PHYSICAL REVIEW B VOLUME 58, NUMBER 14 1 OCTOBER 1998-II

Optimal control model for the critical state in superconductors
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Grounded on a variational principle, we present a generalization of the standard critical-state approach in
type-Il superconductors. The free energy is minimized with the constfdn}|<J. for the macroscopic
current density, posing the problem in the framework of the optimal control theory. The application of this
mathematical tool allows us to determine the critical state in which the system organizes itself. This permits to
confirm the critical-state hypothesis for an idealized one-dimensional geometry and to deal with multicompo-
nent field situations, for which additional constitutive laws are provided. A geometrical picture of the field
penetration process has been developed and we obtain both analytical and numerical solutions for two-
dimensional problems under an applied parallel field and superimposed transport current.
[S0163-182698)06038-X

I. INTRODUCTION model to solve some open questions on the behavior of su-
perconducting materials.

Variational calculus is a basic mathematical tool used in Recall that a superconductor bears the property of devel-
fundamental physical theories and has had a most successfying nondissipative currents which try to expel any applied
application throughout basic sciences and engineering. In itagnetic field This behavior can be recorded in macro-
most simple formulation it solves the problem of looking for scopic experiments, which are sensitive to thermodynamic
paths which are stationary for an integral functional dependaverages over the sample’s volume. In particular, it is a com-
ing on position and velocity, and giving as necessary condimon practice to characterize the magnetostatics of the speci-

tions the well-known Euler-Lagrange equations. Its formula-men by means of a magnetization cum®@($). Here, 9t
tion in terms of Hamilton equations is a cornerstone Ofrepresents the Samp|e's magnetic moment per unit volume

quantum mechanics, and has also provided a framework fcgndfj is the magnetic field vector related to the controllable

pro:Iems Wlltlh cpnstr?mts'. ional calcul h imal sources, which are assumed to be unaffected by the presence
generalization of variational calculus, the optima CON- ¢ the superconductor.

trol (OC) theory, has been developed since the seminal work For the case of type-Il superconductors in the vortex state,

_by Pontryaginet al_.l qu a more compreh_enswe review, the tae full description of the underlying phenomena on which
mterestgd reader is directed to see, for ||jstance,.Refs. 2 anflo macroscopic properties rely is highly involvkdlever-

3. In Fh|s formulation, some control varla_lblesdr_we the theless, many experimental facts can be explained by means
evolu.t|0n of the state variablesthrough a differential equa- of phenomenological models which override the great math-
tion x=f(x,u), while some cost or objective functional ematical difficulties of fundamental theories. This is the case
{ £(x,u)dt must be minimized. Considering=u one repro-  of the critical-state model(CSM),'° which describes the
duces the classical variational problem as a particular case ofiagnetization hysteres®i($)) for strongly pinned(hard

OC theory. Moreover, the Pontryagin maximum principletype-Il superconductors, without specifying the microscopic
allows us to consider constraints of the tyge(u)<c, mechanism which controls the vortex pinning. The model
(spaces with boundarigsso that closed as well as open setspostulates that the sample holds a steepest metastable gradi-
can be managed. This powerful generalization of variationaént of H supported by the underlying pinning force. This is
calculus has been successfully used in a broad range édrmulatedvia the critical-state equationvV xXH=J. (or 0).
fields, including pure and applied mathematiEinslef° or  The critical current vectod, is related to the pinning prop-
sub-Riemannian geometfy, applications to engineering, erties of the superconductor, typically in the forfd,|
economics, etg. Nevertheless, to our knowledge, fundamen-=J.(H). Then, the penetration profild(r) can be derived

tal and applied physics are scarcely touched areas by O®hen the appropriate boundary conditions are imposed, and
theory. We believe that, most probably, there are a numbehis allows us to calculatén.

