PHYSICAL REVIEW B VOLUME 58, NUMBER 14 1 OCTOBER 1998-II

Comparison of different ladder models

E. Jeckelmann
Department of Physics, University of California, Irvine, California 92697

D. J. Scalapino
Department of Physics, University of California, Santa Barbara, California 93106

S. R. White
Department of Physics, University of California, Irvine, California 92697
(Received 11 May 1998

Using density matrix renormalization group calculations, we compare results obtained fed,tlh@e-band
Hubbard, and three-band Hubbard models of a two-leg CuO ladder. Spin and charge gaps, pair binding
energies, and effective pair hoppings are calculated for a wide range of parameters. All three models have an
insulating state at a filling corresponding to one hole per Cu site. For physically relevant parameters their spin
gaps are similar in size but they exhibit quite different charge gaps. We find that the binding energy of a pair
of doped holes is of the order of the undoped ladder spin gap for all three models. The main difference between
the models is the size of the effective pair hopping, which is significantly larger in the three-band model with
parameters appropriate for CuO materials than in the other two m¢8€1$63-182808)06638-7

The two-leg CuO ladder materials have provided an interrung9 and an on site Coulomb interactidh. Here the un-
esting testing ground for ideas originally formulated to de-doped state corresponds to half-filling. At half-filling, the
scribe the two-dimensional cupratesn particular, the un- charge gap depends updnand is said to be a Mott-Hubbard
doped, two-leg ladder material Srg, exhibits a spin gap ~ gap® Typical parametefs*?areU/t=10 to 12 and=0.4 to
and the dopedSrCa,,Cu,,0,; ladder materidlcan become 0.45 eV.
superconducting under high pressure. The reduced dimen- Thet-J model has a near-neighbor hopping terrh with
sionality of this system has allowed for detailed numerical@ restriction that no site can have two fermions. The ex-
studies of both thé-J and the one-band Hubbard models of change interaction in the J model has the usual form
a two-leg ladder. In fact, it was a numerical Lanczos study 1
of a two-legt-J ladder which first suggested that the doped > (éi.éj_ —nin;
system might exhibit superconducting pairing. Since then, (i) 4
analytic calculation® as well as density matrix renormaliza- with & =Lc]

: : T osgCis andn;=c/.c;; +c c;, . At half-filling,
tion group(DMRG) calculation on long one-band Hubbard thet-J modse(lr?; jLIjSSt the Illeisgnlt;erg Itlwlcﬁ-leg ladder ar?d has
ladders have shown thig »-like structure of the pairs and

. , an infinite charge gap. Typical paramefefs are J/t=0.3
their power law correlations. Here we extend the DMRG_ 4i_ 0410 0 g e\g/ P-1YP P

approach to study a three-band Hub_bard model of a Cu(gmwe use DMRG techniqu&bto study long laddergup to
two-leg ladder with the goal of comparing theJ, one-band, g4 5 sites in thet-J and one-band Hubbard models and up
and three-band Hubbard models. . to 16X 2 Cu sites in the three-band Hubbard mgdeith

The thfee'*?a”d I—_Iubbard model we have stud[ed has 8pen boundary conditions. DMRG has been shown to be a
hole Hamiltonian which can formally be thought of in terms very accurate method to study ladder systéris>16Here

of thhe “three—l((jegb” Iaddelr shor\]/vn |nF|g. 1. Alt(ej:rgatmg SItes \ve "use up to 1200 states per block and extrapolate DMRG
on the top and bottom legs have @y_,2) and Of) or- results for energies to extract the limit of zero truncation

bitals, while the center leg has @) orbitals on the sites o ang check the precision of our calculatidhén addi-
bridging the Cud,2_,2) orbitals. With the orbital phase con-

vention we have chosen, all the O-Cu hopping matrix ele-
ments are—t,4. The difference in the hole site energies is
A=g,—&q, and there is an on site Cu Coulomb interaction
Ug. The undoped system has one hole per Cu. In this state,
if Uy is large compared td, the charge gap is set lly and

the system is said to be a charge gap insuftgarious
parameter values have been suggeSt&twith typical ones

havingA/tyq=2 to 3,Uq4/tyq=8, andt,q ranging from 1.3 FIG. 1. Schematic of a CuO ladder. Here the solid circles rep-
eV to 1.8 eV. Throughout this paper we will confine our- resent Cud,2_,2) orbitals and the open circles representpg)(
selves to an isotropic ladder and leave the case in which thgpitals along the upper and lower legs andp@)(orbitals on the
rung parameters differ from the leg parameters to a futurgungs. There is a hopping matrix element,4 between the O and
S’[udy.13 Cu sites as shown by the solid lines. The energy difference between

The two-leg Hubbard model has a hoppirg between the O and Cu sites id =&,—&4 and there is an on site Cu Cou-
the near-neighbor ladder sitéalong the legs and across the lomb interactionUy.

