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Critical behavior at superconductor-insulator phase transitions near one dimension
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I argue that the system of interacting bosons at zero temperature and in random external potential possesses
a simple critical point that describes the proliferation of disorder-induced defects in the superfluid ground state,
and that is located at weak disorder close to and above one dimension. This makes it possible to address the
critical behavior at the superfluid-Bose glass transition in dirty boson systems by expanding around the lower
critical dimension ofd51. Within the formulated renormalization procedure neard51, the dynamical critical
exponent is obtained exactly and the correlation length critical exponent is calculated as a Laurent series in the
parameterAe, with e5d21: z5d, n51/A3e1O(Ae) for the short-range, andz51, n5A2/3e1O(Ae), for
the long-range Coulomb interaction between bosons. The identified critical point should be stable against the
residual perturbations in the effective action for the superfluid, at least in dimensions 1<d<2, for both
short-range and Coulomb interactions. For the superfluid-Mott insulator transition in the system in a periodic

potential and at a commensurate density of bosons, I findn5( 1
2Ae)1

1
4 1O(Ae), which yields a result in

reasonable agreement with the knownXY critical exponent ind52. The critical behavior of the superfluid
density, phonon velocity, and the compressibility in the system with short-range interactions is discussed.
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I. INTRODUCTION

The transition between the superfluid~SF! and the local-
ized insulating@Bose-glass~BG!# ground states in the disor
der bosonic systems at zero temperature is a paradigm
example of a quantum phase transition.1,2 It is believed to be
relevant for a number of experimentally observ
superconductor-insulator transitions at low temperatures
cluding those in Josephson-junction arrays,3 amorphous su-
perconducting films,4 underdoped high-Tc cuprates,5 4He
and 3He in disordered media,6,7 and possibly in two-
dimensional electron gas in Si metal-oxide-semiconduc
field-effect transistors.8 The vortex transitions in type-II su
perconductors in a magnetic field in the presence of co
lated disorder have also been related to this problem.9,10 De-
spite its ubiquity in nature and good qualitativ
understanding of the insulating phase,2 the critical behavior
at the SF-BG transition is only poorly known. This may a
pear surprising, particularly when contrasted with the grea
successful theory of classical critical phenomena,11 even in
the presence of quenched disorder.12 The source of the diffi-
culty can be traced to the difference between the class
and the quantum disordered systems that becomes mos
parent in the path integral formulation of the quantum pro
lem: ad-dimensional quantum system atT50 maps onto a
d11-dimensional classical theory, but the disorder poten
appears random only ind dimensions, while it is completely
correlated in the remaining dimension that represents
imaginary time. This is because static disorder is represe
by a time-independent random potential. The unpleas
consequence of this fact is that there is no upper crit
dimension for the SF-BG transition in the standard sen
One way to try to deal with this problem is to demote
number of imaginary-time dimensions from unity to a sm
numberet , and then to perform a double expansion in bo
PRB 580163-1829/98/58~2!/971~11!/$15.00
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et and e542d2et .13 Unfortunately, the perturbative re
sults for the critical exponents obtained this way appea
have a very poor convergence inet , rendering this approach
of limited use for calculations of the critical exponents. Th
this may not be a coincidence could be suspected on
basis of certain exact inequalities that should be satisfied
the exponents at the disordered critical points,14 and that dic-
tate that their values should be very different than at
Gaussian fixed point. For example, ind52 andet51, at the
SF-BG critical point one expectsn>1, andz'2, in contrast
to n5 1

2 andz51 at the Gaussian fixed point for the relati
istic bosons. In fact, within the doublee expansion the dis-
ordered and the Gaussian fixed points generally do not c
lesce at the upper critical dimensiondup54, but instead the
disordered critical point stays always nontrivial~except when
e5et50), and becomes unstable only in dimensions hig
than somedc.dup .15 All this is of course completely differ-
ent from the standard 42e expansion for the classica
systems,11 where the Wilson-Fisher critical point coincide
with the Gaussian fixed point at the upper critical dimensi
becomes unstable right above it, and the critical exponen
the physical dimensions are numerically not too differe
from their Gaussian values. One might speculate that
failure of the doublee expansion may be due to nonanaly
icity of the critical exponents as functions ofet .16

Recognizing the limitations of the doublee expansion,
many authors turned to different ways of addressing
SF-BG transition: large-N,17 real-space methods,18 strong-
coupling expansion,19 numerical calculations,20 and the
renormalization group in fixed dimension21 have all been ap-
plied to this problem. In the absence of a small parame
one is left feeling uneasy with the results obtained by th
methods, and it would still be desirable to have a control
analytical approach to the SF-BG critical point that would
free of the conceptual and the calculational problems of
971 © 1998 The American Physical Society
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972 PRB 58IGOR F. HERBUT
double e expansion. Besides providing a practical tool f
calculation of the universal quantities at the SF-BG ph
transition, such a scheme would be expected to be abl
correctly discern different universality classes
superconductor-insulator transitions, similarly as the c
ebratede expansion does in the field of classical critic
phenomena.

