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Theory of spin-dependent transport in ferromagnet-semiconductor heterostructures
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The formalism of spin-dependent transport is used to calculate the conductance of device structures com-
prised of a two-dimensional electron-gas~2DEG! channel and ferromagnetic source and/or drain for a variety
of magnetization configurations. Among the effects predicted by the calculations is spin-dependent current
rectification at a 2DEG-ferromagnet interface.@S0163-1829~98!02036-0#
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Among the extraordinary properties of high-mobility tw
dimensional electron gases~2DEG’s!, one remarkable char
acteristic, the spin splitting of the conduction band, is re
tively unexploited. It is well known that the high-mobilit
carriers in the channel of a 2DEG heterostructure@Fig. 1~a!#
are confined in a potential well with walls sufficiently ste
that momentum states alongẑ are quantized, but they ca
move freely in thex-y plane. The Fermi wave vecto
kF5A2pns is of order 106 cm21 for typical carrier den-
sities of orderns;1012 cm22 and the Fermi velocityvF

;107 cm/sec is weakly relativistic. A perpendicular electr
field E5Ezẑ @Fig. 1~b!# transforms, in the frame of the ca
rier, as a magnetic fieldH* with components in thex-y
plane. This ‘‘effective’’ field can interact with the spin mag
netic moment of the carriermB and split the conduction ban
into subbands separated by an effective Zeeman energD
}mBH* .

Two sources of fieldEz are of particular interest.~i! An
asymmetry of the confining well has an associated poten
gradient]V/]z5Ez . Because this couples the electron sp
and orbital terms, Bychkov and Rashba introduced a s
orbit Hamiltonian1 HSO5a(s3k)• n̂, wheres are the Pauli
matricies andn̂ is a unit vector normal to the plane of th
2DEG. The spin-orbit constanta is proportional to the mag
nitude of the interfacial fieldEz and is therefore materia
specific. Values of the spin-orbit splittingDSO'2ak ranging
from 2 to 5 meV have been measured
InxGa12xAs/InyAl12yAs and GaSb/InAs heterostructures
analyzing the beat pattern of Shubnikov–de Ha
oscillations.2–4 ~ii ! A gate voltageVg @refer to Fig. 1~a!#
results in a variable electric fieldEz . Niita et al.3 modulated
the zero-field Bychkov-Rashba spin splitting by about 20
by applying gate voltages of order 1 V to their
InxGa12xAs/InyAl12yAs heterostructures.

For spin splittingsDSO of a few meV, the magnitude o
the effective field H* , given by D52gmBH*
5@2(g/g0)mB0 /(m* /m0)#H* , is the order of 1 T, where
mB0, g0 , and m0 are the free-electron values of the Bo
magneton, theg value, and the carrier mass, and typical
fective valuesg;4g0 and m* ;0.1m0 are used. Effective
fields of 1 T are substantial and this article investigates s
eral effects on the spins of the carriers.

Referring to the schematic diagram of Fig. 2~a!, we con-
sider transport in a high-mobility 2DEG channel between
source and drain. For a heterostructure with electrons as
predominant carriers~with only the first quantized level oc
cupied!, the energy dispersion relation is5
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where Ec,0 is the energy at the bottom of the band. T
density of states~for a valley degeneracy of 1! is given by

N~E!5H m*

p\2 , E.Ec,0

0, E,Ec,0

~1!

and the Fermi level lies in the band for most systems
interest.

