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Self-energy of a confined polaron in a quantum well:
Comparison among different phonon models
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We study the interaction of an electron with the confined longitudinal optical phonons in quantum wells. For
the Frdnlich interaction of the electron-phonons we adopt the Huang{Phys. Rev. B38, 2183(1988; 38,
13 377(1988] confined phonon model based on a microscopic lattice-dynamic approach. The explicit expres-
sion for the electron self-energy is obtained using a variational method. We also use the slab model and the
guided model for the confined optical phonons in calculating the electron self-energy. Consequently, a com-
parison of three models considered is provid&0163-182608)04535-4

[. INTRODUCTION the outside of the well is a vacuum. We restrict our interest
to the influence of the electron-confined optical-phonon in-
In recent years, there has been a great deal of interest teraction to the electron self-energy. So the electron-electron
the study of the various vibrational modes in low- and electron—interface-phonon interactions are neglected.
dimensional systems such as quantum wells, quantum wireFhree different models for the confined optical phonons are
and superlatticejs‘.9 The patterns of the normal modes that treated. Within an isotropic effective mass¥) approxima-

determine the electron-phonon interaction in such low+ion, the Hamiltonian of the system can be deduced from
dimensional structures are evidently different from those inRef. 15 as

the bulk. The effect of quantum confinement alters the pho-
non modes and their interaction with electrons. 2 2

The widely used confined phonon modes in typical semi- H= om* (pj+ pz)+qEn h‘“LOBaHnIBq”njLHefphv @)
conductor quantum well structures such as GaASIBBAS I
are the Fuchs-Klieweslab modé and the Ridleyguided Where
mode® both of which are based on the macroscopic dielectric A
continuum model. However, use of these models for the de- He,ph=)\2 e'q\l'rth(q”)un(z)(,B’qH nt 'thu )
scription of the electron—LO-phonofiFrohlich) interaction qj.n
in quantum confined structures is still controver§i8ubse-  with
quently, several alternatives to the original Fuchs-Kliewer
theory have been propos&4 ! Since there was no general )\2:42(%) N )
consensus on which is the most suitable model, Rudin and Y Lo Lo’
Reinecké® and Weber and Ryahhad compared the three | the apove equations(8") is the creatior(annihilation
confined optical phonon modes in their study of theoperator of the confined phonon with frequenayg, n is
electron—LO-phonon scattering rate in the quantum We"Sthe phonon-mode quantum number in thirection,r; and

_ 15,16
L?g%);%gn?ctg?&ég? dH#:é]\?czdgtlczr? rtTi]gr?eils', mo?:S;d ?on ﬁat | are the transverse coordinate and momentum, respec-
b y btion, pprop ‘ﬁvely, qj is the phonon wave vector in the plane;V is the

than the slab model and guided model, in comparison to th s . ;
existing experiments. Accordingly, it seems to be a Worth-VOIurne of the crystal; and is the electron-phonon coupling

while endeavor to compare further the various confined@nstant. _ . _ _
optical-phonon models for the different physical quantities. . " the HZ microscopic model, the displacemen(z) is

In this work we report the results of our calculation of the 9'V€N as
electron self-energy for the electron-confined optical-phonon
interaction in a quantum well structure. To the best of our
knowledge, few people have used the HZ model to calculate  Un(2)=
the electron self-energy in quantum well structures. We also
calculate the self-energy from the aforementioned two mac-
roscopic models. Our results clearly manifest the difference¥’
among the three confined optical-phonon models.

The remainder of this paper is organized as follows. In tan(u,m/2) = (uam)/2, n—=1<wp,<n, 4
Sec. Il we write out the relevant Hamiltonians. In Sec. Ill we

- ; where

present the explicit expressions of the electron self-energy
for three confined phonon models. Finally, the numerical re- Ch=—2 sinu,m/2).
sults and associated discussion are given in Sec. IV.

sin(upmz)/a+ (c,z/a), n=357...

cognmz)la+(—1)"?*1 n=244§6..., ®

hereu, are the solutions of the equation

Here it is important to notice that the mode-1 is excluded
in the above equation because this mode is associated with
the interface mode¥s.

We consider a quantum well model with widéh assum- In the slab model the electron potential has nodes at the
ing that a polar crystal occupies the space|f<a/2 and  interface andu,(z) takes the forrh

Il. THREE CONFINED PHONON MODELS
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nmwz IIl. SELF-ENERGIES OF THE ELECTRON
cos—, nh=13,5;-: .
a We use the Lee-Low-Pines methddo calculate the self-
Up(2)= nmwz ©) energy of the electron-confined optical-phonon interaction in
sinT, n=2446.... the quantum well structures. To this end, we perform two

unitary transformations with
One can see that theth mode of the slab model has an

opposite parity to the that of the HZ model.