, @
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FIG. 2. The spin gap\¢/t vs 4t/J for the t-J (Heisenbery

model(solid line) andU/t for the one-band Hubbard modelashed
line) at half-filling on a 3% 2 ladder.
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tion, a few tests performed on small clusters with periodic
boundary conditions show a perfect agreement with exacﬁubbard model at a filing of one hole per Cu, wity /tpq=8. The

diagonalization result$ e > 1O P !
. . .dashed line is the strong coupling limit, E@). (b) The spin gap
We begin with the undoped ladder and calculate the Sp'%nergyAs vs Ug/tyg with A/t,;—2 for the three-band Hubbard

gap model at a filling of one hole per Cu. All results are for an 8 Cu
ladder.
As=Eq(S,=1)—E((S,=0). 2)

HereAq is the difference in energies between the spin-1 andhe spin gapA¢/t=0.11 of the one-band Hubbard model
spin-0 ground states. For the Heisenberg two-leg ldfder  with U/t=6 is similar to the value obtained fat/t=12 (see
Table ).
A _J 3 Results for the spin gap, of the three-band Hubbard
s 2 model at a filling of one hole per Cu are shown in Fige) 3
o i o and 3b). In Fig. 3@), Ag/tyg is plotted versusl/t,g for a
which is shown as the solid curve in Fig. 2, where we havg,qqer containing &2 Cu sites withU /t,q=8. In strong

plotted A versus 4/J. The dashed curve in Fig. 2 shows coupling, the Cu-Cu exchange interaction has the form
results for a 3X 2, half-filled Hubbard ladder. For large val-

ues ofU/t, the Hubbard model at half-filling maps to the 2\ 2
Heisenberg model witd=4t%U. Thus in Fig. 2, the two 3. 4<@) {
curves approach each other at large valuedJéf. Using c A
twice the spin gap as a measure of the effective exchange

interaction, we see from Fig. 2 that the strong coupling ex-The dashed curve in Fig(& showsJ¢/2 and one sees that
pression]=4t?/U for the one-band Hubbard model overes-the spin gap of the three-band model approaches the strong
timates the strength of the exchange interaction for physicouplingJc/2 result at large values of the=g,— &4 split-

cally relevant values of the parameters. However, we can ugég. However, just as for the one-band Hubbard model, the
A, as a unit of energy in comparing thel and one-band strong-coupling expression for the exchange interaction sub-
Hubbard models, each in their relevant physical parametegtantially overestimates it in the physically relevant region of
regimes. Thus, for an infinite two-leg ladder, thd model ~ parameters. The dependence\gfon U/t for A/ty4=2 is

with J/t=0.3 hasA¢/t=0.15 while the one-band Hubbard shown in Fig. 8b). At large values olJ4/t,4, the exchange
model withU/t=12 hasA¢/t=0.12 as seen in Table |. Tak- is dominated by thed term in Eq.(4) as expected for a

ing t=0.45 eV, twice these spin gap energies give reasoncharge transfer insulator. Takiny/t,q=2 andUy/t,q=8

able effective exchange couplings of 0.135 @600 K) and ~ we find thatA/t,y extrapolates to=0.035 for an infinite
0.11 eV(1300 K) for thet-J and one-band Hubbard ladders, CuO ladder(see Table ), which fort,q=1.5 eV giveslg,
respectively. Naturally, either of these two could be further=2A,=0.11 eV (1300 K). Thus, even though the region of
adjusted by using a different value of but our point is relevant physical parameters does not lend itself to a simple
simply that they are in the correct range. We also note thastrong coupling expansion which relates the three models,

FIG. 3. (@ The spin gapAg/t,q vs Alt,g for the three-band

+— (4
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TABLE I. Spin gapA; (in units of the bare hopping termor t,q), and charge gap., pair binding
energyA,,, effective pair hopping.ss, and effective magnon hoppinge¢; (in units of the spin gap
obtained by extrapolating to a ladder of infinite length.

