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Optimal control model for the critical state in superconductors
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Grounded on a variational principle, we present a generalization of the standard critical-state approach in
type-II superconductors. The free energy is minimized with the constraintuJ(r )u<Jc for the macroscopic
current density, posing the problem in the framework of the optimal control theory. The application of this
mathematical tool allows us to determine the critical state in which the system organizes itself. This permits to
confirm the critical-state hypothesis for an idealized one-dimensional geometry and to deal with multicompo-
nent field situations, for which additional constitutive laws are provided. A geometrical picture of the field
penetration process has been developed and we obtain both analytical and numerical solutions for two-
dimensional problems under an applied parallel field and superimposed transport current.
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I. INTRODUCTION

Variational calculus is a basic mathematical tool used
fundamental physical theories and has had a most succe
application throughout basic sciences and engineering. I
most simple formulation it solves the problem of looking f
paths which are stationary for an integral functional depe
ing on position and velocity, and giving as necessary con
tions the well-known Euler-Lagrange equations. Its formu
tion in terms of Hamilton equations is a cornerstone
quantum mechanics, and has also provided a framework
problems with constraints.

A generalization of variational calculus, the optimal co
trol ~OC! theory, has been developed since the seminal w
by Pontryaginet al.1 For a more comprehensive review, th
interested reader is directed to see, for instance, Refs. 2
3. In this formulation, some control variablesu drive the
evolution of the state variablesx through a differential equa
tion ẋ5f(x,u), while some cost or objective functiona
*L(x,u)dt must be minimized. Consideringẋ5u one repro-
duces the classical variational problem as a particular cas
OC theory. Moreover, the Pontryagin maximum princip
allows us to consider constraints of the typega(u)<ca
~spaces with boundaries!, so that closed as well as open se
can be managed. This powerful generalization of variatio
calculus has been successfully used in a broad rang
fields, including pure and applied mathematics~Finsler4,5 or
sub-Riemannian geometry,6,7 applications to engineering
economics, etc.!. Nevertheless, to our knowledge, fundame
tal and applied physics are scarcely touched areas by
theory. We believe that, most probably, there are a num
of physical phenomena for which heuristic approximatio
can be made in terms of inequality-constrained control-l
variables. In this article, we propose an optimal cont
PRB 580163-1829/98/58~14!/9440~10!/$15.00
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model to solve some open questions on the behavior of
perconducting materials.

Recall that a superconductor bears the property of de
oping nondissipative currents which try to expel any appl
magnetic field.8 This behavior can be recorded in macr
scopic experiments, which are sensitive to thermodyna
averages over the sample’s volume. In particular, it is a co
mon practice to characterize the magnetostatics of the sp

men by means of a magnetization curveMW (HW ). Here, MW

represents the sample’s magnetic moment per unit volu

andHW is the magnetic field vector related to the controllab
sources, which are assumed to be unaffected by the pres
of the superconductor.

For the case of type-II superconductors in the vortex st
the full description of the underlying phenomena on whi
the macroscopic properties rely is highly involved.9 Never-
theless, many experimental facts can be explained by me
of phenomenological models which override the great ma
ematical difficulties of fundamental theories. This is the ca
of the critical-state model~CSM!,10 which describes the
magnetization hysteresisM~H! for strongly pinned~hard!
type-II superconductors, without specifying the microsco
mechanism which controls the vortex pinning. The mod
postulates that the sample holds a steepest metastable g
ent of H supported by the underlying pinning force. This
formulatedvia the critical-state equation¹3H5Jc ~or 0!.
The critical current vectorJc is related to the pinning prop
erties of the superconductor, typically in the formuJcu
5Jc(H). Then, the penetration profileH(r ) can be derived
when the appropriate boundary conditions are imposed,
this allows us to calculateM.

The former critical-state equation is readily applicab
when there is a unique, known in advance, direction for
current. Nevertheless, this situation is mostly restricted
9440 © 1998 The American Physical Society
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idealized~one-dimensional! geometry, whereas the constitu
tive equationuJu5Jc ~or 0! is not enough to solve the seem
ingly simple situation in which an external field is applie
parallel to the conductive longitudinal current in an infin
cylindrical specimen. Thus, multicomponent problems
quire additional hypotheses. Several authors11–13 have pro-
posed a dynamical approach in which Maxwell laws
time-dependent electric and magnetic fields are included
this paper, we introduce a different method which allows
to obtain the metastable field penetration profile by mean
a minimum principle, and includes as a particular case
standard single-component CSM.

The article is organized as follows. In Sec. II we pres
the general concepts of magnetostatics in terms of which
problem is posed and introduce the variational princip
which together with the notion of the critical current dens
gives place to a typical optimal control problem. In Sec.
the optimal control machinery is applied to the case of
infinite superconducting slab under the simultaneous ac
of an external applied field and transport current. Both a
lytical and numerical solutions are found and discussed
terms of a metric space formulation~taking advantage of a
quite general link between optimal control and met
spaces!. Section IV displays the resolution for the case
cylindrical symmetry, more awkward to handle, but with o
vious interest for experimental situations. A global discu
sion of our results and some concluding remarks are fin
presented in Sec. V.

