&^ i ,su1 (
i ,s; j ,s8

V~ i ,s; j ,s8!u i ,s&^ j ,s8u,

~5!

where« i is a on-site random potential at the sitei and dis-
tributes uniformly between2W/2 and W/2. The indexs
5↑ or ↓ denotes the spin-up or -down. If we represent s
states^↑u and ^↓u in ^ i ,su5^ i u ^ ^su as (1,0) and (0,1),
respectively, the matrix forms of the hopping term are

V~ i ,i 1 x̂!5S V1 V2

2V2 V1D ~6a!

and

V~ i ,i 1 ŷ!5S V1 2 iV2

2 iV2 V1 D . ~6b!

Here x̂ and ŷ represent the unit vectors of thex andy direc-
tions. The strength of the spin-orbit interaction is charact
ized by V2 /V, with V5(V1

21V2
2)1/2. We have chosen this

parameter asV2 /V50.5. All energies and length scales a
measured in units ofV and the lattice spacinga, respec-
tively. Periodic boundary conditions are applied in both
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FIG. 1. Box-size dependences of quantitiesZq for q52. Marks correspond to different strengths of disorder. Each point has b
obtained by averagingZ2 over ten realizations of disordered potentials.~a! and ~b! represent results for systems withL5128 and 256,
respectively.
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rections. We concentrate on the band center energyE50,
and search the critical disorderWc above which all energy
states are localized.

In order to calculate eigenstates of the Hamiltonian@Eq.
~5!#, we used the forced oscillator method.24 This numerical
algorithm makes it possible to compute eigenvalues
eigenvectors of very large matrices. In the present work o
two sizes (L5128 and 256) of systems have been treat
because in our scaling analysis box sizes play a role of
scaling measure in addition to system sizes. Figure 1 in
cates the box size dependence of the quantityZq for q52.
Results forL5128 and 256 are shown in Figs. 1~a! and 1~b!,
respectively. Different marks correspond to differe
strengths of disorder. Each data point has been obtaine
averagingZ2 over ten realizations of disordered potentia
Profiles of these lines are consistent with the scaling ar
ment. For strong disorder~large W), we expect that the
eigenstate is strongly localized whose localization lengthj is
d
ly
,
e
i-

t
by
.
u-

much smaller than the system size. If the box sizel is large
compared withj, Z2 does not depend onl . Thus thel de-
pendence ofZ2 is weak in this regime. Whenl becomes
smaller thanj, Z2 seems to be proportional tol t(2), because
the wave function is multifractal on this length scale. F
weak disorder~small W), we find concave curvesZ2( l ). In
each line,Z2 is proportional tol 2 when l is large. Dashed
lines in Fig. 1 showZ2} l 2. This implies that amplitudes o
the wave function distribute almost uniformly on a scale ol
much larger thanj. The slope of the line decreases for sm
l , which indicates the multifractal character of the wa
function on this scale. The line shape is almost straight
W;5.75. This intimates that the critical disorderWc is close
to this value.

The scaling functions are calculated from obtained d
of Zq(W,L,l ) by a fitting procedure. To this end th
scaling function f q(L/j,l /j) is expanded as f q(x,y)
5(m,namnx

m/nyn/n. We expand this function up to the fifth
FIG. 2. Two-argument scaling functions (q52) for ~a! localized and~b! extended states. Flat surfaces in the regimex,y have no
meaning because the domain off q(x,y) is x>y. CalculatedZ2 in Fig. 1 are also plotted in these figures.
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FIG. 3. Asymptotic behaviors of the calculated scaling functions. Solid and dashed lines represent thex andy dependences of the scaling
functions for fixed values ofy and x ~indicated near lines!, respectively.~a! The scaling function for localized states in the regime ofx
@1 andy@1. ~b! The scaling function for localized states in the regime ofx@1 andy!1. Thin dashed line indicates the slope off 2