Model Parameters Ag ATA App/Ag terf/Ag Vel Ag
t-J Jit=0.3 0.151 o 0.71 2.4 5.0
one-band U/t=12 0.116 70 0.83 54 85
one-band U/t=6 0.111 25 1.4 12 24
three-band  A/tpg=3, Uq/tyq=8 0.030 58 1.2 12 7.5

three-band  Altyg=2, Ug/t,q=8 0.035 29 1.6 18 11
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3.0 g hole occupation per Cu and per 1.5 O versus the hole con-
25 centration X x per CuQ s unit cell for the physical param-
20 (@) etersUg/t,q=8 andA/t,q=2. Forx<0, the holes go pri-
ti ‘ marily onto the Cu site$72% of the hole density is on these
<15 4 site while for x>0, the O sites are favored with 88% of the
£ 1.0 additional hole density going to these sites. For example, for
05 x=0.25, the average hole density on the Cu site is increased
o by only 0.03(4%) while that on an oxygen site is increased
OO ™6 s 10 12 2 16 by about 0.1577%), or 0.22 per Qs, from the result for the
UA, Ud/tpd undoped ladderx=0). This behavior can easily be under-
stood. Forx=<0, only Cu orbitals are occupied because they
0.75 . — — have lower energy than the O orbita{¥he hybridization of
' oo = the Cu and O orbitals due to the finite hopping is respon-
sible for the fractional density on Cu and O sijefor
A 0.50 | MM x>0, all Cu orbitals are occupied by at least one hole. The
% energy to put a second hole on one of these orbitals is set by
0.25 ¢ 0 <ng,> Uq, while the energy to put a hole on the O orbitals is set by
(®) o <ng> (x1.5) A. Thus, for the parameters considered hekecU ), addi-
0.00 s 0 n 1o 13 tional holes go onto O orbitals. In the opposite linit
' " qex ' ' <A, we have found that holes go primarily on Cu orbitals

for x>0, as expected.

It is interesting to note that magnons also go primarily on
Cu sites(76% of the spin density is on these sjte$his
distribution is very close to the hole distribution of the un-
doped ladder and remains constant for all doping studied
—0.125=x=<0.25. This result suggests that low-energy spin
excitations involve only unpaired holes {hybridizeg Cu
orbitals even wherx#0. According to Zhang and Ricé,
each doped hole is locked in a singlet state with another hole
in a Cu orbital and does not contribute to spin excitations at
Tow energy. Our results certainly support this scenario al-
? ough it is not obvious that their argument based on a £uO
cluster is valid for the lattice configuration shown in Fig. 1.
Next we consider the two-hole pair binding, defined by

FIG. 4. (a) The charge gap . vs U/t for the one-banddashed
Hubbard model on a 322 ladder and v&J 4/t 4 for the three-band
(solid) Hubbard model withA/t,g=2 on a ladder containing
8X 2 Cu sites. Note thah . is measured relative tofor the one-
band Hubbard model and relativettg for the three-band Hubbard
model.(b) The hole occupation per Cuoc,) and Qng) vs the hole
concentration ¥x per CuQ s unit cell on a ladder containing
16X 2 Cu sites withUy/t,4=8 andA/t,4=2.

the spin gaps for the three models are in fact similar in siz
and provide a useful energy scale describing the strength
the exchange coupling.

The charge gaps for the insulatingndoped phases,
however, are quite different. The insulating state of the
t-J model has an infinite charge gap reflecting the constraint
that no site can have two fermions. In the Hubbard models,
the charge gap is defined by

App=Eo(2)+Eo(0) —2Eq(1) (6)

