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Coulomb interaction at the superconductor-to-Mott-insulator transition
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We reexamine the effects of long-range Coulomb interaction on the onset of superconductivity. We use the
model of N complex scalar fields with the Coulomb interaction studied first by Fisher and GrittB@inWe
find that neard=3 space dimension, the system undergoes second order phase tranditie®5t39, but
undergoes possible fluctuation driven first order transitidd<f55.39. We give the detailed derivation of the
field theory renormalization groufiRG) of this model to one loop. Our RG results disagree with those of FG
neard=3. A possible scenario @=2 is proposed.
[S0163-18288)00633-X

I. INTRODUCTION effects of Coulomb interaction on Sl transition in any detail.
In Ref. 7, Fisher and Grinstei(FG) studied the model of

Superconductor to insulatg¢8l) transitions have been ob- charged bosons with Coulomb interaction hopping on a lat-
served in disordered thin films by systematically varying thetice. By taking the continuum limit, they found that the low
thickness of the filmsor by tuning the magnetic fieldsA  energy effective theory is described by
closely related Sl transition has also been studied in artifi-
cially constructed 8 Josephson-junction arrays by system-
atically varying the ratio of charging energy and Josephson
coupling energyor by tuning the magnetic fieldsUniversal 5= f d’xdr
conductivities have been measured right at the Sl transitions

|(do—ie* Ag) | >+ | i ] ?

in these systems. More recently, Sl transition was demon- ,, U 4

strated in @ granular Al-Ge samples.Many theoretical 1 bl “+ 7| bl

effort~'2have been made to investigate the Sl transitions in

these experimental systems. It is generally accepted that the 1 dk do a2 12

transition is correctly described by a model iaferacting ts J @md 2n " [Ao(k, @)|?, )

charge-2 bosons moving in a @ random potential. A re-
lated, but much simpler, model is Boson-Hubbard model
which consists of bosons hopping on a periodic lattice. WhenvhereA, is the time component of the(l) gauge fields and
the boson density is commensurate with the lattice, thiss responsible for the long-range interaction between the
model displays a quantum transition from Mott insulator to acharged bosons. TherlCoulomb interaction corresponds to
superconductor. Neglecting disorder as a first approximationg=d— 1.
a lot of authors studied the Sl transition and its universal The model in Eq.(2) should not be confused with the
conductivity in this simplified modet!~**Near the quan- model studied in Refs. 14, 15, and 17. The crucial difference
tum critical point, the effective low energy theory of this is that only the time componert, of gauge fields is in-
model is simply a¢* theory: volved in Eq.(2), therefore, the Lorentz invariance is broken.
However, in the scalar electrodynamics studied in Refs. 14,
) ) , u 4 15, and 17, both time and transverse components are in-
|00 @l *+ |3 | “+ 1| drl *+ Z|¢’m| ; volved, and the Lorentz invariance is respected.
(1) In principle, the coupling of the order parameter to the
spatial components of the(l) gauge fields should also be
where ¢, arem=1..N species of charge* =2e complex included in the above equation. However, at 2D films, the
bosons. penetration depth\,q=\?%/d with \ the bulk penetration
In order to confront with experiments, several importantdepth andd the film thickness. In the experimental systems,
effects such as disorder, dissipation, and long-range Coix~100 A, d~5 A, so\,4~2000 A, the spatial coupling
lomb interaction should be taken into account. From generalill not manifest itself until experimentally unobservably
scaling arguments, Fisher, Grinstein and Girvin argued thatlose to the Sl transitioh®'8 Therefore, it is safe to neglect
the long range Coulomb interaction between the chargethe spatial coupling in Eq2). In 3D samples investigated in
bosons will render the dynamic exponento be 1 in any Ref. 5, we assume that they are in the extreme type-II limit.
dimensiorf This is indeed what was observed on the mag-n this limit, the spatial coupling can also be neglected.
netic field tuned Sl transition in thin two-dimension@D) FG did renormalization groufRG) analysis of the model
films.2 The measurements on magnetic field-induced Sl tranby performing a double expansion ¥=3—d and e,=2
sitions in Josephson-junction arrays are also consistent with- . The 1f Coulomb interaction corresponds to=¢, .
z=1, v>1. Therefore, it is very important to investigate the They concluded that depending on parameters, at two space