II. MACROSCOPIC FIELD EQUATIONS:
THE VARIATIONAL PRINCIPLE

A typical approach for calculating the magnetostatic
sponse of a superconducting sample to the applied mag
field MW (HW ) consists of starting withMW 5BW /m02HW where
the specimen’s magnetic flux densityBW is introduced. This
vector is computed in terms of the coarse-grained m
valueB(r ):

BW 5
1

VEV
B d3r ,

where integration is extended over the sample’s volum
Then, one must supply a sufficient number of relations
tween the macroscopic fieldsB, H, and J if their spatial
dependence is to be determined. Ampe`re’s law, together with
the appropriate constitutive equations, provides such r
tions.

For the case of type-I superconductors in the absenc
demagnetizing effects, coarse graining is superfluous
cause current loops only exist at the macroscopic level
B5m0H holds. Combining this with Ampe`re’s law ¹3H
5J and the London equationA52(m0l2)J one can derive
the field spatial dependence.

A very useful interpretation of the London equation is th
upon standard variation with respect to the vector poten
A(r ) of the free energy

G5
1

2EV
~m0H22J•A!d3r , ~2.1!
-
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one can obtain it as theEuler-Lagrangeequation of the sys-
tem. Notice that the minimization ofG can be interpreted a
the balance between the decrease of the potential energ
sociated to the external field pressure and the increase o
kinetic energy related to the superconducting currents.

On the other hand, a much more complex scenario ar
for type-II superconductors. For a wide range of exter
conditions~when H lies between the so-called lower,Hc1 ,
and upper,Hc2 , critical fields!, these materials develop a
intricate structure~the vortex state! in which they share mac
roscopic shielding currents and a lattice of quantized fl
lines, F0 , each supported by a supercurrent vortex. Th
one must distinguish between themicroscopicflux line fluc-
tuating fieldb and themacroscopicaverages, extended ove
volumes which contain enough number of vortices:B
[^b&. Notice that in the context of pinned vortices in type-
superconductors, Ampe`re’s law relates the fieldH with the
externally imposed macroscopic currentsJ, while the equi-
librium response of the superconductor is described
means of theB(H) relation.

In the spirit of the CSM, let us now consider a type-
superconductor well apart from the lower and upper criti
fields Hc1!H!Hc2 , whereB5m0H is a good approxima-
tion for hard superconductors. In other words, the equi
rium response is neglected respect to the interaction of
tex lines with sample inhomogeneities~pinning centers!. We
want to get a proper expression for the free energy to
minimized, which will produce the pending constitutiv
equation. UsingnL for the number of flux lines per unit area
the restriction on the field values means that8 1/l2!nL
!1/j2, wherel is the London depth andj is the size of the
normal core associated with the flux line. Then, one can
the coarse-grained description of the nonoverlapping vo
system and neglect the London kinetic energy of the c
rents, so that, adopting theforce balancepicture between the
magnetostatic stress and the pinning force, and using A
père’s law, we have the averaged relationship

m0J3H5m0~¹3H!3H

52
m0

2
¹~H2!1m0~H•¹!H

5Fpinning,

whereFpinning denotes the pinning force per unit volume a
Fp,max is its maximum absolute value. Then, a metasta
equilibrium will be attained when the Lorentz and the pi
ning forces equal each other. The associated free energ
the flux line lattice in the penetrated sample is therefore

G5
m0

2 E
V
H2d3r .

However, the induced current distribution which must min
mize this energy is subjected to physical limitations. On
one hand, the component ofJ perpendicular toB is con-
strained by the maximum pinning force to the critical val
Jc'5Fp,max/B.8 In fact, this is the only component whic
arises in the so-called idealized geometries~infinite slab or
cylinder under a parallel field!. On the other hand, a critica
value Jci arises associated with flux line cuttin
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phenomena.11 If higher currents are demanded, energy los
appear, breaking the superconducting state down. In
work we take the simplifying hypothesisuJu<Jc in order to
bring out the physics with the least mathematical compli
tion. It is remarkable that such a kind ofisotropic modelhas
allowed the interpretation of polarized neutron visualizat
experiments of the magnetic field penetration in high-Tc
superconductors.14 Nevertheless, our approach is valid f
any dependenceJc(B), in particular for the rectangula
model:11 J'<Jc'(B), Ji<Jci(B).

Thus, we propose the following principle for determinin
the response of a type-II superconductor to an applied m
netic field in the presence of pinning:In type-II supercon-
ductors, the penetration profile of increasing magnetic fie
in a virgin sample, fulfilling Ampe`re’s law ¹3H5J and the
constraint uJu<Jc minimizes the magnetostatic ener
(m0/2)*VH2d3r .