of physical phenomena for which heuristic approximations The former critical-state equation is readily applicable
can be made in terms of inequality-constrained control-likewhen there is a unique, known in advance, direction for the
variables. In this article, we propose an optimal controlcurrent. Nevertheless, this situation is mostly restricted to
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idealized(one-dimensionalgeometry, whereas the constitu- one can obtain it as thEuler-Lagrangeequation of the sys-
tive equationJ|=J. (or 0) is not enough to solve the seem- tem. Notice that the minimization @ can be interpreted as
ingly simple situation in which an external field is applied the balance between the decrease of the potential energy as-
parallel to the conductive longitudinal current in an infinite sociated to the external field pressure and the increase of the
cylindrical specimen. Thus, multicomponent problems re-kinetic energy related to the superconducting currents.
quire additional hypotheses. Several authors have pro- On the other hand, a much more complex scenario arises
posed a dynamical approach in which Maxwell laws forfor type-ll superconductors. For a wide range of external
time-dependent electric and magnetic fields are included. leonditions(whenH lies between the so-called loweH,.;,
this paper, we introduce a different method which allows usand upperH.,, critical fieldg, these materials develop an
to obtain the metastable field penetration profile by means dhtricate structurdthe vortex statein which they share mac-
a minimum principle, and includes as a particular case theoscopic shielding currents and a lattice of quantized flux
standard single-component CSM. lines, ®,, each supported by a supercurrent vortex. Thus,
The article is organized as follows. In Sec. Il we presentone must distinguish between th@croscopicflux line fluc-
the general concepts of magnetostatics in terms of which theiating fieldb and themacroscopicaverages, extended over
problem is posed and introduce the variational principleyolumes which contain enough number of vortice®:
which together with the notion of the critical current density =(b). Notice that in the context of pinned vortices in type-l
gives place to a typical optimal control problem. In Sec. Il superconductors, Ampe's law relates the fieltH with the
the optimal control machinery is applied to the case of arexternally imposed macroscopic currediswhile the equi-
infinite superconducting slab under the simultaneous actiofibrium response of the superconductor is described by
of an external applied field and transport current. Both anameans of theB(H) relation.
lytical and numerical solutions are found and discussed in |n the spirit of the CSM, let us now consider a type-I|
terms of a metric space formulatidtaking advantage of a superconductor well apart from the lower and upper critical
quite general link between optimal control and metricfields H,;<H<H_,, whereB=uoH is a good approxima-
spaces Section IV displays the resolution for the case oftion for hard superconductors. In other words, the equilib-
cylindrical symmetry, more awkward to handle, but with ob- rium response is neglected respect to the interaction of vor-
vious interest for experimental situations. A global discus+ex lines with sample inhomogeneitigsinning centers We
sion of our results and some concluding remarks are fina||)0\/an’[ to get a proper expression for the free energy to be

presented in Sec. V. minimized, which will produce the pending constitutive
equation. Using, for the number of flux lines per unit area,
Il. MACROSCOPIC FIELD EQUATIONS: the restriction on the field values means ?haf)\2<n|_
THE VARIATIONAL PRINCIPLE <1/§2, where\ is the London depth anélis the size of the

normal core associated with the flux line. Then, one can use

A typical approach for calculating the magnetostatic re-the coarse-grained description of the nonoverlapping vortex

sponse of a superconducting sample to the applied magnetigstem and neglect the London kinetic energy of the cur-
field M(H) consists of starting witt=B/u,—$H where rents, so that, adopting tlierce balancepicture between the

the specimen’s magnetic flux densiy is introduced. This Magnetostatic stress and the pinning force, and using Am-
vector is computed in terms of the coarse-grained meaR€€’s law, we have the averaged relationship

valueB(r):

.01
€B=—de3r, _Kog ,
vy 2V (H)+ po(H-V)H

where integration is extended over the sample’s volume. = Fpinning:
Then, one must supply a sufficient number of relations beWhereF denotes the pinning force per unit volume and
tween the macroscopic field8, H, and J if their spatial pinfing P 9 P

dependence is to be determined. Amgie law, together with Fp.max IS Its maximum .absolute value. Then, a metasta}ble

: - : : equilibrium will be attained when the Lorentz and the pin-
the appropriate constitutive equations, provides such rela:, .
tions ning forces equal each other. The associated free energy of

For the case of type-l superconductors in the absence 6Pe flux line lattice in the penetrated sample is therefore

demagnetizing effects, coarse graining is superfluous be-

cause current loops only exist at the macroscopic level and g= @f H2d3r.
B=uoH holds. Combining this with Ampe’s law VX H 2 Jv

=J and the London equatioA= — (uo\2)J one can derive

. ) However, the induced current distribution which must mini-
the field spatial dependence.

A very useful interpretation of the London equation is that "'#€ this energy is subjected to physical limitations. On the

upon standard variation with respect to the vector potentia?ne. hand, the component .df perpendlcular toB IS con-
strained by the maximum pinning force to the critical value
A(r) of the free energy

JCL=Fp,maX/B.8 In fact, this is the only component which

arises in the so-called idealized geometriieginite slab or

G= EJ (uoH2—J-A)d®r, (2.1) cylinder under a parallel fieJdOn the other hand, a critical
2)v value J. arises associated with flux line cutting
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| First of all, and for simplicity, let us introduce dimension-
R less quantities and reduced variables in which the problem
j will be stated. The sample’s half width will provide the
: length scale, so that=1 is the surface coordinate. Addition-
2 ally, let us denote byH* the value of the uniform external

: field  in the absence of transport current at which the pen-
h h P(_iq) etration profile reaches the center of the s(alhich coin-
N e * ! cides with the value of the induced field on the surface of the

< D>

X
slab created by the maximal current with no resistive Igsses
Then, we definlhi=H/H* andu a vector perpendicular td

I
I
I
I
I

I

E

i Ti -] values are indicated bly,= $/H* andi=J/H*.