In this paper I present an attempt to develop such a
tematic theory of the SF-BG critical point as a perturbat
expansion in deviation of spatial dimensionalityd of the
quantum system from unity. That the parametere5d21 ef-
fectively controls the value of disorder at th
superconductor-insulator critical point has been sugge
previously by the author in Ref. 22, where this was used
study the superconductor-insulator transition in the mode
disordered attracting spinless fermions near one dimens
The basic idea is rather general and may be understood q
tatively as follows. Consider a quantum system of interact
bosons~that may be Cooper pair composites, for instance! in
d51 and atT50: in the absence of any external potent
the Bose single-particle operator will exhibit a power-la
quasi-long-range correlations, with a nonuniversal poweK
depending on the microscopic interactions.K may therefore
be understood as an exactly marginal coupling const
What will be the effect of a random external potential?
must suppress superfluidity by trying to localize the elem
tary excitations. In the language of renormalization gro
this means that it should produce apositive term in the re-
cursion relation forK, in an attempt to drive the Bose single
particle correlation function shorter ranged. T
renormalization-group flow of the disorder coupling const
D will in turn be affected byK, so that ifK is larger than
someK* , smallD is relevant and vice versa.23,24The crucial
point is that the marginality ofK in d51 without disorder
forces the SF-BG fixed point to lay atD* 50 @and some
finite K5K* , see Fig. 1~b!# in d51. To use this fact to
develop an expansion in small parametere5d21 for the
problem with disorder, one must also observe the followi
power-law superfluid correlations~without disorder! are
characteristic ofd51;25 in d.1, true long-range order wil

FIG. 1. The renormalization-group flow ind.1. Close tod
51 the fixed point that controls the transition between the sup
fluid (D→0, K→0) and the localized (D→`, K→`) phases is at
a small value of disorder,D* ;e. Inset ~a! depicts the flow ind
,1, where only the localized phase is stable, and the fixed p
lies in the unphysical regionD,0. Precisely atd51 the fixed point
lies on the marginal line atD50 @inset ~b!#.
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develop atT50. In d511e one may still think ofK, but no
longer as a marginal coupling; it should slowly~controlled
by e) scale to zero, so that the single-particle correlat
function tends to a finite constant at large distances. Thu
small deviation of dimensionality of the system from uni
should produce a smallnegativeterm in the recursion rela
tion for K, which then may be balanced by the positive te
induced by disorder. This opens a possibility of having
random critical point in the physical region of the couplin
space that is infinitesimal in disorder slightly above one
mension~see Fig. 1!.

The central assumption made here is that the SF-BG c
cal point in d52 smoothly evolved from the trivial~in the
sense thatD* 50) SF-BG critical point ind51. The addi-
tional motivation for this idea comes from the study of t
disordered Bose-Hubbard model.21 Using the duality trans-
formations to map the dirty-boson model on lattice onto
field theory for defect degrees of freedom, it was noticed t
the SF-BG critical point in the dual formulation arise
through similar renormalization scenarios ind51 and d
52. The form of the dual theories in one and two dime
sions is quite different,21 reflecting a more complicated na
ture of defects in higher dimensions, nevertheless, in b
cases it is the coupling of the external potential to the fi
that describes topological defects of the phase of the su
fluid order parameter that ultimately determines the criti
behavior. The physical mechanism for destruction of sup
fluidity at T50 is postulated to be the same ind51 andd
52: the unbinding of phase slip-antislip~in d51) or vortex-
antivortex~in d52) pairs inducedby disorder destroys the
phase coherence. The critical point that describes this tra
tion is strongly coupled ind52, but becomes weakly
coupled ind51, which suggests an expansion around
latter solvable case.

In the rest of the paper this idea is used to calculate
critical exponents at the SF-BG transition in the systems
disordered bosons with short-range and long-range Coulo
repulsionnearone dimension. My starting point is the effec
tive low-energy action for the phonon excitations above
SF ground state26 in the presence of an external random p
tential. Neard51 the nontrivial part of the recursion rela
tions is determined from the theory as precisely ind51,
while the effect of dimensionality enters through the nonv
nishing canonical dimensions of the coupling constants.
handle the disorder term I take advantage of the density
resentations of the theory27 in d51, where it may be under
stood as dual to the phase representation,21 and in which the
external potential couples to the operator that createsp
phase slips in the superfluid ground state. I first study
case of the short-range interaction between bosons in de
later to extend the calculation onto the Coulomb universa
class. The recursion relations are derived toO(e2) and the
correlation length critical exponentsn and the anomalous
dimensionh are calculated as series ine to two lowest or-
ders, whereas the dynamical critical exponent is obtai
exactly. In particular, within the presented formalism t
conjecture of Fisheret al.2,28 that the dynamical exponentz
5d andz51 for the short-range and the Coulomb repulsi
between bosons, respectively, holds exactly as long as
critical point is smoothly connected to the one ind51. For
the short-range interactions, both the superfluid density
the phonon velocity renormalize to zero at the SF-BG tr
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sition, as power laws with powers that vanish as;Ae close
to d51. Compressibility, on the other hand, approache
finite constant at the transition, in accordance with the
pected gapless nature of the Bose glass phase.

The paper is organized as follows. In the next sectio
define the problem and determine the canonical dimens
of the coupling constants in the effective action in the case
short-range interactions. In Sec. III the recursion relations
the coupling constants to two lowest orders ine5d21 are
presented, and the critical exponents for the case of sh
range repulsion are obtained. In Sec. IV I examine the
evance of the residual terms in the superfluid effective ac
at the SF-BG critical point. Section V presents the results
the critical exponents in the case of Coulomb repulsion
tween the bosons. I test the expansion method agains
known results for theXY universality class relevant for th
superfluid-Mott insulator transition in a periodic potential
Sec. VI. Summary and the discussion of the main point
given in the last section, and the calculational details
relegated to the Appendixes.

II. HAMILTONIAN AND THE CANONICAL DIMENSIONS

I begin by defining the system of interacting bosons w
the standard second-quantized Hamiltonian:

H5
\2

2mE ddxW u¹C~xW !u2

1
1

2E ddxWddyWv~xW2yW !uC~xW !u2uC~yW !u2, ~1!

wherev(rW) is a short-range repulsive interaction, withṽ(qW
50) finite, uCu25C†C, and C satisfies standard boson
commutation relations. The Hamiltonian~1! has a superfluid
ground state in alld>1. The form of the effective theory fo
the low-energy excitations may be derived by writing t
Bose operator in the density-phase representation asC(xW )
5r1/2(xW )expif(xW),26 wherer(xW )5r01P(xW ), with P(xW ) be-
ing a local deviation from the average density of bosonsr0.
Expanding the Hamiltonian to the quadratic order inP and
f, the imaginary time quantum-mechanical actionS
5*ddxWdt(\C†]tC1H@C†,C#)/\ at finite temperatureT
becomes

Sf,P5E ddxWE
0

b

dtS vJ

2p
@¹f~xW ,t!#212pvNP2~xW ,t!