_ oy if the quantity on the right-hand side is positive, aAg,
Ac=[Eo(2)+Eo(=2)=2E,(0)]/2, ®  Z 0 otherwise. It should be noted that the dependencg of the
where Eq(n) is the ground state energy of a ladder with  pair binding energy on system size is significant. Moreover,
holes relative to the undoped ladder. The charge gaps for th&,, generally increases when the ladder length increases,
half-filled, one-band Hubbard model and the three-bandvhile other quantities, such as the spin gap, decrease. There-
Hubbard model with one hole per Cu are plotted versus théore, when comparing values df,,, one should always keep
on site Coulomb interaction in Fig.(@. At large values of the corresponding system size in mind. In Figa)p Ay, is
U, the charge gap in the one-band Hubbard model varies gydotted versus #J for the t-J model andU/t for the one-
U, while as expected, the charge gap of the three-band Huliband Hubbard model on a 32 ladder. Just as previously
bard model saturates at a value set/byhenU4 becomes found for the spin gap, the pair binding energy for thé
very large. As noted above, the spin gap energy provides eodel approaches that of the one-band Hubbard model at
useful unit of energy in comparing the different models. Inlarge values olU/t. Furthermore, although the two models
Table | we show the charge gap in units of the spin gap irhave very different charge gaps, the scale of their pair bind-
the one-band Hubbard model fa/t= 6 and 12 and in the ing energies in the physically relevant parameter region is set
three-band Hubbard model for the physical parameterby Ag. This is clearly illustrated in Fig.(®), where we show
Alt,q= 2 and 3 withU4/t,q=8. One can use eithét/t= 6  the pair binding energy in units of the spin gap as a function
or 12 to reproduce the three-band model/A ratio de- of U/t in the one-band Hubbard model and as a function of
pending on the value ak/t,q. Taking the same values of  4t/J in thet-J model on a 3X2 ladder. We note that the
andt,q as above, we obtain;= 1.4 to 3.9 eV. The experi- ratio A,,/As is surprisingly similar in both models despite
mental value of the charge gap is still debatdslit is of the  the widely different behavior of ,, andA¢ shown in Figs. 2
same order of magnitud@-5 e\V). and Fa). As previously discussett® the pair wave function
The “charge transfer gap” behavior of the three-bandfor both of these models hasdjz_2-like form. Moreover,
model is also seen in Fig.(d) where we have plotted the we have found that the structure of single holes and hole
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FIG. 7. (a) The ratio of the pair binding energy to the undoped
spin gap vs hole doping. The diamonds are for & 322-J ladder
with J/t=0.3. The circles are for a one-band>32 Hubbard ladder

t-J model (solid) and U/t for the one-band Hubbard model With U/t=12. The squares are for the three-band Hubbard model

(dashed on a 32<2 ladder.(b) The ratioA,/Ag in both models.

pairs in the one-band Hubbard model withit =8 is identi-
cal to those observed in theJ mode

|20

with Uy /t,g=8 andA/t,q=2 on a 16<2 Cu ladder(b) The near-

neighbor Cu spin-spin correlation functic(@iSj) vs x for the
three models.

Results for the pair binding energy of the three-band HublakingU/t=6 for the one-band Hubbard model. In addition,

bard model are shown in Figs(é and @b). For Ug/t,q
=8, the pair binding peaks foA/t,=2 and as shown in
Fig. 6(b), the pair binding energy increases dg/t,q in-
creases. Similar results for a £y cluster were found from
Lanczos calculation¥?* More recently, Martif® has dis-
cussed pairing on small clusters in terms of rehybridizatio
associated with the charge-transfer channels. A recent qua
tum Monte Carlo study of the three-band Hubbard mttlel
yields similar results for clusters with up to<® Cu sites.
For the physical range of parameters appropriate to the cu-PP

in the three-band Hubbard model the hole pair wave function
has ad,2_y2-like form as determined from measurements of
the rung-rung and rung-leg pair field correlations.

We have also measured the pair binding energy versus the
hole concentratiorx relative to the undoped ladder. In this

fase the pair binding energy is defined by

R, 5(x)=Eq(2n)+Eg(2n—2)—2E¢(2n—1), n>0, (6)

Aop(X) =Eq(2n) + Eg(2n+2)—2E(2n+1), n<0. (6r)

prates, one also has,,~ A in the three-band model. How- Herex is equal to 2 divided by the number of holes in the
ever, the ratioA,,/A¢ extrapolated for a ladder of infinite  undoped ladder. Results for the pair binding enekgy rela-
length is clearly larger than in both other models with theirtive to the undoped spin gajs are shown in Fig. @) for the

typical parameters, as shown in Table I. A better agreemenhree models. There is no striking difference between the
with the three-band Hubbard model results is obtained byhree models forx>0. We note, however, that while the

FIG. 6. (a) The pair binding energy y, vs A/t,q with Ug/tyg
=8 for the three-band Hubbard modé&) The pair binding energy

