
PHYSICAL REVIEW B 1 OCTOBER 1998-IIVOLUME 58, NUMBER 14
Coulomb interaction at the superconductor-to-Mott-insulator transition
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Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 22 January 1998!

We reexamine the effects of long-range Coulomb interaction on the onset of superconductivity. We use the
model ofN complex scalar fields with the Coulomb interaction studied first by Fisher and Grinstein~FG!. We
find that neard53 space dimension, the system undergoes second order phase transition ifN>55.39, but
undergoes possible fluctuation driven first order transition ifN,55.39. We give the detailed derivation of the
field theory renormalization group~RG! of this model to one loop. Our RG results disagree with those of FG
neard53. A possible scenario atd52 is proposed.
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I. INTRODUCTION

Superconductor to insulator~SI! transitions have been ob
served in disordered thin films by systematically varying
thickness of the films1 or by tuning the magnetic fields.2 A
closely related SI transition has also been studied in ar
cially constructed 2d Josephson-junction arrays by syste
atically varying the ratio of charging energy and Joseph
coupling energy3 or by tuning the magnetic fields.4 Universal
conductivities have been measured right at the SI transit
in these systems. More recently, SI transition was dem
strated in 3d granular Al-Ge samples.5 Many theoretical
efforts6–12have been made to investigate the SI transition
these experimental systems. It is generally accepted tha
transition is correctly described by a model ofinteracting
charge-2e bosons moving in a 2d random potential. A re-
lated, but much simpler, model is Boson-Hubbard mo
which consists of bosons hopping on a periodic lattice. Wh
the boson density is commensurate with the lattice,
model displays a quantum transition from Mott insulator to
superconductor. Neglecting disorder as a first approximat
a lot of authors studied the SI transition and its univer
conductivity in this simplified model.7,11–13 Near the quan-
tum critical point, the effective low energy theory of th
model is simply af4 theory:

S5E ddxdt F u]0fmu21u] ifmu21r ufmu21
u

4
ufmu4G ,

~1!

wherefm are m51...N species of chargee* 52e complex
bosons.

In order to confront with experiments, several importa
effects such as disorder, dissipation, and long-range C
lomb interaction should be taken into account. From gen
scaling arguments, Fisher, Grinstein and Girvin argued
the long range Coulomb interaction between the char
bosons will render the dynamic exponentz to be 1 in any
dimension.6 This is indeed what was observed on the ma
netic field tuned SI transition in thin two-dimensional~2D!
films.2 The measurements on magnetic field-induced SI tr
sitions in Josephson-junction arrays are also consistent
z51, n.1. Therefore, it is very important to investigate th
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effects of Coulomb interaction on SI transition in any deta
In Ref. 7, Fisher and Grinstein~FG! studied the model of
charged bosons with Coulomb interaction hopping on a
tice. By taking the continuum limit, they found that the lo
energy effective theory is described by

S5E ddxdtF u~]02 ie* A0!fmu21u] ifmu2

1r ufmu21
u

4
ufmu4G

1
1

2 E ddk

~2p!d

dv

2p
ksuA0~kW ,v!u2, ~2!

whereA0 is the time component of the U~1! gauge fields and
is responsible for the long-range interaction between
charged bosons. The 1/r Coulomb interaction corresponds t
s5d21.

The model in Eq.~2! should not be confused with th
model studied in Refs. 14, 15, and 17. The crucial differen
is that only the time componentA0 of gauge fields is in-
volved in Eq.~2!, therefore, the Lorentz invariance is broke
However, in the scalar electrodynamics studied in Refs.
15, and 17, both time and transverse components are
volved, and the Lorentz invariance is respected.

In principle, the coupling of the order parameter to t
spatial components of the U~1! gauge fields should also b
included in the above equation. However, at 2D films, t
penetration depthl2d5l2/d with l the bulk penetration
depth andd the film thickness. In the experimental system1

l;100 Å, d;5 Å, so l2d;2000 Å, the spatial coupling
will not manifest itself until experimentally unobservab
close to the SI transition.7,9,18 Therefore, it is safe to neglec
the spatial coupling in Eq.~2!. In 3D samples investigated in
Ref. 5, we assume that they are in the extreme type-II lim
In this limit, the spatial coupling can also be neglected.