1 iP~xW ,t!]tf~xW ,t!1 . . . D , ~2!

whereb5\/kBT, and the terms of higher order inP(xW ) and
f(xW ) and their derivatives have been omitted for the m
ment. The boundary conditions satisfied by the fluctuat
fields aref(xW ,b)5f(xW ,0)12pn(xW ), with n(xW ) integer, and
P(xW ,b)5P(xW ,0). At T50, the action in Eq.~2! may be
understood as an effective low-energy theory for the sup
fluid by defining the coupling constants asvJ5\prs /m and
vN51/(4p\k), wherers is the superfluid density andk is
the compressibility of the system. The effective theorySf,P
a
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then represents an exact description of the low-momen
(ukW u,L, whereL!2pr0 is an ultraviolet cutoff! phonons,
which are the Goldstone modes of the brokenU(1) symme-
try in the superfluid ground state. It is just the Landau qu
tum hydrodynamics for the superfluid4He.29 The presence
of the last imaginary term in Eq.~2! implies that in the sub-
space of low-energy states the density and the phase sh
be considered as canonically conjugate variables:

@P~xW !,f~yW !#52 idd~xW2yW !. ~3!

The terms of higher order inP and f omitted in Eq.~2!
describe the residual interactions between the phonons
the deviation of phonon dispersion from linearity. They w
be considered in Sec. IV, where I will argue that they a
irrelevant at the SF-BG critical point, at least for 1<d<2.
Note that these perturbations lead to infrared-finite corr
tions to the low-energy theory for the superfluid, which I w
assume are already included in definitions of the coupl
constantsvJ andvN .

Let me determine the canonical dimensions of the c
pling constantsvJ and vN from the effective theory~2! for
the noninteracting excitations atT50. Anticipating the ef-
fects of disorder, consider the change of these couplings
der rescaling of lengths, but allowing for the dimension
the imaginary time to be@t#52z ~that is,t;Lz, whereL is
a length!, with z as an undetermined dynamical expone
The canonical dimensions are

@vJ#5z1d22, @vN#5z2d, ~4!

as follows from recalling thatf(xW ) is a phase, so@f#50,
and @P#5d. The reader recognizes the first equation as
sentially the Josephson scaling relation for the superfl
density,rs;j22d2z,1 while the second one is the analogo
relation for the compressibility,k;jz2d.2 j is the diverging
correlation length at the transition. Note that the canoni
dimensions of both couplings vanish ind51, since for the
noninteracting excitationsz51. The last statement is equiva
lent to the algebraic decay of the single-particle correlat
function in d51 and atT50 at large distances, or, mor
precisely,

^C1~xW !C~0!&;r0uxW u2~vN /vJ!1/2
, ~5!

when uxW u→`. In d.1 the single-particle correlation func
tion in Eq. ~5! tends to a finite constant at large separatio

Consider adding a term with an external potential to
Hamiltonian~1!:

Hr5E ddxWV~xW !uC~xW !u2, ~6!

where V(xW ) is a random function of the coordinate. Ev
dently, the external potential couples directly to the parti
density only and not to the phase. One may still perform
Gaussian integration overP in the action~2! to obtain a
complex effective action for the phasef, with disorder en-
tering via an awkward imaginary termi *V(xW )]tf(xW ,t).
Since disorder is static, after integration over imaginary ti
one finds that this gives a purely boundary contribution
which the external potential couples to the windings@n(xW )#
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of the phase in the imaginary time. Fortunately, in dime
sionsd51 andd52 there exists a real~dual! representation
of the effective action in terms of the particle density21,30,31

in which disorder appears in a less forbidding form. Her
follow Haldane,27 and ind51 introduce a new fieldu8(x,t)
in the action~2! asP(x,t)5p21]xu8(x,t). Performing the
average over disorder using replicas,32 after integration over
the superfluid phase the effective replicated low-ene
theory ind51 becomes

Su5K(
i 51

N E dxE
0

b

dt$c2@]xu i~x,t!#21@]tu i~x,t!#2%

2Dr0
2 (

i , j 51

N E dx dt dt8cos 2@u i~x,t!2u j~x,t8!#,

~7!

where

u i~x,t!5u i8~x,t!1
1

4vN
E

2`

x

V~z!dz, ~8!

and I introduced the standard combinations of the coup
constantsK51/(2pvJ), c254vNvJ for later convenience.c
represents the velocity of the phonon excitations, andK is
inversely proportional to the superfluid density. The lim
N→0 at the end of calculations is assumed. Haldane’s h
ristic derivation of the effective actionSu for bosons in one
dimension24,27 is presented in Appendix A. It is worth men
tioning that the action in Eq.~7! also arises as the long
distance theory of the disordered Bose-Hubbard mode
one dimension.21,30 Disorder produces an effective intera
tion between replicas, which ind51 is reminiscent of the
interaction term in the sine-Gordon theory. There are t
important differences however. First, the interaction is n
local in imaginary time, which is a consequence of the qu
tum nature of the problem, and breaks the relativistic inva
ance of the pure system. Second, the interaction term
invariant under a shift of all fields by an arbitrary function
the coordinatex. Both features will have important conse
quences for the critical behavior at the SF-BG phase tra
tion.