! v In terms of the former variables, the problem can be
SLAB CYLINDER posed as follows: We want to find the field penetration pro-

file {h(x),0=x=<1} under the following conditions.
FIG. 1. Sketch of the geometrical configurations studied in this (i) The state equationSAmpére's law) are

work. Either an infinite superconducting slab or cylinder will be

considered, subjected to an applied parallel fieldand transport dh

currenti. ax U

T of magnitudel/J.. Finally, the dimensionless external field

phenomena! If higher currents are demanded, energy lossedii) with state variables(magnetic field subjected to the
appear, breaking the superconducting state down. In thigoundary conditions
work we take the simplifying hypothesjg|<J. in order to ,
bring out the physics with the least mathematical complica- hy(1)=i/2, h,(1)=h,, hy(0)=0,

tion. It is remarkable that such a kind isbtropic modehas  pecause surface currents producing discontinuity in the mag-
allowed the interpretation of polarized neutron visualizationpetic field are discarded.

experiments of the magnetic field penetration in high-  (jii) we require the minimization of theost function(free
superconductor¥ Nevertheless, our approach is valid for energy
any dependence (B), in particular for the rectangular
model™ J, <J;, (B), Jj<Jq(B). 1, 1
Thus, we propose the following principle for determining Clh(x)]= fo h*dx= fo £dx,
the response of a type-Il superconductor to an applied mag-
netic field in the presence of pinningn type-Il supercon- (iv) with the constraint for theontrol variables(current vec-
ductors, the penetration profile of increasing magnetic fieldgor)
in a virgin sample, fulfiling Ampe’s law VX H=J and the

constraint |J|<J. minimizes the magnetostatic energy ueQ

(nol2)f yH?dr.
The next section is devoted to state the problem within the Q={uC0: Ju(x)| <1}.
framework of the OC theory. The Pontryagin maximum principle gives the solution of the
problem. The first step is to define the Hamiltonian associ-
[ll. OPTIMAL CONTROL APPROACH ated with the OC problem, introducing the momenta vari-
AND ASSOCIATED METRIC ablesp (Lagrange multipliers

In this section, we briefly illustrate the OC machinery dh
through the particular problem of the slab geometry. Its sim- H=p- ax +pol=p- U+ poh?.
plicity allows alternative representations which will lead to a
deeper insight into the CSM. One can translate it into a metHamilton equations reproduce the state equations and define
ric problem in the state variables space; one can find analytiinear differential equations for the momenta:
cal solutions for the penetrating fields and a relatively simple

numerical integration scheme is originated. dh ﬁ—u
dx dp '
A. Hamiltonian formalism
In order to see how the OC formulation arises, consider a dp_ _H = —2pgh

sample with slab geometitan infinite plane slice with finite dx  oh
depth 2) in a parallel field and current configuratidgeee

Additionally, we introduce th tions for defining toest
Fig. 1. $ will be used for the uniform applied field ardfor ronally, we introduice the equations for detining

) a variable s
the transport current per unit length=2[3J,dx. We take
the origin of coordinates at the center of the slab andxthe ds H ’
axis orthogonal to the surface. By virtue of the problem’s ax 0"_Do:h )

symmetry the subsequent discussion is restricted to the half
spacex=0. with the associated equation fpg:
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dpo IH Now, the canonical equations become
dx  ds
The constanpy is taken to be negativér zero, for singular ax ~NPa/p, (3.23

solutions, which is not the case hgand it can be fixed to

—1 by rescaling all the momentaue to the linearity of+{ de

onp)- . . h—=py/p, (3.2
Now, the theorem states that for the optimal solution of dx

the problem[i.e., functionsh.(x) and u;(x) such that the

state equations and boundary conditions are satisfiedCand dpy,

is minimum, it is necessary that momenta functiongx) W:2h+ pf,/(phz), (3.20
exist, satisfying Hamilton equations, and that at every fixed

X, the Hamiltonian takes its maximum on the control vari-

ablesu,: dpy

a0 (3.20
H(he,pc,Uc) =maxH(he,pc,u).
ue with p=h?p2+ p2.

In our Hamiltonian, the application of this theorem leads Next, we will show that one can reduce the problem to
to maximizing the termp-u on the control spac&). By guadrature integration when tlenstants of the motioare
virtue of linearity, the solution isi.=p./|p.| (this means consldered. Observing that the system is autonomous we get
|J]=J. and gives the distribution rule for the components ofthe first constank="7. On the other hand, E¢3.2d shows
criticality is obtained as a necessary condition in the minimi-quantity, d=p,. Then, the penetration profile can be ob-
zation process and not imposat initio like in the standard tained by integration of the following pair of uncoupled dif-
CSM approach and, what is more, we have derived the diderential equations:
tribution rule from a very fundamental principle.