The next section is devoted to state the problem within
framework of the OC theory.

III. OPTIMAL CONTROL APPROACH
AND ASSOCIATED METRIC

In this section, we briefly illustrate the OC machine
through the particular problem of the slab geometry. Its s
plicity allows alternative representations which will lead to
deeper insight into the CSM. One can translate it into a m
ric problem in the state variables space; one can find ana
cal solutions for the penetrating fields and a relatively sim
numerical integration scheme is originated.

A. Hamiltonian formalism

In order to see how the OC formulation arises, conside
sample with slab geometry~an infinite plane slice with finite
depth 2a) in a parallel field and current configuration~see
Fig. 1!. H will be used for the uniform applied field andI for
the transport current per unit length,I52*0

aJzdx. We take
the origin of coordinates at the center of the slab and thx
axis orthogonal to the surface. By virtue of the problem
symmetry the subsequent discussion is restricted to the
spacex>0.

FIG. 1. Sketch of the geometrical configurations studied in t
work. Either an infinite superconducting slab or cylinder will b
considered, subjected to an applied parallel fieldha and transport
currenti .
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First of all, and for simplicity, let us introduce dimension
less quantities and reduced variables in which the prob
will be stated. The sample’s half widtha will provide the
length scale, so thatx51 is the surface coordinate. Addition
ally, let us denote byH* the value of the uniform externa
field H in the absence of transport current at which the p
etration profile reaches the center of the slab~which coin-
cides with the value of the induced field on the surface of
slab created by the maximal current with no resistive loss!.
Then, we defineh[H/H* andu a vector perpendicular toJ
of magnitudeJ/Jc . Finally, the dimensionless external fie
values are indicated byha5H/H* and i 5I/H* .

In terms of the former variables, the problem can
posed as follows: We want to find the field penetration p
file $h(x),0<x<1% under the following conditions.

~i! The state equations~Ampère’s law! are

dh

dx
5u,

~ii ! with state variables~magnetic field! subjected to the
boundary conditions

hy~1!5 i /2, hz~1!5ha, hy~0!50,

because surface currents producing discontinuity in the m
netic field are discarded.

~iii ! We require the minimization of thecost function~free
energy!

C@h~x!#5E
0

1

h2dx5E
0

1

Ldx,

~iv! with the constraint for thecontrol variables~current vec-
tor!

uPV

V5$u~x!: uu~x!u <1%.

The Pontryagin maximum principle gives the solution of t
problem. The first step is to define the Hamiltonian asso
ated with the OC problem, introducing the momenta va
ablesp ~Lagrange multipliers!:

H5p•
dh

dx
1p0L5p•u1p0h2.

Hamilton equations reproduce the state equations and de
linear differential equations for the momenta:

dh

dx
5

]H
]p

5u,

dp

dx
52

]H
]h

522p0h.

Additionally, we introduce the equations for defining thecost
variable s,

ds

dx
5

]H
]p0

5h2,

with the associated equation forp0 :

s
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dp0

dx
52

]H
]s

50.

The constantp0 is taken to be negative~or zero, for singular
solutions, which is not the case here! and it can be fixed to
21 by rescaling all the momenta~due to the linearity ofH
on p).

Now, the theorem states that for the optimal solution
the problem@i.e., functionshc(x) and uc(x) such that the
state equations and boundary conditions are satisfied anC
is minimum#, it is necessary that momenta functionspc(x)
exist, satisfying Hamilton equations, and that at every fix
x, the Hamiltonian takes its maximum on the control va
ablesuc :

H~hc ,pc ,uc!5max
uPV

H~hc ,pc ,u!.

In our Hamiltonian, the application of this theorem lea
to maximizing the termp•u on the control spaceV. By
virtue of linearity, the solution isuc5pc /upcu ~this means
uJu5Jc and gives the distribution rule for the components
J). We want to stress that, as a major result of this wo
criticality is obtained as a necessary condition in the minim
zation process and not imposedab initio like in the standard
CSM approach and, what is more, we have derived the
tribution rule from a very fundamental principle.

A direct substitution of the criticality condition (uc
5pc /upcu) in the Hamiltonian equations gives as a result

dh

dx
5

p

upu
,

dp

dx
52h. ~3.1!

Notice that, though dealing with the optimal variables,
have dropped the suffixc, just for the sake of brevity.

Four independent boundary conditions are required to
termine the integral curvesh(x),p(x). The set will be
formed by means of the physical restrictions on the fi
values at the boundaries. Accidentally, they will have to
supplemented by the so-calledtransversality conditionsap-
plied to the momenta when necessary.

Subsequently, we present several approaches for sol
Eqs.~3.1!.