S= f d9dr
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dimension, the transition can be either first order or second m
order with Coulomb coupling marginally irrelevant at the 3D ey m n

XY critical point. 2 \ N /
In this paper, we provide a detailed RG analysis of the / ) \

model in Eq.(2) using the field theory method. We do not v m——>—>‘m o .
perform a double expansion inand e, . Instead, for sim-

plicity, we fix o to be 2(namelye,=0) and perform a € (0+2v) -e? -u/4
=3—d expansiono=2 corresponds to &/Coulomb inter-

action atd=3 andlogarithmic instead of ¢ interaction at @ (b ©
d=2. We find thatnear 3 space dimension, the system un-
dergoes a second order phase transitiotN#55.39, but 3):
undergoes gossiblefluctuation-driven first order transition .
if N<<55.39. We calculate the dynamic exponenthe bo-

son propagator exponenj, the gauge fieldCoulomb inter-  gjong andy is a renormalization scale. The parameteis

action) exponents,, and the correlation exponemt We  introduced to allow for anisotropic renormalization between
give the detailed derivation of field theory RG of this model, gpace and tim&h22

because the RG method we used is interesting in its own |1 jg easy to see Eq@3) is invariant under thespace-
right. We expect the structure brought out by our RG procejngependengauge transformation

dures to have some general impact on how to perform correct

RG on other zero temperature quantum critical phenormiena.

FIG. 1. The Feymann rules for three kinds of vertices in Eq.
(a) the type 1 vertex(b) the type 2(seagul) vertex, and(c)
the quartic coupling of bosons.

. a
The same method has been applied successfully to study the d— peMD Ag—Ay— o PoA(7). (4)
guantum transition from fractional quantum hall state to in-
sulating state in a periodic potentfl. In the perturbation theory, the three kinds of vertices in Fig.

If putting €, to zero in Eq.7) of Ref. 7, we find our RG 1 are needed.
results disagree with those of FG. Although no details are The loop expansion requires counterterms to account for
given in Ref. 7, we suspect thét) the anisotropy between ultraviolet divergences in momentum integrals; we write the
space and timénamely the dynamic exponem) was not counterterms as
treated correctly by FG an@) the Ward identityfEq. (6) in ; 5 5
Sec. Il is violated in the momentum shell method employed ~ £c1= @ (Zo= 1)|dom| “+(Z2—1)[ 9
by FG. u
In this paper, we do not even intend to perform the double +—(Zy— D) ufa| byl
expansion ine=3—d and e€,=2— ¢ because we believe 4
that whengauge fieldluctuations are involved, extrapolating (7 el2, 312 Tt gt
to the physical case=¢,=1 can only lead to misleading (21~ Dena™ Aol dodmm— dmodm)
results. 5 » .t 1 )
The rest of the paper is organized as follows. In Sec. Il (21— De“uaAgdndmt 5(Zs—1)(4iA0)"
we introduce the model and set up the formulation to per-
form RG. In Sec. lll, we give the detailed RG analysis and 6)
bring out its elegant structure. We find that our results dis- The Ward identitv following from the gaude invariance
agree with those of FG and point out the possible miStakeéictates y 9 gaug
made by FG. In Sec. IV, we give more discussions and poin
out the possible scenario d&=2 and some future directions. 2,=2,. (6)
Finally, in the Appendix, we perform RG on the well-studied
scalar electrodynamics in Feymann gauge as a nontrivial Using the identity, we relate the bare fields and couplings

check on the correctness of our calculations in Sec. lll.  in S to the renormalized quantities by
12
Il. THE MODEL AND FORMULATION éme=2Z3 “Pm,
i i i 1/2
In order to perform RG analysis, we rewrite Ef) in the Ags=ZYA,,