}yt(2) with t(2)51.62. ~c! The scaling function for localized states in the regime ofx!1 andy!1. Thin solid and thin dashed lines
indicate slopes off 2}x2t(2) and f 2}yt(2) with t(2)51.62, respectively.~d! The scaling function for extended states in the regime ofx
@1 andy@1. Thin solid and thin dashed lines indicate slopes off 2}xd(12q) and f 2}yd(q21) with d52 andq52, respectively.~e! The
scaling function for extended states in the regime ofx@1 andy!1. Thin solid and thin dashed lines indicate slopes off 2}xd(12q) and
f 2}yt(2) with d52, q52, andt(2)51.62, respectively.~f! The scaling function for extended states in the regime ofx!1 andy!1. Thin
solid and thin dashed lines indicate slopes off 2}x2t(2) and f 2}yt(2) with t(2)51.62, respectively.
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order (m1n<5). Calculated scaling functions (q52) for
localized and extended states are shown in Figs. 2~a! and
2~b!, respectively. Since box sizes are always smaller t
the system size, the domain off q(x,y) is x>y. Flat surfaces
for x,y in these figures have no meaning. It should be
marked thatf q(x,x) is always unity because of the norma
ization condition of wave functions. All calculated data ofZ2
are well embedded onto these scaling surfaces. As show
Fig. 3, asymptotic behaviors of the calculated scaling fu
tions are consistent with those predicted in Eqs.~3! and ~4!.
In these figures, solid and dashed lines represent thex andy
dependences of the scaling functions for fixed values oy
and x, respectively. Figures 3~a! to 3~c! show profiles of
f 2(x,y) for localized states in three asymptotic regimes, a
Figs. 3~d!–3~f! those for extended states. We find the co
cidence between the scaling predictions and numerical
sults by comparing thick lines~numerical results! with thin
lines ~scaling predictions!.

From the fitting procedure we obtainedWc55.8660.04,
n52.4160.24, and t(2)51.6260.01. These values an
their statistical errors have been evaluated by using the b
n

-

in
-

d
-
e-

ot-

strap procedure.25,26 We have also calculatedWc and n for
several values ofq other thanq52. Differences between
these quantities by varyingq from 1.5 to 2.5 are much
smaller than their errors. The obtained value of the criti
disorder is close to previous numerical results.22,23,27–30The
value ofn presented here is between two previous resultn
52.05~Ref. 22! and 2.75~Ref. 27!, for which scaling analy-
ses of quasi-one-dimensional systems have been applie
the same model as that in the present work. Our result ofn is
rather close to the valuen52.32 ~Ref. 30! obtained by a
scaling analysis of level statistics. The exponentt(2) coin-
cides with the generalized dimension of the wave funct
D(q)5t(q)/(q21) for q52. Kawarabayashi and Ohtsuki29

calculated the dimensionD(2) numerically from the diffu-
sion of electrons in the same system with this work. Th
result isD(2)51.68, and agrees quite well with ourt(2).

IV. CONCLUSIONS

We have developed a finite-size scaling method that
tracts rich information about critical behavior of the meta
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insulator transition from amplitude distributions of wav
functions, and applied the method to two-dimensional dis
dered electron systems in the presence of spin-orbit inte
tion. In contrast to previous scaling analyses in which o
the system size is the scaling measure, both the system
box sizes are used for alternating the length scale. Due to
peculiarity it is not necessary to diagonalize Hamiltonians
many systems with different sizes. In this method, the a
plitude distribution of a wave function is characterized by
moment of theqth order. By varying the value ofq, multiple
and independent analyses can be performed for a single
of wave functions. It is possible to obtain precise informati
on the metal-insulator transition from such multiple analys
Applying the present technique to two-dimensional sympl
tic systems, we have calculated values of the critical disor
Wc , the critical exponentn, and the mass exponentt. Only
two sizes of systems have been analyzed in this work. S
a

g
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s

-
c-

nd
is
f
-

et

.
-
r

e

considerable computing time is saved by this, we trea
very large systems (Lmax5256). To our knowledge, this is
the largest scaling analysis in numerical works for tw
dimensional symplectic systems. Therefore, the obtained
ues of Wc55.8660.04, n52.4160.24, and t(2)51.62
60.01 are quite reliable.
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