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We present a method for generating interatomic potentials from first-principles calculations. Using the
effective-action formalism we describe a classical system of interacting atoms in terms of the expectation value
of the pair density operator. Such a description naturally leads to the concept of the effective two-body
interatomic potential. This is similar in spirit to the Kohn-Sham potential that arises in density-functional
theory; however, in this case, the system is reduced from a fully interacting many-body system to an auxiliary
system that interacts via a renormalized two-body potential. This potential contains the effects of three- and
higher-body correlations and can be calculated via a systematic self-consistent procedure. This method can be
trivially extended to the generation of higher-order interatomic potenfi@3163-18208)09539-3

[. INTRODUCTION these, the tight-binding models have been the most useful
and have generated a wealth of insight into the nature of
Computational first-principles techniques in condensedinteratomic potential expansion of the cohesive enéfyy.
matter physics are rapidly improving in both speed and ac- Although some of these techniques have been extended to
curacy. However, the quantum-mechanical treatment of theeal with the more difficult class of materials such as transi-
electronic degrees of freedom in such simulations still limitstion metals and semiconductors, they have not enjoyed the
the size of the system to about?l@toms. Interatomic poten- attention that fitted potentials have in recent years. Fitted
tials have emerged as an alternate and faster method to stuggtentials require physical intuition to guide in choosing ap-
large systems on the order of %010° atoms. They have propriate parametrized functional forms that can be fitted to a
become of fundamental importance in many areas oflatabase of experimental ab initio calculations. These ef-
condensed-matter physics and materials science rangirfgctive interatomic potentials represent interactions among
from the study of defect formation energies to atomic strucconstituents of a system for which the electronic degrees of
ture of solid surfaces to computer simulations related tdreedom have been somehow “integrated out.” This allows
phase transitions, fracture, plastic deformation, melting andor a simpler description of the system but still expresses, in
sintering. It is with this in mind that there has been a tremena clearer fashion, the basic physics involved. Assuming the
dous drive to produce reliable interatomic potentials that willvalidity of the Born-Oppenheimer approximation, one is led
be successful at predicting dynamical properties of manyto the general expectation that an energy function exists that
body systems as first-principles calculations have been idescribes the total configurational energy of the system. Us-
predicting ground-state properties in the past several deng Carlsson’$ terminology and classification, this energy
cades. may be represented by pair potentials, cluster potentials, or
There have been several different approaches to intecluster functionals and is the basic starting point of fitted
atomic potentials in the past several decades. One such amethods. Most of the attention in the area of interatomic
proach derives interatomic potentials from first principles bypotentials is focused on generating good transferable poten-
some sort of an approximation scheme. These methbds tials for covalent material. The problem lies in the complex
give a good qualitative and sometimes quantitative undergquantum-mechanical effects that must be described by these
standing of the bonding in condensed-matter systems. Evegffective interactions.
though they have failed in producing good potentials, these Examples of the more well-known potentials include the
approaches have generated important connections betwepioneering potential of Stillinger and WeBewhich is a
effective interatomic potentials and electronic structure. Othird-order cluster potential and was constructed to describe
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properties of silicon. Biswas and Hamanntroduced a third  simplified picture to the many-body problem and puts into
order cluster potential expansion with the three-body potenperspective the nature of the approximations that are imple-
tial having a separable form. However, it may not always benented. The concept was extended to include a two-body
advantageous to expand the cohesive energy in such a wagxternal source term, to zeroth order in the external field, to
There is direct theoretical eviderfd® suggest that in some deal with a weak three-body terfhAlthough the basic con-
systems such cluster potential expansions may either diverd&pts are the same, the method to be introduced approaches
or converge poorly. Another innovative but fundamentallythe problem of interacting systems in a different manner than
different scheme is that of Ters&2whose later versions ©Other functional approaches. It yields explicit expressions for

improved on the number of fitting parameters. The Tersoﬁ,{he higher-order correlatiqns and ajlows for the systematic
potentials are an example of a third-order cluster functional™Provement of the effective potential.
In what follows, we describe an approach to the genera-