following form:*®
aB:(Za/ZZ)llzay

— d 2 2 2 2
5= | atxan alaodnl?+ 10,60l 1|0 N,
u . _ ~3/25—1/2
T ol prl*—iepP2a¥?Ag(do bl bm— brdobm) Us=UnZ4Z, "2, ™", )
The dynamic critical exponert is related to the renor-
2 € 241 1 2 lizati f by22
+euaAydndmt 5(3iAo) , (3) malization of«
; ; ; d 1 d =z
where x;(7) are spatial (tempora) coordinates withdg z=1-p—Ina=1—=p—In==. (8)
=0,, #=4dy. We are working ind=3+ e spatial dimen- du 20 dp Z,
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@ v) ) 42 2
@k, -ov) /\ @Y (2a)=e2uc f d"q f dv  (vte)”
L) @m® ) 2m (G-R*q*+1?)
_&_» . , dig 1 dv
k) @) ® ) (k.©) oM ef i - - o
(2m)° (q—k)?/ 2=
@ ® ©
dy 2_ 2
FIG. 2. The self-energy diagram of bosons. +ez,u€j ¢ qd © N qa
(2m)7 2q(q—k)?
We define the exponeny by the equal-timecorrelation 4= 5 )
function —e2 ef d’q ! d_V+ © (wz_ k_>
Pl emd goke ) 2n ante 3
(B(x,1)$!(0,7))~x" (@225, ©)
e, (14

It is easy to see this correlation function is invariant undekynere- -- means all the finite terms.

the gauge transformation E), therefore, is indeed a
gauge invariant quantity and given by

d

The anomalous dimension, of the gauge field is also a
gauge invariant quantity:

d
WA:Mam Z3. (13)

Near the critical point, the gauge field propagator is

. N 1
(Ag(—K, = ) Ag(K,0)) ~ 7=z (12)

Physically, it means that at the critical point, caspatial

In the above equation, we scaled all the frequencies by the
anisotropy parametet, so « does not appear explicitly in
the above and in the following.

Similarly, we can evaluate Figs(l® and 2c)

bl a2y f dig 1 f dv
(b)=—en @' ) 2n
2(c)= ! Ef d'a 1 =0 15
©==21) Gmizg~" (15
In the last equation, the convention of DR is used.
Adding all the contributions from Fig. 2, we get
e2 2
= 2— —_— ..
2(a)+2(b)+2(c) s (w 3 + (16)

It is easy to see that we encounter the UV frequency di-
vergences in both Fig.(2) and Fig. Zb). However, they

dimension, the long-range interaction takes the fornCary opposite signs, therefore, cancel each other. Similar

r—(d—2+ ”A).
Finally, the critical exponent is related to the anomalous
dimension of the composite opera@ﬁ@m by

4 d

The renormalization constadt,t, can be calculated by
inserting the operator into the boson self-energy diagrams.

Ill. THE PERTURBATIVE RG CALCULATION
AT ONE LOOP

A. The boson self-energy

First, we consider the boson self-energy diagrams in Fig.
2. Using the Feymann rules listed in Fig. 1, we can bring out

the divergent structure of Fig.(@ by the conventional di-
mensional regularizatiofDR) method

cancellations also appear in the Dirac fermion model studied
in Ref. 20 and will appear in the following calculations of
other Feymann diagrams. We expect this cancellation of UV
divergences irfrequencyis a general feature afonrelativ-
istic quantum field theories describing zero-temperature
quantum phase transitions.

From Eq.(16), we can identify the two constang,,Z,
in Eq. (5) in the minimal subtraction scheme

2
e
Za=lt g L=l

e2

(17)

Note Z,#Z,. This is due to thdack of Lorentz invariance
of our model.

B. The type 1 vertex
We turn to the evaluation of the renormalization of the

type 1 vertex in Fig. 3. Applying the Feymann rules to Fig.