FG did renormalization group~RG! analysis of the mode
by performing a double expansion ine532d and es52
2s. The 1/r Coulomb interaction corresponds toe5es .
They concluded that depending on parameters, at two sp
9450 © 1998 The American Physical Society
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dimension, the transition can be either first order or sec
order with Coulomb coupling marginally irrelevant at the 3
XY critical point.

In this paper, we provide a detailed RG analysis of
model in Eq.~2! using the field theory method. We do n
perform a double expansion ine and es . Instead, for sim-
plicity, we fix s to be 2 ~namelyes[0) and perform ae
532d expansion.s[2 corresponds to 1/r Coulomb inter-
action atd53 and logarithmic instead of 1/r interaction at
d52. We find thatnear 3 space dimension, the system u
dergoes a second order phase transition ifN>55.39, but
undergoes apossiblefluctuation-driven first order transition
if N,55.39. We calculate the dynamic exponentz, the bo-
son propagator exponenth, the gauge field~Coulomb inter-
action! exponenthA , and the correlation exponentn. We
give the detailed derivation of field theory RG of this mod
because the RG method we used is interesting in its o
right. We expect the structure brought out by our RG pro
dures to have some general impact on how to perform cor
RG on other zero temperature quantum critical phenomen19

The same method has been applied successfully to stud
quantum transition from fractional quantum hall state to
sulating state in a periodic potential.20

If putting es to zero in Eq.~7! of Ref. 7, we find our RG
results disagree with those of FG. Although no details
given in Ref. 7, we suspect that~1! the anisotropy between
space and time~namely the dynamic exponentz) was not
treated correctly by FG and~2! the Ward identity@Eq. ~6! in
Sec. II# is violated in the momentum shell method employ
by FG.

In this paper, we do not even intend to perform the dou
expansion ine532d and es522s because we believe
that whengauge fieldfluctuations are involved, extrapolatin
to the physical casee5es51 can only lead to misleading
results.

The rest of the paper is organized as follows. In Sec.
we introduce the model and set up the formulation to p
form RG. In Sec. III, we give the detailed RG analysis a
bring out its elegant structure. We find that our results d
agree with those of FG and point out the possible mista
made by FG. In Sec. IV, we give more discussions and p
out the possible scenario atd52 and some future directions
Finally, in the Appendix, we perform RG on the well-studie
scalar electrodynamics in Feymann gauge as a nontr
check on the correctness of our calculations in Sec. III.

II. THE MODEL AND FORMULATION

In order to perform RG analysis, we rewrite Eq.~2! in the
following form:16

S5E ddxdtFa2u]0fmu21u] ifmu21r ufmu2

1
u

4
meaufmu42 ieme/2a3/2A0~]0fm

† fm2fm
† ]0fm!

1e2meaA0
2fm

† fm1
1

2
~] iA0!2G , ~3!

where xi(t) are spatial ~temporal! coordinates with]0
[]t , ] i[]xi

. We are working ind531e spatial dimen-
d
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sions andm is a renormalization scale. The parametera is
introduced to allow for anisotropic renormalization betwe
space and time.21,22

It is easy to see Eq.~3! is invariant under thespace-
independentgauge transformation

f→feiL~t!, A0→A02
Aa

e
]0L~t!. ~4!

In the perturbation theory, the three kinds of vertices in F
1 are needed.

The loop expansion requires counterterms to account
ultraviolet divergences in momentum integrals; we write t
counterterms as

LCT5a2~Za21!u]0fmu21~Z221!u] ifmu2

1
u

4
~Z421!meaufmu4

2 i ~Z121!eme/2a3/2A0~]0fm
† fm2fm

† ]0fm!

1~Z121!e2meaA0
2fm

† fm1
1

2
~Z321!~] iA0!2.

~5!

The Ward identity following from the gauge invarianc
dictates

Z15Za . ~6!

Using the identity, we relate the bare fields and couplin
in S to the renormalized quantities by

fmB5Z2
1/2fm ,

A0B5Z3
1/2A0 ,

aB5~Za /Z2!1/2a,

eB5eme/2~Za /Z2!1/4Z3
21/2,

uB5umeZ4Z2
23/2Za

21/2. ~7!

