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Interatomic potentials via the effective-action formalism

M. Rasamny
U-46, Physics Department, University of Connecticut, Storrs, Connecticut 06269

M. Valiev
U-46, Physics Department, University of Connecticut, Storrs, Connecticut 06269

and Department of Chemistry, University of California, San Diego, California 92093

G. W. Fernando
U-46, Physics Department, University of Connecticut, Storrs, Connecticut 06269

and Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
~Received 7 April 1998!

We present a method for generating interatomic potentials from first-principles calculations. Using the
effective-action formalism we describe a classical system of interacting atoms in terms of the expectation value
of the pair density operator. Such a description naturally leads to the concept of the effective two-body
interatomic potential. This is similar in spirit to the Kohn-Sham potential that arises in density-functional
theory; however, in this case, the system is reduced from a fully interacting many-body system to an auxiliary
system that interacts via a renormalized two-body potential. This potential contains the effects of three- and
higher-body correlations and can be calculated via a systematic self-consistent procedure. This method can be
trivially extended to the generation of higher-order interatomic potentials.@S0163-1829~98!09539-3#
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I. INTRODUCTION

Computational first-principles techniques in condens
matter physics are rapidly improving in both speed and
curacy. However, the quantum-mechanical treatment of
electronic degrees of freedom in such simulations still lim
the size of the system to about 102 atoms. Interatomic poten
tials have emerged as an alternate and faster method to s
large systems on the order of 1062108 atoms. They have
become of fundamental importance in many areas
condensed-matter physics and materials science ran
from the study of defect formation energies to atomic str
ture of solid surfaces to computer simulations related
phase transitions, fracture, plastic deformation, melting
sintering. It is with this in mind that there has been a trem
dous drive to produce reliable interatomic potentials that w
be successful at predicting dynamical properties of ma
body systems as first-principles calculations have been
predicting ground-state properties in the past several
cades.

There have been several different approaches to in
atomic potentials in the past several decades. One such
proach derives interatomic potentials from first principles
some sort of an approximation scheme. These method1–6

give a good qualitative and sometimes quantitative und
standing of the bonding in condensed-matter systems. E
though they have failed in producing good potentials, th
approaches have generated important connections bet
effective interatomic potentials and electronic structure.
PRB 580163-1829/98/58~15!/9700~5!/$15.00
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these, the tight-binding models have been the most us
and have generated a wealth of insight into the nature
interatomic potential expansion of the cohesive energy.5,6

Although some of these techniques have been extende
deal with the more difficult class of materials such as tran
tion metals and semiconductors, they have not enjoyed
attention that fitted potentials have in recent years. Fit
potentials require physical intuition to guide in choosing a
propriate parametrized functional forms that can be fitted t
database of experimental orab initio calculations. These ef
fective interatomic potentials represent interactions am
constituents of a system for which the electronic degree
freedom have been somehow ‘‘integrated out.’’ This allo
for a simpler description of the system but still expresses
a clearer fashion, the basic physics involved. Assuming
validity of the Born-Oppenheimer approximation, one is l
to the general expectation that an energy function exists
describes the total configurational energy of the system.
ing Carlsson’s7 terminology and classification, this energ
may be represented by pair potentials, cluster potentials
cluster functionals and is the basic starting point of fitt
methods. Most of the attention in the area of interatom
potentials is focused on generating good transferable po
tials for covalent material. The problem lies in the compl
quantum-mechanical effects that must be described by th
effective interactions.