A direct substitution of the criticality condition ug dh  V(h?+K)?h%—d?
=p./|pc]) in the Hamiltonian equations gives as a result —= 5 : (3.3a
dx h(h?+K)
dh p dp
—=—, —=2h. 3.1
dx [p|" dx 63 derdx de d
) : . _ i —=—= ) (3.3b
Notice that, though dealing with the optimal variables, we dh/dx dh p/(h?+K)2h2—d?

have dropped the suffig, just for the sake of brevity.
Four independent boundary conditions are required to den fact, one can classify the integral curves in terms of the
termine the integral curvefi(x),p(x). The set will be constants of motion, which have a close relation with the
formed by means of the physical restrictions on the fieldphysical response of the superconductor.
values at the boundaries. Accidentally, they will have to be
supplemented by the so-callédnsversality conditionsp- 1. Partial penetration(d=0)
plied to the momenta when necessary.
Subsequently, we present several approaches for solvin&]
Egs.(3.1).

A simple solution arises for Eqé3.3) when one considers
=0. First of all, we will show thad=0=K=0. Indeed,
d=0 implies that the magnetic field penetrates parallel to its
surface valugasd#/dx=0). On the other hand, owing to
the topological conditiorh,(0)=0, a constant value ob

Implicit forms of the canonical equation integral curves precludes a nonvanishing magnetic field at the center of the
can be derived by means of the polar coordinate representaample[unless for the trivial casky(1)=0]. Thus,d=0 is

B. Analytical solution

tion. On using the state and control coordinates, equivalent to the so-callepartial penetrationregime in
which both components df vanish at some poink;, being
h=(h, ) =(|h|,arctarih,/h,)), 0=<x.<1. Furthermore, one can prove that a free final pa-
. . rameterx, implies H(x;) =0 and this mean&=0.
u=(Uup,Uy)=(j-0,—j-h), Now, the systen{3.3) becomes
the optimal control Hamiltonian reads dh _1 40 L y
H=—h2+puup+pyu,/h, dx ' dx @4
2 2
whereup +uy=1. . . _ . Thus,d=0 represents the family of penetration profiles for
On the other hand, by applying the maximum principle\yhich the magnetic field vector reduces its magnitude lin-
we get early towards the slab center, while keeping a constant value

h,/h,. Taking into account the boundary conditiong 1)
(Up,ug)=(hpy,py)/ Vh2pi+ ps. =i/2, h,(1)=h,, hy(xc) =h,(X;)=0 one obtains
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h(l)(x_x°), Ke=x=1, ho - ko
h(x)= 1-x¢ (3.5 z i /

<X —
0, O=x= Xe, FULL PENETRATION

wherex,=1— \/h§+ (i/2)? determines the penetration depth
of the fields. Therefore, the unit disk on theplane is the set
of values at the surface corresponding to partial penetration.

2. Full penetration (d+ 0)

Above, we have obtained the partial penetration minimum DISSIPATION

energy solutions correspondingde-0. In fact, one can eas-
ily show that partial penetration only occurs in such a case.
Observing Eqs(3.4) and the cost function, it is apparent that
for a given value ok, their linear solution holds the lowest
possible energy, becaugde decreases with the maximum

slope all around. Thugj#0 corresponds to the family of j PARTT?({P(')ENEROA“ON
solutions for whichh does not vanish at the sample center, i ’ s
h(0)#0 (full penetration). Though more intricate, one can /Q//O/@/v/’/
still find an analytical representation. 07— I
Indefinite integrals of Eqs(3.39 and (3.3b can be ex- 0 05 1 15
pressed in terms of elliptic and associated functions. They h
admit a simplest representation when reduced to Weierstrass’ Y
normal form;®i.e., FIG. 2. h plane phase diagram representation of the penetration

profile in a superconducting slab. The maximum principle Hamil-
_ S(2) tonian constants of the motioK(d) are used to classify the solu-
I= Wdz, tions in terms of the region where the surface valbgd ),h,(1)
922703 lie. Typical examples of the profiles for each region are given. The
whereS(z) means a rational function af This can be ac- line K=0 has been evaluated according to E(&7) and ap-

complished with the substitutioh2:3\/Zz—2K/3 and we Proaches the lindi,=1 asymptotically. Also outlined is the fact
getg,= (?{/2/3)K2, gs= (d2+ 2K3/27). that, owing to resistive losses, superconductivity disappears within

A new change of variable allows us to compute the inte_the half spacéa,(1)>1.H has been normalized with respect to the

. . . . ion fielch=H/H*.
gral in terms of Weierstrasg function. On using penetration fielh=H/

o dz where a is defined byp(a)=3/2K/3 and we have intro-
W:f \/3: duced Weierstrass’ and o functions.
2 V42— 027~ 03 These implicit equations hold for penetration profiles cor-
and the inverse relation=gp (w;g,,035), We get responding to surface values on the bége:1 and include,

as a particular degenerate case, the partial penetration regime
obtained before.
sz Slo(w)]dw. In order to specify the full penetration solutions, the fol-
lowing boundary conditions must be usedi;=h(1)

Expandi in the f
xpandingSp (w)] in the form h2+(i/2)2, 6,= (1) = arctan (B,/i), 6= 6(0)= /2,