The dynamic critical exponentz is related to the renor-
malization ofa by22

z512m
d

dm
ln a512

1

2
m

d

dm
ln

Z2

Za
. ~8!

FIG. 1. The Feymann rules for three kinds of vertices in E
~3!: ~a! the type 1 vertex,~b! the type 2~seagull! vertex, and~c!
the quartic coupling of bosons.
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We define the exponenth by the equal-timecorrelation
function

^f~x,t!f†~0,t!&;x2~d1z221h!. ~9!

It is easy to see this correlation function is invariant und
the gauge transformation Eq.~4!, therefore,h is indeed a
gauge invariant quantity and given by

h5m
d

dm
ln Z2 . ~10!

The anomalous dimensionhA of the gauge field is also a
gauge invariant quantity:

hA5m
d

dm
ln Z3 . ~11!

Near the critical point, the gauge field propagator is

^A0~2kW ,2v!A0~kW ,v!&;
1

k22hA
. ~12!

Physically, it means that at the critical point, atd spatial
dimension, the long-range interaction takes the fo
r 2(d221hA).

Finally, the critical exponentn is related to the anomalou
dimension of the composite operatorfm

† fm by

n21225m
d

dm
ln Zf†f . ~13!

The renormalization constantZf†f can be calculated by
inserting the operator into the boson self-energy diagram

III. THE PERTURBATIVE RG CALCULATION
AT ONE LOOP

A. The boson self-energy

First, we consider the boson self-energy diagrams in F
2. Using the Feymann rules listed in Fig. 1, we can bring
the divergent structure of Fig. 2~a! by the conventional di-
mensional regularization~DR! method

FIG. 2. The self-energy diagram of bosons.
r

.

.
t

~2a!5e2meE ddqW

~2p!d E dn

2p

~n1v!2

~qW 2kW !2~q21n2!

5e2meE ddqW

~2p!d

1

~qW 2kW !2
E dn

2p

1e2meE ddqW

~2p!d

v22q2

2q~qW 2kW !2

5e2meE ddqW

~2p!d

1

~qW 2kW !2
E dn

2p
1

e2

4p2e
S v22

k2

3
D

1¯ , ~14!

where¯ means all the finite terms.
In the above equation, we scaled all the frequencies by

anisotropy parametera, so a does not appear explicitly in
the above and in the following.

Similarly, we can evaluate Figs. 2~b! and 2~c!

2~b!52e2meE ddqW

~2p!d

1

q2 E dn

2p
,

2~c!52
u

4
meE ddqW

~2p!d

1

2q
50. ~15!

In the last equation, the convention of DR is used.
Adding all the contributions from Fig. 2, we get

2~a!12~b!12~c!5
e2

4p2e S v22
k2

3 D1¯ . ~16!

It is easy to see that we encounter the UV frequency
vergences in both Fig. 2~a! and Fig. 2~b!. However, they
carry opposite signs, therefore, cancel each other. Sim
cancellations also appear in the Dirac fermion model stud
in Ref. 20 and will appear in the following calculations o
other Feymann diagrams. We expect this cancellation of
divergences infrequencyis a general feature ofnonrelativ-
istic quantum field theories describing zero-temperat
quantum phase transitions.

From Eq.~16!, we can identify the two constantsZa ,Z2
in Eq. ~5! in the minimal subtraction scheme

Za511
e2

4p2e
, Z2512

e2

12p2e
. ~17!

Note ZaÞZ2 . This is due to thelack of Lorentz invariance
of our model.

B. The type 1 vertex

We turn to the evaluation of the renormalization of t
type 1 vertex in Fig. 3. Applying the Feymann rules to F
3~a!, we have
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3~a!5~eme/2!3E ddqW

~2p!d

3E dn

2p

~n1v1!~2n1v!~n1v1v2!

~qW 2kW1!2~q21n2!@~qW 1kW !21~n1v!2#

5
e2

4p2e
~v11v2!1¯ . ~18!