3(a), we have
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FIG. 3. The one-loop diagrams of type 1 vertex.

diq
(2m)¢

3(3) = (eu)? f

d_V (v+wq)(2v+w)(v+ o+ ws)

27 (q—k) A2+ 12)[(q+K)2+ (v+ w)?]

eZ

(w1 Fwy)+--. (18

41l

It is easy to see Fig.(B) vanishes identically and Fig.
3(c) and Fig. 3d) are

e2

3(0)=— 5 _z-w1t ",

2

e
3(d)=— mwz-f—"',
2
Overall, we find for the type 1 vertex
2
3(@+3(b)+3(c)+3(d)=— m(wﬁ— wy)+ . (20
The constanZ; in Eq. (3) can be identified
e?
Z,=1+ A2e (21
k+q
L
TQVAVAVAN VAVAVAVAN q
= v
q o H

k
(a) b

FIG. 4. The vacuum polarization of gauge fields.
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FIG. 5. The renormalization from the quartic coupling.

From Eqgs.(17) and(21), it is evident that the Ward iden-
tity [Eq. (6)] indeed holds. The Ward identity can also be
shown by evaluating the renormalization of the seagull ver-
tex.

C. The polarization of gauge field

Next, we calculate the vacuum polarization graph of the
U(1) gauge fieldA , in Fig. 4. The fermion bubble has Lor-
entz invariance, therefore, the momenta in Fig. 4 dpe (
=d+ 1=4- ¢€)-dimensional momenta

d®q (k+2q),(k+2q),

1, ,(k)=e>uN

(2m)® 9°(k+q)?
d°q 1
—_2@2,,€ -
2w N) @mp

B Ne?
© 247%€

(K28, —k,k,)+-, (22)

whereN comes from the summation over the boson suffix
m.

In Eq. (3), only the time component of the gauge fiélg
is involved. Puttingu=v=0 in the above equation we find

HO,O(IZ!w):_Z_Q_k2+"' , (23)

4re

wherek is thed dimensional space momentum. The constant
Z3 in Eq. (3) can be identified as

Z3=1 Ne* 24
370 24n%€ (24)
(ky,00) (k3.00) 1
3
(q,V)<
4
k;,0,) (k,,00,) 2

(@) (b)

FIG. 6. The renormalization from the seagull term.
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7 \
2
2 4 / \ / 4
@ b 2 4 2
FIG. 7. The renormalization from the combination of the type 1 @ (b)

term + the quartic term. FIG. 8. The renormalization from the type 1 term.

D. The renormalization of the quartic term
ddq 1 dv

(2m® gX(q+k,—ka)? J 27’

In this subsection, we compute the renormalization of the 6(a)=2(e2,uf)2J
quartic term. First, let us look at the contributions from the

quartic coupling in Fig. 5. As in Fig. 4, the momenta in the

above figure are alsbD-dimensional momenta.

diq 1 dv
a2 g 1 o1 6(b)~2(%? | 5o o e
= = (2m)° g°(q+ky—ky) 27’
S@=— 2m)° Pk tk—q2 2 8a2e AT
(25)
Similarly, we can calculate the contributions from Figé&)5 ddﬁ 1
and 5c) 23 6(a)+6(b)=2(ezuf)2f i—
(2m)% (q—k,)
5(b)=5 _(N+3)u2 ! 26 1 1 d
(O=SO= =gz T (20 x( + ) 2—” (28)
S_Lk.\2 S_ I \2
Adding all the contributions from Fig. 5, we get (G=ka)®  (q=ky) m
2
5(a)+5(b)+5(c)= (N+42)u e 27) As in Egs.(14) and (15), we encounter the UV diver-
167°€ gences in the frequency integrals. We leave them alone at
Second, let us look at the contributions from the seagulthis moment and go ahead to calculate the diagrams in Fig. 7.
term in Fig. 6: The corresponding expressions are
diq d + +2wy— ue?
7(a):_u(eﬂe/2)ZJ qd _V — (V wlj(wi ?2 V) = 5 +-ee
(2m7 2 2m (q=k) X+ v?)[ (Kt kp=Q)*+ (w1 + wp—p)?] B7€
diq d +tw;)(2ws—wi+ ue?
7(b)=—u(e,uf’2)2f qd dv _ (v wlj( 0:3 (:)1 v) L 29
(2m)" 7 27 Q- k)X @+ v))[(Ke= Kyt Q)P+ (03— w1t 0)?]  BTe