Examples of the more well-known potentials include t
pioneering potential of Stillinger and Weber8 which is a
third-order cluster potential and was constructed to desc
9700 © 1998 The American Physical Society
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properties of silicon. Biswas and Hamann9 introduced a third
order cluster potential expansion with the three-body pot
tial having a separable form. However, it may not always
advantageous to expand the cohesive energy in such a
There is direct theoretical evidence5 to suggest that in som
systems such cluster potential expansions may either div
or converge poorly. Another innovative but fundamenta
different scheme is that of Tersoff10–12 whose later versions
improved on the number of fitting parameters. The Ters
potentials are an example of a third-order cluster functio
that includes a term that depends on the local bonding e
ronment. The Tersoff potentials contain a great deal
physical insight and seem to have validity away from t
equilibrium structure. The quality of these potentials ha
been studied13 and, although they have their strengths a
weaknesses, the fact remains that these potentials have
transferability properties. Perhaps the reason is a need
better description of the local environment. A perfect e
ample of that is the thermodynamic interatomic force fie
potential of Chelikowskyet al.,14 in which the environment
is described by a so-called ‘‘dangling-bond vector.’’ Baza
et al.15 have introduced environmentally dependent terms
their cluster potential-like expansion. Their potentials are
qualitative agreement with the various complex quantu
mechanical effects that dominate covalent material. M
Cooper, and Lim16 used a formal expansion motivated b
generalized pseudopotential theory but introduced a sim
local variable function that transforms the volume-depend
energy term into many-body interactions. Although the
and many other potentials were formulated with a great d
of physical insight, none have yet to demonstrate good tra
ferability qualities. The reason may be that it is just too a
bitious a task to try and fit all the qualitatively differen
properties in bonding of various structures into a simple
tential form.

With this in mind, it may be advantageous to produ
environmentally dependent effective interatomic potent
that contain the relevant physics through configurational
formation of a reference environment. Such effective pot
tials developed for a bulk reference environment may not
useful in surface calculations; however, potentials for su
environments may be developed as well. Such an appro
was attempted by Dagens17 using the proposition of Carlsso
et al.5 for using an effective cluster expansion valid only f
a restricted set of physical configurations. Their refere
environment was the hard-sphere gas for which they used
Percus-Yevick approximation for the pair distribution fun
tion. Their findings were in general quite satisfactory. T
point here is that if the effective potentials are calculated i
reference environment that contains the higher-order corr
tions, then a good description of systems that are not
different from the reference environment should result.

A statistical mechanical approach was taken early
through functional methods to generate such effective in
actions. Most of the early work using functional metho
was based on density-functional theory~DFT!.18,19 The idea
was to renormalize the interparticle potential that arises fr
strong multiparticle correlations in the system. This was
sharp contrast to the conventional Ursell-Mayer expans
theory20 where the interparticle correlations are given
terms of the bare interaction. The DFT approach bring
n-
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simplified picture to the many-body problem and puts in
perspective the nature of the approximations that are im
mented. The concept was extended to include a two-b
external source term, to zeroth order in the external field
deal with a weak three-body term.21 Although the basic con-
cepts are the same, the method to be introduced approa
the problem of interacting systems in a different manner th
other functional approaches. It yields explicit expressions
the higher-order correlations and allows for the system
improvement of the effective potential.

In what follows, we describe an approach to the gene
tion of effective interatomic potentials from first-principle
calculations via the effective-action formalism.22–24 We for-
mulate the theory so that the system is described by an
pair-density. Such a pair density description will then na
rally lead to a concept of effective two-body interatomic p
tentials. This is in sharp contrast with thead hocmanner in
which effective interatomic potentials are usually define
This approach is quite analogous with density-functio
theory24,25 where the description of the system is based
the density. In the latter case, the fully interacting system
transformed into a noninteracting system in the presenc
an auxiliary local source, the Kohn-Sham potential. T
Kohn-Sham potential is determined by a self-consistent p
cedure that contains the effects of electron correlations
reproduces the exact density of the fully interacting syste
Here, a pair-density-based description naturally leads to
auxiliary system of ions interacting only via a two-body p
tential. This potential contains the effects of three a
higher-body correlations and reproduces the exact pair d
sity of the fully interacting system. There is a systema
self-consistent procedure, similar to density-function
theory,24,26 which can be used to generate this two-body
teratomic potential.

In Sec. II, the effective-action formalism will be intro
duced and an expression for the effective two-body int
atomic potential in terms of statistical fluctuations will b
presented. In Sec. III, we show how the formalism yields
simple self-consistent procedure for generating the two-b
potentials. The many-body quantum-mechanical proper
of the system may be incorporated into the interatomic
tential by utilizing the information gathered on the pha
space trajectories, via anab initio molecular-dynamics or
Monte Carlo calculation.