Based on the hydrodynamic boundary conditions pro- U1=eXp[—iE q'rﬁl,nﬁk,n}a (11
posed by Babikeér for longitudinal-optical phonons, the par- a.n
ity of the phonon modes of the guided model matches those

obtained by the microscopic model. The displacement of the = f
.y . P . . 5 P U2 ex;{ E qu an” qH n,BqH ni» (12)
nth mode in the guided model is given’as
nwz i iati i i -
s  n=135... wherefqH nis the .vanatlonal. p.ar.afneter, which will be sub
a sequently determined by minimizing the energy of the sys-
Un(2)= Nz 6 tem. The result of the first unitary transformation is

a
cos—, nh=2446....
a 2

_ p; 2
. . . . r_ 1 _ _ T
Finally, t,(qy) in Eq. (2) is defined as H'=U, HUl_zm* + py— o] % ﬁQ|Bqln,3q|n>
t B 1fa/2 - +(dun(z))2 g -1z .
() = a) djun(z) e z . (7 +%n ﬁwLoﬂch”anHan)\%n tn(q)

An explicit calculation yields

tn(qH):(anqﬁ'l'bn/az)_l/zi (8)
wherea,, andb,, are for the Huang-Zhu model

XUn(2)[ Ban+ Blgnl- (13

Using the relations for the second unitary transformation

1 _s U;:BanUZZIBan'I'qu,nv (14)
—1+C 5 — MUy 272,
Uy Bl Up,=p8L +f* (15)
bo=p2m2—c2, n=357... 9) an A A
we obtain
a,=3, b,=n?w%, n=246...

and for other two macroscopic models H"=U,H'U,=Hg+H,, (16)

a,=1, b,=r?#%, n=123.... (100  where

2
p 1
Ho=2 3 (p| 2, 11)Bqnbayn +% thoﬂq"nﬁan+E IN[ta(aUn(2) fq o+ th (aPUy (D5 o]
_figppy | APof
2 ARy Ay t . . 2al
2m [z |qu n| QH +E |fq” n| m* + om* m*quz,ﬂ ﬂan,Bq”nQH q'E,n’ [|fq” n | qH]
happp  hPdf A
* * _ . , /2 ’
+% Bqln[mnm)un(zwfq,n hoto=— =+ o+ qE a0
_ hai-p A%af k2% ,
+3 Banl —IN(QU2)+ 2 Frwpo— — 4 L 2L S g2 (17)
qp.n I I m* 2m* m* qu Y I

and

h%q)- qj
Hi= E * ['Bku“ﬁqu"'fqn nlof ot Bqn“'gqu anfo Bqn“'gqu ap.nf aj - ]
qj.qy .n.n’ 2m "

h?g-qf
X BapBanBan Tyt By BiynBaptyy - (18

gj.qf .n.n’
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Next, the expectation value of the transformed Hamil-

tonian is evaluated using the product wave function

[ =¥m(2))[0), 19
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B i)\t;ﬁ(qu)(lﬂm(z)|uﬁ(2)| m(2))
q”n_ ﬁqu

2m*

tho+

where |y (2)) is the electron wave function with the sub- Substituting Eq.(25) into Eq. (22) and after a tedious but

band indexm along thez direction and|0) is the phonon

direct calculation, we finally obtain

vacuum state. In our infinite square well approximation, the

electron wave functions are given as

|¥m(2))
e'PImy2/Vsinmmzla+ mw/2), |z|<al2 20
| 0,]z|>a/2 9

wherem=1,2,3 ... with the corresponding energies

E%=(#2pf/2m*) + (h2m?m?/2m* a?) . (22)
The desired expectation value is
E=(yH"[4) = (4m(D|E(2)[¥(2)), (22)

where

2

h2m?m?

E
2m* a2

Elo, (26)

whereE, ¢ is the electron self-energy, which is expressed as

N2ta(a))

|
qH,n=3,5|7,..., ﬁquZ(

ﬁwLo+
2m*

Elo= 11+ 13)

7[|4—2(—1)“/2|5+|6].