It is important to note that Figs.(& and 1b) have opposite signs. Actually, there @ diagrams in class(@) andfour
diagrams in class(B) corresponding to different ways to put the photon line, so the overall contributions are

e
2[7(a)]+4[7(b)]=—%—6+-~-. (30

Let us look at the contributions from the type 1 vertex in Fig. 8. The corresponding expressions are
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8(a)=(e,uf’2)4J' diq ﬂ (v+w) (v w3) w1+ 20— v)(w1+ wy+ ws— V)
@m* ) 27 (G—kp)?(G— ko)A G2+ D[ (Ky+Ko— G2+ (@3 + wp— 1)7]
(oue)? f diq 1 dv 3¢
= eMG N N N N - ]
(2m% (G-Ky*q—Kky)2 | 27 Bre
8(b)=(e,uf/2)4f diq 2 (v+ o) (vt o)(w+20,—v)(w1+ 0+ 03— v)
2m)* ) 2m (G—kp)2(G—Ke)2(@P+ D) (K + Ko — G)2+ (01 + 0= 1)?]
diq 1 dv 3e*
_ el2\4 _
_(e,u )f (2 )d - o 2— 3 2E+ . (31)
™) (q—Kk1)(qd—Ka) moen

Actually, there are two diagrams in clas@Band two diagrams in clasg[® corresponding to different ways to put the

photon line, so the overall contributions from Fig. 8 are

- dig 1 1 1 dv  3e*
2[8(a)]+2[8(b)]=2(en* >4f - | ———— ——— (32
(2m)% (q—k1)? | (a—ka)?  (q—Kg)? 2m 27
|
Finally, we need to compute the diagrams in Fig. 9. The dda 1
corresponding expressions are 9(c)= —2(6M6/2)4J -
(27)7 (4—kz)*(q—ka)?
- dv et
dq X | —+
_ el2N2,2, € ’
9(a)=—2(eu )euf o) 27 2mle
dv (v+wy)(v+ wy) dda 1
27 (G—Kp)(d—Ko)X(a2+1?) s(@=—2uen™|
LR (27)7 (q—ky)?(d—Ks)
ddq 1 d 4
:_Z(eM6/2)4f qd — — X _V_|_ € (34)
(2m)% (g-Kp)*(d—Ka)? 2w 2m’e
dv e? N
X | —+ , The overall contributions are
27 2mle
9(a)+9(b)+9(c)+9(d)
diq 1
o . :—4(epf’2)4f 5 qd —
o) =~ 2(eu )t [ ek
(2m)7 (4= k1)?(q—ks)? 1 1 4y 26
X| ———+——= —t+t—+. (39
4y & (A-K)? (q—Kp?/ ) 2m m%€
X | —+ (33
2w 2mle

Exchanging leg 3 with leg 4 of Figs.(® and 9b), we get
another two diagrami®(c) and 9d)] which were not shown
explicitly

Adding all the contributions from Eq$27), (29), (30), (32),
and(35), we find the UV divergences in the frequency inte-
grals indeed cancel and lead to the consi&nin Eq. (3)

(N+4)u € et

Zg=1+ 16m%e  4mle  2mwlue’

(36)
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3 1 3

7

as a fluctuation-driven first order transition in Ref. 14. For
N>N., these fixed points have real values f6r and are
physically accessible.

In order to compare oy functions with those of FG, we
putN=1 in Eq. (398

e

@q,v)

/ Qq.v) \ /\ B(w)=—ew+ %Wz,
2 4 2 4
2 wu  w?

Su
@ ®
=—eu+ - + . 4
o B(u)=—eu 1672 a2 2.2 (40)
FIG. 9. The renormalization from the type 1 termthe seagull

term. Settingw=(87%/5)Wgg, U=32murg, the above equa-

] ) tions become
E. The calculation of B function
In the previous subsections, we did the explicit calcula-

tions of the renormalization constants by considering a direct
perturbative expansion in the Coulomb fine structure con-
stantw=e? and the quartic coupling. At one loop order,
the values of the renormalization constants are summarized
as

1 2
— EWpgT 3 Weg,

B(Wgg) = 3

2 1
B(Urg) = — eUpg+ 10U~ 5 WralreT 2_5W|2:G- (41)

