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Comparison of different ladder models
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Using density matrix renormalization group calculations, we compare results obtained for thet-J, one-band
Hubbard, and three-band Hubbard models of a two-leg CuO ladder. Spin and charge gaps, pair binding
energies, and effective pair hoppings are calculated for a wide range of parameters. All three models have an
insulating state at a filling corresponding to one hole per Cu site. For physically relevant parameters their spin
gaps are similar in size but they exhibit quite different charge gaps. We find that the binding energy of a pair
of doped holes is of the order of the undoped ladder spin gap for all three models. The main difference between
the models is the size of the effective pair hopping, which is significantly larger in the three-band model with
parameters appropriate for CuO materials than in the other two models.@S0163-1829~98!06638-7#
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The two-leg CuO ladder materials have provided an in
esting testing ground for ideas originally formulated to d
scribe the two-dimensional cuprates.1 In particular, the un-
doped, two-leg ladder material SrCu2O3 exhibits a spin gap2

and the doped~SrCa!14Cu24O41 ladder material3 can become
superconducting under high pressure. The reduced dim
sionality of this system has allowed for detailed numeri
studies of both thet-J and the one-band Hubbard models
a two-leg ladder. In fact, it was a numerical Lanczos stu4

of a two-legt-J ladder which first suggested that the dop
system might exhibit superconducting pairing. Since th
analytic calculations5,6 as well as density matrix renormaliza
tion group~DMRG! calculations7 on long one-band Hubbar
ladders have shown thedx22y2-like structure of the pairs and
their power law correlations. Here we extend the DMR
approach to study a three-band Hubbard model of a C
two-leg ladder with the goal of comparing thet-J, one-band,
and three-band Hubbard models.

The three-band Hubbard model we have studied ha
hole Hamiltonian which can formally be thought of in term
of the ‘‘three-leg’’ ladder shown in Fig. 1. Alternating site
on the top and bottom legs have Cu(dx22y2) and O(px) or-
bitals, while the center leg has O(py) orbitals on the sites
bridging the Cu(dx22y2) orbitals. With the orbital phase con
vention we have chosen, all the O-Cu hopping matrix e
ments are2tpd . The difference in the hole site energies
D5«p2«d , and there is an on site Cu Coulomb interacti
Ud . The undoped system has one hole per Cu. In this s
if Ud is large compared toD, the charge gap is set byD and
the system is said to be a charge gap insulator.8 Various
parameter values have been suggested,9–12 with typical ones
havingD/tpd52 to 3, Ud /tpd58, andtpd ranging from 1.3
eV to 1.8 eV. Throughout this paper we will confine ou
selves to an isotropic ladder and leave the case in which
rung parameters differ from the leg parameters to a fut
study.13

The two-leg Hubbard model has a hopping2t between
the near-neighbor ladder sites~along the legs and across th
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rungs! and an on site Coulomb interactionU. Here the un-
doped state corresponds to half-filling. At half-filling, th
charge gap depends uponU and is said to be a Mott-Hubbar
gap.8 Typical parameters9–12areU/t510 to 12 andt50.4 to
0.45 eV.

The t-J model has a near-neighbor hopping term2t with
a restriction that no site can have two fermions. The
change interaction in thet-J model has the usual form

J(̂
i j &

S SW i•SW j2
1

4
ninj D , ~1!

with SW i5
1
2 cis

† sss8cis8 andni5ci↑
† ci↑1ci↓

† ci↓ . At half-filling,
the t-J model is just the Heisenberg two-leg ladder and h
an infinite charge gap. Typical parameters9–12 are J/t50.3
and t50.4 to 0.5 eV.

We use DMRG techniques14 to study long ladders~up to
6432 sites in thet-J and one-band Hubbard models and
to 1632 Cu sites in the three-band Hubbard model! with
open boundary conditions. DMRG has been shown to b
very accurate method to study ladder systems.7,13,15,16Here
we use up to 1200 states per block and extrapolate DM
results for energies to extract the limit of zero truncati
error and check the precision of our calculations.17 In addi-

FIG. 1. Schematic of a CuO ladder. Here the solid circles r
resent Cu(dx22y2) orbitals and the open circles represent O(px)
orbitals along the upper and lower legs and O(py) orbitals on the
rungs. There is a hopping matrix element2tpd between the O and
Cu sites as shown by the solid lines. The energy difference betw
the O and Cu sites isD5«p2«d and there is an on site Cu Cou
lomb interactionUd .
9492 © 1998 The American Physical Society
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tion, a few tests performed on small clusters with perio
boundary conditions show a perfect agreement with ex
diagonalization results.18

We begin with the undoped ladder and calculate the s
gap

Ds5E0~Sz51!2E0~Sz50!. ~2!