We consider electrons injected with momentum\kx , so
that the effective fieldH* 5Hy* is oriented along theŷ axis.
A third of these carriers will have their spins aligned alo
the 6 x̂ axis and a third will have their spins aligned alon
the 6 ẑ axis. The spins will precess about they axis at the
Larmor frequencyVL as the electrons move alongx̂. The
remaining third have their spins oriented along the6 ŷ axis.
Because their magnetic moments are parallel to the effec
field Hy* they do not precess. However, the one-sixth w
spin alongŷ have an additional magnetic potential ener
mBH* and the one sixth with spin along2 ŷ have a magnetic
potential energy2mBH* . Thus, for those electrons with mo
mentumkx the density of states is spin split by 2mBH* in a
manner similar to Pauli paramagnetism, even though ther
no externally applied fieldHext50. This is represented sche
matically in Fig. 2~b!, where Eq.~1! is used for the density
of statesN(E) and we have assumedT50 for simplicity.
The situation is exactly reversed for carriers with moment
2\kx @Fig. 2~c!#. Here the effective fieldH* has the

FIG. 1. ~a! Layer structure of a typical, gated 2DEG heterostructure.~b!
Schematic conduction-band diagram showing the potential well and fi
Ez .
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9636 PRB 58BRIEF REPORTS
opposite signH* (2 ŷ), so that the electrons with spin alon
2 ŷ ( ŷ) have an additional magnetic potential energymBH*
(2mBH* ).

In the transport calculations below, a bias voltageVb
drives a currentI b from source to drain through a 2DEG
channel of lengthLx @Fig. 2~a!#. The channel conductanceg
can be calculated within a variety of models. A tw
dimensional Landauer form,6 for example, is

g5 ~e2/A2p\! Ant, ~2!

with t a transmission probability. In general,g is proportional
to a positive power ofn and the detailed form ofg will not
be important. Although it is not conventional to define co
ductance for a Fermi half sphere~or half circle, in two di-
mensions!, we will explore systems where it is useful t
introduce definitions of conductance for specifick̂ directions
as well as for spin-up and spin-down subbands. On a heu
tic level, it is clear from Figs. 2~b! and 2~c! that the conduc-
tance of up-spin and down-spin carriers differs for each
rection of momentumg↑(kx)Þg↓(kx) and g↑(2kx)Þg↓
(2kx) because the densities of carriers differsn↑Þn↓ . The
zero-field spin splitting of the conduction band and diffe
ences of spin subband conductance have been inferred
beat patterns in Shubnikov–de Haas oscillations,2–4 as men-
tioned above.

To explore the detailed nature of the subband splitting i
necessary to measure the differenceDn5n↓2n↑ or, equiva-
lently, the difference of subband conductanceDg5g↑(kx)
2g↓(kx). The approach presented here is to addg in series
with the conductance of some elementF, which itself has
asymmetric spin subband conductancegf ,↑Þgf ,↓ for two in-
dependently controlled casesgf ,↑.gf ,↓ and gf ,↑,gf ,↓ . An
appropriate elementF is a single domain ferromagneti
film.7 When the magnetizationM of an appropriate ferro-
magnetic material is up, the conductance of the down-s
subband is typically larger than that of the up-spin subb
gf ,↓.gf ,↑ , but when the magnetization orientation is r
versed, for example, by the application of a small, exter

FIG. 2. ~a! Top view of the generic device structure. The bias voltageVb

drives a bias currentI b through the sourceS, into a channel of lengthLx ,
and through the drainD to ground. An intrinsic electric fieldE5Ezẑ is
perpendicular to the plane of the device. The density of states of the 2D
channel is spin split by the effective fieldH* for ~b! electrons with momenta
\kx and ~c! electrons with momenta2\kx .
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magnetic fieldHext,y , the inequality reverses,gf ,↑.gf ,↓ .
Figure 3~c! depicts the device of Fig. 2~a! with a drain com-
posed of a thin ferromagnetic filmF.

To develop a notation that includes the spin orientation
charge carriers, we note that the electric currentJe is a vector
and a current of oriented spins is a magnetization currentI

M ,
a second-rank tensor given by the vector product of the n
ber currenthJe /e, where h is the fractional polarization
~h51 for 100% spin polarization!, with the spin magnetic
momentmB .7 In the quasi-one-dimensional calculations b
low, Je5Je,xx̂ andJe,x is a scalar. For spins polarized alon
a single axis, e.g., theŷ axis, the magnetization current i
JIM5h(mB /e)Jex̂ŷ5JMx̂ŷ andJM is also reduced to a sca
lar: a particle~and charge! current flowing alongx̂ with spins
aligned alongŷ. More generally, the component (JM) i , j de-
scribes the transport along axisj of the projection of spin
magnetization on axisi.