(27)

For the HZ model the functionk are specified as

1 m2sin( )

Pz ;
E(z)= ——+ qE IN[tn(A)Un(2)Fqn—t7 (AUR (2)Fn]
1"

2m* ly=s+ ——" (28)

1_ L
2 2mpy(ph—m?)
ﬁ2 E 5 2
+ f
2m* qH,n| a0 o c2
=555 3 (29
ﬁzqz 2mea
+ 3 fqal hoot — |, 23 N
q.n m 8o cof upm2)  (8m —6u;)Sin(u,m/2)
3=oC
where we have dropped out terms associated with the elec- " (i am?) 72 pn( pp—4m?)2
tron momentum in thy plane because we are interested (30
only in the ground state of the confined polaron. In the above
equation, the term 14=3 — i (—1)"Snm, (31)
#? 2 8m?sin(n/2)
2 IR S
Py > [fqnl “a yPCame n+2m,
qp.n = nm(4m*—n<) (32)
57, _qym+1
describes the interaction between the virtual phonons L n=2m,
emitted/absorbed by the recoiled electron, which is generally 2
very small, especially in the weak coupling limit such as in
the GaAs quantum well. Thus we will neglect this term in le=1. (33
the following calculation. _ For the slab model they are given as
Now we use the variational method to find out the un-
known funct|onfq”n, ,=1—1(=1)"5,, (34)
SE SE =3+ 3(—1)"Sm- 35
£, 24 =D 0, (39)
an 5qun Similarly, for the guided model,
to get 11=3 + 7 (=1)"6m, (36)
fr = _i)\tn(q|\)<‘//m(z)|un(z)|'pm(z» (25) |4=% - %(—l)nﬁnm. (37
an 2¢? ’
Lot hoqi Notice thatl,,l3,l5 andlg are identically zero in both the
2m* slab and guided models.
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slab model is bigger than that between the HZ model and the
guided model. This renders one to imagine that a proper
reformulation of the slab model may reduce the gap. In order
to confirm this point, we have calculated the self-energy us-
ing the improved slab model by Web¥rmodified to pos-
sess the same parity as the HZ model, to observe that the
outcome is closer to the HZ model than even the guided
model, not only its value but also the change with the quan-
tum well width. The discrepancies between the HZ model
and the guided model comes mainly from the fact that
=1 phonon mode, which belongs to the interface mode, is

excluded in the former but the interface mode is included in
the latter. Next, one may notice that three models tend to the
different bulk limits at large well widths and only the HZ
model tends to the proper bulk limit. This is because the slab
Model is restricted to the quasi-two-dimensional situation by
constructioh’. The HZ model and the guided model can ex-
tend their validity to the large well width limit. However,
because of the distinct mechanisms for the phonon modes
used, there still exists the difference in the bulk values. We
The numerical calculation is carried out using the materiafXPect that an inclusion of the effect of the interface phonons
parameters suitable for the GaAs quantum well structhresWill reduce the difference. We have seen the similar results
the electron-phonon coupling constant 0.0657; the effec- for other subbands but not drawn.
tive conduction-band mass* =0.0665n,, wherem, is the
bare mass of electron; and the LO-phonon enefigy o V. CONCLUSION
=36.7 meV. We have calculated the electron self-energies |, ¢oncjusion, we have calculated the self-energies of the
for the three models considered for the confined opticalecron-confined LO-phonon interaction in the quantum
ph°”°’?5 with varying well width. . well structure for three representative phonon models: the
In Fig. 1 we show the ground-state electron self-energieg,rqscopic Hz model and the macroscopic slab and guided
obtained as a function of the quantum well width for the oo qeis Our results show that the agreement between the HZ
different models of the confined optical phonons considered., ;4| and the guided model is better than that between the
The self-energy is normalized with respect to the limiting HZ model and the slab model. The discrepancy between the
value of the bulk polaron—afiw o=—-2.41 meV. The 7 nodel and guided model is attributed to the interface-
quantum confined behaviors are evident in the small welh,,non mode that is included in the guided model but not in
width regiona=<50 A for all three moqlels. One can see tha_tthe analytic approximation to the microscopic model. We
the absolute value of the self-energies of the HZ model i$,4ye also confirmed that a proper reformulation of the slab

smaller than that of the guided model, but much larger tham,o4e| gives rise to the better agreement with the HZ model
that of the slab model. This is attributed to the boundaryian the guided model.

conditions of the macroscopic models at the interface. In the
slab model, the electrostatic boundary condition is used; con-
sequently the phonon mode has the opposite parity to the
microscopic mode. On the other hand, the guided model uses This work was supported by the Ministry of Education of
mechanical boundary condition, which makes its parity ofKorea through Grant No. BSRI-97-2431. B.-H.W. acknowl-
the phonon modes match that of the microscopic modeledges support from GuangDong Provincial Natural Science
Consequently, the difference between the HZ model and thEoundation of China.
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FIG. 1. Electron self-energies vs the quantum well width from
three different confined phonon models; only the lowest subband
(m=1) are drawn. The self-energy and the well width are in units
of —afiw o and A, respectively.

IV. NUMERICAL RESULTS AND DISCUSSION
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