HereDs is the difference in energies between the spin-1 a
spin-0 ground states. For the Heisenberg two-leg ladder16

Ds.
J

2
, ~3!

which is shown as the solid curve in Fig. 2, where we ha
plotted Ds versus 4t/J. The dashed curve in Fig. 2 show
results for a 3232, half-filled Hubbard ladder. For large va
ues of U/t, the Hubbard model at half-filling maps to th
Heisenberg model withJ54t2/U. Thus in Fig. 2, the two
curves approach each other at large values ofU/t. Using
twice the spin gap as a measure of the effective excha
interaction, we see from Fig. 2 that the strong coupling
pressionJ54t2/U for the one-band Hubbard model overe
timates the strength of the exchange interaction for ph
cally relevant values of the parameters. However, we can
Ds as a unit of energy in comparing thet-J and one-band
Hubbard models, each in their relevant physical param
regimes. Thus, for an infinite two-leg ladder, thet-J model
with J/t50.3 hasDs /t>0.15 while the one-band Hubbar
model withU/t512 hasDs /t>0.12 as seen in Table I. Tak
ing t50.45 eV, twice these spin gap energies give reas
able effective exchange couplings of 0.135 eV~1600 K! and
0.11 eV~1300 K! for the t-J and one-band Hubbard ladder
respectively. Naturally, either of these two could be furth
adjusted by using a different value oft, but our point is
simply that they are in the correct range. We also note

FIG. 2. The spin gapDs /t vs 4t/J for the t-J ~Heisenberg!
model~solid line! andU/t for the one-band Hubbard model~dashed
line! at half-filling on a 3232 ladder.
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the spin gapDs /t>0.11 of the one-band Hubbard mod
with U/t56 is similar to the value obtained forU/t512 ~see
Table I!.

Results for the spin gapDs of the three-band Hubbard
model at a filling of one hole per Cu are shown in Figs. 3~a!
and 3~b!. In Fig. 3~a!, Ds /tpd is plotted versusD/tpd for a
ladder containing 832 Cu sites withUd /tpd58. In strong
coupling, the Cu-Cu exchange interaction has the form

JCu54S tpd
2

D D 2F 1

Ud
1

1

D G . ~4!

The dashed curve in Fig. 3~a! showsJCu/2 and one sees tha
the spin gap of the three-band model approaches the st
couplingJCu/2 result at large values of theD5«p2«d split-
ting. However, just as for the one-band Hubbard model,
strong-coupling expression for the exchange interaction s
stantially overestimates it in the physically relevant region
parameters. The dependence ofDs on Ud /tpd for D/tpd52 is
shown in Fig. 3~b!. At large values ofUd /tpd , the exchange
is dominated by theD term in Eq. ~4! as expected for a
charge transfer insulator. TakingD/tpd52 and Ud /tpd58
we find thatDs /tpd extrapolates to>0.035 for an infinite
CuO ladder~see Table I!, which for tpd51.5 eV givesJCu
[2Ds>0.11 eV~1300 K!. Thus, even though the region o
relevant physical parameters does not lend itself to a sim
strong coupling expansion which relates the three mod

FIG. 3. ~a! The spin gapDs /tpd vs D/tpd for the three-band
Hubbard model at a filling of one hole per Cu, withUd /tpd58. The
dashed line is the strong coupling limit, Eq.~4!. ~b! The spin gap
energyDs vs Ud /tpd with D/tpd52 for the three-band Hubbard
model at a filling of one hole per Cu. All results are for an 832 Cu
ladder.
TABLE I. Spin gapDs ~in units of the bare hopping termt or tpd), and charge gapDc , pair binding
energyDpb , effective pair hoppingte f f , and effective magnon hoppingve f f ~in units of the spin gap!
obtained by extrapolating to a ladder of infinite length.