B. Analytical solution

Implicit forms of the canonical equation integral curv
can be derived by means of the polar coordinate represe
tion. On using the state and control coordinates,

h[~h,u!5„uhu,arctan~hz /hy!…,

u[~uh ,uu!5~ j–û,2 j–ĥ!,

the optimal control Hamiltonian reads

H52h21phuh1puuu /h,

whereuh
21uu

2<1.
On the other hand, by applying the maximum princip

we get

~uh ,uu!5~hph ,pu!/Ah2ph
21pu

2.
f

d
-
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,
-
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Now, the canonical equations become

dh

dx
5hph /p, ~3.2a!

h
du

dx
5pu /p, ~3.2b!

dph

dx
52h1pu

2/~ph2!, ~3.2c!

dpu

dx
50, ~3.2d!

with p5Ah2ph
21pu

2.
Next, we will show that one can reduce the problem

quadrature integration when theconstants of the motionare
considered. Observing that the system is autonomous we
the first constantK[H. On the other hand, Eq.~3.2d! shows
that theu component of the momentum is also a conserv
quantity, d[pu . Then, the penetration profile can be o
tained by integration of the following pair of uncoupled di
ferential equations:

dh

dx
5

A~h21K !2h22d2

h~h21K !
, ~3.3a!

du/dx

dh/dx
5

du

dh
5

d

hA~h21K !2h22d2
. ~3.3b!

In fact, one can classify the integral curves in terms of
constants of motion, which have a close relation with t
physical response of the superconductor.

1. Partial penetration„d50…

A simple solution arises for Eqs.~3.3! when one considers
d50. First of all, we will show thatd50⇒K50. Indeed,
d50 implies that the magnetic field penetrates parallel to
surface value~as du/dx50). On the other hand, owing to
the topological conditionhy(0)50, a constant value ofu
precludes a nonvanishing magnetic field at the center of
sample@unless for the trivial casehy(1)50]. Thus,d50 is
equivalent to the so-calledpartial penetration regime in
which both components ofh vanish at some pointxc , being
0<xc,1. Furthermore, one can prove that a free final p
rameterxc impliesH(xc)50 and this meansK50.

Now, the system~3.3! becomes

dh

dx
51,

du

dx
50. ~3.4!

Thus,d50 represents the family of penetration profiles f
which the magnetic field vector reduces its magnitude
early towards the slab center, while keeping a constant va
hz /hy . Taking into account the boundary conditionshy(1)
5 i /2, hz(1)5ha, hy(xc)5hz(xc)50 one obtains
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h~x!5H h~1!S x2xc

12xc
D , xc<x<1,

0, 0<x<xc ,

~3.5!

wherexc512Aha
21( i /2)2 determines the penetration dep

of the fields. Therefore, the unit disk on theh plane is the set
of values at the surface corresponding to partial penetrat

2. Full penetration „dÞ0…

Above, we have obtained the partial penetration minim
energy solutions corresponding tod50. In fact, one can eas
ily show that partial penetration only occurs in such a ca
Observing Eqs.~3.4! and the cost function, it is apparent th
for a given value ofxc , their linear solution holds the lowes
possible energy, becauseh decreases with the maximum
slope all around. Thus,dÞ0 corresponds to the family o
solutions for whichh does not vanish at the sample cent
h(0)Þ0 ~full penetration!. Though more intricate, one ca
still find an analytical representation.

Indefinite integrals of Eqs.~3.3a! and ~3.3b! can be ex-
pressed in terms of elliptic and associated functions. T
admit a simplest representation when reduced to Weierstr
normal form,15 i.e.,

I 5E S~z!

A4z32g2z2g3

dz,

whereS(z) means a rational function ofz. This can be ac-
complished with the substitutionh25A3 4 z22K/3 and we
get g25(A3 4/3)K2, g35(d212K3/27).

A new change of variable allows us to compute the in
gral in terms of Weierstrass’̀ function. On using

w5E
z

` dz

A4z32g2z2g3

and the inverse relationz5`(w;g2 ,g3), we get

I 5E S@`~w!#dw.

ExpandingS@`(w)# in the form

S@`~w!#5c01c1`~w!1c2`2~w!1•••

1
A1

`~w!2a
1

A2

@`~w!2a#2
1•••

1
B1

`~w!2b
1•••,

our integrals can be readily evaluated, and we finally com
the implicit solutions

x5A3 2 z~w!2
K

3A3 2
w1C1 ,

u5
d

2`8~a!
F log

s~w2a!

s~w1a!
12wz~a!G1C2 , ~3.6!
n.

e.

,

y
ss’

-

to

where a is defined by`(a)5A3 2K/3 and we have intro-
duced Weierstrass’z ands functions.

These implicit equations hold for penetration profiles c
responding to surface values on the bandhy<1 and include,
as a particular degenerate case, the partial penetration re
obtained before.

In order to specify the full penetration solutions, the fo
lowing boundary conditions must be used:h1[h(1)

5Aha
21( i /2)2, u1[ u (1)5 arctan(2ha/ i ), u0[ u (0)5p/2,

and ph(0)50. Notice thatph(0)50 has been incorporated
corresponding to the transversality condition related to
arbitrariness in the value ofhz(0).