(@)

2 4 6 8
Al
(b)
2 4 6 8 10 12 14 16
Ut

Hubbard model is particle-hole symmetric about half-filling,
one can only add holes to theJ model and we find no
evidence for pair binding fax<<0 in the three-band Hubbard
model withU4/t,q=8 andA/t,4=2. We are not sure of the
exact nature of the ground state of the three-band Hubbard
model with less than one hole per Cu site. In fact, we have
not been able to investigate this regime as thoroughly as the
x=0 regime because density matrix renormalization group
calculations are much harder and less accurate in this case.
However, our numerical simulations strongly suggest that
the x<0 and x>0 regimes are quite different. As noted
previously, holes go primarily on Cu orbitals far<0 while
doped holes are on O orbitals fer-0 [see Fig. 4b)]. Thus,
it is possible that the effective interactions between doped
particles are different for both regimes.

The decrease in the pair binding energy witkorrelates
with the decrease in the near-neighbor spin-spin correlations

>

vs Ug /tq With A/t,q=2 for the three-band Hubbard model. These (S S;) shown in Fig. Tb). (Note that for the three-band
calculations are for an:82 Cu ladder.

Hubbard model we show the spin-spin correlations between
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FIG. 8. Plot of the hole pair energy v& {s+1) 2 for the three FIG. 9. The effective hopping parameter for two holes is shown

different models. The notation is the same as in Fig. 7. Actualby the circles for the one-band Hubbard model and by the squares
ladder lengthsl range from 5 to 16 Cu sites in the three-band for the t-J model.
Hubbard model and from 16 to 48 for the two other models. For

each model, the zero of the energy has been set to the extrapolateq, 5 materials, We believe that this enhancement is associ-
value of the pair energy. ated with the additional charge fluctuations which the one-
and three-band Hubbard models allow. The large enhance-

near—nelghbqr C_u sitgsThus, the decrease_ in the pair bind- ment in the three-band model reflects the fact that its charge
ing energy with increased hole concentration reflects the de-

struction of the underlying exchange correlations by the?2P 1S setbys whenUy is large rather thallg . In Fig. 9 we

. ow the effective pair hopping as a functionldft in the
added holes. It should be noted that the differences betweeiﬂe_band Hubbard model and as a function 6fl4in the

the values ofS;- ;) in the three models are mostly due to ¢_j yodel. In thet-J model it seems that the effective pair

the increase of charge fluctuations in going from thé hopping is always smallt{;;/t<0.4). In the one-band Hub-
model to the one-band Hubbard model and th_en to the thregy, g model, however, the pair dispersion is strongly en-
band Hubbard model. Tbese charge fluctuations reduce the, o4 a4J/t decreases and fds/t=6 the ratiote /A, is
local magnetic momentsS?) and thus the absolute value of similar to the value obtained in the three-band Hubbard
(S-S;). However, as noted previously, the effective ex-model withA/t,q=3 andU4/t,q=8 (see Table)l. For large
change coupling between spins is similar in the three modelsialues ofU/t, the pair dispersion of the one-band Hubbard
We have also calculated the effective hopping parametemodel approaches that of theJ model as shown in Fig. 9.
tets Of @ hole pair from the dependence of the pair energyHowever, the difference between the pair dispersion in both
obtained in ladders of different lengths. We define the paimodels seems to be of the ordet/d when U—o. This

energy by difference could be due to next-nearest-neighbor hopping
terms of the order #U which are neglected in the derivation
£p=Eo(2) —Eo(0). (7)  of thet-J model from the strong-coupling limit of the Hub-
In ladders with open boundary conditions, the energy of théard model. _
pair varies as An effective magnon hopping,¢; can be calculated from