It is easy to see Fig. 3~b! vanishes identically and Fig
3~c! and Fig. 3~d! are

3~c!52
e2

2p2e
v11¯ ,

3~d!52
e2

2p2e
v21¯ ,

3~c!13~d!52
e2

2p2e
~v11v2!1¯ . ~19!

Overall, we find for the type 1 vertex

3~a!13~b!13~c!13~d!52
e2

4p2e
~v11v2!1¯ . ~20!

The constantZ1 in Eq. ~3! can be identified

Z1511
e2

4p2e
. ~21!

FIG. 4. The vacuum polarization of gauge fields.

FIG. 3. The one-loop diagrams of type 1 vertex.
From Eqs.~17! and~21!, it is evident that the Ward iden-
tity @Eq. ~6!# indeed holds. The Ward identity can also b
shown by evaluating the renormalization of the seagull v
tex.

C. The polarization of gauge field

Next, we calculate the vacuum polarization graph of t
U~1! gauge fieldAm in Fig. 4. The fermion bubble has Lor-
entz invariance, therefore, the momenta in Fig. 4 areD
5d11542e)-dimensional momenta

Pm,n~k!5e2meNE dDq

~2p!D

~k12q!m~k12q!n

q2~k1q!2

22e2meNE dDq

~2p!D

1

q2

52
Ne2

24p2e
~k2dmn2kmkn!1¯ , ~22!

whereN comes from the summation over the boson suf
m.

In Eq. ~3!, only the time component of the gauge fieldAm
is involved. Puttingm5n50 in the above equation we find

P0,0~kW ,v!52
Ne2

24p2e
k21¯ , ~23!

wherek is thed dimensional space momentum. The consta
Z3 in Eq. ~3! can be identified as

Z3512
Ne2

24p2e
. ~24!

FIG. 5. The renormalization from the quartic coupling.

FIG. 6. The renormalization from the seagull term.
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D. The renormalization of the quartic term

In this subsection, we compute the renormalization of
quartic term. First, let us look at the contributions from t
quartic coupling in Fig. 5. As in Fig. 4, the momenta in t
above figure are alsoD-dimensional momenta.

5~a!5
u2m2e

2 E dDq

~2p!D

1

q2~k11k22q!2 5
u2

2

1

8p2e
1¯ .

~25!

Similarly, we can calculate the contributions from Figs. 5~b!
and 5~c!,23

5~b!55~c!5
~N13!u2

4

1

8p2e
1¯ . ~26!

Adding all the contributions from Fig. 5, we get

5~a!15~b!15~c!5
~N14!u2

16p2e
1¯ . ~27!

Second, let us look at the contributions from the seag
term in Fig. 6:

FIG. 7. The renormalization from the combination of the type
term 1 the quartic term.
e

ll

6~a!52~e2me!2E ddqW

~2p!d

1

q2~q1k12k3!2 E dn

2p
,

6~b!52~e2me!2E ddqW

~2p!d

1

q2~q1k12k4!2 E dn

2p
,

6~a!16~b!52~e2me!2E ddqW

~2p!d

1

~qW 2kW1!2

3S 1

~qW 2kW3!2
1

1

~qW 2kW4!2D E dn

2p
. ~28!

As in Eqs. ~14! and ~15!, we encounter the UV diver-
gences in the frequency integrals. We leave them alon
this moment and go ahead to calculate the diagrams in Fig

The corresponding expressions are

FIG. 8. The renormalization from the type 1 term.
7~a!52u~eme/2!2E ddqW

~2p!d E dn

2p

~n1v1!~v112v22n!

~qW 2kW1!2~q21n2!@~kW11kW22qW !21~v11v22n!2#
5

ue2

8p2e
1¯ ,

7~b!52u~eme/2!2E ddqW

~2p!d E dn

2p

~n1v1!~2v32v11n!

~qW 2kW1!2~q21n2!@~kW32kW11qW !21~v32v11n!2#
52

ue2

8p2e
1¯ . ~29!

It is important to note that Figs. 7~a! and 7~b! have opposite signs. Actually, there aretwo diagrams in class 7~a! and four
diagrams in class 7~b! corresponding to different ways to put the photon line, so the overall contributions are

2@7~a!#14@7~b!#52
ue2

4p2e
1¯ . ~30!