The curves with starting points on the regiondÞ0 can be
still further classified in terms of the values of the consta
K. In fact, one can produce a quite meaningfulphase dia-
gram in the h plane, dividing it up into several regions~see
Fig. 2!. The characteristics of the penetration profile are
termined by the region on which the initial poin
@hy(1),hz(1)# lies. Archetypical penetration profileshz(hy)
are displayed in the same figure.

We want to mention that the points@hy(1),hz(1)# for
which the penetration profile evolves under the conditionK
50 univocally determine the line labeled according to th
condition. Indeed,K50, dÞ0 leads to the so-calledequian-
harmonic case(g250, g351). Then, definite integration o
Eqs.~3.3! gives

FIG. 2. h plane phase diagram representation of the penetra
profile in a superconducting slab. The maximum principle Ham
tonian constants of the motion (K,d) are used to classify the solu
tions in terms of the region where the surface valueshy(1),hz(1)
lie. Typical examples of the profiles for each region are given. T
line K50 has been evaluated according to Eqs.~3.7! and ap-
proaches the linehy51 asymptotically. Also outlined is the fac
that, owing to resistive losses, superconductivity disappears wi
the half spacehy(1).1.H has been normalized with respect to th
penetration fieldh[H/H* .
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3u152p2arcsin~h0
3/h1

3!,

1

A3 2
5z~w1!2z~w0!, ~3.7!

where the subscripts indicate the point (x50,1) at which the
function must be evaluated.

Owing to the multivalued nature of the involved fun
tions, one must be careful when managing Eqs.~3.7!. Our
expressions assume that the principal values are consid
Notice that for penetration profiles starting at this line, t
end point is easily computed:h05h1@sin(2p23u1)#

1/3.
By virtue of continuity,K50, dÞ0 acts as the separatri

between two regions:~i! K.0 corresponds to the region o
full penetration where transport currents predominate.~ii !
K,0 defines the region of full penetration where the ext
nal magnetic field predominates.

The penetration profiles and the corresponding curre
for the previously presented initial conditions in the differe
regions of the phase diagram are shown in Fig. 3. Obse
that, related to the transversality condition in the minimiz
tion process, the shielding component of the current beco
zero at the center, whereas the transport component ten
the maximum value.

C. Associated metric

Again, we will refer to theh plane where the param
etrized curves@hy(x),hz(x)# lie. In fact, a metric structure
can be defined on it, whose geodesics are solution curve
the OC problem. This is a particular case of a quite gen
relationship between OC problems and metric spaces~usu-
ally Finslerian!. In our case, the associated metric can
easily obtained as follows. First of all, from the state eq
tions dh/dx5u and the obtained optimality conditionu2

51, it is apparent that the curves„hy(x),hz(x)… correspond-
ing to penetration profiles of the magnetic field must ha
Euclidean length less~partial penetration! or equal~full pen-
etration! to 1. Now, the cost variables, defined byds/dx
5h2, can be used for a reparametrization of the state eq
tions

dh

ds
5

dh

dx

dx

ds
5

u

h2
,

which, together with the conditionu251 gives as infinitesi-
mal costds5Ah4(dh)2. This means that the metric (ds)2

5h4(dh)2 can be used to obtain the curves on theh plane of
minimal s length, i.e., optimal.

The particular metric problem to be solved depends ag
on the initial valuesh(1). For thepartial penetration regime
h(1)<1 we must find the geodesic curve of (ds)2 joining
this point to the originh(xc)50. In this case, the geodesic
of (ds)2 are straight lines joining the initial point to th
origin of theh plane, corresponding to the linear solution
shown before@Eq. ~3.5!#.

For h(1) lying on the bandhy(1)<1,h2.1, we must find
the curve of minimals length among those which conne
the initial point to the vertical axishy50 with Euclidean
length 1~fixed final parameterxc50). This is a typicaliso-
perimetricproblem, whose solution can be accomplished
ed.
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obtaining the geodesics of the metric (dsl)25(h2

1l)2(dh)2, wherel is a constant~Lagrange multiplier! to
be determined. Again, by virtue of transversality properti
the geodesic will always intersect thez axis perpendicularly.
In this metric language it is again clear that points outside
band~region of resistive losses! cannot be joined to the ver
tical axis by curves of euclidean length less or equal to
Now, it is a simple exercise to obtain the geodesic~Euler-
Lagrange! equations for the metric (dsl)2. On using polar
coordinates and parametrizing the curves with the angle v
able ~invariance under reparametrization holds! we get the
Lagrangian

