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Self-energy of a confined polaron in a quantum well:
Comparison among different phonon models

Bao-Hua Wei* and Chang Sub Kim
Department of Physics, Chonnam National University, Kwangju 500-757, Korea

~Received 31 March 1998!

We study the interaction of an electron with the confined longitudinal optical phonons in quantum wells. For
the Fröhlich interaction of the electron-phonons we adopt the Huang-Zhu@Phys. Rev. B38, 2183~1988!; 38,
13 377~1988!# confined phonon model based on a microscopic lattice-dynamic approach. The explicit expres-
sion for the electron self-energy is obtained using a variational method. We also use the slab model and the
guided model for the confined optical phonons in calculating the electron self-energy. Consequently, a com-
parison of three models considered is provided.@S0163-1829~98!04535-4#
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I. INTRODUCTION

In recent years, there has been a great deal of intere
the study of the various vibrational modes in low
dimensional systems such as quantum wells, quantum w
and superlattices.1–9 The patterns of the normal modes th
determine the electron-phonon interaction in such lo
dimensional structures are evidently different from those
the bulk. The effect of quantum confinement alters the p
non modes and their interaction with electrons.

The widely used confined phonon modes in typical se
conductor quantum well structures such as GaAS/Ga1-xAl xAs
are the Fuchs-Kliewerslab mode4 and the Ridleyguided
mode,5 both of which are based on the macroscopic dielec
continuum model. However, use of these models for the
scription of the electron–LO-phonon~Fröhlich! interaction
in quantum confined structures is still controversial.6 Subse-
quently, several alternatives to the original Fuchs-Kliew
theory have been proposed.10–16 Since there was no gener
consensus on which is the most suitable model, Rudin
Reinecke10 and Weber and Ryan11 had compared the thre
confined optical phonon modes in their study of t
electron–LO-phonon scattering rate in the quantum we
They found that the Huang-Zhu~HZ! model,15,16 based on a
microscopic lattice-dynamic description, is more appropri
than the slab model and guided model, in comparison to
existing experiments. Accordingly, it seems to be a wor
while endeavor to compare further the various confin
optical-phonon models for the different physical quantitie

In this work we report the results of our calculation of t
electron self-energy for the electron-confined optical-phon
interaction in a quantum well structure. To the best of o
knowledge, few people have used the HZ model to calcu
the electron self-energy in quantum well structures. We a
calculate the self-energy from the aforementioned two m
roscopic models. Our results clearly manifest the differen
among the three confined optical-phonon models.

The remainder of this paper is organized as follows.
Sec. II we write out the relevant Hamiltonians. In Sec. III w
present the explicit expressions of the electron self-ene
for three confined phonon models. Finally, the numerical
sults and associated discussion are given in Sec. IV.

II. THREE CONFINED PHONON MODELS

We consider a quantum well model with widtha, assum-
ing that a polar crystal occupies the space foruzu<a/2 and
PRB 580163-1829/98/58~15!/9623~4!/$15.00
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the outside of the well is a vacuum. We restrict our inter
to the influence of the electron-confined optical-phonon
teraction to the electron self-energy. So the electron-elec
and electron–interface-phonon interactions are neglec
Three different models for the confined optical phonons
treated. Within an isotropic effective mass (m* ) approxima-
tion, the Hamiltonian of the system can be deduced fr
Ref. 15 as

H5
1

2m*
~pi

21pz
2!1 (

qi ,n
\vLObqin

† bqin
1He2ph , ~1!

where

He2ph5l (
qi ,n

eiqi•r itn~qi!un~z!~bqi ,n1b2qi ,n
† ! ~2!

with

l25
4pa

V
~\vLO!2A2\/~m* vLO!.

In the above equationsb(b†) is the creation~annihilation!
operator of the confined phonon with frequencyvLO , n is
the phonon-mode quantum number in thez direction,r i and
pi are the transverse coordinate and momentum, res
tively, qi is the phonon wave vector in thexy plane;V is the
volume of the crystal; anda is the electron-phonon couplin
constant.

In the HZ microscopic model, the displacementun(z) is
given as

un~z!5H sin~mnpz!/a 1 ~cnz/a! , n53,5,7, . . .

cos~npz!/a 1~21!n/211, n52,4,6, . . . ,
~3!

wheremn are the solutions of the equation

tan~mnp/2! 5 ~mnp!/2 , n21,mn,n, ~4!

where

cn522 sin~mnp/2!.

Here it is important to notice that the moden51 is excluded
in the above equation because this mode is associated
the interface modes.15

In the slab model the electron potential has nodes at
interface andun(z) takes the form4
9623 © 1998 The American Physical Society
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un~z!5H cos
npz

a
, n51,3,5,•••

sin
npz

a
, n52,4,6, . . . .

~5!

One can see that thenth mode of the slab model has a
opposite parity to the that of the HZ model.

Based on the hydrodynamic boundary conditions p
posed by Babiker13 for longitudinal-optical phonons, the pa
ity of the phonon modes of the guided model matches th
obtained by the microscopic model. The displacement of
nth mode in the guided model is given as5

un~z!5H sin
npz

a
, n51,3,5, . . .

cos
npz

a
, n52,4,6, . . . .