Model Parameters Ds Dc /Ds Dpb /Ds te f f /Ds ve f f /Ds

t-J J/t50.3 0.151 ` 0.71 2.4 5.0
one-band U/t512 0.116 70 0.83 5.4 8.5
one-band U/t56 0.111 25 1.4 12 24
three-band D/tpd53, Ud /tpd58 0.030 58 1.2 12 7.5
three-band D/tpd52, Ud /tpd58 0.035 29 1.6 18 11
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the spin gaps for the three models are in fact similar in s
and provide a useful energy scale describing the strengt
the exchange coupling.

The charge gaps for the insulating~undoped! phases,
however, are quite different. The insulating state of
t-J model has an infinite charge gap reflecting the constr
that no site can have two fermions. In the Hubbard mod
the charge gap is defined by

Dc5@E0~2!1E0~22!22E0~0!#/2, ~5!

whereE0(n) is the ground state energy of a ladder withn
holes relative to the undoped ladder. The charge gaps fo
half-filled, one-band Hubbard model and the three-ba
Hubbard model with one hole per Cu are plotted versus
on site Coulomb interaction in Fig. 4~a!. At large values of
U, the charge gap in the one-band Hubbard model varie
U, while as expected, the charge gap of the three-band H
bard model saturates at a value set byD whenUd becomes
very large. As noted above, the spin gap energy provide
useful unit of energy in comparing the different models.
Table I we show the charge gap in units of the spin gap
the one-band Hubbard model forU/t5 6 and 12 and in the
three-band Hubbard model for the physical parame
D/tpd5 2 and 3 withUd /tpd58. One can use eitherU/t5 6
or 12 to reproduce the three-band modelDc /Ds ratio de-
pending on the value ofD/tpd . Taking the same values oft
and tpd as above, we obtainDc5 1.4 to 3.9 eV. The experi-
mental value of the charge gap is still debated11 but is of the
same order of magnitude~2–5 eV!.

The ‘‘charge transfer gap’’ behavior of the three-ba
model is also seen in Fig. 4~b! where we have plotted th

FIG. 4. ~a! The charge gapDc vs U/t for the one-band~dashed!
Hubbard model on a 3232 ladder and vsUd /tpd for the three-band
~solid! Hubbard model withD/tpd52 on a ladder containing
832 Cu sites. Note thatDc is measured relative tot for the one-
band Hubbard model and relative totpd for the three-band Hubbard
model.~b! The hole occupation per Cu^nCu& and Ôn0& vs the hole
concentration 11x per CuO1.5 unit cell on a ladder containing
1632 Cu sites withUd /tpd58 andD/tpd52.
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hole occupation per Cu and per 1.5 O versus the hole c
centration 11x per CuO1.5 unit cell for the physical param
etersUd /tpd58 andD/tpd52. For x,0, the holes go pri-
marily onto the Cu sites~72% of the hole density is on thes
sites! while for x.0, the O sites are favored with 88% of th
additional hole density going to these sites. For example,
x50.25, the average hole density on the Cu site is increa
by only 0.03~4%! while that on an oxygen site is increase
by about 0.15~77%!, or 0.22 per O1.5, from the result for the
undoped ladder (x50). This behavior can easily be unde
stood. Forx<0, only Cu orbitals are occupied because th
have lower energy than the O orbitals.~The hybridization of
the Cu and O orbitals due to the finite hoppingtpd is respon-
sible for the fractional density on Cu and O sites.! For
x.0, all Cu orbitals are occupied by at least one hole. T
energy to put a second hole on one of these orbitals is se
Ud , while the energy to put a hole on the O orbitals is set
D. Thus, for the parameters considered here (D,Ud), addi-
tional holes go onto O orbitals. In the opposite limitUd
,D, we have found that holes go primarily on Cu orbita
for x.0, as expected.

It is interesting to note that magnons also go primarily
Cu sites~76% of the spin density is on these sites!. This
distribution is very close to the hole distribution of the u
doped ladder and remains constant for all doping studi
20.125<x<0.25. This result suggests that low-energy sp
excitations involve only unpaired holes in~hybridized! Cu
orbitals even whenxÞ0. According to Zhang and Rice,19

each doped hole is locked in a singlet state with another h
in a Cu orbital and does not contribute to spin excitations
low energy. Our results certainly support this scenario
though it is not obvious that their argument based on a Cu4
cluster is valid for the lattice configuration shown in Fig.