L5~h21l!Avh
21h2,

FIG. 3. Magnetic field and current penetration profiles in a
perconducting slab for different external conditions@hy(1),hz(1)#,
corresponding to theh-plane curves in Fig. 2. Panel~a! displays the
reduction of the magnetic field components towards the cente
the slabx50. Solid symbols stand forhz while open symbols rep-
resenthy . Each case is depicted by a symbol type: squares
h(1)5(0.3,1.5), triangles for~0.8,1!, and circles for ~0.8,0.2!.
Panel~b! displays the associated current profiles. The same sym
convention as in part~a! has been used, whereas solid symb
represent2 j y and open symbolsj z ~the minus sign election is for
the sake of clarity of the plot!. The normalizationh[H/H* ,
j[J/Jc is used.
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wherevh5dh/du. Note that its associated energy is a co
stant,

E5vh

]L
]vh

2L52
~h21l!h2

Avh
21h2

5E0 ,

from which we obtain the differential equation

dh

du
52

h

E0

Ah2~h21l!22E0
2 .

This equation can be identified with the one obtained fr
the OC machinery when polar coordinates were used@Eq.
~3.3b!#, by just replacingl→K, E0→2d. Eventually, the
geodesic curves obtained in theh plane can be parametrize
by a Euclidean arc length in order to obtain the actual p
etration profile.

D. Numerical integration scheme

The main shortcoming of the methods previously p
sented for the integration of Hamilton equations is that th
rely on knowledge of the constants of motion. In general,
relation of these quantities to the boundary conditions is
no means simple. On the other hand, the practical impl
tions of our model are related to problems in which the fi
penetration profile must be obtained in terms of the value
the sample’s surfaceh(1). For instance, such is the case
the magnetic moment of the samplem@h(1)#. For this pur-
pose, we have developed a numerical scheme which all
us to obtain the integral curves of our problem.

On using a Cartesian coordinate system, the optimal c
trol formulation leads to a system of coupled first-order d
ferential equations, which are required to satisfy bound
conditions both at the sample’s surface and center. In
partial penetration regime, the simple linear solution requ
no effort to be computed. Nevertheless, for the case of
penetration, the method is more involved. We have a tw
point boundary value problem for the nonlinear system:

dhy

dx
5py /Apy

21pz
2,

dhz

dx
5pz /Apy

21pz
2,

dpy

dx
52hy ,

dpz

dx
52hz , ~3.8!

with boundary conditionsh(1)5h1 , hy(0)50, andpz(0)
50. In other words, one must solve a system of the kind

f85g~ f!,

where the vector functionf represents the canonical coord
natesf[(hy ,hz ,py ,pz) andg is a symbol for Eqs.~3.8!. On
-
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the other hand, these first-order differential equations
subjected to boundary conditions of the kindb@ f(0),f(1)#
50.

An adapted version of the IMSL routine BVPMS ha
been used by the authors in order to solve this problem.
algorithm is based on a multiple shooting method16 which
starts with a given initial guess@h(0),p(0)# and iteratively
corrects the initial value set. This is performed by means
Newton’s method untilb50 is satisfied to the desired accu
racy. Owing to the nonlinearity of the system, a parame
zation of the problem has been necessary in order to a
convergence. We have embedded the system in a
parameter family

F85G~ f,p!,

with boundary conditionsB@ f(0),f(1),p#50, wherep50
gives a linear problem andp51 returns to the original prob
lem: G(f,1)5g(f) and B@ f(0),f(1),1#5b@ f(0),f(1)#. The
constants of the motion have provided an extra benefit
particular, the relation

Bi5pbi1~12p!@H~1!2H~0!#

has been successfully implemented in our program.

IV. APPLICATION TO CYLINDRICAL SYMMETRY

This section is devoted to obtain the field penetration p
file for the case of cylindrical symmetry. Although more in
tricate from the mathematical point of view, the experimen
circumstance is customary. Assume an isotropic infinite c
inder of radiusR to which an external field is applied paralle
to the axis. Assume also that a transport current is held al
the same axis at the same time~see Fig. 1!. The Maxwell
equations then read

Jw52
dHz

dr
,

Jz5
1

r

d

dr
~rH w!,

and the free energy per unit length,

G5m0pE
r c

R

~Hz
21Hw

2 !rdr ,

wherer c stands for the point where the field profile vanish
in the partial penetration regime and equals zero for full p
etration. By analogy to the slab, in what follows we norm
ize the units according tor[r /R, h[H/H* , and j[J/Jc .
On the other hand, usingH for the applied field andI for the
current, we define ha5H/H* and i 5I/(pRH* )
5(pR2Jc). Now, it seems more convenient to express mi
mization in terms of the new variables:x1[rhw and x2
[hz . Then, the optimal control Hamiltonian becomes

H52S x1
2

r2
1x2

2D r1p• ẋ,

whereẋ meansdx/dr and the corresponding canonical equ
tions are
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dx1

dr
5r/A11~p2 /rp1!2,

dx2

dr
51/A11~rp1 /p2!2,

dp1

dr
52x1 /r,

dp2

dr
52x2r.