III. RECURSION RELATIONS
AND THE CRITICAL EXPONENTS

In the rest of the paper I will be interested in the Bo
system at zero temperature, and therefore setb5` in Eq.
~7!. Without disorder, the effective action in Eq.~2! de-
scribes the noninteracting excitations. Under the chang
the cutoff L→L/s, or equivalently under the rescaling o
coordinates asxW→sxW andt→szt, coupling constantsK and
c scale as determined by their relations tovJ and vN and
their canonical dimensions in Eqs.~4!, with z51. Disorder
introduces effective interactions between the excitations
any dimension, and ind51 the most relevant one has
simple form given by Eq.~7!. Also, precisely ind51, both
K andc have their canonical dimensions vanishing. Thus
strategy will be to calculate the recursion relations forK and
c in d51 perturbatively in disorder from the action~7!, and
then to account for the effects of dimensionality whend
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.1 by adding terms with the canonical dimensions and w
a generalz. The reader will note that this is precisely th
logic of the minimal substraction scheme when used toge
with dimensional regularization in the theory of classic
critical phenomena. Finally, I will determine the value of th
dynamical exponent by requiring the existence of the fix
point of the recursion relations ind.1.

I now proceed with the implementation of this program
and ind51 integrate out the modes of the fieldu(x,t) that
have the momentumL.uku.L/s, for ln(s) infinitesimal,
and with any imaginary frequency2`,v,`. The details
of the perturbative calculation to two lowest orders in dis
der are presented in Appendix B. Including thed-dependent
canonical dimensions from the previous section and rede
ing the couplings aspK→K, pDr0

2/L3→D, I find the re-
cursion relations

dK

dln~s!
5~22z2d!K1

8D

Kc4
1O~D2!, ~9!

dc

dln~s!
5S z212

4D

K2c4D c1O~D2!, ~10!

dD

dln~s!
5S d12z2

1

KcDD1O~D3!. ~11!

The last three equations represent the central result of
paper, and some remarks may be in order. To the sec
order in disorderD the coefficient in front of (]tu)2 in Eq.
~7! becomes renormalized by the integration over the f
modes, whereas the one in front of (]xu)2, which is the
inverse of compressibility, does not. The recursion relat
for the velocityc is thus completely determined by the on
for K, to two leading orders. To complete the scaling tra
formation I need to specify the dynamical exponent: I choo
z to keep the velocityc constant under renormalization. Th
is essential to find a fixed point in the theory and also c
veniently decouples the recursion relation forc from the
other two. The numerical value ofc is then completely arbi-
trary. Settingc51 and insertingz5114D/K21O(D2) into
Eqs. ~9! and ~11!, I find the fixed point of the above
renormalization-group equations at

K* 5
1

3
2

e

3
1O~e2!, ~12!

D* 5
e

36
1O~e2!. ~13!

At the fixed point the dynamical exponent thus equals

z511e1O~e3!. ~14!

Note that there is noO(e2) correction in the last result. The
reason is the absence of renormalization of the coefficien
front of the (]xu)2 term in the action~7! to the second orde
in disorder. In Appendix C I show that the exact symmetr
of the disorder term in the one-dimensional theory in Eq.~7!
underu i(x,t)→u i(x,t)1 f (x) for arbitrary f (x), guarantees
that this coefficient remains unrenormalized toall orders in
D in d51. Within the proposed calculational scheme whe
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the nontrivial part of the recursion relations follows from t
theory as ind51, this represents the sufficient condition f
that all higher corrections toz in Eq. ~14! vanish, i.e.,

z5d ~15!

exactly. The conjecture of Fisheret al.2 thus follows as an
exact consequence of the formulated renormalization pro
dure near one dimension.

Linearizing the renormalization-group flow around t
critical point in Eqs.~12! and ~13! ~Fig. 1!, one finds the
correlation length exponent that determines the flow alo
the relevant direction to be

n5
1

A3e
1O~Ae!. ~16!

The other eigenvalue that determines the flow along
SF-BG separatrix gives the leading correction to scal
close tod51. n turns out to be a Laurent series inAe and
therefore of weaker dependence on dimensionality than
would expect. Fore51 the result ~16! yields n'0.58,
smaller than in the Monte Carlo calculations of Wall
et al.,20 where n50.960.1. The generalized Harri
criterion14 that requires thatn.2/d at a disordered fixed
point is also not satisfied at this order. It is possible that
higher-order terms in the expansion will increase the value
n, and remedy both discrepancies. The divergence ofn as
e→0 is a sign of vicinity of the lower critical dimension fo
the SF-BG transition.

Right at the critical point ind.1 the average single
particle correlation function shows an algebraic decay
large distances~see Appendix D!:

G~xW !;r0uxW u2K* c* . ~17!

The anomalous dimension h is defined2 by
K* c* 5d1z221h, so that

h5
1

3
2

7e

3
1O~e2!. ~18!

For e51 the above result yields a negativeh, as one would
expect based on the assumption that the single-particle
sity of statesN(e)}e(d221h)/z at the critical point diverges
at zero energy.2 The result, however, is much more negati
than the one obtained by Wallinet al. in their Monte Carlo
calculation:20 h520.160.15. Higher-order terms may brin
these two estimates closer, although expansions of
anomalous dimension around the lower critical dimensi
are usually notoriously badly convergent.

The reader may have noticed that the coefficient in fr
of the second term in the scaling equation forK depends on
the precise definition of the couplingD and is therefore ar-
bitrary. It is reassuring to realize that none of the expone
in fact, depends on the value of this coefficient.

Upon approaching the SF-BG transition from the sup
fluid side, the velocity of phonons and the superfluid dens
in d511e for e small both vanish as

c;dAe/3 ~19!

and
e-
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rs;d2Ae/3, ~20!

whered is a parameter that tunes through the transition.
contrast, ind51 both quantities approach finite values at t
superfluid side of the transition, and then vanish disconti
ously in the insulating phase. Compressibilityk;rs /c2, on
the other hand, remains finite at the transition in all dime
sions, as implied by the found exact relationz5d. Although
finite, at the transition its value remains nonuniversal a
dependent on the microscopic couplings in the system.