Next we consider the two-hole pair binding, defined by

Dpb5E0~2!1E0~0!22E0~1! ~6!

if the quantity on the right-hand side is positive, andDpb
50 otherwise. It should be noted that the dependence of
pair binding energy on system size is significant. Moreov
Dpb generally increases when the ladder length increa
while other quantities, such as the spin gap, decrease. Th
fore, when comparing values ofDpb one should always keep
the corresponding system size in mind. In Fig. 5~a!, Dpb is
plotted versus 4t/J for the t-J model andU/t for the one-
band Hubbard model on a 3232 ladder. Just as previousl
found for the spin gap, the pair binding energy for thet-J
model approaches that of the one-band Hubbard mode
large values ofU/t. Furthermore, although the two mode
have very different charge gaps, the scale of their pair bi
ing energies in the physically relevant parameter region is
by Ds . This is clearly illustrated in Fig. 5~b!, where we show
the pair binding energy in units of the spin gap as a funct
of U/t in the one-band Hubbard model and as a function
4t/J in the t-J model on a 3232 ladder. We note that the
ratio Dpb /Ds is surprisingly similar in both models despit
the widely different behavior ofDpb andDs shown in Figs. 2
and 5~a!. As previously discussed,7,15 the pair wave function
for both of these models has adx22y2-like form. Moreover,
we have found that the structure of single holes and h
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pairs in the one-band Hubbard model withU/t58 is identi-
cal to those observed in thet-J model.20

Results for the pair binding energy of the three-band H
bard model are shown in Figs. 6~a! and 6~b!. For Ud /tpd
58, the pair binding peaks forD/tpd>2 and as shown in
Fig. 6~b!, the pair binding energy increases asUd /tpd in-
creases. Similar results for a Cu4O8 cluster were found from
Lanczos calculations.18,21 More recently, Martin22 has dis-
cussed pairing on small clusters in terms of rehybridizat
associated with the charge-transfer channels. A recent q
tum Monte Carlo study of the three-band Hubbard mode23

yields similar results for clusters with up to 636 Cu sites.
For the physical range of parameters appropriate to the
prates, one also hasDpb;Ds in the three-band model. How
ever, the ratioDpb /Ds extrapolated for a ladder of infinite
length is clearly larger than in both other models with th
typical parameters, as shown in Table I. A better agreem
with the three-band Hubbard model results is obtained

FIG. 5. ~a! The hole pair binding energyDpb /t vs 4t/J for the
t-J model ~solid! and U/t for the one-band Hubbard mode
~dashed! on a 3232 ladder.~b! The ratioDpb /Ds in both models.

FIG. 6. ~a! The pair binding energyDpb vs D/tpd with Ud /tpd

58 for the three-band Hubbard model.~b! The pair binding energy
vs Ud /tpd with D/tpd52 for the three-band Hubbard model. The
calculations are for an 832 Cu ladder.
-

n
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y

takingU/t56 for the one-band Hubbard model. In additio
in the three-band Hubbard model the hole pair wave funct
has adx22y2-like form as determined from measurements
the rung-rung and rung-leg pair field correlations.

We have also measured the pair binding energy versus
hole concentrationx relative to the undoped ladder. In th
case the pair binding energy is defined by

Dpb~x!5E0~2n!1E0~2n22!22E0~2n21!, n.0, ~68!

Dpb~x!5E0~2n!1E0~2n12!22E0~2n11!, n,0. ~69!

Herex is equal to 2n divided by the number of holes in th
undoped ladder. Results for the pair binding energyDpb rela-
tive to the undoped spin gapDs are shown in Fig. 7~a! for the
three models. There is no striking difference between
three models forx.0. We note, however, that while th
Hubbard model is particle-hole symmetric about half-fillin
one can only add holes to thet-J model and we find no
evidence for pair binding forx,0 in the three-band Hubbar
model withUd /tpd58 andD/tpd52. We are not sure of the
exact nature of the ground state of the three-band Hubb
model with less than one hole per Cu site. In fact, we ha
not been able to investigate this regime as thoroughly as
x>0 regime because density matrix renormalization gro
calculations are much harder and less accurate in this c
However, our numerical simulations strongly suggest t
the x,0 and x.0 regimes are quite different. As note
previously, holes go primarily on Cu orbitals forx,0 while
doped holes are on O orbitals forx.0 @see Fig. 4~b!#. Thus,
it is possible that the effective interactions between dop
particles are different for both regimes.