Putting e,=0 in Eq. (7) of Ref. 7, we find the RG flow
1+ w equations obtained by FG are different from ours. The

Za 472€’ function should be gauge-independent at least at one-loop
order (see also the discussions in the Appendix on this
point). Since no details were given by FG, we can only guess

Z,=1- 1272€’ the possible mistakes made by F@) the anisotropy be-
tween space and tim@amely the dynamic exponent was

Nw not treated correctly by FG2) the Ward identity in the time

Z3=1- pyme s component Eq(6) is violated in the momentum shell method

employed by FG. The disagreementegt=0 raises doubts
(N+4)u W W2 of the conclusions reached by FG at Coulomb interaction

Z4:1+

16r%e  4mPe  2mlue’ S
Substituting the above equation into Ed), we find thes
functions forw andu

LS
B(W)_ €W 24772W1
(N+4)u®> wu w?
R
The fixed points are
. 24m?
VENTa©
*_877261 6 a9
YsTNTa T NFa TNTa) 39

whereA = /NZ—52N— 188.

It is easy to see thah is imaginary forN<N.=55.39.

casee=¢, .

Let us look at the solution right at the critical dimension
d= 3. Puttinge=0 in Eq.(38) and taking the ratio of the two
equations, we find the trajectories of the RG flow satisfy the
homogeneous differential equation:

du 3/u 2 6 u 12 42
dw 2\w “N+aw N+a “3
If N>N,, the solution of this equation is
u 2 1 A
N S T N+4 3/ 3(Nt4)
w2 1 A |
w \NT273) 3N+ e
(43

whereC is an arbitrary constant. All the trajectories flow to
the origin with two marginally irrelevant couplings andu.
At finite temperature, they will lead to logarithmic correc-
tions to naive scaling functions.

If N<N., the solution of this equation is

This N, is much smaller than the corresponding critical num-

bern.=365 in the scalar electrodynamics studied in Ref. 14. 2(N+4) 3(N+4) (u 2 1

For N<N, u is complex for both fixed points and physi- C+In w= A arcta+ A w \N+4 - 5)”
cally inaccessible. The only accessible fixed points are the

Gaussian and Heisenberg fixed points, both of which are (44)

unstable to turning on Coulomb interaction. There is a run-All the trajectories flow to the negative valueswfindicat-
away flow to thenegativevalue ofu which was interpreted ing a fluctuation driven first order transition.
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& o, N¥L N-1 6
q a YO 2(NTA) INT1 N+4 N+4

(51)

oo @w @ IV. DISCUSSIONS AND CONCLUSIONS
In this paper, we provide a rather detailed derivation of
(@ ) RG analysis of Eq(2). We find the delicate cancellation of
the UV frequency integraldivergences; therefore, we only
FIG. 10. The cross stands for the insertion of the compositheed to regularize the UV divergences in momenta integral.
operator at zero momentum. We believe that this is due to the space-independent gauge
invariance[Eq. (4)] [or the Ward identity in the time com-
ponent, Eq.(6)]. Similar cancellations also appear in the
In this subsection, we calculate the critical exponents ofirac fermion model studied in Refs. 20 and 28. We expect
the second order transition whéw>N.. From Egs.(8), this is a very general feature of zero temperature quantum

F. The calculation of critical exponents

(37), and(39), we find the dynamic exponeat critical phenomené‘? This feature imonrelativisticquantum
field theory reminds us of the theoremriglativistic quantum
de field theory that infrared divergences must be cancelled out
z=1-377- (45 in any physical processes.
Here, we would like to make a brief comparison between
From Eqgs.(10), (37), and(39), we find the exponeny the boson model studied in this paper and the Dirac fermion