Let us look at the contributions from the type 1 vertex in Fig. 8. The corresponding expressions are
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8~a!5~eme/2!4E ddqW

~2p!d E dn

2p

~n1v1!~n1v3!~v112v22n!~v11v21v42n!

~qW 2kW1!2~qW 2kW3!2~q21n2!@~kW11kW22qW !21~v11v22n!2#

5~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2~qW 2kW3!2
E dn

2p
2

3e4

8p2e
1¯ ,

8~b!5~eme/2!4E ddqW

~2p!d E dn

2p

~n1v1!~n1v4!~v112v22n!~v11v21v32n!

~qW 2kW1!2~qW 2kW4!2~q21n2!@~kW11kW22qW !21~v11v22n!2#

5~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2~qW 2kW4!2
E dn

2p
2

3e4

8p2e
1¯ . ~31!

Actually, there are two diagrams in class 8~a! and two diagrams in class 8~b! corresponding to different ways to put th
photon line, so the overall contributions from Fig. 8 are

2@8~a!#12@8~b!#52~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2 S 1

~qW 2kW3!2
1

1

~qW 2kW4!2D E dn

2p
2

3e4

2p2e
1¯ . ~32!
h

e-
Finally, we need to compute the diagrams in Fig. 9. T
corresponding expressions are

9~a!522~eme/2!2e2meE ddqW

~2p!d

3E dn

2p

~n1v2!~n1v4!

~qW 2kW2!2~qW 2kW4!2~q21n2!

522~eme/2!4E ddqW

~2p!d

1

~qW 2kW2!2~qW 2kW4!2

3E dn

2p
1

e4

2p2e
1¯ ,

9~b!522~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2~qW 2kW3!2

3E dn

2p
1

e4

2p2e
1¯ . ~33!

Exchanging leg 3 with leg 4 of Figs. 9~a! and 9~b!, we get
another two diagrams@9~c! and 9~d!# which were not shown
explicitly
e

9~c!522~eme/2!4E ddqW

~2p!d

1

~qW 2kW2!2~qW 2kW3!2

3E dn

2p
1

e4

2p2e
1¯ ,

9~d!522~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2~qW 2kW4!2

3E dn

2p
1

e4

2p2e
1¯ . ~34!

The overall contributions are

9~a!19~b!19~c!19~d!

524~eme/2!4E ddqW

~2p!d

1

~qW 2kW1!2

3S 1

~qW 2kW3!2
1

1

~qW 2kW4!2D E dn

2p
1

2e4

p2e
1¯ . ~35!

Adding all the contributions from Eqs.~27!, ~29!, ~30!, ~32!,
and~35!, we find the UV divergences in the frequency int
grals indeed cancel and lead to the constantZ4 in Eq. ~3!

Z4511
~N14!u

16p2e
2

e2

4p2e
1

e4

2p2ue
. ~36!
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E. The calculation of b function

In the previous subsections, we did the explicit calcu
tions of the renormalization constants by considering a di
perturbative expansion in the Coulomb fine structure c
stantw5e2 and the quartic couplingu. At one loop order,
the values of the renormalization constants are summar
as

Za511
w

4p2e
,

Z2512
w

12p2e
,

Z3512
Nw

24p2e
,

Z4511
~N14!u

16p2e
2

w

4p2e
1

w2

2p2ue
. ~37!

Substituting the above equation into Eq.~7!, we find theb
functions forw andu

b~w!52ew1
N14

24p2 w2,

b~u!52eu1
~N14!u2

16p2 2
wu

4p2 1
w2

2p2 . ~38!

The fixed points are

w* 5
24p2

N14
e,

u6* 5
8p2e

N14 F11
6

N14
6

D

N14G , ~39!

whereD5AN2252N2188.
It is easy to see thatD is imaginary forN,Nc555.39.

