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Critical behavior at superconductor-insulator phase transitions near one dimension
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| argue that the system of interacting bosons at zero temperature and in random external potential possesses
a simple critical point that describes the proliferation of disorder-induced defects in the superfluid ground state,
and that is located at weak disorder close to and above one dimension. This makes it possible to address the
critical behavior at the superfluid-Bose glass transition in dirty boson systems by expanding around the lower
critical dimension ofd=1. Within the formulated renormalization procedure néarl, the dynamical critical
exponent is obtained exactly and the correlation length critical exponent is calculated as a Laurent series in the
parameter/e, with e=d—1: z=d, v=1/y3e+ O( /€) for the short-range, ant=1, v=/2/3e+ O( e), for
the long-range Coulomb interaction between bosons. The identified critical point should be stable against the
residual perturbations in the effective action for the superfluid, at least in dimensisds<2, for both
short-range and Coulomb interactions. For the superfluid-Mott insulator transition in the system in a periodic
potential and at a commensurate density of bosons, sziﬁcq%\/E)Jr %+O(\/Z), which yields a result in
reasonable agreement with the knoXiY critical exponent ind=2. The critical behavior of the superfluid
density, phonon velocity, and the compressibility in the system with short-range interactions is discussed.
[S0163-182608)04826-1

. INTRODUCTION e, and e=4—d— ¢, .13 Unfortunately, the perturbative re-
sults for the critical exponents obtained this way appear to
The transition between the superfl(F and the local- have a very poor convergenceén, rendering this approach
ized insulating Bose-glas§BG)] ground states in the disor- of limited use for calculations of the critical exponents. That
der bosonic systems at zero temperature is a paradigmatibis may not be a coincidence could be suspected on the
example of a quantum phase transitidrit is believed to be  basis of certain exact inequalities that should be satisfied by
relevant for a number of experimentally observedthe exponents at the disordered critical poftitand that dic-
superconductor-insulator transitions at low temperatures, intate that their values should be very different than at the
cluding those in Josephson-junction arrdymnorphous su- Gaussian fixed point. For example,ds2 ande,=1, at the
perconducting film$, underdoped high-, cuprates, *He  SF-BG critical point one expecis=1, andz~2, in contrast
and °He in disordered medi®’ and possibly in two- to v=13 andz=1 at the Gaussian fixed point for the relativ-
dimensional electron gas in Si metal-oxide-semiconductoistic bosons. In fact, within the double expansion the dis-
field-effect transistor8.The vortex transitions in type-Il su- ordered and the Gaussian fixed points generally do not coa-
perconductors in a magnetic field in the presence of correlesce at the upper critical dimensidy,=4, but instead the
lated disorder have also been related to this proBt€hiDe-  disordered critical point stays always nontriviakcept when
spite its ubiquity in nature and good qualitative e=¢,=0), and becomes unstable only in dimensions higher
understanding of the insulating phésthe critical behavior  than somel.>d,,,.1° All this is of course completely differ-
at the SF-BG transition is only poorly known. This may ap-ent from the standard 4e expansion for the classical
pear surprising, particularly when contrasted with the greatlysystems;! where the Wilson-Fisher critical point coincides
successful theory of classical critical phenomé&hayen in  with the Gaussian fixed point at the upper critical dimension,
the presence of quenched disoréfeThe source of the diffi-  becomes unstable right above it, and the critical exponents in
culty can be traced to the difference between the classicdhe physical dimensions are numerically not too different
and the quantum disordered systems that becomes most dpem their Gaussian values. One might speculate that the
parent in the path integral formulation of the quantum prob-failure of the doubles expansion may be due to nonanalyt-
lem: ad-dimensional quantum system &0 maps onto a icity of the critical exponents as functions ef .
d+ 1-dimensional classical theory, but the disorder potential Recognizing the limitations of the double expansion,
appears random only i dimensions, while it is completely many authors turned to different ways of addressing the
correlated in the remaining dimension that represents th8F-BG transition: largdN,!’ real-space method§, strong-
imaginary time. This is because static disorder is representatbupling expansioh’ numerical calculation® and the
by a time-independent random potential. The unpleasarenormalization group in fixed dimensfdrhave all been ap-
consequence of this fact is that there is no upper criticaplied to this problem. In the absence of a small parameter,
dimension for the SF-BG transition in the standard senseone is left feeling uneasy with the results obtained by these
One way to try to deal with this problem is to demote amethods, and it would still be desirable to have a controlled
number of imaginary-time dimensions from unity to a smallanalytical approach to the SF-BG critical point that would be
numbere,, and then to perform a double expansion in bothfree of the conceptual and the calculational problems of the
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D develop afT=0. Ind= 1+ € one may still think oK, but no
d=1 longer as a marginal coupling; it should slowigontrolled

\EQ\), by €) scale to zero, so that the single-particle correlation

4 function tends to a finite constant at large distances. Thus a
| K small deviation of dimensionality of the system from unity
should produce a smatiegativeterm in the recursion rela-

D BG tion for K, which then may be balanced by the positive term
d>1 induced by disorder. This opens a possibility of having a
random critical point in the physical region of the coupling
space that is infinitesimal in disorder slightly above one di-
€~D* mension(see Fig. 1
The central assumption made here is that the SF-BG criti-
- cal point ind=2 smoothly evolved from the trivialin the
SF K K sense thaD* =0) SF-BG critical point ind=1. The addi-