On supplying appropriate boundary conditions, the integ
curves for these equations can be obtained. We will conc
trate on their numerical integration.

For the case of full penetration, the method mimics
procedure which was used in the slab geometry. T
boundary conditions readx1(1)5 i /2, x2(1)5ha, x1(0)
50, andp2(0)50. Again, multiple shooting combined wit
Newton’s method allows us to fulfill the boundary conditio
by means of correcting the trial initial values. A paramet
zation of the problem has also been necessary owing to
nonlinearity of the system.

More interesting is the case for which partial penetrat
occurs. Unlike the situation in the slab geometry, no triv
solution arises when the boundary conditionsx(1)
5x1 , x(rc)50 are imposed. In particular, this means thatrc
is an unknown and a new strategy must be designed.
have chosen a linear change of variable,z5(r2rc)/(1
2rc), which drives the problem to the interval@0,1#. Then,
we define the variablex3[rc and its conjugate momentum
p3 , so that the Hamiltonian becomes

H52H x1
2

@~12x3!z1x3#2
1x2

2J
3@~12x3!z1x3#~12x3!1p•x8,

x8 standing fordx/dz. The canonical equations then read

dx1

dz
5

~12x3!@~12x3!z1x3#

A11„p2 /@~12x3!z1x3#p1…
2

,

dx2

dz
5

~12x3!

A11„@~12x3!z1x3#p1 /p2…
2

,

dx3

dz
50,

dp1

dz
52x1~12x3!/@~12x3!z1x3#,

dp2

dz
52x2~12x3!@~12x3!z1x3#,
l
n-

e
e

-
he

n
l

e dp3

dz
5

2x1
2

@~12x3!z1x3#2
1x2

2$122@~12x3!z1x3#%

2p1

122@~12x3!z1x3#

A11„p2/@~12x3!z1x3#p1…
2

1
p2

A11„@~12x3!z1x3#p1/p2…
2

.

On the other hand, this system must be integrated subje

x1~0!50, x2~0!50, p3~0!50,

x1~1!5 i /2, x2~1!5ha, p3~1!50.

Notice that here,x3 being completely unknown, we hav
imposedtransversality conditionsby choosing the zero value
for the conjugate momentum. Eventually, one can num
cally integrate the system. Once more, the multiple shoo
method has been used. The algorithm outputs the poinrc
5x3 and the penetration profile.

This procedure allows us, for instance, to obtain a pred
tion for the magnetic moment per unit lengthm@h(1)#
52*hzrdr2hz(1). Figure 4 shows this quantity for se
lected values ofhz(1) and i . Notice the saturation of the
magnetic momentm for increasing values of the applied fiel
ha, as well as the collapse to zero when the transport cur
i reaches the critical value. Notice also that each curve
been marked with a symbol which indicates the transit
from the partial to the full penetration regime. This transiti
point has been estimated by means of a simplifi
model which assumes asingle-region uniform current

FIG. 4. Predicted behavior for the normalized magnetic mom
„m@h(1)#52*hzrdr2hz(1)… of a cylindrical superconductor. The
applied magnetic field is measured in units of the penetration va
H* , ha[H/H* and the transport current with respect to the critic
densityJc , i[I/(pR2Jc). The solid lines show the evolution ofm
respect to the applied field for selected values ofi , while the dashed
curve outlines the reduction of the magnetization for an increas
transport current and fixedha. The transition from the partial to the
full penetration regime is marked by a symbol over the curves.
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distribution.17 In that model, the relationha
21 i 251 charac-

terizes the external field values for which the sample ce
is reached. We want to mention that such an approach w
be exact for the case of the slab@see Fig. 3~b!# and nearly fits
the minimum energy solution for the partially penetrated c
inder. In this work, we have integrated the partial~full ! pen-
etration canonical equations, while approaching from be
~above! to such point.

V. DISCUSSION AND CONCLUSIONS

We proposed a variational principle which allows us
describe the metastable equilibrium state of flux penetra
in a type-II superconductor. The theory developed assu
the simple expressionG5 (m0/2)*VH2d3r for the free en-
ergy to be minimized. This is the relevant contribution f
field values in the rangeHc1!H!Hc2 where B5m0H is
also a good approximation for hard superconductors and
can use the picture of pinned nonoverlapping vortices.
the other hand, minimization is carried out under the c
straint uJu<Jc for the coarse-grained current density. A
mentioned before, such a limitation is supported by exp
mental evidence in the case of high-Tc superconductors.14

Our work deals with multicomponent field situations i
duced by the simultaneous application of a magnetic fieldH

and transport currentI. Although we have analyzed bot
planar ~slab! and cylindrical symmetric problems, the ma
effort of this work is devoted to the former case. In fact, t
subsequent discussion refers to that situation. We just w
to mention that the qualitative features for the cylinder so
tion are essentially the same and will be discussed elsewh

For sufficiently small values ofH and I the minimum
energy is attained in a partial penetration regime, for wh
the magnetic field vector remains parallel to its value at
surface and its magnitude is progressively reduced, eve
ally vanishing at some point within the sample. Moreov
the current density vectorJ is constant and perpendicular
H everywhere. This can be understood in terms of the r
tion ~valid for the slab geometry!