This Nc is much smaller than the corresponding critical nu
bernc5365 in the scalar electrodynamics studied in Ref.
For N,Nc , u is complex for both fixed points and phys
cally inaccessible. The only accessible fixed points are
Gaussian and Heisenberg fixed points, both of which
unstable to turning on Coulomb interaction. There is a r
away flow to thenegativevalue ofu which was interpreted

FIG. 9. The renormalization from the type 1 term1 the seagull
term.
-
ct
-

ed

-
.

e
re
-

as a fluctuation-driven first order transition in Ref. 14. F
N.Nc , these fixed points have real values foru* and are
physically accessible.

In order to compare ourb functions with those of FG, we
put N51 in Eq. ~38!

b~w!52ew1
5

24p2 w2,

b~u!52eu1
5u2

16p2 2
wu

4p2 1
w2

2p2 . ~40!

Settingw5(8p2/5)wFG, u532p2uFG, the above equa-
tions become

b~wFG!52ewFG1
1

3
wFG

2 ,

b~uFG!52euFG110uFG
2 2

2

5
wFGuFG1

1

25
wFG

2 . ~41!

Putting es50 in Eq. ~7! of Ref. 7, we find the RG flow
equations obtained by FG are different from ours. Theb
function should be gauge-independent at least at one-
order ~see also the discussions in the Appendix on t
point!. Since no details were given by FG, we can only gu
the possible mistakes made by FG:~1! the anisotropy be-
tween space and time~namely the dynamic exponentz) was
not treated correctly by FG;~2! the Ward identity in the time
component Eq.~6! is violated in the momentum shell metho
employed by FG. The disagreement ates50 raises doubts
of the conclusions reached by FG at Coulomb interact
casee5es .

Let us look at the solution right at the critical dimensio
d53. Puttinge50 in Eq.~38! and taking the ratio of the two
equations, we find the trajectories of the RG flow satisfy
homogeneous differential equation:

du

dw
5

3

2 S u

wD 2

2
6

N14

u

w
1

12

N14
. ~42!

If N.Nc , the solution of this equation is

C1 ln w5
N14

D
lnU u

w
2S 2

N14
1

1

3D2
D

3~N14!

u

w
2S 2

N14
1

1

3D1
D

3~N14!

U ,

~43!

whereC is an arbitrary constant. All the trajectories flow
the origin with two marginally irrelevant couplingsw andu.
At finite temperature, they will lead to logarithmic corre
tions to naive scaling functions.

If N,Nc , the solution of this equation is

C1 ln w5
2~N14!

D
arctanF3~N14!

D S u

w
2S 2

N14
1

1

3D D G .
~44!

All the trajectories flow to the negative values ofu, indicat-
ing a fluctuation driven first order transition.
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F. The calculation of critical exponents

In this subsection, we calculate the critical exponents
the second order transition whenN.Nc . From Eqs.~8!,
~37!, and~39!, we find the dynamic exponentz

z512
4e

N14
. ~45!

From Eqs.~10!, ~37!, and~39!, we find the exponenth

h5
2e

N14
. ~46!

From Eqs.~11!, ~37!, and~39!, we find the exponenthA

hA5
Ne

N14
. ~47!

The long-range interaction is modified from the for
;r 211e to the form;r 2114e/(N14). Zf†f can be calculated
from Fig. 10. The corresponding expressions are

10~a!5e2meE ddqW

~2p!d E dn

2p

~n1v!2

~qW 2kW !2~q21n21m2!2

5
e2

8p2e
1¯ ,

10~b!52
u

2
~N11!E dDq

~2p!D

1

~q21m2!2

52
u~N11!

16p2e
1¯ , ~48!

where we put the mass of the bosonm into the boson propa
gators in order to avoid theinfrared divergence.

In contrast to the self-energy diagrams~Fig. 2!, there isno
UV frequency divergence in the above equations. From
above equation, we can identify

Z2Zf†f511
u~N11!

16p2e
2

e2

8p2e
. ~49!

Substituting the value ofZ2 in Eq. ~17!, we get

Zf†f511
u~N11!

16p2e
2

w

24p2e
. ~50!

The correlation length exponentn is given by

FIG. 10. The cross stands for the insertion of the compo
operator at zero momentum.
f

e

n21522
N11

2~N14!
eFN21

N11
1

6

N14
6

D

N14G . ~51!