FIG. 1. The renormalization-group flow id>1. Close tod tional motivation for this idea comes from the spudy of the
=1 the fixed point that controls the transition between the superdisordered Bose-Hubbard modelUsing the duality trans-
fluid (D—0, K—0) and the localized—, K—) phases is at formations to map the dirty-boson model on lattice onto a
a small value of disordeD* ~ . Inset(a) depicts the flow ind  field theory for defect degrees of freedom, it was noticed that
<1, where only the localized phase is stable, and the fixed pointh® SF-BG critical point in the dual formulation arises
lies in the unphysical regioB <0. Precisely ati=1 the fixed point ~ through similar renormalization scenarios @1 and d
lies on the marginal line @ =0 [inset(b)]. =2. The form of the dual theories in one and two dimen-

sions is quite differert! reflecting a more complicated na-

double € expansion. Besides providing a practical tool forture of defects in higher dimensions, nevertheless, in both
calculation of the universal quantities at the SF-BG phaseases it is the coupling of the external potential to the field
transition, such a scheme would be expected to be able tnat describes topological defects of the phase of the super-
correctly discern different universality classes of fluid order parameter that ultimately determines the critical
superconductor-insulator transitions, similarly as the celbehavior. The physical mechanism for destruction of super-
ebratede expansion does in the field of classical critical fluidity at T=0 is postulated to be the sameds=1 andd
phenomena. =2: the unbinding of phase slip-antiskiim d=1) or vortex-

In this paper | present an attempt to develop such a sysantivortex(in d=2) pairsinducedby disorder destroys the
tematic theory of the SF-BG critical point as a perturbativephase coherence. The critical point that describes this transi-
expansion in deviation of spatial dimensionalilyof the tion is strongly coupled ind=2, but becomes weakly
quantum system from unity. That the parameterd—1 ef-  coupled ind=1, which suggests an expansion around the
fectively controls the value of disorder at the latter solvable case.
superconductor-insulator critical point has been suggested In the rest of the paper this idea is used to calculate the
previously by the author in Ref. 22, where this was used taritical exponents at the SF-BG transition in the systems of
study the superconductor-insulator transition in the model otlisordered bosons with short-range and long-range Coulomb
disordered attracting spinless fermions near one dimensiomepulsionnearone dimension. My starting point is the effec-
The basic idea is rather general and may be understood quative low-energy action for the phonon excitations above the
tatively as follows. Consider a quantum system of interactingSF ground stafé in the presence of an external random po-
bosongthat may be Cooper pair composites, for instarice tential. Neard=1 the nontrivial part of the recursion rela-
d=1 and atT=0: in the absence of any external potentialtions is determined from the theory as preciselydis 1,
the Bose single-particle operator will exhibit a power-law while the effect of dimensionality enters through the nonva-
guasi-long-range correlations, with a nonuniversal pokver nishing canonical dimensions of the coupling constants. To
depending on the microscopic interactioksmay therefore handle the disorder term | take advantage of the density rep-
be understood as an exactly marginal coupling constantesentations of the theozﬁ/in d=1, where it may be under-
What will be the effect of a random external potential? Itstood as dual to the phase representattamd in which the
must suppress superfluidity by trying to localize the elemenexternal potential couples to the operator that creates 2
tary excitations. In the language of renormalization groupphase slips in the superfluid ground state. | first study the
this means that it should producepasitiveterm in the re- case of the short-range interaction between bosons in detail,
cursion relation foK, in an attempt to drive the Bose single- later to extend the calculation onto the Coulomb universality
particle correlation function shorter ranged. Theclass. The recursion relations are derivedtte?) and the
renormalization-group flow of the disorder coupling constantcorrelation length critical exponents and the anomalous
D will in turn be affected byK, so that ifK is larger than dimensions are calculated as series énto two lowest or-
someK*, smallD is relevant and vice veréd?*The crucial  ders, whereas the dynamical critical exponent is obtained
point is that the marginality oK in d=1 without disorder exactly. In particular, within the presented formalism the
forces the SF-BG fixed point to lay @* =0 [and some conjecture of Fisheet al>?® that the dynamical exponeat
finite K=K*, see Fig. b)] in d=1. To use this fact to =d andz=1 for the short-range and the Coulomb repulsion
develop an expansion in small parameterd—1 for the  between bosons, respectively, holds exactly as long as the
problem with disorder, one must also observe the followingcritical point is smoothly connected to the onedr 1. For
power-law superfluid correlationgwithout disordey are the short-range interactions, both the superfluid density and
characteristic ofl=1;?° in d>1, true long-range order will the phonon velocity renormalize to zero at the SF-BG tran-
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sition, as power laws with powers that vanish-age close  then represents an exact description of the low-momentum

to d=1. Compressibility, on the other hand, approaches §|IZ|<A, where A <2mp, is an ultraviolet cutoff phonons,
finite constant at the transition, in accordance with the exwhich are the Goldstone modes of the brokefl) symme-
pected gapless nature of the Bose glass phase. ~try in the superfluid ground state. It is just the Landau quan-
The paper is organized as follows. In the next section kum hydrodynamics for the superfluitHe?® The presence
define the problem and determine the canonical dimensiongf the last imaginary term in Eq2) implies that in the sub-

of the coupling constants in the effective action in the case oépace of low-energy states the density and the phase should
short-range interactions. In Sec. Ill the recursion relations fope considered as canonically conjugate variables:

the coupling constants to two lowest orderseird—1 are

presented, a_nd the criticgl exponents for the case of short- [H()Z),¢(37)]= _i5d()2_§). (3)
range repulsion are obtained. In Sec. IV | examine the rel- ) ) ) )

evance of the residual terms in the superfluid effective actior] "€ terms of higher order il and ¢ omitted in Eq.(2)