S (W) ]=Co+ Crp (W) + Cop2(W) + - - and p,(0)=0. Notice thatp,(0)=0 has been incorporated,
corresponding to the transversality condition related to the
Ay A, arbitrariness in the value df,(0).
+ o (W) —a + [o(W)—a]? e The curves with starting points on the regid# 0 can be
still further classified in terms of the values of the constant
B, K. In fact, one can produce a quite meaningfhlase dia-
+ WJF T gramin the h plane, dividing it up into several regiorisee

Fig. 2. The characteristics of the penetration profile are de-
our integrals can be readily evaluated, and we finally come tgermined by the region on which the initial point

the implicit solutions [hy(1),h,(1)] lies. Archetypical penetration profilds(h,)
are displayed in the same figure.
K We want to mention that the poinfh,(1),h,(1)] for
_3 _ y\L)llz
x=3/2 {(w) 33{/§W+C1’ which the penetration profile evolves under the conditon

=0 univocally determine the line labeled according to that
d o(W—a) condition. IndeedK =0, d+# 0 leads to the so-callegquian-
0= log +2wl(a)|[+Cy, (3.6 harmonic cas€g,=0, g3=1). Then, definite integration of
20" (a)l o(Wta) Egs. (3.3 gives
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360,=2m—arcsir(hj/h3), L5

1
T=€(W1)—Z(W0), 3.7

2
where the subscripts indicate the poirtH0,1) at which the
function must be evaluated.

Owing to the multivalued nature of the involved func-
tions, one must be careful when managing BE&s7). Our
expressions assume that the principal values are considerec
Notice that for penetration profiles starting at this line, the
end point is easily computeti,= h,[sin(27—36,)]*°.

By virtue of continuity,K=0, d# 0 acts as the separatrix
between two regiongi) K>0 corresponds to the region of 0
full penetration where transport currents predominéiig.
K< 0 defines the region of full penetration where the exter-
nal magnetic field predominates.

The penetration profiles and the corresponding currents
for the previously presented initial conditions in the different 1
regions of the phase diagram are shown in Fig. 3. Observe 19
that, related to the transversality condition in the minimiza- ]
tion process, the shielding component of the current becomes
zero at the center, whereas the transport component tends ti
the maximum value.

0.5

0.8 e : : L
& -A- & > L
dn-n-Dm

J 067

C. Associated metric 1
Again, we will refer to theh plane where the param- 0.4
etrized curveg hy(x),h,(x)] lie. In fact, a metric structure
can be defined on it, whose geodesics are solution curves of
the OC problem. This is a particular case of a quite general ] :
relationship between OC problems and metric spdaes- o+——1—— T Cor
ally Finslerian. In our case, the associated metric can be 1 0.8 0.6 0.4 0.2 0
easily obtained as follows. First of all, from the state equa- X

tions dh/dx=u and the obtained optimality condition? o . o

=1, it is apparent that the curvés,(x),h,(x)) correspond- FIG. 3. Magnetlc flelq and current penetration profiles in a su-
ing to penetration profiles of the magnetic field must havePerconducting slab for different external conditigifg(1),h(1)],
Euclidean length les@artial penetrationor equal(full pen-  corresponding to the-plane curves in Fig. 2. Pan) displays the
etration to 1. Now, the cost variable, defined byds/dx reduction of the magnetic field components towards the center of

—h2, can be used for a reparametrization of the state equdn® S12bx=0. Solid symbols stand fdr, while open symbols rep-
tions resenth,. Each case is depicted by a symbol type: squares for

h(1)=(0.3,1.5), triangles for(0.8,1), and circles for(0.8,0.3.
Panel(b) displays the associated current profiles. The same symbol
convention as in parta) has been used, whereas solid symbols
represent- j, and open symbol$, (the minus sign election is for
the sake of clarity of the plat The normalizationh=H/H*,
j=J/3. is used.

dh_dhdx_ u
ds  dxds p2’

which, together with the condition®=1 gives as infinitesi-
mal costds=h*(dh)2. This means that the metrial§)?
=h*(dh)? can be used to obtain the curves onfthelane of ~ obtaining the geodesics of the metricds()?=(h?
minimal s length, i.e., optimal. +1)?(dh)?, where\ is a constantLagrange multiplier to
The particular metric problem to be solved depends agaibe determined. Again, by virtue of transversality properties,
on the initial valuesh(1). For thepartial penetration regime the geodesic will always intersect theaxis perpendicularly.
h(1)<1 we must find the geodesic curve afg)? joining  In this metric language it is again clear that points outside the
this point to the originh(x.) =0. In this case, the geodesics band(region of resistive loss¢gannot be joined to the ver-
of (ds)? are straight lines joining the initial point to the tical axis by curves of euclidean length less or equal to 1.
origin of theh plane, corresponding to the linear solution asNow, it is a simple exercise to obtain the geodegialer-

shown beford Eq. (3.5)].
Forh(1) lying on the bandh,(1)<1,h?>1, we must find

Lagrangé equations for the metricdis,)?. On using polar
coordinates and parametrizing the curves with the angle vari-

the curve of minimals length among those which connect able (invariance under reparametrization holage get the