IV. RESIDUAL TERMS IN THE EFFECTIVE ACTION

For the fixed point in Eqs.~12! and ~13! to govern the
critical behavior at the SF-BG transition ind.1, one must
assure that the terms of higher order inP(xW ) andf(xW ) and
their derivatives that were dropped in the effective act
Sf,P are irrelevant perturbations. These terms originate fr
the kinetic energy part of the Hamiltonian~1!, which in the
density-phase representation takes the form

Hk5
\2

2mE ddxW S ro@¹f~xW !#21P~xW !@¹f~xW !#2

1
@¹P~xW !#2

4@ro1P~xW !#
D . ~21!

The effective action for the superfluid will thus contain a
ditional parts coming from the second and the third term
the above expression:

Sf,P8 5E ddxW dt$vxP~xW !@¹f~xW !#21vy@¹P~xW !#2

1O@P~¹P!2#%, ~22!

with vx and vy as two new coupling constants, which to
gether withSf,P in Eq. ~2! determine the full effective low-
energy action for the elementary excitations, without dis
der.

To examine the relevance of the two new terms inSf,P8 at
the SF-BG critical point ind.1, we first need the canonica
dimensions ofvx and vy from Eq. ~22!: @vx#5z22 and
@vy#5z222d. As long asz5d at the SF-BG critical point,
a smallvy that describes the deviation of the spectrum fro
linearity close tod51 will stay irrelevant, since its dimen
sion may change from the canonical one only bye. It thus
seems reasonable that this will remain so in the phys
dimensionsd52 and d53. The coupling constantvx , on
the other hand, under the assumption thatz5d at the SF-BG
fixed point, is irrelevant by power counting close tod51,
but becomes marginal ind52 and relevant aboved52. The
situation is analogous to the effect of thec6 term in the
Ginzburg-Landau-Wilson theory at the Gaussian fixed po
and one must examine the corrections to the dimension ovx
introduced by disorder. Dropping thevy term in Eq. ~22!,
after integration over the phase ind51 one finds a term



,

cu

rm

as
a

It
l

ve
n-

l
er

to
b

tion,

-
n,

ase

for
in

oint

for
ation

e

r
ect
pa-

te

976 PRB 58IGOR F. HERBUT
Su854pvxK
2E dx dt~]tu!2$~]xu!1O@~]xu!2#%,

~23!

in addition toSu in Eq. ~7!. To the lowest order in disorder
I found previously that only the couplingK in front of the
(]tu)2 term becomes renormalized. Under the change of
off L→L/s then

vxK
2→vx~s!K2~s!5vxK

21O~D2,vx
2!. ~24!

InsertingK(s) I then find the recursion relation forvx :

dvx

dln~s!
5S z222

16D

K2c4
1O~D2!D vx1O~vx

2!. ~25!

Whend52 andz52, at the fixed pointD* /K* 2;1, so to
truly answer the question of relevance of smallvx at the
SF-BG critical point we need all the higher-order terms inD
in the bracket in the equation above. However, the first te
in the expansion of the scaling dimension ofvx in D sug-
gests thatvx most likely stays irrelevant even ford52. The
negative sign of this term comes from the effective incre
of K under the influence of disorder, which on physic
grounds may be expected to persist to higher orders.
plausible then thatvx is irrelevant at the SF-BG critica
point, at least for 1<d<2.

Finally, consider the higher harmonics in the effecti
action in Eq.~7! that arise from the components of the ra
dom potential with the wave vectorsk;2mpr0 with m>2
~see Appendix A!:

Su,hh52 (
m52

`

Dm (
i , j 51

N E dx dt dt8cos 2m

3@u i~x,t!2u j~x,t8!#. ~26!

Completely analogously as forD, one finds the recursion
relations

dDm

dln~s!
5S d12z2

m2

KcDDm1O~Dn
2!, ~27!

so that allDm with m>2 are irrelevant at the SF-BG critica
point This is similar to the irrelevance of vortices with high
vorticity at the Kosterlitz-Thouless transition of the 2DXY
model.

V. LONG-RANGE COULOMB INTERACTION

Now that the formalism is in place it is interesting
consider the case of long-range Coulomb interactions
tween bosons in the Hamiltonian~1!, vc(r )5e2/r . The qua-
dratic part of the long-distance action atT50 is now
t-

e
l
is

e-

Sf,P5E ddxW dtS vJ

2p
@¹f~xW ,t!#2

1E ddxW8
e2

uxW2xW8u
P~xW ,t!P~xW8,t!

1 iP~xW ,t!]tf~xW ,t!D ~28!

for d.1. The canonical dimension of couplingvJ thus re-
mains the same as in the case of the short-range interac
while the canonical dimension of the chargee can be read
from Eq. ~28!:

@e2#5z21. ~29!

I define the long-range interaction ind.1 as

vc~rW !5E ddkW

~2p!d

e2

kd21
eikW•rW. ~30!

Precisely ind51 this definition coincides with the short
range interaction and not with the Coulomb interactio
which has the Fourier transform; ln(1/k) in d51. Since I
am not interested ind51 per se, but only ind.1, for the
present purposes this distinction is not important.33 The only
difference in the scaling equations from the short-range c
is then in the replacement of the recursion relation~10! with

dc

dln~s!
5S z1

d23

2
2

4D

K2c4D c1O~D2!, ~31!

whereK is defined exactly as before, butc254vJe
2. Equa-

tion ~31! may be understood as the recursion relation
charge, in place of the equation for the phonon velocity
the short-range case. Assuming that at the SF-BG fixed p
the value of the charge is finite28 fixes the value ofz, by
requiringc51, for example. Combining Eqs.~31!, ~9!, and
~11!, I find the dynamical exponent now to be

zc51. ~32!

This is again an exact result within the present formalism,
the same reason as in the short-range case. The correl
length exponent is

nc5
A2

A3e
1O~Ae!. ~33!