at the SF-BG critical point. Section V presents the results fofescribe the residual interactions between the phonons and
the critical exponents in the case of Coulomb repulsion beth® deviation of phonon dispersion from linearity. They will
tween the bosons. | test the expansion method against t¢ considered in Sec. IV, where | will argue that they are
known results for thex'Y universality class relevant for the ielevant at the SF-BG critical point, at least fosf<2.
superfluid-Mott insulator transition in a periodic potential in NOte that these perturbations lead to infrared-finite correc-
Sec. VI. Summary and the discussion of the main points i§ions to the low-energy theory for the superfluid, which | will
given in the last section, and the calculational details ar@SSume are already included in definitions of the coupling

relegated to the Appendixes. constanty; anduy. _ . _
Let me determine the canonical dimensions of the cou-

pling constante ; andvy from the effective theory2) for
the noninteracting excitations at=0. Anticipating the ef-
| begin by defining the system of interacting bosons withfects of disorder, consider the change of these couplings un-
the standard second-quantized Hamiltonian: der rescaling of lengths, but allowing for the dimension of
the imaginary time to bgr]= —z (that is,7~L?, whereL is
h? 4= - o a length, with z as an undetermined dynamical exponent.
H= ﬁf d%| VW (x)] The canonical dimensions are

II. HAMILTONIAN AND THE CANONICAL DIMENSIONS

1 doade - N > 12 - [UJ]=Z+d—2, [UN]:Z_d, (4)

+§fd xd%o(x=y)[T)[¥(y)5, Q) , N
as follows from recalling thatp(x) is a phase, sp¢p]=0,

and[II]=d. The reader recognizes the first equation as es-
sentially the Josephson scaling relation for the superfluid
density,ps~ £279721 while the second one is the analogous
relation for the compressibilitys~ ¢2~9.2 £ is the diverging
correlation length at the transition. Note that the canonical

wherev(r) is a short-range repulsive interaction, witiq
=0) finite, |¥|?2=¥™¥, and ¥ satisfies standard bosonic
commutation relations. The Hamiltonidah) has a superfluid
ground state in all=1. The form of the effective theory for
the Iow-energy-excnatmns-may be derived by \_Nmmg thedimensions of both couplings vanish ih=1, since for the
Bose operator in the density-phase representatio@)  noninteracting excitations= 1. The last statement is equiva-
= pM2(x)expi¢(x),?° wherep(x) = po+I1(x), with II(x) be-  lent to the algebraic decay of the single-particle correlation
ing a local deviation from the average density of bospis  function ind=1 and atT=0 at large distances, or, more
Expanding the Hamiltonian to the quadratic ordedinand  precisely,

¢, the imaginary time quantum-mechanical actid ) ) 0

= [dO%d (AW 9. W+ H[W,W])/% at finite temperaturd (WH(X)W(0))~ po|x| ~n/0a™, (5)

becomes - . . .
when x| —. In d>1 the single-particle correlation func-

(B v, R R tion in Eq. (5) tends to a finite constant at large separations.
5¢,n=f ddxf dr(z—[V¢(x,T)]2+ 27\ I12(X,7) Consider adding a term with an external potential to the
0 ™ Hamiltonian(1):

+iTI(X,7)d,p(X,7) + ) ) Hr=f ARV ()W ()2, ©

wherep=1/kgT, and the terms of higher order Ithi(x) and  where V(x) is a random function of the coordinate. Evi-
¢>(>?) and their derivatives have been omitted for the mo-dently, the external potential couples directly to the particle
ment. The boundary conditions satisfied by the fluctuatinglensity only and not to the phase. One may still perform the
fields areg(x, 8) = #(X,0)+ 27n(X), with n(X) integer, and  Gaussian integration ovdd in the action_(2) to obtain a
1'[()2,,8)=H(>?,0). At T=0, the action in Eq(2) may be complex effective action for the phagg with 9|sord(ir en-
understood as an effective low-energy theory for the supertering via an awkward imaginary term/V(x)d,¢(X,7).
fluid by defining the coupling constants ag=7%mps/mand  Since disorder is static, after integration over imaginary time
vn=1/(47h k), whereps is the superfluid density and is ~ one finds that this gives a purely boundary contribution in
the compressibility of the system. The effective theBpy;; ~ which the external potential couples to the windifig$x) ]
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of the phase in the imaginary time. Fortunately, in dimen->1 by adding terms with the canonical dimensions and with
sionsd=1 andd=2 there exists a redtual) representation a generalz. The reader will note that this is precisely the
of the effective action in terms of the particle den&ii>*  logic of the minimal substraction scheme when used together
in which disorder appears in a less forbidding form. Here Iwith dimensional regularization in the theory of classical
follow Haldane?” and ind=1 introduce a new field’ (x, 7) critical phenomena. Finally, | will determine the value of the
in the action(2) asIl(x,7)=m" 10,0’ (x,7). Performing the dynamical exponent by requiring the existence of the fixed
average over disorder using replicasfter integration over point of the recursion relations it>1.
the superfluid phase the effective replicated low-energy | now proceed with the implementation of this program,
theory ind=1 becomes and ind=1 integrate out the modes of the fieifx, 7) that
N have the momentun\ > |k|>A/s, for In(s) infinitesimal,
B 2 5 2 and with any imaginary frequency *<w<e. The details
Sp= K;l dxfo dr{cdx0i(x,7)]°+[3.6(x,7)]%} of the perturbative calculation to two lowest orders in disor-
der are presented in Appendix B. Including th&lependent
5 ) ) canonical dimensions from the previous section and redefin-
—Dpoijzl dx dr dr'cos 7 6(x,7) — 0;(x,7")], ing the couplings asrk —K, wDp3/A3—D, I find the re-
' cursion relations