the initial point to the vertical axid,=0 with Euclidean
length 1(fixed final parametex.=0). This is a typicalso-

perimetric problem, whose solution can be accomplished by

Lagrangian

L£=(h*+\)Vop+h?,
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wherev,,=dh/d6f. Note that its associated energy is a con-the other hand, these first-order differential equations are

stant, subjected to boundary conditions of the kibff(0),f(1)]
=0.
L (h?+x)h? An adapted version of the IMSL routine BVPMS has
E=vp——L=— - Eo, been used by the authors in order to solve this problem. The
don Vupth algorithm is based on a multiple shooting mettfodrhich

starts with a given initial guedd(0),p(0)] and iteratively
corrects the initial value set. This is performed by means of
Newton’s method untib=0 is satisfied to the desired accu-
ﬂ: _ im racy. Owing to the nonlinearity of the system, a parametri-
de Eo 0 zation of the problem has been necessary in order to attain

convergence. We have embedded the system in a one-
This equation can be identified with the one obtained fronparameter family

the OC machinery when polar coordinates were Usegl
(3.3b)], by just replacingh —K, E,— —d. Eventually, the F'=G(f,p),

geodesic curves obtained in theplane can be parametrized with boundary conditions8[f(0).f(1),p]=0, wherep=0

by a.Eucllde.an arc length in order to obtain the actual pengives a linear problem angi=1 returns to the original prob-
etration profile.

lem: G(f,1)=g(f) and B[f(0),f(1),1]=Db[f(0),f(1)]. The
constants of the motion have provided an extra benefit. In
D. Numerical integration scheme particular, the relation

from which we obtain the differential equation

The main shortcoming of the methods previously pre- _
sented for the integration of Hamilton equations is that they Bi=pb;+(1=p)[H(1)=H(0)]

rely on knowledge of the constants of motion. In general, thehas been successfully implemented in our program.
relation of these quantities to the boundary conditions is by

no means Simple. On the other hand, the practical implica— V. APPLICATION TO CYLINDRICAL SYMMETRY

tions of our model are related to problems in which the field

penetration profile must be obtained in terms of the values at This section is devoted to obtain the field penetration pro-

the sample’s surfack(1). Forinstance, such is the case of file for the case of cylindrical symmetry. Although more in-

the magnetic moment of the samptéh(1)]. For this pur-  tricate from the mathematical point of view, the experimental

pose, we have developed a numerical scheme which allowgircumstance is customary. Assume an isotropic infinite cyl-

us to obtain the integral curves of our problem. inder of radiusR to which an external field is applied parallel
On using a Cartesian coordinate system, the optimal corfo the axis. Assume also that a transport current is held along

trol formulation leads to a system of coupled first-order dif-the same axis at the same tir@ee Fig. 1 The Maxwell

ferential equations, which are required to satisfy boundargquations then read

conditions both at the sample’s surface and center. In the

partial penetration regime, the simple linear solution requires J=— dH,
no effort to be computed. Nevertheless, for the case of full ® dr’
penetration, the method is more involved. We have a two-
point boundary value problem for the nonlinear system: 1d
J,;=——=(rH,),
rdr ¢
%: p,/ p§+ pZ, and the free energy per unit length,
R
dh, _ Q=,u0wfrc(H§+Hi)rdr,
ax P/NPyERE, _ _ _ _
wherer . stands for the point where the field profile vanishes
in the partial penetration regime and equals zero for full pen-
dpy etration. By analogy to the slab, in what follows we normal-
KZZhy’ ize the units according tp=r/R, h=H/H*, andj=J/J..
On the other hand, using for the applied field and for the
dp current, we define hy=9/H* and i=3/(7wRH*)
_rz_ 2h,, (3.9 =(wR2J.). Now, it seems more convenient to express mini-
dx mization in terms of the new variablex;=ph, and x,
with boundary conditionsh(1)=hy, h,(0)=0, andp,(0) =h,. Then, the optimal control Hamiltonian becomes
=0. In other words, one must solve a system of the kind 2
1 2 :
=g(f), " (p2+x2 P

where the vector functiof represents the canonical coordi- wherex meansix/dp and the corresponding canonical equa-
natesf=(hy,h,,p,,p,) andgis a symbol for Eqs(3.8). On tions are
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dx, i
—=p/\N1+(p2/pp1)?, 0 02 04 06 08 1
dp 04 L L
. m i |
X2 o h=06 i=03 v ]
5o = N1+ (opa/p2)% o3 - i
p T - i=0.6 o N
d
d—p1—2x1/p, 02 N .
P i=09
dp; o1 | i
E-Zsz F ‘I 1
On supplying appropriate boundary conditions, the integral ol ‘ .

curves for these equations can be obtained. We will concen

trate on their numerical integration. 0 0.2 04 0.6 0.8 1 12

For the case of full penetration, the method mimics the ha
procedure which was used in the slab geometry. The
boundary conditions readx;(1)=i/2, X,(1)=h,, x,(0) FIG. 4. Predicted behavior for the normalized magnetic moment

=0, andp,(0)=0. Again, multiple shooting combined with (M[h(1)1=2Jh,pdp—h,(1)) of a cylindrical superconductor. The
Newton’s method allows us to fulfill the boundary conditions applied magnetic field is measured in unlt_s of the penetratlon_\_/alue
by means of correcting the trial initial values. A parametri-» Na=9/H" and the transport current with respect to the critical

. L 2 S i
zaion of the problem nas also been necessary owing o TS (SR, The sold e show o svoutn o
nonlinearity of the system.