~6!

Finally, tn(qi) in Eq. ~2! is defined as

tn~qi!5H 1

aE2a/2

a/2 Fqi
2un

2~z!1S dun~z!

dz D 2GdzJ 21/2

. ~7!

An explicit calculation yields

tn~qi!5~anqi
21bn /a2!21/2, ~8!

wherean andbn are for the Huang-Zhu model

an511cn
2S 1

6
2mn

22p22D ,

bn5mn
2p22cn

2 , n53,5,7, . . . ~9!

an53, bn5n2p2, n52,4,6, . . .
and for other two macroscopic models

an51, bn5n2p2, n51,2,3, . . . . ~10!
-

e
e

III. SELF-ENERGIES OF THE ELECTRON

We use the Lee-Low-Pines method17 to calculate the self-
energy of the electron-confined optical-phonon interaction
the quantum well structures. To this end, we perform t
unitary transformations with

U15expF2 i (
qi ,n

qi•r ibki ,n
† bki ,nG , ~11!

U25expF (
qi ,n

f qi ,nbqi ,n
† 2 f qi ,n* bqi ,nG , ~12!

where f qi ,n is the variational parameter, which will be sub
sequently determined by minimizing the energy of the s
tem. The result of the first unitary transformation is

H85U1
21HU15

pz
2

2m*
1

1

2m* S pi2(
kin

\qibqin
† bqinD 2

1 (
qi ,n

\vLObqin
† bqin

1l (
qi ,n

tn~qi!

3un~z!@bqin
1b2qin

† #. ~13!

Using the relations for the second unitary transformation

U2
1bqin

U25bqin
1 f qi ,n , ~14!

U2
1bqin

† U25bqin
† 1 f qi ,n* , ~15!

we obtain

H95U2
21H8U25H01H1 , ~16!

where
H05
pz

2

2m*
1

1

2m* S pi2 (
ki ,n

\qibqin
† bqinD 2

1 (
qi ,n

\vLObqin
† bqin

1 (
qi ,n

il@ tn~qi!un~z! f qi ,n1tn* ~qi!un* ~z! f qi ,n* #

1
\2

2m* F (
qi ,n

u f qi ,nu2qiG2

1 (
qi ,n

u f qi ,nu2F\vLO2
\qi•pi

m*
1

\2qi
2

2m*
G1

\2

m*
(
qi ,n

bqin
† bqin

qi• (
qi8 ,n8

@ u f qi8 ,n8u
2qi8#

1 (
qi ,n

bqin
† H iltn* ~qi!un* ~z!1 f qi ,nF\vLO2

\qi•pi

m*
1

\2qi
2

2m*
1

\2qi

m*
•S (

qi8 ,n8
u f qi8 ,n8u

2qi8D G J
1 (

qi ,n
bqinH 2 iltn~qi!un~z!1 f qi ,n* F\vLO2

\qi•pi

m*
1

\2qi
2

2m*
1

\2qi

m*
•S (

qi8 ,n8
u f qi8 ,n8u

2qi8D G J ~17!

and

H15 (
qi ,qi8 ,n,n8

\2qi•qi8

2m*
@bkin

† bqi8n8 f qi ,n* f qi8 ,n812bqin
† bqi8n8 f qi ,nf qi8 ,n8

* 1bqin
† bqi8n8 f qi ,nf qi8 ,n8#

1 (
qi ,qi8 ,n,n8

\2qi•qi8

m*
@bqin

† bqin
bqi8n8 f qi8 ,n8

* 1bqi8n8
†

bqin
† bqin

f qi8 ,n8
* #. ~18!
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Next, the expectation value of the transformed Ham
tonian is evaluated using the product wave function

uc&5ucm~z!&u0&, ~19!

where ucm(z)& is the electron wave function with the sub
band indexm along thez direction andu0& is the phonon
vacuum state. In our infinite square well approximation,
electron wave functions are given as

ucm~z!&

5H eipi•r iA2/Vsin~mpz/a 1 mp/2!, uzu<a/2

0, uzu.a/2
~20!

wherem51,2,3, . . . with the corresponding energies

E05~\2pi
2/2m* ! 1 ~\2m2p2/2m* a2! . ~21!

The desired expectation value is

E5^cuH9uc&5^cm~z!uE~z!ucm~z!&, ~22!

where

E~z!5
pz

2

2m*
1 (

qi ,n
il@ tn~qi!un~z! f qin

2tn* ~qi!un* ~z! f qin
* #

1
\2

2m* F (
qi ,n

u f qin
u2qiG2

1 (
qi ,n

u f qin
u2F\vLO1

\2qi
2

2m*
G , ~23!

where we have dropped out terms associated with the e
tron momentum in thexy plane because we are interest
only in the ground state of the confined polaron. In the ab
equation, the term

\2

2m* F (
qi ,n

u f qin
u2qiG2

describes the interaction between the virtual phon
emitted/absorbed by the recoiled electron, which is gener
very small, especially in the weak coupling limit such as
the GaAs quantum well. Thus we will neglect this term
the following calculation.