It follows that the electric conductance~along x̂! has two
orthogonal components defined alongŷ, g↑ and g↓ , and is
conveniently considered a vector,Je5(g↑u↑&1g↓u↓&)Vb ,
where u↑& and u↓& are unit vectors for up- and down-spi
projections, respectively. Here we are inventing a differ
notation to stress the fact thatg↑ and g↓ do not mix in the
absence of spin-flip scattering: The vectorsu↑& and u↓& form
an orthonormal basis. Any real experiment measures the
conductance

Je5~g↑1g↓!Vb5gVb , ~3!

so that the vector conductance must be dotted with the b
vectors to find the net, experimentally measured va
g5(^↑u1^↓u)(g↑u↑&1g↓u↓&)5g↑1g↓ . The utility of this
notation is that the electric current is simply given as the s
of subband conductances@Eq. ~3!# and the magnetization
current is given by their difference7

JM

Je
5

g↑2g↓
g↑1g↓

mB

e
[h

mB

e
. ~4!

Finding the net conductance of a system ofn structural
components in series is now straightforward. A conducta
is calculated for each spin subband of each component.
ing the boundary condition that there is no spin-flip scatt

G

FIG. 3. Density of states diagrams, atT50, for a 2DEG~left! and the
exchange split band of a transition metal ferromagnet~right! ~a!. The mag-
netization ofF is ‘‘up.’’ ~b! The magnetization is ‘‘down.’’ These diagram
are not drawn to scale. The exchange energyU is of order 1 eV and 2mH*
is of order 1 meV.~c! Top view of a device structure with ferromagnet
drain F, with easy axis of magnetization alongŷ so that the magnetization
has two orientationsM56Msŷ.
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ing at the interface between any two components, the
conductance of each spin subband is calculated for the e
structure and then the overall conductance of the structu
the sum of the contributions from both spin subbands,

gN,↑
21 5(

i 51

n

gi ,↑
21, gN,↓

215(
i 51

n

gi ,↓
21, G[gnet5gN,↑1gN,↓ .

This formalism is first applied to calculate the condu
tance of a two-component, semiconducting 2DE
ferromagnet (2DEG-F) system for two magnetization orien
tations. The calculation can be intuitively followed wit
simple density of states diagrams@Figs. 3~a! and 3~b!#. The
diagrams on the right are appropriate for the 3d ~or hybrid-
ized 3d-4s! band of a three-dimensional transition metal fe
romagnetic filmF exchange split by an energyU of order 1
eV. We use the convention thatF in Fig. 3~a! has up mag-
netization@along ŷ in Fig. 3~c!# and down magnetization in
Fig. 3~b!. Referring to Fig. 3~a!, charge transport in the fer
romagnet involves only those carriers near the Fermi le
g}N(EF), and the minority spin subband conductance
larger than that of the majority spin subbandgmin,F.gmaj,F .
The conductanceGF;up of F with magnetization up is8

GF;up5gmaj,Fu↑&1gmin,Fu↓&. Similarly, the conductance
GF;down @Fig. 3~b!# is GF;down5gmin,Fu↑&1gmaj,Fu↓&.

On the left-hand side of Figs. 3~a! and 3~b!, the density of
states of a 2DEG heterostructure with Fermi energy in
band is depicted and the chemical potentials ofF andS are
aligned~voltage drops at the interface, or along the chan
and drain, are ignored!. Consistent with Fig. 3~c!, for a cur-
rent bias sourceI b that drives electrons from source to drai
the density of states diagrams are drawn for electrons w
momentum\kx , with a splitting of 2mBH* . The down-spin
subband conductance of the 2DEG is larger than that of
up-spin subband becausen↓.n↑ ; we can denote the forme
as the majority spin subband and the latter as the mino
spin subband and the conductanceGS of the semiconducting
2DEG channel can be written asGS5gmin,Su↑&1gmaj,Su↓&.