that includes a term that depends on the local bonding envi- L . . . e
ronment. The Tersoff potentials contain a great deal c)hon of effective interatomic potentials from first-principles

physical insight and seem to have validity away from thecalculatlons via the effective-action formaligfn?* We for-

equilibrium structure. The quality of these potentials havemUI"’lte the theory so that the system is described by an ion

been studielf and, although they have their strengths andpair—density. Such a pair density description will then natu-

weaknesses, the fact remains that these potentials have pJ&uy lead to a concept of effective two-body interatomic po-

transferability properties. Perhaps the reason is a need for! n.t|als. Th|§ IS 1N sharp contrast W'th the hocmanner In
better description of the local environment. A perfect ex W ich effective interatomic potentials are usually defined.

ample of that is the thermodynamic interatomic force ﬁeld;LhIS ﬁfgofh |sthquc|jte anatl_ogoufs ﬂ\:wth d:an&t_y-fgncﬂgnal
potential of Chelikowskyet al,** in which the environment theoorl 'tW Ierteh Iett escrip lotnhof ”e .53,[/3 en:. IS aste on
is described by a so-called “dangling-bond vector.” Bazant € densily. In the fatter case, the Tully Interacting system 1S

et al® have introduced environmentally dependent terms intransfor_med into a noninteracting system in the presence of
an auxiliary local source, the Kohn-Sham potential. This

their cluster potential-like expansion. Their potentials are i o . .
qualitative agreement with the various complex quantumn-KOhn'Sham potential is determined by a self-consistent pro-

mechanical effects that dominate covalent material. Mei:_:GdurC(ia that t(;lontalnsttge ef{ect? t%f eflelclztrpr; corrtglatlonst and
Cooper, and Lin? used a formal expansion motivated by eproduces the exact density of the ully interacting system.

generalized pseudopotential theory but introduced a simpl erﬁ_, a paw;dens;ty-bas_e(tj destpr|pt|0r|1 nz_ituratlly I%a?js to an
local variable function that transforms the volume—dependen,?uﬁ'. |?ryTshys emto ;f)rlls In etra}c |n?hon yﬁwata V\;o;ho y po—d
energy term into many-body interactions. Although thes ential. IS potential contains the efiects of three an
and many other potentials were formulated with a great de ||gher-body correlations and reproduces the exact pair den-

of physical insight, none have yet to demonstrate good transs-Ity of the fully interacting system. There is a systematic

ferability qualities. The reason may be that it is just too am—self'cozrlggtent procedure, similar o density-functional

bitious a task to try and fit all the qualitatively different theory,” ““which can be used to generate this two-body in-

S ; : ! . teratomic potential.
roperties in bonding of various structures into a simple po- . . . . .
Fentpi)al form 9 piep In Sec. Il, the effective-action formalism will be intro-

With this in mind, it may be advantageous to produceduced and an expression for the effective two-body inter-

environmentally dependent effective interatomic Iootentialsat0m|c potential in terms of statistical fluctuations will be

that contain the relevant physics through configurational inp_resented. In S‘?C- lll, we show how the for_mahsm yields a
formation of a reference environment. Such effective poten—Slmple self-consistent procedure for generating the two-body

tials developed for a bulk reference environment may not b@otenﬂals. The many—k_)ody quantum-mecha_mcal properties
useful in surface calculations; however, potentials for sucj’f the systerp may be |'ncorpor§1ted into the interatomic po-
environments may be developed as well. Such an approa ntial by_ut|I|Z|_ng th_e '”fo”?“"%“_"’” gathered on th_e phase
was attempted by DageHsusing the proposition of Carlsson space trajectories, via aab initio molecular-dynamics or
5 ; ; : . Monte Carlo calculation.

et al> for using an effective cluster expansion valid only for
a restricted set of physical configurations. Their reference
environment was the hard-sphere gas for which they used the Il. THEORY
F_‘ercus-Y_evi_ck _approxima?ion for the pz_iir dist_ribution func- | ot us define the grand potentMl[ &1,
tion. Their findings were in general quite satisfactory. The
point here is that if the effective potentials are calculated in a
reference environment that contains the higher-order correla€ #*! :Tf{ exp{ -B
tions, then a good description of systems that are not too
different from the reference environment should result. R