N

(7
where dk o E 2
dins ~ (272 d)K+KC4+O(D ), 9)
1 X
ﬁi(x,r)=0i’(x,r)+—f V(z)dz, (8)
4UN — dC
. o . el I A c+0(D?), (10
and | introduced the standard combinations of the coupling din(s) K2c*
constantX = 1/(27v ), c®=4vyv; for later convenience
represents the velocity of the phonon excitations, Knib dD 1 3
inversely proportional to the superfluid density. The limit din(s) | 97227 | PO, (1)

N—O at the end of calculations is assumed. Haldane’s heu- ) ]
ristic derivation of the effective actio8, for bosons in one The last three equations represent the central result of this
dimensio*?’ is presented in Appendix A. It is worth men- Paper, and some remarks may be in order. To the second
tioning that the action in Eq(7) also arises as the long- Order in disordeD the coefficient in front of ¢,6)? in Eq.
distance theory of the disordered Bose-Hubbard model ift7) becomes renormalized by the integration over the fast
one dimensiori® Disorder produces an effective interac- modes, whereas the one in front of,0)?, which is the
tion between replicas, which id=1 is reminiscent of the inverse of compressibility, does not. The recursion relation
interaction term in the sine-Gordon theory. There are twdor the velocityc is thus completely determined by the one
important differences however. First, the interaction is nonfor K, to two leading orders. To complete the scaling trans-
local in imaginary time, which is a consequence of the quanformation I need to specify the dynamical exponent: | choose
tum nature of the problem, and breaks the relativistic invariZ to keep the velocitg constant under renormalization. This
ance of the pure system. Second, the interaction term i essential to find a fixed point in the theory and also con-
invariant under a shift of all fields by an arbitrary function of veniently decouples the recursion relation forfrom the

the coordinatex. Both features will have important conse- other two. The numerical value afis then completely arbi-

quences for the critical behavior at the SF-BG phase transirary. Settingc=1 and inserting=1+4D/K?+O(D?) into
tion. Egs. (9 and (11), | find the fixed point of the above

renormalization-group equations at

Ill. RECURSION RELATIONS 1 €
AND THE CRITICAL EXPONENTS K* :§_ 3 + 0(62), (12
In the rest of the paper | will be interested in the Bose
system at zero temperature, and thereforefsete in Eq. €
(7). Without disorder, the effective action in Eq) de- D*=§5+0(62)- (13
scribes the noninteracting excitations. Under the change of
the cutoff A— A/s, or equivalently under the rescaling of At the fixed point the dynamical exponent thus equals

coordinates ag— sx and 7— s?7, coupling constant& and _ 3

c scale as determined by their relationsutp and vy and 2=1+et+0(e). (14
their canonical dimensions in Eg&l), with z=1. Disorder  Note that there is n@(€?) correction in the last result. The
introduces effective interactions between the excitations imeason is the absence of renormalization of the coefficient in
any dimension, and id=1 the most relevant one has a front of the (9,6)? term in the actior(7) to the second order
simple form given by Eq(7). Also, precisely ind=1, both  in disorder. In Appendi C | show that the exact symmetry
K andc have their canonical dimensions vanishing. Thus theof the disorder term in the one-dimensional theory in &g.
strategy will be to calculate the recursion relationskoand  under;(x,7)— 6;(x, ) + f(x) for arbitraryf(x), guarantees

c in d=1 perturbatively in disorder from the actig), and that this coefficient remains unrenormalizedalb orders in
then to account for the effects of dimensionality when D in d=1. Within the proposed calculational scheme where
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the nontrivial part of the recursion relations follows from the P~ 52V, (20)
theory as ind=1, this represents the sufficient condition for

that all higher corrections ta in Eq. (14) vanish, i.e., where § is a parameter that tunes through the transition. In

7= (15) contrast, ind'= 1 both quanti_ti_es approach finitg valu_es at Fhe
superfluid side of the transition, and then vanish discontinu-
exactly. The conjecture of Fishet al? thus follows as an ously in the insulating phase. Compressibility- p/c?, on
exact consequence of the formulated renormalization procdhe other hand, remains finite at the transition in all dimen-
dure near one dimension. sions, as implied by the found exact relatioad. Although
Linearizing the renormalization-group flow around thefinite, at the transition its value remains nonuniversal and
critical point in Egs.(12) and (13) (Fig. 1), one finds the dependent on the microscopic couplings in the system.
correlation length exponent that determines the flow along

the relevant direction t
e rele direction to be IV. RESIDUAL TERMS IN THE EFFECTIVE ACTION

1 For the fixed point in Eqs(12) and (13) to govern the
J3e critical behavior at the SF-BG transition @>1, one must
. . assure that the terms of higher ordedIfx) and ¢(x) and
The other elgenvalqe tha;rl dtletermmes the f.IOW alongl.th"?heir derivatives that were dropped in the effective action
SF-BG separatrix gives the leading correction to scaliNds || are irrelevant perturbations. These terms originate from

close tod=1. » turns out to be a Laurent series *E and  he kinetic energy part of the Hamiltonid), which in the
therefore of weaker dependence on dimensionality than ONensity-phase representation takes the form

would expect. Fore=1 the result(16) yields v~0.58,
smaller than in the Monte Carlo calculations of Wallin
etal,’® where »=0.9+0.1. The generalized Harris
criteriont® that requires that>2/d at a disordered fixed
point is also not satisfied at this order. It is possible that the
higher-order terms in the expansion will increase the value of [VII(x)]?
v, and remedy both discrepancies. The divergence ab +W .
€0 is a sign of vicinity of the lower critical dimension for [po+ TT(X)]
the SF-BG transition.