We take the vector sum of subband conductances
compare the net conductance for the cases with the ma
tization of F up and down:

1

G1
5

1

GS
1

1

GF;up
,

1

G2
5

1

GS
1

1

GF;down
.

The algebra is straightforward with the result

G12G2

G11G2
5

DG

2Gav
5

DR

2Rav
5

~gmaj,S2gmin,S!~gmin,F2gmaj,F!

~gmaj,S1gmin,S!~gmin,F1gmaj,F!

5hFP, ~5!

where

hF5~gmin,F2gmaj,F!/~gmin,F1gmaj,F! , ~6!

P5 ~gmaj,S2gmin,S!/~gmaj,S1gmin,S! . ~7!

Changing the polarity of bias current has the same ef
as reversing the magnetization orientation ofF and Eq.~5!
predicts that the 2DEG-F interface should rectify alternatin
current, as long asF is uniformly magnetized along theŷ
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axis. This is an effect that is unrelated to thep-n junction
behavior and derives entirely from interfacial spin-depend
transport. Equation~6! is analagous to Eq.~4!; it defineshF
as the fractional spin polarization of current inside a fer
magnet. For transition-metal ferromagnets,h can be as large
as 0.9.9 Similarly, Eq. ~7! definesP as the fractional polar-
ization of current in the channel, which will depend on t
2DEG heterostructure. It is likely to have the largest valu
for narrow gap materials, withP'10%.4 The observation of
a sizable effect, with magnitude of orderDR;0.1Rav for
quasi-one-dimensional structures, is expected, but would
quire Ohmic contact at the 2DEG-F interface to eliminate
rectification caused by a Schottky contact.

We next apply this formalism to calculate the condu
tance of a ferromagnet-semiconducting–2 DEG-ferromag
(F-2DEG-F) system, for the case of a semiconducti
2DEG with negligible spin-orbit coupling and therefore ze
spin subband splitting. The structure depicted in Fig. 4~c! is
similar to that introduced in the seminal work by Datta a
Das,10 but we consider two different magnetization orient
tions alongŷ. A ferromagnetic sourceF1 with magnetiza-
tion fixed in the down orientation@along 2 ŷ in Fig. 4~c!#
delivers spin-polarized carriers to a high-mobility 2DE
channel. The device conductance will be larger when
magnetization of the ferromagnetic drainF2 is also down
@parallel to that ofF1, Fig. 4~a!# and smaller when the mag
netization orientation is up@antiparallel, Fig. 4~b!#. In an
ideal device,Lx is comparable to the carrier mean free patl
so that transport is ballistic, or quasiballistic, and the chan
is sufficiently narrow that trajectories with momentum com
ponents alongŷ are suppressed. However, as discussed
Ref. 10, spin-dependent transport may not be diminished
multimode devices if the subbands are sufficiently far ap
In this case, elevated temperatures and relatively large
could be used.

By definingg as an interfacial conductance,7 where ‘‘in-
terface’’ is defined to be a region with thickness equal to
mean free path on either side of the interface itself, the
vice conductanceG5I b /V can be calculated as a two-ste
process characterized by the series sum of the interfa
conductance fromF1 to S and from S to F2. The vector
conductance fromF1 to S is

FIG. 4. Density of states diagrams for transport in aF1-2DEG-F2
structure. The magnetization ofF2 is ~a! down, aligned parallel to that of
F1, or ~b! up, aligned antiparallel to that ofF1. ~c! Top view of the device
structure with ferromagnetic sourceF1 and drainF2. The magnetization of
F1 is assumed to remain fixed along2 ŷ.
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GF1→S5gminu↑&1gmaju↓&.
The conductance fromS to F2 for parallel magnetization
alignment is

Gpar;S→F25gminu↑&1gmaju↓&.
The conductance fromF1 to S to F2 is the series combina
tion GF1→F2

21 5GF1→S
21 1GS→F2

21 ,

1

G1
[

1

Gpar
5

2

gminu↑&1gmaju↓&
.