. T . . . __curve outlines the reduction of the magnetization for an increasin
More interesting is the case for which partial penetration 9 9

Unlike the situation in the slab i trivi Itransport current and fixdd,. The transition from the partial to the
occurs. Uniike the situation In the siab geometry, no trivialg penetration regime is marked by a symbol over the curves.
solution arises when the boundary conditiong1)
=Xy, X(pc.) =0 are imposed. In particular, this means that

2
is an unknown and a new strategy must be designed. We %: X1 32— _ n
have chosen a linear change of variabtes (p—p.)/(1 dz  [(1—xg)z+Xs]? X1 =2L(1=x) 2 x5}
—p¢), Which drives the problem to the intervid,1]. Then,
we define the variablg;=p. and its conjugate momentum 1-2[(1—x3)z+Xx3]
iltoni —P1
ps3, so that the Hamiltonian becomes 1+ (P [ (1= Xg)2+ X3]p1)?
2
X1 2 P2
H=—{ ——————+X + :
{[(l_X3)Z+X3]2 2] V1+([(1=x3)Z+X3]p1/p2)?
X[(1=X3)Z+X5](1—Xg)+p-X, On the other hand, this system must be integrated subject to

x" standing fordx/dz. The canonical equations then read x1(0)=0, x%(0)=0, p3(0)=0,
x(1)=i/2, x(1)=h,, ps(1)=0.
Xm_ (1=x3)[(1—X3)Zz+X3]

Notice that herex; being completely unknown, we have

dz 1+ (P2 /[ (1—X3)Z+ X3]p1)? ' imposedtransversality conditionby choosing the zero value

for the conjugate momentum. Eventually, one can numeri-
dx, (1—%3) cally integrate the system. Once more, the multiple shooting
- , method has been used. The algorithm outputs the gRint
dz 1+ ([(1—X3)Z+X3]P1/P2)? =x5 and the penetration profile.

This procedure allows us, for instance, to obtain a predic-
tion for the magnetic moment per unit length[h(1)]

%: , =2[h,pdp—h,(1). Figure 4 shows this quantity for se-

dz lected values oh,(1) andi. Notice the saturation of the

magnetic momernn for increasing values of the applied field
dp; h,, as well as the collapse to zero when the transport current
E:2X1(1_X3)/[(1_X3)Z+X3]v i reaches the critical value. Notice also that each curve has

been marked with a symbol which indicates the transition
from the partial to the full penetration regime. This transition
P2 point has been estimated by means of a simplified

d
Tz - 217 xa)l(1mXg) 24 Xs], model which assumes aingle-region uniform current
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distribution” In that model, the relatioh+i?=1 charac- 1.6
terizes the external field values for which the sample centerp
is reached. We want to mention that such an approach woulc I
be exact for the case of the slg®e Fig. &)] and nearly fits 12
the minimum energy solution for the partially penetrated cyl-
inder. In this work, we have integrated the partiail) pen-
etration canonical equations, while approaching from below
(above to such point.

V. DISCUSSION AND CONCLUSIONS r
0.4

We proposed a variational principle which allows us to
describe the metastable equilibrium state of flux penetration
in a type-Il superconductor. The theory developed assume:!
the simple expressiog= (uo/2)fyH?d% for the free en-
ergy to be minimized. This is the relevant contribution for 1 0.8 0.6 04 0.2 0
field values in the rangél <H<<H. whereB=pugH is
also a good approximation for hard superconductors and onyq, _ _ _ _
can use the picture of pinned nonoverlapping vortices. On ()]
the other hand, minimization is carried out under the con-% ]
straint |J|<J. for the coarse-grained current density. As g0 :
mentioned before, such a limitation is supported by experi- ]
mental evidence in the case of high-superconductor¥: -

Our work deals with multicomponent field situations in- 60
duced by the simultaneous application of a magnetic field
and transport currendi. Although we have analyzed both
planar(slab and cylindrical symmetric problems, the main
effort of this work is devoted to the former case. In fact, the
subsequent discussion refers to that situation. We just wan
to mention that the qualitative features for the cylinder solu-
tion are essentially the same and will be discussed elsewhere

For sufficiently small values ofy and J the minimum 0 ——— 1l
energy is attained in a partial penetration regime, for which 1 0.8 0.6 0.4 0.2 0
the magnetic field vector remains parallel to its value at the X
surface and its magnitude is progressively reduced, eventu-
?Ag (;/lirrltlalsnryr:jgenfit;o\/rgitgrﬂ?t:gvllgﬁgn:haen(?EggIP;Zn(I;/ilt(:)lzle;\/t% r’tion 6 (open symbolsvs the penetration coordinatein a super-