Right at the critical point ind>1 the average single-
particle correlation function shows an algebraic decay a
large distanceg¢see Appendix D

+0(Ve). (16)

V=

h? - - - -
szﬁf ddX( ol V() P+ TL(X)[V $(x)]?
(21)

The effective action for the superfluid will thus contain ad-
itional parts coming from the second and the third term in
he above expression:

G(X)~ polx| K", (17)
The anomalous dimension » is defined by Sﬁ/,,n=f d% dr{, I1(X)[V $(X)]?+0v,[ VII(x)]?
K*c*=d+z—2+ %, so that
+O[TI(VII)?]}, (22
LT o 18
n=3~ 5 +0(e). (19

. ] with v, andv, as two new coupling constants, which to-
Fore=1 the above result yields a negatiye as one would  gether withS,,1; in Eq. (2) determine the full effective low-
expect based on the assumption that the single-particle degnergy action for the elementary excitations, without disor-
sity of statesN(e)xe(d~2* 72 at the critical point diverges der.
at zero energy.The result, however, is much more negative T examine the relevance of the two new term$}yy, at
than the one obtained by Walliet al. in their Monte Carlo e SF-BG critical point ird> 1, we first need the canonical
calculationt™ = — 0.1+ 0.15. Higher-order terms may bring gimensions ofv, and v, from Eq. (22): [v,]=z—2 and
these two estimates closer, although expansions of th ,]=z—2—d. As long (yaszzd at the SF-BG critical point,
anomalous dimension around the lower critical dimension ; it
are usually notoriously badly convergent. ?;ilnsérg;eiltllvy that des;:rlbes_ the dgwanon of the spgctru_m fr(?m

y close tod=1 will stay irrelevant, since its dimen

The reader may have noticed that the coefficient in fronig;,, may change from the canonical one only dylit thus
of the second term in the scaling equation Kodepends on  geems reasonable that this will remain so in the physical

the precise definition of the couplifg and is therefore ar-  jimensionsd=2 andd=3. The coupling constani,, on
bitrary. It is reassuring to realize that none of the exponentsy,» giher hand. under the assumption that at the SXI’:-BG

In fact, depends on the value of this cqgfficient. fixed point, is irrelevant by power counting close de-1,
Upon approaching the SF-BG transition from the SUPEIyut becomes marginal ih=2 and relevant aboveé=2. The

fluid side, the velocity of phonons and the superfluid denSitysituation is analogous to the effect of the term in the

in d=1+¢ for e small both vanish as Ginzburg-Landau-Wilson theory at the Gaussian fixed point,
and one must examine the corrections to the dimensiary of
introduced by disorder. Dropping thg, term in Eq.(22),
and after integration over the phase d+ 1 one finds a term

c~ 8P (19
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s;,=4m;XK2J dx d7(d,0)%{(3,0)+O[(3,0)?]}, 5¢,n=f dd;dT(%[V(ﬁ(i’ﬂ]z
(23)
2
in addition toS, in Eq. (7). To the lowest order in disorder, f acr  © - >
| found previously that only the coupling in front of the )X |)Z_)Z/| 06T, 7)
(0,6)? term becomes renormalized. Under the change of cut-
off A—A/s then - -
+iII(X,7)d.0(X,7) (28)
v, K2 =0 (s)KA(s)=v,K?+O(D?,v2). (24)  for d>1. The canonical dimension of coupling thus re-

mains the same as in the case of the short-range interaction,
while the canonical dimension of the chargecan be read

InsertingK(s) | then find the recursion relation far, : from Eq. (28):

[e?]=z—1. (29
d D
dln—v(xs): z—2— KZC4+O(D2) v+O(v2). (25 | define the long-range interaction @1 as
- ddlz 62 ik 30
Whend=2 andz=2, at the fixed poinD*/K*?~1, so to UC(r)_f (2m)° kd—le : (30

truly answer the question of relevance of smajl at the

SF-BG critical point we need all the higher-order term®in  Precisely ind=1 this definition coincides with the short-

in the bracket in the equation above. However, the first ternfange interaction and not with the Coulomb interaction,
in the expansion of the scaling dimensionwfin D sug-  Which has the Fourier transforatIn(1/k) in d=1. Since |
gests thav, most likely stays irrelevant even for=2. The ~ am not interested inl=1 per se, but only ird>1, for the
negative sign of this term comes from the effective increas@resent purposes this distinction is not import&rithe only

of K under the influence of disorder, which on physicaldifference in the scaling equations from the short-range case
grounds may be expected to persist to higher orders. It i& then in the replacement of the recursion relalib® with
plausible then thav, is irrelevant at the SF-BG critical

point, at least for £d=<2. dc :( d-3 c+0(D?), (31)

Finally, consider the higher harmonics in the effective din(s)
action in Eq.(7) that arise from the components of the ran-
dom potential with the wave vectoks~-2mmp, with m=2  whereK is defined exactly as before, bet=4v,e?. Equa-
(see Appendix A tion (31) may be understood as the recursion relation for
charge, in place of the equation for the phonon velocity in
the short-range case. Assuming that at the SF-BG fixed point
* N the value of the charge is finftéfixes the value ofz, by
Spnn=— >, Dm > | dx drdr’cos 2m requiringc=1, for example. Combining Eq$31), (9), and
m=z =1 (11), 1 find the dynamical exponent now to be
X[ 6;(x,7) = 0;(x,7")]. (26)

2 K

z.=1. (32)