the dependence of the spin gap on the ladder length. We use
T \2 Eq. (8) with vers and A substituted fott.¢; and ey, respec-
Sp(Leff):sp(oc)+teff(m) : (8 tively. In this case the effective ladder length is determined
eff from the spin density profile. In Table bL¢s normalized
where the effective system lendth;; differs from the actual  with respect taA, is listed for undoped ladders. The values
ladder lengthL because of end effects. For a given systemof v .;/A¢ obtained in the three models are of the same order
Lets can be determined from the wavelengkh=2(Lets  of magnitude for the physically relevant parameters. We note
+1) of the charge density distribution of the pair. Figure 8that in this case the value obtained in the one-band Hubbard
shows a plot of the ground state energy of a hole pair versusiodel withU/t=6 is much larger than the other results. In
(Lefs+1)~2 for the three different models,; is equal to  undoped ladders the effective magnon hopping obtained for
the slope of the lines in Fig. 8 divided by”. We have found the one-band Hubbard model approaches the result found in
that the differencedL =Lq¢—L tends to a constant for large the t-J (Heisenbery model, v ;;=2.5], at large values of
systems. Thus, in practice we can substituteSL for Lg¢s U/t as expected. A recent perturbation calculation of two-leg
in Eq. (8) and usesL as a fit parameter. Heisenberg laddetd gives v =2, in satisfactory agree-
In Table I, we listtqs; normalized with respect tdg for  ment with our numerical result.
the t-J, and the one- and three-band Hubbard models with To summarize, all three models of course have a spin gap
J/t=0.3,U/t= 6 and 12, andJ4/t,4=8, A/t,y4= 2 and 3, in the undoped phase. Furthermore, the parameters for the
respectively. We have also listed the pair binding enévgy  different models can be chosen to make these spin gaps com-
in units of the spin gap energy;. Now, as previously dis- parable and in the correct physical regime. As noted, how-
cussed, the spin gap in the insulating case is of alfeand  ever, these three models have very different charge gaps with
it sets the scale of the pair binding energy so thaandA,,,  the t-J model having an infinite charge gap, the one-band
for the three models are quite similar. However, the pairHubbard model having a Mott-Hubbard gap setlbyand the
dispersion is enhanced in going from thel model to the three-band CuO model having a charge transfer gap set by
one-band Hubbard model and further enhanced for the threés= ¢, — &4 for the physical parameter range of interest. The
band Hubbard model if one uses parameters appropriate farinding energy of two added holes is basically set by the spin
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gap. HoweverA ,,/Ag= 0.7 to 0.8 for thei-J and one-band  superconductivity, at least when the stripes are statik.
Hubbard ladder while,,/A;=1.2 to 1.6 for the three-band study of a three-leg ladder using both density matrix renor-
Hubbard ladder with parameters appropriate for CuO matemalization group methods and quantum Monte Carlo simu-
rials. Thus the hole pairs are in fact bound more tightly inlations has shown that similar stripes also appear in the one-
units of the spin gap energy in the three-band Hubbard ladband Hubbard model folU/t>6, but not for weaker
der. The main difference between the models is the size afoupling!’ Thus, it seems that the sharp increase of pair
the effective pair hopping which is significantly larger in the mobility observed for decreasingd/t in the two-leg ladder
three-band model for the physical parameters. It is often assorrelates with a transition from a striped ground state to a
sumed that these three models with parameters and band fitiround state without stripes in wider ladders. Therefore, we
ings appropriate for CuO materials describe the same lowthink that the larger charge fluctuations which the three-band
energy physics. Our study has not revealed any fact whiciMubbard model allowscompared to thé-J mode) should
explicitly contradicts this point of view. However, our results lead in the two-dimensional lattice to a reduced tendency for
show that neither the one-band Hubbard model nor thelomain walls to lock up in static arrays with suppressed su-
t-J model can reproduce all the three-band Hubbard modgberconductivity.
results with a single set of effective parameters. For instance,
it seems that the pairing properties are better reproduced by
the one-band Hubbard model with/t=6 than with the
usual parameters/t=12. We thank R. L. Martin for helpful discussions. D.J.S. ac-
Finally, we believe that the larger dispersion signified byknowledges support from the Department of Energy under
the effective pair hopping, which we found for the three-Grant No. DE-FG03-85ER-45197. D.J.S. would also like to
band Hubbard model, points to an important feature of theacknowledge the Program on Correlated Electrons at the
physics contained in the charge transfer insulator. Pairs arf€enter for Material Science at Los Alamos National Labora-
less likely to localize in the three-band Hubbard model thartory. S.R.W. wishes to acknowledge the support of the Cam-
in the other models for the physical parameters. This coulghus Laboratory Collaborations Program of the University of
have a significant effect in a two-dimensional lattice. ForCalifornia and from the NSF under Grant No. DMR-
instance, in the two-dimensionall model doped holes tend 9509945. E.J. thanks the Swiss National Science Foundation
to form ordered arrays called stripes, which seem to suppregsr financial support.
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