Now we use the variational method to find out the u
known functionf qin

,

dE

d f qin
5

dE

d f qin
*

50, ~24!

to get

f qin
* 5

2 iltn~qi!^cm~z!uun~z!ucm~z!&

\vLO1
\2qi

2

2m*

, ~25!
-

e

c-

e

s
ly

-

f qin
5

iltn* ~qi!^cm~z!uun* ~z!ucm~z!&

\vLO1
\2qi

2

2m*

.

Substituting Eq.~25! into Eq. ~22! and after a tedious bu
direct calculation, we finally obtain

E5
\2m2p2

2m* a2
1ELO , ~26!

whereELO is the electron self-energy, which is expressed

ELO52 (
qi ,n53,5,7, . . . ,

l2tn
2~qi!

\vLO1
\2qi

2

2m*

~ I 11I 21I 3!

2 (
qi ,n52,4,6, . . . ,

l2tn
2~qi!

\vLO1
\2qi

2

2m*

@ I 422~21!n/2I 51I 6#.

~27!

For the HZ model the functionsI i are specified as

I 15
1

2
1

m2sin~mnp!

2pmn~mn
22m2!

, ~28!

I 25
cn

2

12
2

cn
2

2m2p2
, ~29!

I 358cnm2F cos~mnp/2!

p~mn
224m2!

1
~8m226mn

2!sin~mnp/2!

p2mn~mn
224m2!2 G ,

~30!

I 45 1
2 2 1

4 ~21!ndnm , ~31!

I 555
8m2sin~np/2!

np~4m22n2!
, nÞ2m,

~21!m11

2
, n52m,

~32!

I 651. ~33!

For the slab model they are given as

I 15 1
2 2 1

4 ~21!ndnm , ~34!

I 45 1
2 1 1

4 ~21!ndnm . ~35!

Similarly, for the guided model,

I 15 1
2 1 1

4 ~21!ndnm , ~36!

I 45 1
2 2 1

4 ~21!ndnm . ~37!

Notice thatI 2 ,I 3 ,I 5 and I 6 are identically zero in both the
slab and guided models.
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IV. NUMERICAL RESULTS AND DISCUSSION

The numerical calculation is carried out using the mate
parameters suitable for the GaAs quantum well structur1

the electron-phonon coupling constanta50.0657; the effec
tive conduction-band massm* 50.0665m0, wherem0 is the
bare mass of electron; and the LO-phonon energy\vLO
536.7 meV. We have calculated the electron self-ener
for the three models considered for the confined opt
phonons with varying well width.

In Fig. 1 we show the ground-state electron self-ener
obtained as a function of the quantum well width for
different models of the confined optical phonons conside
The self-energy is normalized with respect to the limit
value of the bulk polaron,2a\vLO822.41 meV. The
quantum confined behaviors are evident in the small w
width regiona<50 Å for all three models. One can see th
the absolute value of the self-energies of the HZ mode
smaller than that of the guided model, but much larger t
that of the slab model. This is attributed to the bound
conditions of the macroscopic models at the interface. In
slab model, the electrostatic boundary condition is used;
sequently the phonon mode has the opposite parity to
microscopic mode. On the other hand, the guided model
mechanical boundary condition, which makes its parity
the phonon modes match that of the microscopic mo
Consequently, the difference between the HZ model and

FIG. 1. Electron self-energies vs the quantum well width fr
three different confined phonon models; only the lowest subb
(m51) are drawn. The self-energy and the well width are in u
of 2a\vLO and Å, respectively.
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slab model is bigger than that between the HZ model and
guided model. This renders one to imagine that a pro
reformulation of the slab model may reduce the gap. In o
to confirm this point, we have calculated the self-energy
ing the improved slab model by Weber,18 modified to pos-
sess the same parity as the HZ model, to observe tha
outcome is closer to the HZ model than even the gui
model, not only its value but also the change with the qu
tum well width. The discrepancies between the HZ mo
and the guided model comes mainly from the fact than
51 phonon mode, which belongs to the interface mode
excluded in the former but the interface mode is included
the latter. Next, one may notice that three models tend to
different bulk limits at large well widths and only the H
model tends to the proper bulk limit. This is because the
model is restricted to the quasi-two-dimensional situation
construction10. The HZ model and the guided model can e
tend their validity to the large well width limit. Howeve
because of the distinct mechanisms for the phonon mo
used, there still exists the difference in the bulk values.
expect that an inclusion of the effect of the interface phon
will reduce the difference. We have seen the similar res
for other subbands but not drawn.

V. CONCLUSION

In conclusion, we have calculated the self-energies of
electron-confined LO-phonon interaction in the quant
well structure for three representative phonon models:
microscopic HZ model and the macroscopic slab and gu
models. Our results show that the agreement between th
model and the guided model is better than that between
HZ model and the slab model. The discrepancy between
HZ model and guided model is attributed to the interfa
phonon mode that is included in the guided model but no
the analytic approximation to the microscopic model. W
have also confirmed that a proper reformulation of the s
model gives rise to the better agreement with the HZ mo
than the guided model.
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