Completely analogously as fdb, one finds the recursion This is again an exact result within the present formalism, for
relations the same reason as in the short-range case. The correlation
length exponent is

dD, m2 , :£ ) )
din(s) OI+22—K—C)Dm+O(Dn), (27) Ve @+ (o). 33

For e=1 this yieldsv.~0.82, within the bounds set by the
so that allD,, with m=2 are irrelevant at the SF-BG critical Monte Carlo calculations of Walliet al,?° v,=0.90+0.15.
point This is similar to the irrelevance of vortices with higher The inequalityv>2/d is not satisfied by the lowest-order
vorticity at the Kosterlitz-Thouless transition of the 20 estimate, but presumably higher-order terms would correct

model. this. The anomalous dimension of the single-particle propa-
gator is now
V. LONG-RANGE COULOMB INTERACTION . 10
€
Now that the formalism is in place it is interesting to Nc=3 " ?JFO(GZ)- (39)

consider the case of long-range Coulomb interactions be-
tween bosons in the Hamiltonidh), v.(r)=e?/r. The qua- The result fore=1 is again much smaller than the Monte
dratic part of the long-distance action®&0 is now Carlo estimat® where 7,=0.8+0.4. It may be interesting
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to note however that the difference between anomalous diene findsv,,=0.75, reasonably close to the 30D value of
mensions for Coulomb and short-range interactions i%.673° For e=2, vyy=0.60, somewhat farther from the ex-
roughly the same as found numerically. pected Gaussian valug

The analysis of the relevance of the residual interactions
in the superfluid action from the preceeding section can eas-

ily be repeated in the present case with the same final con- VIl. SUMMARY AND DISCUSSION

clusion. In fact, since one expects thzat 1 for the Coulomb In this paper | have presented an analytical approach to

interaction, bothv, andv, appear irrelevant ill=2 andd  the critical behavior at the superfluid-Bose glass transition at

=3 already by simple power counting. T=0 based on the expansion around the lower critical di-
mensiond=1. In the vicinity of d=1 the SF-BG critical

VI. SUPERFLUID-MOTT INSULATOR TRANSITION point becomes infinitesimal in disorder, which enables one to

IN PERIODIC POTENTIAL obtain the recursion relations for the coupling constants in

the theory as expansions in the small parameted—1. |
It is well known that, in a purely periodic potential, & found that the critical exponent is=d (z=1) for the short-
Bose system at an integer number of bosons per period Upznge(Coulomb interaction between bosons, in accord with
dergoes a transition from a superfluid into an incompressiblgne conjectures based on finiteness of the compressfbility
Mott insulator (MI) with increasing repulsion between (chargé®) at the transition. | obtained the correlation length
bosons, which is in the universality class of t¥ model*  exponent and anomalous dimension to two leading orders for
Since the critical exponents of th¢Y model are known the short-range and the Coulomb universality classes, and
virtually exactly’® one may test the presented method ofgemonstrated that the analogous calculation for the
calculation on this standard casedr 1 the effective action  superfluid-Mott insulator transition leads to the results in rea-

in the Haldane representation becomes sonable agreement with the knows, exponent ind=2
+1. Higher-order anharmonic terms in the effective action
S,=24T J dx dr{[ 3, 0(x,7)12+[d.6(x,7) ]2 fqr t_he superfluid that_dgscrlbe interactions between the ex-
67T xy S L citations and the deviation of the dispersion relation from

linearity are argued to be irrelevant at the SF-BG critical
—vf dx dr co§27(po—1)x+26(x,7)], (35  point, at least for &d<2.

The critical point found in this work should be understood
as describing the proliferation of topological defects in the
superfluid ground state, which ameducedby the disorder
potential atT=0. In this sense the SF-B@nd even more
SF-MI) transition is similar to the Kosterlitz-Thouless finite
temperature transition in thXY model; both are defect-
mediated transitions, except that the role of the entropy in the
guantum =0) problem is played by the extern@hndom
du or periodig potential. This is precisely why the dual formu-
=—¢e(1—u)+202+Buv?+0(v*u?w?), (36) lation of the problem is useful: it rewrites the theory in terms
din(s) of “correct” degrees of freedom.

A similar expansion around one dimension for the
_ 3 3 superconductor-insulator transition had been attempted ear-
2Uv+ Av™+ O(Uv, ev), 37) lier by Kolomeisky*® who argued that the physical critical
) point exists only ind<<1, in contradiction with my conclu-
where u=(1—-1/8aT,,), Ty, is the temperature of the gions. The mistake in his work lies in using the effective
equivalent classicaXY model ind=2 anduv is the fugacity  4ction ind=1 in the Haldane forn(7) to infer the canonical
of vortices. The coefﬁcgesnts in EqE36) and(37) are known  gimensions of the coupling constantsde: 1. The transfor-
to beB=4 andA=—5but | left generalA andB in the  mation from the particle density to the variabieis a par-
recursion relations to emphasize that these two quantities, ifejar realization of the duality transformatioffs®®3land in
contrast to the coefficients of the lowest-order terms, sepapis form it is possible only id=1 and meaningless every-
rately are not universal. Linearization of the flow around the,here else. For this reason one needs to determine the ca-
simple critical point of the recursion relatiot86) and(37)  ponjcal dimensions oK andc from the effective action in

so that for one boson per periog=1) it reduces to the
sine-Gordon theory. Relativistic invariance of the theory im-
plies immediately that=1. Ind= 1+ € the renormalization-
group equations for the SF-MI problem are simple
deformation®® of the celebrated Kosterlitz-Thouless recur-
sion relations®’

1%
din(s)

then yields the correlation length exponent the form (2), which is general and exists in any dimension.
/ Note that this does not contradict my later use of the effec-