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we provide a rather detailed derivation
RG analysis of Eq.~2!. We find the delicate cancellation o
the UV frequency integraldivergences; therefore, we onl
need to regularize the UV divergences in momenta integ
We believe that this is due to the space-independent ga
invariance@Eq. ~4!# @or the Ward identity in the time com
ponent, Eq.~6!#. Similar cancellations also appear in th
Dirac fermion model studied in Refs. 20 and 28. We exp
this is a very general feature of zero temperature quan
critical phenomena.19 This feature innonrelativisticquantum
field theory reminds us of the theorem inrelativistic quantum
field theory that infrared divergences must be cancelled
in any physical processes.

Here, we would like to make a brief comparison betwe
the boson model studied in this paper and the Dirac ferm
model studied in Refs. 20 and 28. In the Dirac fermi
model, both Coulomb and Chern-Simon couplings beco
marginal atd52; the competition between these two co
plings produces a line of fixed points withz51 andnonva-
nishing renormalized Coulomb coupling. The fermion qua
tic term is irrelevant at the noninteracting fixed point a
remains irrelevant on thisz51 line of fixed points. In the
boson model studied in this paper, both the Coulomb and
boson quartic couplings become marginal atd53. Fixing s
to be 2~namelyes[0), we performed ae532d expansion.
s[2 corresponds to 1/r Coulomb interaction at d
53, 1/r d22 interaction at space dimensiond, and logarith-
mic instead of 1/r interaction atd52. The Coulomb cou-
pling was found to drive the quartic coupling to negati
value, indicating apossiblefirst order transition.

Halperin, Lubensky, and Ma14 ~HLM ! investigated the
model describing the superconducting to normal~SN! and
nematic to smectic-A transition in thed53 bulk system. By
performing e542d expansion, they found a new stab
fixed point with nonvanishing charge if the number of t
order parameter componentsN.Mc5365.9/2, but runaway
RG if N,Mc ~see also the Appendix!. HLM interpreted this
runaway RG flow as indicating fluctuation-driven first-ord
transition. Later, Dasgupta and Halperin~DH! studied the
model directly on a 3d lattice.24 By using Monte Carlo and
duality arguments, they found the transition should be a s
ond order transition in the universality class of the invert
XY model instead of a first-order transition. DH’s resu
indicate that thee expansion may break down atd53.

In this paper, we find the critical valueNc in the pure
Coulomb case is much smaller than the corresponding v
Mc in the 3d SN transition~more precisely 4d scalar elec-
trodynamics!. This shows that the fluctuation is considerab
reduced in the pure Coulomb case. We believe that it is m
likely the SI transition atd52 should be governed by
nontrivial fixed point with nonvanishing Coulomb couplin
and dynamic exponentz51.

In order to understand the effects of 1/r interaction atd
52 near the 3DXY fixed point, two possible expansions ca
be used. One route is to fix atd52 and perform largeN

e
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expansion. Unfortunately, as shown in this paper, the di
large N expansion can only probe the physics atN.Nc ,
therefore, is not very useful at physical caseN51 in sharp
contrast to the Dirac fermion case as discussed in Refs.
and 28. Another route is the double expansion ine532d
and es522s performed by FG. However, we believe th
when gauge fieldfluctuations are involved, extrapolating t
the physical casee5es51 can only lead to misleading re
sults. A method that works directly atD5211 is needed.

In order to make serious attempts to compare w
experiments,1–5 disorder has to be incorporated into Eq.~2!.
As shown in Ref. 8, due to Griffith effects, even weak d
order presumably produces a gapless Bose glass phas
tween the Mott insulator and superconducting phase. I
certainly very important to study the effects of Coulomb
teraction on the transition from superconductor to this bo
glass. It was suggested that with Coulomb interaction,
dynamic exponentz should be equal to 1 at alld and the
renormalized Coulomb coupling isfinite at the transition.6

This scenario was confirmed by extensive Monte Ca
simulations of bosons in a 2d disordered medium.27 It will
be welcome if we can establish this scenarioanalytically on
this concrete model. This scenario was indeed establishe
a clean 2d lattice model displaying quantum transitions fro
quantum Hall state to insulating state.20
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APPENDIX: THE CALCULATION OF SCALAR
ELECTRODYNAMICS IN FEYMANN GAUGE

The Lagrangian studied for scalar electrodynamics
Refs. 14, 15, and 17 is

L5u~]m2 ieAm!fmu21r ufmu21
u

4
meufmu4

1
1

4
~Fm,n!21

1

2l
~]mAm!2, ~A1!

where Fmn5]mAn2]nAm . Equation~A1! describes transi-
tions from superconductor to normal metal and from
smectic-A to a nematic in liquid crystals atd53.