A statistical mechanical approach was taken early orwhere H is the Hamiltonian of the system ang~1/T.
through functional methods to generate such effective interAnalogous to the chemical potential, the auxiliary soufce
actions. Most of the early work using functional methodscoupled to the ion pair-density operatoy,
was based on density-functional thedBFT).281° The idea
was to renormalize the interparticle potential that arises from .
strong multiparticle correlations in the system. This was in No(r,r')= z O(r=Xa) (1" =Xqr), )
sharp contrast to the conventional Ursell-Mayer expansion ate
theory’® where the interparticle correlations are given ingenerates the statistical average of the ion pair-density op-
terms of the bare interaction. The DFT approach brings a@rator at a specific temperature

I:|+f drdr’d)(r,r’)ﬁz(r,r’))“,
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5P (xx") Tr{exp[‘ﬁ(mj drdf'q’(f’f')ﬁz(”')m

The system can be described in term$_1§>fas opposed to

the external sourcé. This can be performed with a func-
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SW[®] Tr[ﬁz(x,x’)exr{—ﬂ(ﬂ+fdrdr’d)(r,r’)ﬁz(r,r’))“ B
= =Ny(X,X"). 3
|
-1
_ SW, [ D]
Ty l=W[ @]+ > Jdrdr’#d)k(r,r’)
k=1 ODy(r,r")

tional Legendre transformation,

F[Fz]zww]—f drdr’®(r,r")ny(r.,r'). (4)

Here® is assumed to be a functiorE\IH; through Eq.(3).
DifferentiatingI'[ n,] with respect ton, yields

8T[ny]

_—:—q) y ! .
SNy(X,x") (xx')

©)

Our original system is restored by setting the auxiliary

sourced to zero, giving the variational property,

T[N,

==
ony(x,x") =it

=0 (6)

WhereF’z‘ represents the exact ion pair density of the fully

interacting system. Since, the functionﬁ[ﬁz] is strictly
convex this extremum is also a minimdir

In order to proceed farther, we use the inversion

method®?” to evaluateI'[n,] in Eq. (4). This may be
achieved by separatinig into

H=K+\U, 7)

whereK is the kinetic-energy piecé] is the internal energy
of the system, andl is a coupling constant that will allow us
to expand in powers dfi. By expanding the right side of Eq.
(4) in a power series in,

ﬂ%ﬂ=§w®ﬁﬂ ®

WWMﬁ;NWWL (9)

we can get an expression for each ordeF[rFZ], as

—5|Y0j drdr’d)o(r,r’)ﬁz(r,r’)

' 1

m=2 m! K=>1

ket +Hkp=I

f 1'_“[ . 5mW|7(kl+k2+..-+km)[(bO]
X I ’ 4
i=1 |5(I)0(r1,r1)"‘5q)o(rm!rm)

XDy (11,19 Py (Tl h). (10)
The functionals®, can be obtained from E¢5) by
oT\[n;
#=—QJ|(X,X’). (11)
SNy (X,x")

It should be noted here that, because of @4), I'; depends
on all ®,,(x,x") with I's1-1.
Consider the zeroth-order term,

mﬁﬁ=WM¢d—fdMW¢anﬁanwx (12)

which corresponds to the auxiliary system that contains only
pair interactions mediated by the potentaj(x,x’):

1IT
— —InTr
B

W[ Do]= ex;{—ﬁ(mf drdr’ ®q(r,r')

XNy(r,r")

} 13

The purpose of the potentiab(x,x’) was to generate the

expectation value of the ion pair density operatgrin the
fully interacting system, therefore, the two-body potential

dy(x,x") generates the same exact expectation vaju@
the auxiliary system described by E3.3),

SWo[do]

m—nz(x,x ) (14)

From this point of view, we identifgp, as an effective two-
body interatomic potential.