1 2+2A+B tive action in Eq.(7) to calculate the recursion relations,
VXV_Z\/;\l_ 8 VetrO(e) . 38 since the nontrivial parts of these are determined by the

theory precisely ird=1.
It is interesting that the exponentto this order depends only The reader should note that the considered SF-BG transi-
on theuniversallinear combination of the coefficienfsand  tion in dirty bosonic system should be the right universality
B.8 This is a nontrivial check of the consistency of the ex-class for thes-wave superconductor-localized insulator tran-
pansion around the lower critical dimension for this problemsition in disordered electronic systems, at least in the vicinity
and suggests that the same universality may be expected @f one dimension. This is known to be true preciselydin
the SF-BG case as well. Taking=1 in the last equation, =12 and should remain true in its neighborhood as well,
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since the attractive interaction in the singlet channel will still B v,

open the gap in the spin sectdr. S¢,n:j de dT(E[ﬁxfﬁ(XJ)]% 2mv12(X, 7)
Experimentally, the simplest universal quantity to mea- 0

sure is the product of dynamical and correlation length ex- +ilL(X,7)3, (X, 7) + V(X)IL(X,7)

ponents, which follows for example from collapsing the fi-
nite temperature resistivity data on either the insulating or
the superconducting side onto a universal cdrgdthough
the experimental situation is presently somewhat unclear,
most measurements are consistent with2 andv=1 for = where “hh” denotes the higher harmonics that arise from the
the short-range interactions between bosthis appears that  infinite sum in Eq.(A2). Introducing a new field’ (x,7) as
before attempting a more realistic comparison with experi-w~ 19,6’ (x,7)=II(x,7), one may write the term that
ments the present calculation would need to be pushed toouples the particle density and the superfluid phase as
higher order. This may be done by remaining faithful to the
logic of a minimal substraction scheme that would require i B
the higher-order terms in the recursion relations to be calcu- ;j dXJ'O drdxd(x,7)][3,6"(X,7)]. (A4)
lated only ind=1. The results for the SF-MI transition in the
periodic potential, where | relied on the already calculatedrp,q phases can now be straightforwardly integrated out,
higher-order recursion relations, are encouraging in thig,hich leads to
sense.

The presented theory also facilitates a systematic treat- g (2 1

. . . . . . UN

ment of a number of interesting issues in the field, like thesazf dxf dT(_[ang(x,q-)]2+_[(979f(x,T)]2
interplay between periodic potential and disortfef! the fi- 0 ™ 2mv,
nite temperature crossovers close to the SF-BG criticHlity, 1
and the corrections to scaling, which are left for future con- FV(X) = 350" (X, 7) + poV(x) (€21 D+ moX] 1 ¢ c) |
siderations. ™

+p0V(x)(ei20”(x'T)+c.c.)) +hh, (A3)

(AS5)
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APPENDIX A: DERIVATION OF THE EFFECTIVE suming the Gaussian probability distribution

ACTION IN d=1

Haldané’ proposed a way to improve upon the hydrody- P[V(K)]~e" KL (A6)

namic theory in Eq(2) in d=1 by including the structure of

the quantum fluid at shorter length scales. Here | outline théor the Fourier components with~ 27 p,, after introducing
reasoning that leads to the effective acti@j which forms  replicas and averaging ovéf(k) one obtains Eq(7), as in

the basis for most of the calculations in this paper. Introducghe text. For a different, and maybe somewhat more rigorous
a field 8”(x) so thatd,8"(x) = wp(x). As the density is dis- derivation of the theory7), the reader should consult the
creet and therefore a sum éffunctions, §”(x) jumps by second paper in Ref. 21.

at the positions of particles. So, we may write

APPENDIX B: MOMENTUM SHELL RG

p(X)= 7'fl&xt9”(x)n=2m oLo"(x)—nw], (AL Define the slow and the fast components of the figld
or using the Poisson summation formula and introducing the O(X,7)= 01(X,7) + O5(X,7), (BY)
local deviation from the average densl(x):
where
(X)=[po+I1(x)] >, ei2mé"®x), (A2) Als dk (= do .
P [Po ]m=7:>c 0,(x,7) = f bk —6(k,w)e'kx+"‘”, (B2)
AT ) 2

The m=0 term in the last formula may then be understood

as the coarse-grained density, and the rest of the sum yieldsd analogously thé,, but with the integral over momenta
shorter and shorter length-scale corrections. The imaginargoing over A/s<|k|<A. To the lowest order iD, after
time action in Eq.(2) together with the random potential integrating out the fast modes the remaining action for the
term now becomes slow modes becomes
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) ) ) The first term in the bracket in th@[ In(s)] term matches the
891=K2 fdx dr{cdx01,(X,7)]°+[9,01;(X,7)]%} contribution from the off-diagonal terms in E@B4) and
! together they renormalize:

—Dp3Y, | dx dr d7'cos g 6;;(x,7)— 61;(%,7")] D—D(s)=Dsl®~ ("0 14 O(D?). (B6)
Y After expanding the cosine term 8), to the quadratic order,
X(cos 7 0,5(X,7) = b;(X,7')])+O(D?), (B3)  we see that the time-dependent term in BBp), apart from

enerating some irrelevant terms, also renormalizes the co-

where the average is performed over the quadratic part of th fficient in front of (7.6,)2. Thus, for an infinitesimal Irs],

action for the fast modes. First, consider the terms off-

diagonal in replica indices. One finds 8Dp2
B K—K(s)=K+——=In(s)+O[D?In(s)*]. (B7)
(cos 7 6,;(x,7)— O5(x,7")]).=5s LmKe (B4) mKCc™A
forij. Ifi=j To the first order inD the nonlocal term irx does not get
corrected by the elimination of the slow modes:
(c0s Z02i(%,7) = 0i(x, 7") ]) 2= €xp Kc2—K(s)c(s)?=Kc?+0(D?). (B8)
AlIn(s) (= do o(r— ) After redefinitions of the coupling as described right above
- 2K 73002A2+w2(1_e ) Eqg. (9), we see that differentiating the above expressions
yields the lowest-order terms in Eq®)—(11) whend=z
=1.
+O[In(s)2]) . (B5) Next, consider the contribution quadraticinto Sgl:
DZPg ’ ’ ! !
- ]Emn dx dr d7'dy dv dv’(cos Z 64;(X,7)— 01j(X,7")]1c0S Z O1m(y,v) — O1n(y,0")]