II. THEORY

Let us define the grand potentialW@F#,

e2bW[F]5TrHexpF2bS Ĥ1E drdr 8F~r ,r 8!n̂2~r ,r 8! D G J ,

~1!

where Ĥ is the Hamiltonian of the system andb;1/T.
Analogous to the chemical potential, the auxiliary sourceF

coupled to the ion pair-density operatorn̂2 ,

n̂2~r ,r 8!5 (
aÞa8

d~r2xa!d~r 82xa8!, ~2!

generates the statistical average of the ion pair-density
erator at a specific temperature
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dW@F#

dF~x,x8!
5

TrH n̂2~x,x8!expF2bS Ĥ1E drdr 8F~r ,r 8!n̂2~r ,r 8! D G J
TrHexpF2bS Ĥ1E drdr 8F~r ,r 8!n̂2~r ,r 8! D G J 5n̄2~x,x8!. ~3!
-
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The system can be described in terms ofn̄2 as opposed to
the external sourceF. This can be performed with a func
tional Legendre transformation,

G@ n̄2#5W@F#2E drdr 8F~r ,r 8!n̄2~r ,r 8!. ~4!

HereF is assumed to be a functional ofn̄2 through Eq.~3!.
DifferentiatingG@ n̄2# with respect ton̄2 yields

dG@ n̄2#

dn̄2~x,x8!
52F~x,x8!. ~5!

Our original system is restored by setting the auxilia
sourceF to zero, giving the variational property,

dG@ n̄2#

dn̄2~x,x8!
U

n̄25n̄
2*

50 ~6!

where n̄2* represents the exact ion pair density of the fu

interacting system. Since, the functionalG@ n̄2# is strictly
convex this extremum is also a minimum.24,26

In order to proceed farther, we use the inversi
method22,27 to evaluateG@ n̄2# in Eq. ~4!. This may be
achieved by separatingĤ into

Ĥ5K̂1lÛ, ~7!

whereK̂ is the kinetic-energy piece,Û is the internal energy
of the system, andl is a coupling constant that will allow u
to expand in powers ofU. By expanding the right side of Eq
~4! in a power series inl,

F@ n̄2 ,l#5(
l 50

l lF l@ n̄2#, ~8!

W@F,l#5(
l 50

l lWl@F#, ~9!

we can get an expression for each order inG@ n̄2#, as
G l@ n̄2#5Wl@F0#1 (
k51

l 21 E drdr 8
dWl 2k@F0#

dF0~r ,r 8!
Fk~r ,r 8!

2d l ,0E drdr 8F0~r ,r 8!n̄2~r ,r 8!

1 (
m52

l
1

m! (
ki>1

k11•••1km< l

3E )
i 51

m

dr i

dmWl 2~k11k21•••1km!@F0#

dF0~r1 ,r18!•••dF0~rm ,rm8 !

3Fk1
~r1 ,r18!•••Fkm

~rm ,rm8 !. ~10!

The functionalsF l can be obtained from Eq.~5! by

dG l@ n̄2#

dn̄2~x,x8!
52F l~x,x8!. ~11!

It should be noted here that, because of Eq.~14!, G l depends
on all F l 8(x,x8) with l 8< l 21.

Consider the zeroth-order term,

G0@ n̄2#5W0@F0#2E drdr 8F0~r ,r 8!n̄2~r ,r 8!, ~12!

which corresponds to the auxiliary system that contains o
pair interactions mediated by the potentialF0(x,x8):

W0@F0#52
1

b
lnTrHexpF2bS K̂1E drdr 8F0~r ,r 8!

3n̂2~r ,r 8! D G J . ~13!

The purpose of the potentialF(x,x8) was to generate the
expectation value of the ion pair density operatorn̄2 in the
fully interacting system, therefore, the two-body potent
F0(x,x8) generates the same exact expectation valuen̄2 in
the auxiliary system described by Eq.~13!,

dW0@F0#

dF0~x,x8!
5n̄2~x,x8!. ~14!