In the case of antiparallel alignment, with the magnetizat
orientation ofF2 reversed, the conductance fromS to F2 is

Ganti;S→F25gmaju↑&1gminu↓&. ~8!

The series combination of conductances is

1

G2
5

1

Ganti
5

1

gminu↑&1gmaju↓&
1

1

gmaju↑&1gminu↓&
.

After straightforward algebra, the variation of conductance
found to be

~DG/Gav! 5 ~DR/Rav! 52h2. ~9!

Hereh is the fractional spin polarization of current crossi
the F-2DEG interface~or the 2DEG-F interface! and may
differ from the polarization of currents insideF.7

The calculation is not substantially changed if transpor
diffusive rather than quasiballistic, i.e.,Lx> l . In particular,
an allowance for spin-flip scattering inScan be made. If the
mean path length over which spin orientation becomes
dom isLs , the calculation proceeds as above with the res

DR/Rav52e2Lx /Lsh2. ~10!

Extension of the formalism to the case where the 2DEG
a material with substantial spin-orbit coupling and significa
spin splitting of the conduction band is straightforward. T
polarizationP8 of the carriers inS is enhanced by spin in
jection fromF1:

P85
gmin,S~11h!2gmaj,S~12h!

gmin,S~11h!1gmaj,S~12h!

5
~gmin,S2gmaj,S!1h~gmin,S1gmaj,S!

~gmin,S1gmaj,S!1h~gmin,S2gmaj,S!
5

P1h

11hP
. ~11!
e,
n

s

s

n-
lt

is
t

The relative change of conductance is given, as before in
~5!, by

~DG/2Gav! 5 ~DR/2Rav! 5hP8. ~12!

Sinceh is the order of tens of percent, the enhancement oP
may be substantial.

The transport pictures developed above can be use
address questions about the nature of spin-flip scattering
quasi-one-dimensional semiconducting 2DEG. We comp
the densities of states sketches of Figs. 2~b! and 2~c! and
consider an electron moving in one dimension in a st
ukx ,↓& @Fig. 2~b!# that reverses its direction in an elast
scattering event to a stateu2kx ,↓& @Fig. 2~c!#. Formally, the
transition rateG for a scattering event could be derived wi
a golden rule calculationG}uM2uNi(E)Nf(E), whereuM2u
is a matrix element,Ni(E) is an initial density of filled states
and Nf(E) is a final density of available~empty! states.
However,Nf(E) is zero for some of the electrons in initia
statesukx ,↓& and the transition rate for electrons in the
states to elastically scatterwithoutflipping their spin is there-
fore zero. For example, a down-spin electron with ene
EC,02mBH* ,E,EC,01mBH* has no available phas
space for momentum2\kx and a scattering event from1kx
to 2kx is either forbidden or must include a spin flip. Phys
cally, spin-flip scattering is associated with the application
a magnetic torque over a finite time interval. The interest
case arises in a 2DEG that there may be no torque on
spin and no apparent mechanism for a spin flip, but the c
rier spin may be required to flip by phase-space consid
ations. The alternative is equally interesting: Scattering
suppressed because no phase space is available for the

By the arguments above, scattering events in which
spin state is conserved are suppressed for a significant
tion of the carriers, but scattering events accompanied b
spin flip are not suppressed. Thus spin randomization is
pected to be rapid and the phenomenon of s
accumulation11 should be inhibited in a 2DEG. Generaliza
tion from quasi-one-dimension to two dimensions does
promote spin accumulation since spin relaxation has b
shown to be rapid in the latter case.12

The author gratefully acknowledges G. A. Prinz and
Wagner for stimulating conversations and A. Ehrlich for
critical reading of the manuscript. He gratefully acknow
edges also the support of the Office of Naval Research.
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