For e51 this yieldsnc'0.82, within the bounds set by th
Monte Carlo calculations of Wallinet al.,20 nc50.9060.15.
The inequalityn.2/d is not satisfied by the lowest-orde
estimate, but presumably higher-order terms would corr
this. The anomalous dimension of the single-particle pro
gator is now

hc5
1

3
2

10e

9
1O~e2!. ~34!

The result fore51 is again much smaller than the Mon
Carlo estimate20 wherehc50.860.4. It may be interesting
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to note however that the difference between anomalous
mensions for Coulomb and short-range interactions
roughly the same as found numerically.

The analysis of the relevance of the residual interacti
in the superfluid action from the preceeding section can e
ily be repeated in the present case with the same final c
clusion. In fact, since one expects thatz51 for the Coulomb
interaction, bothvx andvy appear irrelevant ind52 andd
53 already by simple power counting.

VI. SUPERFLUID-MOTT INSULATOR TRANSITION
IN PERIODIC POTENTIAL

It is well known that, in a purely periodic potential,
Bose system at an integer number of bosons per period
dergoes a transition from a superfluid into an incompress
Mott insulator ~MI ! with increasing repulsion betwee
bosons, which is in the universality class of theXY model.34

Since the critical exponents of theXY model are known
virtually exactly,35 one may test the presented method
calculation on this standard case. Ind51 the effective action
in the Haldane representation becomes

Su52pTxyE dx dt$@]xu~x,t!#21@]tu~x,t!#2%

2vE dx dt cos@2p~r021!x12u~x,t!#, ~35!

so that for one boson per period (r051) it reduces to the
sine-Gordon theory. Relativistic invariance of the theory i
plies immediately thatz51. In d511e the renormalization-
group equations for the SF-MI problem are simp
deformations36 of the celebrated Kosterlitz-Thouless recu
sion relations:37

du

dln~s!
52e~12u!12v21Buv21O~v4,u2v2!, ~36!

dv
dln~s!

52uv1Av31O~uv3,ev !, ~37!

where u5(121/8pTxy), Txy is the temperature of the
equivalent classicalXY model ind52 andv is the fugacity
of vortices. The coefficients in Eqs.~36! and~37! are known
to beB54 andA525,38 but I left generalA andB in the
recursion relations to emphasize that these two quantitie
contrast to the coefficients of the lowest-order terms, se
rately are not universal. Linearization of the flow around t
simple critical point of the recursion relations~36! and ~37!
then yields the correlation length exponent

nxy5
1

2Ae
S 12

212A1B

8
Ae1O~e! D . ~38!

It is interesting that the exponentn to this order depends onl
on theuniversallinear combination of the coefficientsA and
B.38 This is a nontrivial check of the consistency of the e
pansion around the lower critical dimension for this proble
and suggests that the same universality may be expecte
the SF-BG case as well. Takinge51 in the last equation
i-
is

s
s-
n-

n-
le

f

-

in
a-
e

-
,
in

one findsnxy50.75, reasonably close to the 3DXY value of
0.67.35 For e52, nxy50.60, somewhat farther from the ex
pected Gaussian value12 .

VII. SUMMARY AND DISCUSSION

In this paper I have presented an analytical approach
the critical behavior at the superfluid-Bose glass transition
T50 based on the expansion around the lower critical
mensiond51. In the vicinity of d51 the SF-BG critical
point becomes infinitesimal in disorder, which enables one
obtain the recursion relations for the coupling constants
the theory as expansions in the small parametere5d21. I
found that the critical exponent isz5d (z51) for the short-
range~Coulomb! interaction between bosons, in accord wi
the conjectures based on finiteness of the compressibi2

~charge28! at the transition. I obtained the correlation leng
exponent and anomalous dimension to two leading orders
the short-range and the Coulomb universality classes,
demonstrated that the analogous calculation for
superfluid-Mott insulator transition leads to the results in r
sonable agreement with the knownnxy exponent ind52
11. Higher-order anharmonic terms in the effective acti
for the superfluid that describe interactions between the
citations and the deviation of the dispersion relation fro
linearity are argued to be irrelevant at the SF-BG critic
point, at least for 1<d<2.

The critical point found in this work should be understo
as describing the proliferation of topological defects in t
superfluid ground state, which areinducedby the disorder
potential atT50. In this sense the SF-BG~and even more
SF-MI! transition is similar to the Kosterlitz-Thouless finit
temperature transition in theXY model; both are defect
mediated transitions, except that the role of the entropy in
quantum (T50) problem is played by the external~random
or periodic! potential. This is precisely why the dual formu
lation of the problem is useful: it rewrites the theory in term
of ‘‘correct’’ degrees of freedom.

A similar expansion around one dimension for t
superconductor-insulator transition had been attempted
lier by Kolomeisky,40 who argued that the physical critica
point exists only ind,1, in contradiction with my conclu-
sions. The mistake in his work lies in using the effecti
action ind51 in the Haldane form~7! to infer the canonical
dimensions of the coupling constants indÞ1. The transfor-
mation from the particle density to the variableu is a par-
ticular realization of the duality transformations,22,30,31and in
this form it is possible only ind51 and meaningless every
where else. For this reason one needs to determine the
nonical dimensions ofK and c from the effective action in
the form ~2!, which is general and exists in any dimensio
Note that this does not contradict my later use of the eff
tive action in Eq.~7! to calculate the recursion relation
since the nontrivial parts of these are determined by
theory precisely ind51.

The reader should note that the considered SF-BG tra
tion in dirty bosonic system should be the right universal
class for thes-wave superconductor-localized insulator tra
sition in disordered electronic systems, at least in the vicin
of one dimension. This is known to be true precisely ind
51,24 and should remain true in its neighborhood as we
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since the attractive interaction in the singlet channel will s
open the gap in the spin sector.39

Experimentally, the simplest universal quantity to me
sure is the product of dynamical and correlation length
ponents, which follows for example from collapsing the
nite temperature resistivity data on either the insulating
the superconducting side onto a universal curve.4 Although
the experimental situation is presently somewhat uncl
most measurements are consistent withz'2 andn>1 for
the short-range interactions between bosons.4,6 It appears that
before attempting a more realistic comparison with exp
ments the present calculation would need to be pushe
higher order. This may be done by remaining faithful to t
logic of a minimal substraction scheme that would requ
the higher-order terms in the recursion relations to be ca
lated only ind51. The results for the SF-MI transition in th
periodic potential, where I relied on the already calcula
higher-order recursion relations, are encouraging in
sense.