. X conducting slab, for several applied valug4) at the surfaced is
H every_vvhere. This can be understood in terms of the relaElefined in the inset of panéb). We have chosen the same external
tion (valid for the slab geometyy conditions as in Figs. 2 and 3 and again squares stanth(fby
=(0.3,1.5), triangles fof0.8,1), and circles for(0.8,0.3. In panel
(b) we present the rotation anglebetween the current vectpand
the local fieldh for the profiles illustrated in panéh). The angles
are measured in degrees and the rest of the quantities in dimension-
where # is the angle betweeH and they axis (see Fig. 5. less unitsh=H/H*, j=J/J,.
Inasmuch as no further restriction that a maximum modulus
is imposed, all the current is employed in reducing the magsible one. Different spaces could be used under the same
nitudeH so that we ged=J, =J.. mathematical treatment, like a rectangular ahessJc, , Jj

On the other hand, for the full penetration regime, field<J, similar to that proposed by Clethand a dependence
rotation occurs in general, as the magnetic field is an arbief the critical current densities on the local magnetic field
trary vector at the surface and must be directed alongzthe J., (B), J¢|(B), even anisotropically, could also be incorpo-
axis at the centefat least this must happen if one does notrated for a better adjustment to data, without extra concep-
accept infinite current densities within the superconductor tual difficulties.

By virtue of Eq.(5.1), field rotation is related to the exis- Nevertheless, the simplicity of the control space used in

tence ofJ . In this case) is no longer a constant vectdrhe  this article brings out the essential physics and allows a wide
OC theory permits us to predict the conditigh=J. and the  understanding of the problem. We have obtained analytical
distribution rule for the components af Figure 5 illustrates expressions for the penetration profile in terms of Weier-

the magnetic field reduction and/or rotation towards the censtrass’ elliptic and associated functions. This has been pos-
ter of the sample as well as the angle between the fields faible by exploiting theconstants of the motigrwhence one

the cases mentioned before. can integrate the OC Hamiltonian equations by quadrature.

We want to stress that our particular choice for the spac&urthermore, these constants,fl) allow the classification
of current densities, i.e., the digi|<J., is merely a pos- of the penetration curves in terms of the external field and

-0 —0=-0--0-0--0-0--0-0-0-0°

FIG. 5. (a) Field modulush reduction(solid symbol$ and rota-

dH. do. . .
—8-H——A=J,8+JA, (5.

J=VXH= dx ax



PRB 58 OPTIMAL CONTROL MODEL FOR THE CRITICA. . .. 9449

current applied values and to present a compbétase dia- duces the simple solution for one-dimensional problems,
gram of the corresponding situatiorisee Fig. 2 with a sign change ofl beginning at the surface and an
Simple expressions arise for initial values fulfilling the unaffected profile in the inner regions of the sample when
conditionK=0. Additionally, and closely related to the ana- the magnetic field is cycled.
lytical solutions, one can formulate the problem in terms of  Additionally, rotating field processes as well as general
metric spaces. Field penetration can be portrayed as the profmiticomponent situations would be manageable. Boundary
lem of finding a geodesic in the plane for a particular effects produced by the finite size of the sample could also
metric, again defined in terms oK(d). This provides a pe modeled in this framework by using OC theory for partial
pictorial description of the physical phenomenon, which hasjifferential equations, when the fields depend on more than
been mainly a consistency test in the present configuratiogne coordinate. Stochastic OC theory could be used to rep-
but which could envisage the properties of the solution fofresent the complicated distribution of critical current densi-
more complex cases. ties in different regions for highly inhomogeneous samples
Moreover, the objective function, the magnetostatic enys is the case of highi; ceramics. In conclusion, the range
ergy density, is also a particular choice suggested by thef possibilities open to the use of OC theory is wide and can
pinning force balance, but other functions could possiblyinclude other physical models where self-organized critical-

give different penetration profiles, using the same mathity plays a role, if closed spaces with maxinfefitical) val-
ematical tools. For instance, one can dgg=H-dB for the  es for some variables are used.

free energy density and incorporate the equilibrium response
of the vortex assemblB(H). One could also choose to
minimize the penetration deptffior partial penetrationand
obtain in this case the same solution profile. On the other
hand, it is clear that in order to predict the hysteresis cycle The authors want to thank Dr. L. MantiMoreno for help-

we need to consider a different objective function. The magful and stimulating discussions at several stages of this work.
netic inertia of the sample, owing to the viscous dampingC.L. acknowledges partial financial support from DGICYT
against vortex motion, points towards the use of a functiorunder Project No. DGES-PB96-0717. A.B. and J.L.G. have
measuring the change of magnetic vedtmsth in magnitude been supported by CICYT under Project No. MAT95-0921-
and direction. At least, this kind of objective function repro- C02-02.
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