The decrease in the pair binding energy withx correlates
with the decrease in the near-neighbor spin-spin correlat

^SW i•SW j& shown in Fig. 7~b!. ~Note that for the three-band
Hubbard model we show the spin-spin correlations betw

FIG. 7. ~a! The ratio of the pair binding energy to the undop
spin gap vs hole doping. The diamonds are for a 3232 t-J ladder
with J/t50.3. The circles are for a one-band 3232 Hubbard ladder
with U/t512. The squares are for the three-band Hubbard mo
with Ud /tpd58 andD/tpd52 on a 1632 Cu ladder.~b! The near-

neighbor Cu spin-spin correlation function̂SW i•SW j& vs x for the
three models.
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near-neighbor Cu sites.! Thus, the decrease in the pair bin
ing energy with increased hole concentration reflects the
struction of the underlying exchange correlations by
added holes. It should be noted that the differences betw
the values of̂ SW i•SW j& in the three models are mostly due
the increase of charge fluctuations in going from thet-J
model to the one-band Hubbard model and then to the th
band Hubbard model. These charge fluctuations reduce
local magnetic momentŝSW i

2& and thus the absolute value o

^SW i•SW j&. However, as noted previously, the effective e
change coupling between spins is similar in the three mod

We have also calculated the effective hopping param
te f f of a hole pair from the dependence of the pair ene
obtained in ladders of different lengths. We define the p
energy by

«p5E0~2!2E0~0!. ~7!

In ladders with open boundary conditions, the energy of
pair varies as

«p~Le f f!5«p~`!1te f fS p

Le f f11D 2

, ~8!

where the effective system lengthLe f f differs from the actual
ladder lengthL because of end effects. For a given syste
Le f f can be determined from the wavelengthl52(Le f f
11) of the charge density distribution of the pair. Figure
shows a plot of the ground state energy of a hole pair ve
(Le f f11)22 for the three different models.te f f is equal to
the slope of the lines in Fig. 8 divided byp2. We have found
that the differencedL5Le f f2L tends to a constant for larg
systems. Thus, in practice we can substituteL1dL for Le f f
in Eq. ~8! and usedL as a fit parameter.

In Table I, we listte f f normalized with respect toDs for
the t-J, and the one- and three-band Hubbard models w
J/t50.3, U/t5 6 and 12, andUd /tpd58, D/tpd5 2 and 3,
respectively. We have also listed the pair binding energyDpb
in units of the spin gap energyDs . Now, as previously dis-
cussed, the spin gap in the insulating case is of orderJ/2 and
it sets the scale of the pair binding energy so thatDs andDpb
for the three models are quite similar. However, the p
dispersion is enhanced in going from thet-J model to the
one-band Hubbard model and further enhanced for the th
band Hubbard model if one uses parameters appropriate

FIG. 8. Plot of the hole pair energy vs (Le f f11)22 for the three
different models. The notation is the same as in Fig. 7. Act
ladder lengthsL range from 5 to 16 Cu sites in the three-ba
Hubbard model and from 16 to 48 for the two other models. F
each model, the zero of the energy has been set to the extrapo
value of the pair energy.
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CuO materials. We believe that this enhancement is ass
ated with the additional charge fluctuations which the o
and three-band Hubbard models allow. The large enhan
ment in the three-band model reflects the fact that its cha
gap is set byD whenUd is large rather thanUd . In Fig. 9 we
show the effective pair hopping as a function ofU/t in the
one-band Hubbard model and as a function of 4t/J in the
t-J model. In thet-J model it seems that the effective pa
hopping is always small (te f f /t,0.4). In the one-band Hub
bard model, however, the pair dispersion is strongly
hanced asU/t decreases and forU/t56 the ratiote f f /Ds is
similar to the value obtained in the three-band Hubb
model withD/tpd53 andUd /tpd58 ~see Table I!. For large
values ofU/t, the pair dispersion of the one-band Hubba
model approaches that of thet-J model as shown in Fig. 9
However, the difference between the pair dispersion in b
models seems to be of the order 4t/U when U→`. This
difference could be due to next-nearest-neighbor hopp
terms of the order 4t/U which are neglected in the derivatio
of the t-J model from the strong-coupling limit of the Hub
bard model.