The presented theory also facilitates a systematic tr
ment of a number of interesting issues in the field, like
interplay between periodic potential and disorder,21,41 the fi-
nite temperature crossovers close to the SF-BG criticalit42

and the corrections to scaling, which are left for future co
siderations.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
ACTION IN d51

Haldane27 proposed a way to improve upon the hydrod
namic theory in Eq.~2! in d51 by including the structure o
the quantum fluid at shorter length scales. Here I outline
reasoning that leads to the effective action~7!, which forms
the basis for most of the calculations in this paper. Introd
a field u9(x) so that]xu9(x)5pr(x). As the density is dis-
creet and therefore a sum ofd functions,u9(x) jumps byp
at the positions of particles. So, we may write

r~x!5p21]xu9~x! (
n52`

`

d@u9~x!2np#, ~A1!

or using the Poisson summation formula and introducing
local deviation from the average densityP(x):

r~x!5@r01P~x!# (
m52`

`

ei2mu9~x!. ~A2!

The m50 term in the last formula may then be understo
as the coarse-grained density, and the rest of the sum y
shorter and shorter length-scale corrections. The imagin
time action in Eq.~2! together with the random potentia
term now becomes
l

-
-

r

r,

i-
to

e
u-

d
is

t-
e

-

I.

r

e

e

e

lds
ry

Sf,P5E dxE
0

b

dtS vJ

2p
@]xf~x,t!#212pvNP2~x,t!

1 iP~x,t!]tf~x,t!1V~x!P~x,t!

1r0V~x!~ei2u9~x,t!1c.c.! D1hh, ~A3!

where ‘‘hh’’ denotes the higher harmonics that arise from
infinite sum in Eq.~A2!. Introducing a new fieldu8(x,t) as
p21]xu8(x,t)5P(x,t), one may write the term tha
couples the particle density and the superfluid phase as

i

pE dxE
0

b

dt@]xf~x,t!#@]tu8~x,t!#. ~A4!

The phasef can now be straightforwardly integrated ou
which leads to

Su5E dxE
0

b

dtS 2vN

p
@]xu8~x,t!#21

1

2pvJ
@]tu8~x,t!#2

1V~x!
1

p
]xu8~x,t!1r0V~x!~e2i [u8~x,t!1pr0x]1c.c.! D .

~A5!

Fourier components ofV(x) with the wave vectorsk!r0

couple only toP(xW ) in Eq. ~A5!, and can be completely
absorbed by a shift ofP, i.e., by defining yet another fieldu
as in Eq.~8!. These components lead only to forward sc
tering, and ind51 are unrelated to localization. The com
ponents ofV(x) with k;2pr0, however, couple directly to
expi2u8(x), which is the operator that creates 2p phase slips
in the ground state, and cannot be eliminated this way.
suming the Gaussian probability distribution

P@V~k!#;e2
V* ~k!V~k!

D ~A6!

for the Fourier components withk;2pr0, after introducing
replicas and averaging overV(k) one obtains Eq.~7!, as in
the text. For a different, and maybe somewhat more rigor
derivation of the theory~7!, the reader should consult th
second paper in Ref. 21.

APPENDIX B: MOMENTUM SHELL RG

Define the slow and the fast components of the fieldu:

u~x,t!5u1~x,t!1u2~x,t!, ~B1!

where

u1~x,t!5E
2L/s

L/s dk

2pE2`

` dv

2p
u~k,v!eikx1 ivt, ~B2!

and analogously theu2, but with the integral over moment
going overL/s,uku,L. To the lowest order inD, after
integrating out the fast modes the remaining action for
slow modes becomes
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Su1
5K(

i
E dx dt$c2@]xu1,i~x,t!#21@]tu1,i~x,t!#2%

2Dr0
2(

i , j
E dx dt dt8cos 2@u1,i~x,t!2u1,j~x,t8!#

3^cos 2@u2,i~x,t!2u2,j~x,t8!#&21O~D2!, ~B3!

where the average is performed over the quadratic part o
action for the fast modes. First, consider the terms o
diagonal in replica indices. One finds

^cos 2@u2,i~x,t!2u2,j~x,t8!#&25s2 1/pKc ~B4!

for iÞ j . If i 5 j

^cos 2@u2,i~x,t!2u2,i~x,t8!#&25exp

2S L ln~s!

p2K
E

2`

` dv

c2L21v2
~12eiv~t2t8!!

1O@ ln~s!2# D . ~B5!
th

e

he
-

The first term in the bracket in theO@ ln(s)# term matches the
contribution from the off-diagonal terms in Eq.~B4! and
together they renormalizeD:

D→D~s!5Ds[32~pKc!21]1O~D2!. ~B6!

After expanding the cosine term inSu1
to the quadratic order

we see that the time-dependent term in Eq.~B5!, apart from
generating some irrelevant terms, also renormalizes the
efficient in front of (]tu1)2. Thus, for an infinitesimal ln(s),

K→K~s!5K1
8Dr0

2

pKc4L3
ln~s!1O@D2,ln~s!2#. ~B7!

To the first order inD the nonlocal term inx does not get
corrected by the elimination of the slow modes:

Kc2→K~s!c~s!25Kc21O~D2!. ~B8!

After redefinitions of the coupling as described right abo
Eq. ~9!, we see that differentiating the above expressio
yields the lowest-order terms in Eqs.~9!–~11! when d5z
51.