From this point of view, we identifyF0 as an effective two-
body interatomic potential.

To arrive at an expression forF0 , which will yield the
correct density of the fully interacting system, we use t
variational principle

dG@ n̄2#

dn̄2~x,x8!
50⇒(

l 50
l l

dG l@ n̄2#

dn̄2~x,x8!
50. ~15!
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Using Eq.~11! for l 50 we have that

F0~x,x8!52(
l 51

l l
dG l@ n̄2#

dn̄2~x,x8!
, ~16!

whereG l@ n̄2# is given by Eq.~10!. This expression allows u
to systematically calculateF0 to any order. For example, t
first order,F0 is given by

F0~x,x8!5bE drdr 8$Un2~r ,r 8!

2Ūn̄2~r ,r 8!%
dF0~r ,r 8!

dn̄2~x,x8!
, ~17!

wherel51 restores the original system. The bars stand
statistical averages with respect toF0 in the auxiliary sys-
tem, that is, for any operatorÔ,

Ō5

TrH ÔexpF2bS K̂1E drdr 8F0~r ,r 8!n̂2~r ,r 8! D G J
TrHexpF2bS K̂1E drdr 8F0~r ,r 8!n̂2~r ,r 8! D G J

~18!

and

dF0~r ,r 8!

dn2~x,x8!
5@2b„n2~r ,r 8!n2~x,x8!2n̄2~r ,r 8!n̄2~x,x8!…#21

~19!

is the inverse of the fluctuations inn̂2 .
One should note from Eq.~17! that if the full interaction

is of the pair type, Û5 1
2 *drdr 8U(r ,r 8)n̂2(r ,r 8), then

Fo(r ,r 8)5 1
2 U(r ,r 8) for the variation of Eq.~15! to be sat-

isfied. It should also be obvious from Eq.~17! that if Û is of
the pair type, thenF0 will not depend on thermodynami
quantities such as temperature and density. In this case,
if there are long-range correlations, they are cancelled ou
the inverse of the fluctuations inn̄2 . However, when the
interactions are no longer of the pair type thenF0 will de-
pend on the temperature and the density of the system
nontrivial way through the ensemble averages.

Equation~17! is interestingly similar in form to the effec
tive interatomic potential derived by Carlsson28 via the maxi-
mum entropy method. However, in the maximum entro
method there is no variational scheme to solve for the ef
tive interatomic potential. As will be shown in the next se
tion, this formalism yields a procedure by which to solve f
the effective interatomic potential. The procedure does
require the calculation ofdF0 /dn̄2 , which is very important
from a practical point of view since such a calculation wou
involve the inversion of large matrices.

It is important to point out that this method generalizes
an easy way to third- and higher-order effective interatom
potentials. For example, to generate three-body effective
teratomic potentials, a three-body external source repla
the nonlocal source in Eq.~1! and the ion three-body densit
operator replaces the ion pair density operator. In this c
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the system is described by the three-body density and the
of the machinery follows as described above.

III. APPLICATION

The appearance ofdF0 /dn̄2 in Eq. ~17! seems discour-
aging, however, it turns out that the solution is rather simp
Equation ~17! was arrived at by imposing the variation
condition ~6!. If one follows the arguments leading to E
~14!, then it is obvious that solving

dG̃@F0#

dF0
50, ~20!

where

G̃@F0#5G@ n̄2@F0##, ~21!

is equivalent to solving Eq.~6!. In other words, the potentia
F0 , which satisfies Eq.~20!, generates the exact pair densi
n̄2* , which satisfies Eq.~6!. This is due to the one-to-on

correspondence betweenF0 and n̄2 . We thus have an alter
nate variational principle that does not require the calculat
of dF0 /dn̄2 and is therefore easier to solve.