An effective magnon hoppingve f f can be calculated from
the dependence of the spin gap on the ladder length. We
Eq. ~8! with ve f f andDs substituted forte f f andep , respec-
tively. In this case the effective ladder length is determin
from the spin density profile. In Table I,ve f f normalized
with respect toDs is listed for undoped ladders. The value
of ve f f /Ds obtained in the three models are of the same or
of magnitude for the physically relevant parameters. We n
that in this case the value obtained in the one-band Hubb
model withU/t56 is much larger than the other results.
undoped ladders the effective magnon hopping obtained
the one-band Hubbard model approaches the result foun
the t-J ~Heisenberg! model, ve f f>2.5J, at large values of
U/t as expected. A recent perturbation calculation of two-
Heisenberg ladders24 gives ve f f>2, in satisfactory agree
ment with our numerical result.

To summarize, all three models of course have a spin
in the undoped phase. Furthermore, the parameters for
different models can be chosen to make these spin gaps c
parable and in the correct physical regime. As noted, ho
ever, these three models have very different charge gaps
the t-J model having an infinite charge gap, the one-ba
Hubbard model having a Mott-Hubbard gap set byU and the
three-band CuO model having a charge transfer gap se
D5«p2«d for the physical parameter range of interest. T
binding energy of two added holes is basically set by the s

l

r
ted

FIG. 9. The effective hopping parameter for two holes is sho
by the circles for the one-band Hubbard model and by the squ
for the t-J model.



d
at
in

la
e
e
a

ow
ic

lts
th
d

nc
d

by
e
th
a
a
u
o

d
re

or-
u-
ne-

air

o a
we

and

for
su-

c-
der
to
the
ra-
m-
of
-
tion

PRB 58 9497COMPARISON OF DIFFERENT LADDER MODELS
gap. However,Dpb /Ds> 0.7 to 0.8 for thet-J and one-band
Hubbard ladder whileDpb /Ds>1.2 to 1.6 for the three-ban
Hubbard ladder with parameters appropriate for CuO m
rials. Thus the hole pairs are in fact bound more tightly
units of the spin gap energy in the three-band Hubbard
der. The main difference between the models is the siz
the effective pair hopping which is significantly larger in th
three-band model for the physical parameters. It is often
sumed that these three models with parameters and band
ings appropriate for CuO materials describe the same l
energy physics. Our study has not revealed any fact wh
explicitly contradicts this point of view. However, our resu
show that neither the one-band Hubbard model nor
t-J model can reproduce all the three-band Hubbard mo
results with a single set of effective parameters. For insta
it seems that the pairing properties are better reproduce
the one-band Hubbard model withU/t56 than with the
usual parametersU/t512.

Finally, we believe that the larger dispersion signified
the effective pair hopping, which we found for the thre
band Hubbard model, points to an important feature of
physics contained in the charge transfer insulator. Pairs
less likely to localize in the three-band Hubbard model th
in the other models for the physical parameters. This co
have a significant effect in a two-dimensional lattice. F
instance, in the two-dimensionalt-J model doped holes ten
to form ordered arrays called stripes, which seem to supp
o
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superconductivity, at least when the stripes are static.25 A
study of a three-leg ladder using both density matrix ren
malization group methods and quantum Monte Carlo sim
lations has shown that similar stripes also appear in the o
band Hubbard model forU/t.6, but not for weaker
coupling.17 Thus, it seems that the sharp increase of p
mobility observed for decreasingU/t in the two-leg ladder
correlates with a transition from a striped ground state t
ground state without stripes in wider ladders. Therefore,
think that the larger charge fluctuations which the three-b
Hubbard model allows~compared to thet-J model! should
lead in the two-dimensional lattice to a reduced tendency
domain walls to lock up in static arrays with suppressed
perconductivity.
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