Next, consider the contribution quadratic inD to Su1
:

2
D2r0

4

2 (
i , j ,m,n

E dx dt dt8dy dv dv8„cos 2@u1,i~x,t!2u1,j~x,t8!#cos 2@u1,m~y,v !2u1,n~y,v8!#

3$^cos 2@u2,i~x,t!2u2,j~x,t8!#cos 2@u2,m~y,v !2u2,n~y,v8!#&22^cos 2@u2,i~x,t!2u2,j~x,t8!#&2

3^cos 2@u2,m~y,v !2u2,n~y,v8!#&2%1sin 2@u1,i~x,t!2u1,j~x,t8!#sin 2@u1,m~y,v !2u1,n~y,v8!#

3^sin 2@u2,i~x,t!2u2,j~x,t8!#sin 2@u2,m~y,v !2u2,n~y,v8!#&2…. ~B9!
lds

en-
ela-

not

he

-
ef-

te-
ose
Using the identities

^cosa cosb&25e2
^a2&21^b2&2

2 cosĥab&2 , ~B10!

^sin a sin b&25e2
^a2&21^b2&2

2 sinĥ ab&2 , ~B11!

and realizing that all averages on the right-hand side in
last two equations are; ln(s), we see that the first term in
Eq. ~B9! is of order@ ln(s)#2. To the first order in ln(s) only
the second term in Eq.~B9! can potentially contribute to the
action for the remaining slow modes, and it equals to

28D2r0
4(

i , j ,n
E dx dt dt8dy dv dv8

3sin 2@u1,i~x,t!2u1,j~x,t8!#

3sin 2@u1,i~y,v !2u1,n~y,v8!#^u2,i~x,t!u2,i~y,v !&2

1O$@ ln~s!#2%. ~B12!

Since the corelator appearing in the last equation drops
ponentially inut2vu and ux2yu, the dominant contribution
e

x-

comes from the leading term in the expansion of the fie
under the second sinus around the point (x,t) and (x,t8).
For n5 j one finds the term

2
8D2r0

4ln~s!

4pKcL3 (
i , j

E dx dt dt8

3sin22@u1,i~x,t!2u1,j~x,t8!#, ~B13!

which obviously, besides adding a constant to the free
ergy, just generates a higher harmonic. The recursion r
tion in Eq. ~11! is therefore correct toO(D3). There may be
an O(D2) renormalization ofK deriving from the term
~B12!, but the reader may convince himself that this does
matter for the exponentsn and h to the two lowest orders
in e.

APPENDIX C: PROOF THAT z5d TO ALL ORDERS

I derive the general form of the recursion relation for t
coupling constantc, from which it will follow that for the
short-range interactionsz5d within the considered renor
malization procedure. The first step is to show that the co
ficient in front of the (]xu)2 term in the theory~7! in d51,
Kc252vN /p, cannot become renormalized during the in
gration over the fast modes. Let me assume that the B
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system is of a finite sizeL and impose the periodic bounda
conditions in the space direction

u i~0,t!5u i~L,t! ~C1!

for all 0,t,\/KBT. To be precise I will assume a finit
temperatureT, although this does not affect the argument
any way. The renormalizedvN(L) at the scaleL can be
defined as

vN~L !5
pkBTL

2\

dF̄~d!

d~d2!
U

d50

, ~C2!

whered is the imposed twist in the boundary conditions
the space direction

u i~L,t!5u i~0,t!1d. ~C3!

Defining a new fieldu i8(x,t)5u i(x,t)2dx/L that satisfies
the periodic boundary conditions, and noticing that the d
order term in Eq.~7! is invariant under this transformation,
readily follows that

vN~L !5vN , ~C4!

independently of the length scaleL. In other words, under
the scale transformationx→sx,

d

d ln~s!
Kc250 ~C5!

exactly, ind51. If one defines a functionF(D,K,c) that is
not explicitly dependent on dimension as

dK

d ln~s!
5~22z2d!K1F~D,K,c! ~C6!

in d.1, then Eq.~C5! implies that

dc

d ln~s!
5S z212

F~D,K,c!

2K D c. ~C7!

Demanding that the last two differential recursion relatio
vanish at some nontrivial couplingsD* , K* , andc* , implies
that at the fixed point

z5d. ~C8!

APPENDIX D: BOSE CORRELATION FUNCTION
AT THE CRITICALITY

It is worth showing how the algebraic decay of the dis
der averaged single-particle correlation function at the c
o

e

oi
-

s

-
i-

cal point arises ind.1. The Bose operator correlation func
tion averaged over disorder is

G~xW !̄;r0^e
if1~xW ,0!2 if1~0,0!&, ~D1!

where the average is to be taken over the replicated ac
Right at the SF-BG transition, the above average becom

G~xW !̄;r0exp22pK* c* E dd1zkW

~2p!d11

12eikW•xW

k22hf
, ~D2!

wherehf is the anomalous dimension of the phase corela
defined as

hf5
d lnZK

d ln~k!
, ~D3!

where the renormalization factorZK is defined asK(s)
[KZK . Since under the scale transformationL→L/s, k
→k/s, it follows that

hf52
d lnZK

d ln~s!
. ~D4!

The recursion relation forK may then, by definition, be writ-
ten as

dK

d ln~s!
5~22z2d2hf!K, ~D5!

so that at the fixed point we must havehf522z2d. Insert-
ing this into Eq.~D2! the expression in the exponential b
comes

K* c*

~2p!d21S )
n52

2d22 E
0

p

sinnu du D
3E

0

Ldk

k E
0

p

sin u~12eikx cosu!du→
K* c* ln~Lx!

2eG~11e!
,

~D6!

for x→`, and I assumedd5z. The explicite dependence in
the result arises from the integration ind.1. Adhering to the
philosophy of minimal substraction, we should sete50 in
the last equation, so that the only dependence on dimens
ality is the one implicit in the value ofK* andc* at the fixed
point. Thus, Eq.~17! is obtained.
ev.
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