model studied in Refs. 20 and 28. In the Dirac fermion
n= 2¢ (46) model, both Coulomb and Chern-Simon couplings become
N+4° marginal atd=2; the competition between these two cou-
) plings produces a line of fixed points wi¥1 andnonva-
From Eqs.(11), (37), and(39), we find the exponent, nishing renormalized Coulomb coupling. The fermion quar-
Ne tic term is irrelevant at the noninteracting fixed point and
ENTa (47 remainsirrelevant on thisz=1 line of fixed points. In the
boson model studied in this paper, both the Coulomb and the
boson quartic couplings become marginatlat3. Fixing o
to be 2(namelye,=0), we performed &= 3—d expansion.
o=2 corresponds to A/ Coulomb interaction atd
=3, 1/ 2 interaction at space dimensiah andlogarith-
4z 5 mic instead of I/ interaction atd=2. The Coulomb cou-
d’q d_V (v+ow) pling was found to drive the quartic coupling to negative
2m) 4 ) 2 (G RV2(a2+ 24 m2)2 value, indicating gpossiblefirst order transition.
(2m (@K@ v+ m) Halperin, Lubensky, and M& (HLM) investigated the
g2 model describing the superconducting to norrt@N) and
=—t, nematic to smectié transition in thed=3 bulk system. By
87%e performing e=4—d expansion, they found a new stable
5 fixed point with nonvanishing charge if the number of the
10(b) = — E(N+ 1)f d"q 1 order parameter componerits>M .= 365.9/2, but runaway
2 2m)P (g’ +m?)? RG if N<M, (see also the AppendixHLM interpreted this
runaway RG flow as indicating fluctuation-driven first-order

The long-range interaction is modified from the form
~r~ 1€ to the form~r ~1*4¢/(N+4) 7 .+, can be calculated
from Fig. 10. The corresponding expressions are

10(a)=e2,u€f

__ u(N+1) transition. Later, Dasgupta and HalpefibH) studied the
et (48) : ey .
16m“e model directly on a @ lattice™ By using Monte Carlo and

duality arguments, they found the transition should be a sec-
ond order transition in the universality class of the inverted

gatl?lriolrr}t?argte trot?hzvscgﬁ-tehnifrrared(ijadI\r/:(:gsznczt)e.there isno XY model instead of a first-order transition. DH’s results
gy diag e indicate that thee expansion may break down dt=3.

UV frequency divergence in the above equations. From the : . ” .
; : : In this paper, we find the critical valud. in the pure
above equation, we can identify . !
Coulomb case is much smaller than the corresponding value

where we put the mass of the bosworinto the boson propa-

U(N+1) o2 M. in thel d SN transition(more preciselly d_scalar_elec—
ZyZ ytp=1+ 1677 8 (49 trodynamlc$. This shows that the fluctuation is considerably
reduced in the pure Coulomb case. We believe that it is more
Substituting the value dZ, in Eq. (17), we get likely the SI transition atd=2 should be governed by a
nontrivial fixed point with nonvanishing Coulomb coupling
u(N+1) w and dynamic exponerz=1.
Zoto=1+ T2~ 547 (50) In order to understand the effects of Interaction atd

=2 near the 3IXY fixed point, two possible expansions can
The correlation length exponentis given by be used. One route is to fix at=2 and perform largeN



9458 JINWU YE PRB 58

expansion. Unfortunately, as shown in this paper, the direct The loop expansion requires counterterms to account for
large N expansion can only probe the physicsNit-N, ultraviolet divergences in momentum integrals; we write the
therefore, is not very useful at physical cd¢e-1 in sharp  counterterms as

contrastto the Dirac fermion case as discussed in Refs. 20
and 28. Another route is the double expansiorein3—d

and e,=2— o performed by FG. However, we believe that

when gauge fieldfluctuations are involved, extrapolating to

u
Ler=(Zo= D] 0udnl*+ 7(Za= D ucal

the physical case=¢€,=1 can only lead to misleading re- —i(Z1=1)euA (3,5 bm— dhd . bm)
sults. A method that works directly &=2+1 is needed. 1
In lorder _tg _make serious attempts to compare with +(Zl_1)e2/-LEA;21,¢|Tn¢m+ Z(23_ 1)(FW)2-
experiments;® disorder has to be incorporated into E8).
As shown in Ref. 8, due to Griffith effects, even weak dis- (A2)

order presumably produces a gapless Bose glass phase be- ) ) )
tween the Mott insulator and superconducting phase. It i$-orentz invariance requireZ,=Z,, therefore, only one
certainly very important to study the effects of Coulomb in- constantZ; is needed.