To arrive at an expression fab,, which will yield the
correct density of the fully interacting system, we use the
variational principle

8T[ny]

oT\[ny]
SNp(X,x")

N — =
SNy(X,x")

I=0

(15
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Using Eq.(11) for | =0 we have that the system is described by the three-body density and the rest
of the machinery follows as described above.

)= 3 el

= ) (16)
=1 ny(x,x") lll. APPLICATION

The appearance af®,/6n, in Eq. (17) seems discour-
aging, however, it turns out that the solution is rather simple.
Equation (17) was arrived at by imposing the variational
condition (6). If one follows the arguments leading to Eq.
(14), then it is obvious that solving

wherel'|[n,] is given by Eq(10). This expression allows us
to systematically calculat®, to any order. For example, to
first order,® is given by

d)o(x,x’)=ﬂf drdr’{Uny(r,r'")

ST[Do] 0
1. ’ 5(1)0(r,r’) 5(1)0 o
—Unz(r,r )}_—/, (17)
Sny(x,X") where
whe_re_)\zl restores the original system. The b_qrs stand for f[¢o]=F[Fz[®o]], (21)
statistical averages with respectdy, in the auxiliary sys-
tem, that is, for any operatd, is equivalent to solving Eg6). In other words, the potential

@y, which satisfies Eq.20), generates the exact pair density
n3, which satisfies Eq(6). This is due to the one-to-one

correspondence betwedr, andﬁz. We thus have an alter-
nate variational principle that does not require the calculation

Tr[ exr{—B(Kﬂtf drdr’@o(r,r’)nz(r,r’)m of 8®,/5n, and is therefore easier to solve.

(19 There is now a means of getting at an interatomic poten-
tial through a steepest descent self-consistent iterative proce-
and dure. In its simplest form, the self-consistent scheme will
proceed as follows(1l) Start with a guess ab,. (2) Calcu-
—_—— — — _ late the necessary fluctuations from Eg2) at some tem-
_r_ ' " _ ' ' 1
=[=Bno(r,r" )ny(x,x") = na(r,r" )nz(x,x"))] perature using first-principles molecular dynamics, Monte
(19) Carlo, or any other appropriate schent8) Calculate the

gradient off[(bo],

Tr[f)exr{—,@ R+jdrdr’d)o(r,r’)ﬁz(r,r’))“

6:

SPy(r,r’)
Sny(Xx,X")

is the inverse of the fluctuations ﬁfb
One should note from Eq17) that if the full interaction 51:[‘%]

is of the pair type, U=2fdrdr'U(r,r')ny(r,r'), then = — B{Uny(x,x") = Uny(x,x")}

®,(r,r")y=3U(r,r') for the variation of Eq(15) to be sat- dDo(X,X")

isfied. It should also be obvious from E@.7) that if U is of , N ——————~
the pair type, thenb, will not depend on thermodynamic +B | drdr’@o(r,r){na(r,r)ny(x,x")
guantities such as temperature and density. In this case, even o o

if there are long-range correlations, they are cancelled out by —ny(r,r" )ny(x,x")}. (22

the inverse of the fluctuations in,. However, when the
interactions are no longer of the pair type thég will de-
pend on the temperature and the density of the system in a
nontrivial way through the ensemble averages.

Equation(17) is interestingly similar in form to the effec-
tive interatomic potential derived by CarlsBmia the maxi- .
mum entropy method. However, in the maximum entropywherea' defines the step length in thh iteration.(5) If not
method there is no variational scheme to solve for the effeceonverged, go to step 2.
tive interatomic potential. As will be shown in the next sec- Another point that makes this method even more attrac-
tion, this formalism yields a procedure by which to solve fortive computationally is the fact that the dynamics is con-
the effective interatomic potential. The procedure does notrolled by ®,. That is, we begin with a guess for the inter-
require the calculation as®,/8n,, which is very important atomic potential®, and generate configurations with this
from a practical point of view since such a calculation wouldPotential in a Monte Carlo or molecular-dynamics algorithm.
involve the inversion of large matrices. For each configuration generated, we can obtain the internal