There is now a means of getting at an interatomic pot
tial through a steepest descent self-consistent iterative pr
dure. In its simplest form, the self-consistent scheme w
proceed as follows:~1! Start with a guess atF0 . ~2! Calcu-
late the necessary fluctuations from Eq.~22! at some tem-
perature using first-principles molecular dynamics, Mon
Carlo, or any other appropriate scheme.~3! Calculate the

gradient ofG̃@F0#,

dG̃@F0#

dF0~x,x8!
52b$Un2~x,x8!2Ūn̄2~x,x8!%

1bE drdr 8F0~r ,r 8!$n2~r ,r 8!n2~x,x8!

2n̄2~r ,r 8!n̄2~x,x8!%. ~22!

~4! UpdateF0 by

F0
i 11~x,x8!5F0

i ~x,x8!2a i
dG̃@F0#

dF0~x,x8!
, ~23!

wherea i defines the step length in thei th iteration.~5! If not
converged, go to step 2.

Another point that makes this method even more attr
tive computationally is the fact that the dynamics is co
trolled by F0 . That is, we begin with a guess for the inte
atomic potentialF0 and generate configurations with th
potential in a Monte Carlo or molecular-dynamics algorith
For each configuration generated, we can obtain the inte
energy from, for example, a first-principles calculation. Th
is the only quantity that we require externally. Then, ea
internal energy associated with a specific configuration w
be weighted by our guessed potential, as given in Eq.~18!, in
order to calculate quantities likeŪ in Eq. ~22!. It is the
information from the first-principles energetics that tells
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how to adjust the potential in order to satisfy Eq.~20!. Once

G̃ has been minimized, we have an interatomic potential
could be used in large scale atomistic simulations to ca
late various thermodynamic quantities including quantit
such as vacancy formation energy and the velocity-velo
correlation function. Of course, the systems in which th
quantities are calculated must have physical properties
are closely related to the ones in which they were genera

We have implemented the above scheme on a Lenn
Jones 6-12 system to see whether it can be recovered
our iterative scheme. Since the calculations in real sp
would require minimizing on a large number of paramete
we have expanded the effective potential in a set of linea
independent functions so that we can reduce the numbe
parameters in which to minimize on. Convergence to
correct values is achieved and we continue to examine
stability of the scheme. This simple potential is not a tes
the method but rather a test of the stability of the numer
scheme. We are also working on other self-consistent m
ods that are noted to have better convergence qualities.

IV. DISCUSSION

The motivation behind the work described here is to p
vide an unambiguous way of defining and computing int
atomic potentials. The approach described in this paper
vides the necessary tools to study effective interato
potentials and their dependence on the reference env
ment in which they were generated. This will allow us
better understand how to package such potentials for us
studying large systems.

One of our immediate goals is to test this method with
potential that has more than a pair term in it. Such a test
allow us to quantify the reproducibility of this method an
study the transferability of the effective interatomic pote
tials. We expect our recovery procedure to fare well beca
v.
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our interatomic potentials contain higher-order correlatio
built into them. Furthermore, because we have introduce
nonlocal source in the grand potential our effective int
atomic potentials contain angular information. This is a ve
important point and should not be confused with oth
schemes where the starting point is a pair potential that
function only of the interatomic distance and may be true
systems at temperatures well above the melting point. S
systems will have translational and rotational symmetry d
to the lack of short-range ordering. However, for syste
near their melting points, short-range order does persist
ing rise to angular dependence.

We have presented this theory for systems that we ass
are adequately described by a two-body potential. If this
not the case, then as we have mentioned above, the for
ism can be extended to a three-body potential. In this w
the system will be more accurately described and the con
gence properties of the perturbative expansion will be
proved. This is in analogy with density-functional theo
where for certain systems a description in terms of the c
rent density or spin density is required because the elec
density alone is not sufficient.

We would like to further emphasize that although the id
of generating interatomic potentials from statistical mecha
cal techniques is not new, the method introduced above le
to new results which have practical advantages over o
techniques. By using a single general theory, we get ou
systematic definition of what effective interatomic potentia
are and how to go about generating them. It is based
statistical mechanical principles and requires the calcula
of statistical mechanical averages.
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