X{(€0s F 02;(X,7) = 0,j(X,7')]c0S T Op (Y, v) — Opn(Y,v" ) ) 2—(COS F O (X,7) — O25(X,7') )2
X (€08 Oy m(Y,v) = Oan(y,v") )2t +sin A 015(X,7) = O1j(X, 7')]SIN Z 61 (Y, 0)— O1n(Y,0")]

X(sin 2 0i(X,7) = O25(X, 7")ISIN 2 Oz m(Y,0) = O2(Y.0")])2). (B9)
|
Using the identities comes from the leading term in the expansion of the fields
under the second sinus around the poitrf and (x,7').
(a®),+(B%), For n=j one finds the term

(cosa cosB),=e~ 2z cosKapB),, (BL0)

8D2pgIn(s) J
- dx dr d7’
()2 +(B%)2 47KcA3 % T
(sina sinB),=e~— 2 sinkaB),, (Bll)
XSinf2[ 01;(x,7)— 015(x,7")],  (B13

uhich obviously, besides adding a constant to the free en-
ergy, just generates a higher harmonic. The recursion rela-
tion in Eq.(11) is therefore correct t®(D?). There may be

an O(D?) renormalization ofK deriving from the term
(B12), but the reader may convince himself that this does not
matter for the exponents and » to the two lowest orders
—8D%¢>, | dx drdr'dy dv dv’ Ine.

i,j,n

and realizing that all averages on the right-hand side in th
last two equations are-In(s), we see that the first term in
Eq. (B9) is of order[In(s)]%. To the first order in Irg) only
the second term in EqB9) can potentially contribute to the
action for the remaining slow modes, and it equals to

. APPENDIX C: PROOF THAT z=d TO ALL ORDERS
Xsin 2 04(X,7)— 015(X,7")]

| derive the general form of the recursion relation for the

xsin 2 6;:(y,v)— 6 01 0:(X,7) i (Y, coupling constant, from which it will follow that for the
A01i(y20) = 01,0 ) 02X, 7) G2 (Y ,0))2 short-range interactions=d within the considered renor-
+0{[In(s)]?}. (B12) malization procedure. The first step is to show that the coef-

ficient in front of the ¢,6)? term in the theory7) in d=1,
Since the corelator appearing in the last equation drops eXc?=2v /7, cannot become renormalized during the inte-
ponentially in|7—v| and|x—y|, the dominant contribution gration over the fast modes. Let me assume that the Bose
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system is of a finite size and impose the periodic boundary cal point arises ird>1. The Bose operator correlation func-
conditions in the space direction tion averaged over disorder is

gi(O,T):gi(L,T) (Cl)

for all 0<7<A/KgT. To be precise | will assume a finite . _ .
temperaturel, although this does not affect the argument inwhere the average is to be taken over the replicated action.
any way. The renorma"zedN(L) at the scaleL can be nght at the SF-BG transition, the above average becomes
defined as

G(%) ~ po(€ #1x0~141(0.0y (D1)

dd+ 2k 1_ei|2.>2

(27T)d+1 k27 N4

_ mkgTL dF(9) G(X)~ poexp—2mK*c* f , (D2

2h d(8?) 5:0’

UN (C2

. . o N _ wherenp, is the anomalous dimension of the phase corelator,
where 6 is the imposed twist in the boundary conditions in defined as

the space direction
dInzZg

0.(L,7)=6,(0,7)+ 6. (C3 = °
(L7)=6i( To= gk
Defining a new fieldd; (x,7) = 6;(x,7) — Sx/L that satisfies

the periodic boundary conditions, and noticing that the diswhere the renormalization factofy is defined asK(s)
order term in Eq(7) is invariant under this transformation, it =KZx. Since under the scale transformatidn—A/s, k

readily follows that —k/s, it follows that

(D3)

vn(L)=vy, (C4) _ dinzZg

independently of the length scale In other words, under ¢~ din(s)”
the scale transformatiox— sx,

(D4)

The recursion relation fdK may then, by definition, be writ-

d ten as
— 2:
dins) Kc =0 (CH
dK
exactly, ind=1. If one defines a functioR (D,K,c) that is r=(2—z—d— 74K, (D5)
not explicitly dependent on dimension as n(s)
dK so that at the fixed point we must hayg=2—2z—d. Insert-
dincs) =(2—z—d)K+F(D,K,c) (Co) ing this into Eq.(D2) the expression in the exponential be-
n(s comes
in d>1, then Eq.(C5) implies that
K* o* 2d-2
dc F(D,K,c) —( f sinnade)
dins | T )¢ €7 2o 4l
Demanding that the last two differential recursion relations Adk (7 Kx cos K*c*In(Ax)
vanish at some nontrivial coupling®*, K*, andc* , implies X | 4| siné(l-e )df—— ’
4 ' 0 0 2T (1+e€)
that at the fixed point
(D6)
z=d. (C8)
for x—oo, and | assumed=z. The explicite dependence in
APPENDIX D: BOSE CORRELATION EUNCTION the result arises from the integrationde» 1. Adhering to the
AT THE CRITICALITY philosophy of minimal substraction, we should €et0 in

the last equation, so that the only dependence on dimension-
It is worth showing how the algebraic decay of the disor-ality is the one implicit in the value d* andc* at the fixed
der averaged single-particle correlation function at the critipoint. Thus, Eq(17) is obtained.
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