J5¹3H5
dH

dx
û 2H

du

dx
Ĥ5J'û1JiĤ, ~5.1!

whereu is the angle betweenH and they axis ~see Fig. 5!.
Inasmuch as no further restriction that a maximum modu
is imposed, all the current is employed in reducing the m
nitudeH so that we getJ5J'5Jc .

On the other hand, for the full penetration regime, fie
rotation occurs in general, as the magnetic field is an a
trary vector at the surface and must be directed along thz
axis at the center~at least this must happen if one does n
accept infinite current densities within the superconduct!.
By virtue of Eq. ~5.1!, field rotation is related to the exis
tence ofJi . In this case,J is no longer a constant vector.The
OC theory permits us to predict the conditionuJu5Jc and the
distribution rule for the components ofJ. Figure 5 illustrates
the magnetic field reduction and/or rotation towards the c
ter of the sample as well as the angle between the fields
the cases mentioned before.

We want to stress that our particular choice for the sp
of current densities, i.e., the diskuJu<Jc , is merely a pos-
er
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sible one. Different spaces could be used under the s
mathematical treatment, like a rectangular one,J'<Jc' , Ji
<Jci , similar to that proposed by Clem,11 and a dependenc
of the critical current densities on the local magnetic fie
Jc'(B), Jci(B), even anisotropically, could also be incorp
rated for a better adjustment to data, without extra conc
tual difficulties.

Nevertheless, the simplicity of the control space used
this article brings out the essential physics and allows a w
understanding of the problem. We have obtained analyt
expressions for the penetration profile in terms of Wei
strass’ elliptic and associated functions. This has been p
sible by exploiting theconstants of the motion, whence one
can integrate the OC Hamiltonian equations by quadrat
Furthermore, these constants (K,d) allow the classification
of the penetration curves in terms of the external field a

FIG. 5. ~a! Field modulush reduction~solid symbols! and rota-
tion u ~open symbols! vs the penetration coordinatex in a super-
conducting slab, for several applied valuesh(1) at the surface.u is
defined in the inset of panel~b!. We have chosen the same extern
conditions as in Figs. 2 and 3 and again squares stand forh(1)
5(0.3,1.5), triangles for~0.8,1!, and circles for~0.8,0.2!. In panel
~b! we present the rotation anglea between the current vectorj and
the local fieldh for the profiles illustrated in panel~a!. The angles
are measured in degrees and the rest of the quantities in dimen
less units:h[H/H* , j[J/Jc .
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current applied values and to present a completephase dia-
gram of the corresponding situations~see Fig. 2!.

Simple expressions arise for initial values fulfilling th
conditionK50. Additionally, and closely related to the an
lytical solutions, one can formulate the problem in terms
metric spaces. Field penetration can be portrayed as the p
lem of finding a geodesic in theh plane for a particular
metric, again defined in terms of (K,d). This provides a
pictorial description of the physical phenomenon, which h
been mainly a consistency test in the present configura
but which could envisage the properties of the solution
more complex cases.

Moreover, the objective function, the magnetostatic
ergy density, is also a particular choice suggested by
pinning force balance, but other functions could possi
give different penetration profiles, using the same ma
ematical tools. For instance, one can usedg5H•dB for the
free energy density and incorporate the equilibrium respo
of the vortex assemblyB(H). One could also choose t
minimize the penetration depth~for partial penetration! and
obtain in this case the same solution profile. On the ot
hand, it is clear that in order to predict the hysteresis cy
we need to consider a different objective function. The m
netic inertia of the sample, owing to the viscous damp
against vortex motion, points towards the use of a funct
measuring the change of magnetic vector~both in magnitude
and direction!. At least, this kind of objective function repro
e
-
of
rob-

as
ion
or

n-
the
ly
th-

se

er
cle
g-

ng
on

duces the simple solution for one-dimensional proble
with a sign change ofJ beginning at the surface and a
unaffected profile in the inner regions of the sample wh
the magnetic field is cycled.

Additionally, rotating field processes as well as gene
multicomponent situations would be manageable. Bound
effects produced by the finite size of the sample could a
be modeled in this framework by using OC theory for par
differential equations, when the fields depend on more t
one coordinate. Stochastic OC theory could be used to
resent the complicated distribution of critical current den
ties in different regions for highly inhomogeneous samp
as is the case of high-Tc ceramics. In conclusion, the rang
of possibilities open to the use of OC theory is wide and
include other physical models where self-organized critic
ity plays a role, if closed spaces with maximal~critical! val-
ues for some variables are used.
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