In all the previous work, the calculations were done
Landau gauge wherel50. The advantage of the Landa
gauge is that the divergent parts of Figs. 7, 8, and 9
vanish. In this appendix, we do all the calculations in t
Feymann gauge wherel51. In this gauge, Figs. 7, 8, and
do make contributions, but the geometrical factors in fron
all the integrals should be thesameas those in the Coulomb
interaction case; therefore, by comparing our final res
with those obtained in the Landau gauge, we can mak
nontrivial check on our RG results. Our final results sh
that~1! theb function is indeed gauge independent at leas
one loop and~2! the calculations done in the Coulomb inte
action case are correct.
ct

0

h

-
be-
is

n
e

o

in

or

t

n

ll

f

ts
a

o

The loop expansion requires counterterms to account
ultraviolet divergences in momentum integrals; we write t
counterterms as

LCT5~Z221!u]mfmu21
u

4
~Z421!meaufmu4

2 i ~Z121!eme/2Am~]mfm
† fm2fm

† ]mfm!

1~Z121!e2meAm
2 fm

† fm1
1

4
~Z321!~Fm,n!2.

~A2!

Lorentz invariance requiresZa5Z2 , therefore, only one
constantZ2 is needed.

Equation~A1! is invariant under the gauge transformatio

f→feiL~x!, Am→Am2
1

e
]mL~x!. ~A3!

The Ward identity following from the gauge invariance di
tates

Z15Z2 . ~A4!

Using the identity, we relate the bare fields and couplin
in L to the renormalized quantities by

fmB5Z2
1/2fm ,

AmB5Z3
1/2Am ,

eB5eme/2Z3
21/2,

uB5umeZ4Z2
21/2,

lB5lZ3 . ~A5!

At one loop order, the values of the renormalization co
stants are

Z1511
w

4p2e
,

Z3512
Nw

24p2e
,

Z4511
~N14!u

16p2e
2

w

4p2e
1

3w2

2p2ue
,

Zf†f511
~N11!u

16p2e
2

3w

8p2e
. ~A6!

Substituting the above equation into Eq.~A5!, we find

b~w!52ew1
N

24p2 w2,

b~u!52eu1
~N14!u2

16p2 2
3wu

4p2 1
3w2

2p2 . ~A7!
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Equations~A6! and ~A7! should be compared with th
corresponding Eqs.~37! and~38! in the Coulomb interaction
case. The differences should be noted.

After proper scalings ofw andu, we find Eq.~A7! is the
same as that derived in the Landau gauge wherel50. The
critical exponents are

hF52
6

N
e,

hA5e,

n21522
e

2~N14! F ~N11!2
54

N
6

N11

N
DaG , ~A8!

whereDa5AN22180N2540.
tt

e

It is easy to see thath differs from the value computed in
the Landau gauge@hL52(9/N)e#.

It is not expected to be, because the correlation funct
of f is not gauge invariant anyway. The physical meaning
h is not clear. However, theh in Eq. ~46! calculated in the
Coulomb interaction case is well defined. The reader is
couraged to read Refs. 20 and 28 for similar discussion
the Dirac fermion case.

hA ,n are the same as those computed in the Lan
gauge, because they are gauge invariant quantities.hA5e
indicates that the Coulomb interactionremains1/r to ordere
at d532e in contrast to the pure Coulomb interaction cas
Actually, it was shown that the equationhA5e is exact.25,26

The critical number which divides the second order ph
transition and the possible fluctuation-driven first order tra
sition isMc5365.9/2 which is of course gauge-independe
tt.
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