teraction on the transition from superconductor to this boson Equation(Al) is invariant under the gauge transformation
glass. It was suggested that with Coulomb interaction, the 1

dynamic exponent should be equal to 1 at afl and the iA(X) _ -

renormalized Coulomb coupling inite at the transitioff. g™ A Ay ea“A(X)' (A3)
This scenario was confirmed by extensive Monte Carlo . . . . . .
simulations of bosons in ad2disordered mediurf’ It will The Ward identity following from the gauge invariance dic-
be welcome if we can establish this scenamlyticallyon ~ 1&t€s

this concrete model. This scenario was indeed established in
a clean 2 lattice model displaying quantum transitions from
quantum Hall state to insulating stéfe.

Zl:ZZ' (A4)

Using the identity, we relate the bare fields and couplings
in £ to the renormalized quantities by
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APPENDIX: THE CALCULATION OF SCALAR Ug=UuZsZ, 2,
ELECTRODYNAMICS IN FEYMANN GAUGE
The Lagrangian studied for scalar electrodynamics in Ne=MZ3. (AS)
Refs. 14, 15, and 17 is At one loop order, the values of the renormalization con-
stants are
— i 2 2 u € 4
‘C_|(0-',u._|eA,u.)¢m| +r|¢m| +ZM |¢m| W
=1+ —
1 1 21=1 d7c€’
+ 7 (Fu )+ 5= (d,A,)% (A1)
4 2\ NW
whereF,,=d,A,—d,A,. Equation(Al) describes transi- Zg=1- 247%€’
tions from superconductor to normal metal and from a
smecticA to a nematic in liquid crystals at=3. (N+4)u w 3w?
In all the previous work, the calculations were done in Z,=1+ 16me 4W26+ 272Ue’
Landau gauge wher& =0. The advantage of the Landau
gauge is that the divergent parts of Figs. 7, 8, and 9 all (N+1u 3w
vanish. In this appendix, we do all the calculations in the Zyty=14+ 67 8.7 (AB)

Feymann gauge wheve=1. In this gauge, Figs. 7, 8, and 9
do make contributions, but the geometrical factors in front ofS
all the integrals should be theameas those in the Coulomb
interaction case; therefore, by comparing our final results
with those obtained in the Landau gauge, we can make a B(w)=—ew+
nontrivial check on our RG results. Our final results show
that(1) the B8 function is indeed gauge independent at least to
one loop and?2) the calculations done in the Coulomb inter-
action case are correct.

ubstituting the above equation into E&5), we find

2472 w?,

B +(N+4)u2 3wu+3w2 A7
plu)=—eu 1672 An? " 277 (A7)



PRB 58

Equations(A6) and (A7) should be compared with the
corresponding Eq437) and(38) in the Coulomb interaction
case. The differences should be noted.

After proper scalings ofv andu, we find Eq.(A7) is the
same as that derived in the Landau gauge whetd®. The
critical exponents are

-1 54 N+1
v =2— (N+1)—Wi—Aa, (A8)

€
2(N+4) N

whereA ,= NZ— 180N — 540.

COULOMB INTERACTION AT THE.. ..
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It is easy to see thay differsfrom the value computed in
the Landau gaugen, = —(9/N)€].

It is not expected to be, because the correlation function
of ¢ is not gauge invariant anyway. The physical meaning of
7 is not clear. However, the in Eq. (46) calculated in the
Coulomb interaction case is well defined. The reader is en-
couraged to read Refs. 20 and 28 for similar discussions in
the Dirac fermion case.

na,v are the same as those computed in the Landau
gauge, because they are gauge invariant quantiigs: e
indicates that the Coulomb interactioemainsl/r to ordere
atd=3— € in contrast to the pure Coulomb interaction case.
Actually, it was shown that the equatiofy= € is exact®>?®
The critical number which divides the second order phase
transition and the possible fluctuation-driven first order tran-
sition isM .= 365.9/2 which is of course gauge-independent.
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