It is important to point out that this method generalizes in€nergy from, for example, a first-principles calculation. This
an easy way to third- and higher-order effective interatomids the only quantity that we require externally. Then, each
potentials. For example, to generate three-body effective ininternal energy associated with a specific configuration will
teratomic potentials, a three-body external source replacd€ Weighted by our guessed potential, as given in(E8), in
the nonlocal source in Eql) and the ion three-body density order to calculate quantities likel in Eq. (22). It is the
operator replaces the ion pair density operator. In this caséyformation from the first-principles energetics that tells us

(4) Update®d by

ST[®g]

O L(x,x" )= DL (X, X' ) — @) —————,
0 (XX")=Dg(x,x") So(xx)

(23
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how to adjust the potential in order to satisfy Eg0). Once  our interatomic potentials contain higher-order correlations

T has been minimized, we have an interatomic potential thagUilt into them. Furthermore, because we have introduced a
could be used in large scale atomistic simulations to caIcurJ,?nlo.C""I ?outr.c? in tk;e_ grand lpoge?nal c;ur eﬁﬁ.ctl\'/e inter-
late various thermodynamic quantities including quantities%q%n;;faﬁ? T)r(l)ilrisacr?é] ?r?oi?c?un?)rtlrt])grrggnﬁge d IVS\IIIt?] ao\t/r?g
igfrglgﬁoza?jr?ggo?rng)?tlc?)trire]ert%)é E;nittehrﬁsvﬁ]loviwc'xetlr?gg%chemes where the starting point is a pair potential that is a
o : ’ yster . Junction only of the interatomic distance and may be true for
guantities are calculated must.have_ physical properties th f/stems at temperatures well above the melting point. Such
are closely related to the ones in which they were generated; qtoms will have translational and rotational symmetry due
We have implemented the above scheme on a Lennardy the |ack of short-range ordering. However, for systems
Jones 6-12 system to see whether it can be recovered frogya; their melting points, short-range order does persist giv-
our iterative scheme. Since the calculations in real SPacfq rise to angular dependence.
would require minimizing on a large number of parameters, “\e have presented this theory for systems that we assume
we have expandeq the effective potential in a set of linearly, o adequately described by a two-body potential. If this is
independent functions so that we can reduce the number ¢fo; the case, then as we have mentioned above, the formal-
parameters in which to minimize on. Convergence t0 thggm can be extended to a three-body potential. In this way
correct values is achieved and we continue to examine thge system will be more accurately described and the conver-
stability of the scheme. This simple potgntlal is not a test ofyance properties of the perturbative expansion will be im-
the method but rather a test of the stability of the numerical,gved. This is in analogy with density-functional theory
scheme. We are also working on other self-consistent methhere for certain systems a description in terms of the cur-
ods that are noted to have better convergence qualities.  yent density or spin density is required because the electron
density alone is not sufficient.
IV. DISCUSSION We would like to further emphasize that although the idea
The motivation behind the work described here is to Ioro_of generating interatomic potentials from statistical mechani-
vide an unambiguous way of defining and computing inter-cal techniques is not new, the method introduced above leads
; : . Cy 0 new results which have practical advantages over other
atomic potentials. The approach described in this paper pré_echniques By using a singFI)e general theoryg we get out a

vides the necessary tools to study effective interatomi : A o . .
potentials and their dependence on the reference envirorrystematic definition of what effective interatomic potentials

ment in which they were generated. This will allow us to are and how to go about generating them. It is based on

better understand how to package such potentials for use i%;atistical mechanical principles and requires the calculation
studying large systems of statistical mechanical averages.

One of our immediate goals is to test this method with a ACKNOWLEDGMENTS
potential that has more than a pair term in it. Such a test will
allow us to quantify the reproducibility of this method and  This research was partially funded by the Research Foun-
study the transferability of the effective interatomic poten-dation at the University of Connecticut and the U.S. Depart-
tials. We expect our recovery procedure to fare well becausment of Energy.
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