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Theory of magnetic short-range order in thet-J model
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A spin-rotation-invariant theory of antiferromagnetic short-range of8&0O in the two-dimensionat-J
model is presented based on the Green’s-function projection technique for the dynamic spin susceptibility
which is divided into a local and an itinerant contribution. The SRO is incorporated in the local contribution.
By a sum-rule-conserving mean-field approximation the two-spin correlation functions of arbitrary range, the
staggered magnetization, and the uniform static spin susceptibility are calculated self-consistently over the
whole doping and temperature region. A good agreement with available exact diagonalization data 3t ratios
realistic for the cuprates is found. The antiferromagnetic long-range order @tis destroyed at the critical
doping 6.=5.9% @/t=0.4) in favor of a paramagnetic phase with SRO. The maxima in the doping and
temperature dependences of the uniform spin susceptibility found in exact diagonalization studies are explained
as an effect of antiferromagnetic SRO. Comparing the theory with magnetic susceptibility experiments on
La,_sSrsCuQ,, a reasonable agreement in the doping dependence is obtEtddh3-18208)06838-4

I. INTRODUCTION magnetic long-range ordgi.RO) and SRO atT=0. Our
main goals are to compare the theory with available exact
The pronounced antiferromagneti@FM) spin correla- diagonalization data and with experiments on LSCO.

tions in highd, superconductors probed by neutron
scattering? and their unconventional magnetic properties, Il. DYNAMIC SPIN SUSCEPTIBILITY
such as the maximum in the doping and temperature depen- ] . .
dences of the normal-state magnetic susceptibility of We start with thet-J model on the square lattice written
La,_;SrCu0, (LSCO),3* yield a challenge for a micro- in terms of Hubbard operato$d=[p;}(qil[p,q € (0,0);
scopic theory of the dynamic spin susceptibilitig, w; T, ) ==*]as
that takes into account the AFM short-range ortieRO.

To explain the uniform static susceptibility(T,5) of H=H+H,
LSCO, the concept of magnetic SRO was elaborated in the J 1
three-bantl and one-band Hubbard mod&lgnd in thet-J =—t > XX+ 3 <SSJ— —ninj), 1)
model/~® In the one-band correlation models, the evaluation (Li)o 20D 4

of SRO effects within a slave-boson functional-integral,, . 1 a0 00’ oo
. . with S=352, X; X7 andn, =X _X7?. For the cu-
scheme aT =0 (Refs. 6,7 yields a good agreement with the S=2200 X Togr X, ]
doping dependence of the low-temperature magnetic susce
. s 3 _ . _
{on functions n the.3 mode! near haltling, Shmanara. ©15: A=(A®) ... A®)T and B=(8, .. BT, are
9: chosen to calculate the two-time retarded matrix Green's

and Takad%® proposed a spin-rotation-invariant Green’s- . R .
function decoupling scheme introducing site-dependent vefunction G(w) =((A;B™)),, . Neglecting the self-energy de-

tex parameters. In Ref. 9 the lowest-order correctiong by fines a generalized mean-field approximation, and we get
are _con_sidered, so that the maximumyiras a function of G(w)=(0—M'M~1)~IM, )
doping is not reproduced. Up to now, there has been no

analytical approach to thieJ model that describes both the with the spectral moments

doping and temperature dependences of SRO and their ef- )

fects on the spin susceptibility in accordance with experi- M=([A,B]), M’'=([iA,B"]). (3
ments. In a previous papét hereafter referred to as I, we . . . . .
developed a spin-rotation-invariant theory of SRO in theT0 describe SRO effects in a wide doping region, the

square-lattice AFM Heisenberg model based on the Green,%ocahzed—nmerant complementarity must be adequately

: S ; . . taken into account, which can be achieved by interpolating
function projection technique for the dynamic spin suscepti- . o .
bility usFi)ngJ the decoup?ing schemey by ShiPnahara zfn etween the Heisenberg I|m|t5_€0) and the onv-densﬂy
Taka' e imit (free band electronsTo this end, we exploit the rota-

; e ; ... tional symmetry of the dynamic spin susceptibility
In this paper we extend the Green’s-function projection = (qw)=— (S} ;S:q>>w' Thus, the equation of motion

approach of | and present a theory of AFM SRO forthg X ;
model. We focus on the two-spin correlation functions of @((Sy ;S_g))w=((iSq :S_4)), Permits us to separate
arbitrary range and on the uniform static spin susceptibilityx " (d,) into a local and an itinerant contribution,

as functions of doping and temperature over the whole range . e .

of variables. In particular, we study the competition between X (Qo)=x; (qe)+x (qo), (4)

rates, realistic values dfit are 0.3sJ/t<0.4.1!
" In the projection methodcf. 1), two sets of basis opera-
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with

+- 1 Jt. o . Jit +
XJt (qvw):_z«‘-]q‘ vqu>>w1 ‘Jq’ =[Sy JHy - 5

The local and itinerant contributions predominate in the
Heisenberg and low-density limits, respectively. Both contri-V!
butions are calculated by the Green’s-function projection

method employing decoupling procedures adapted to the lo-

calized or itinerant characteristics.

First we consider the local contributiop; ~(q,). To
calculate the Green’s functiof{J; 'S_y)). taking into ac-
count the AFM SRO, we choose the basis sets

A=(37,id9T, B=(S;.iS))". (6)

Concerning the spectral moments, we note that neglecting

the self-energy(cf. I) corresponds to the approximation

—S = wis,, (7)

wherew is the spin-excitation spectrufsee below. Then,
the second moment is given by

MP=([35.— S h=wiM, (8)
where

MO =([3},571)=—8ICy (1 7y, ©)

and yq=%(cosqx+cosqy). Cr=C, , denotes the spin cor-

relation function

1 _
Cr=(S; Sp)= N % (SyS”)cosaR, (10)
with  R=ne,+me,. Furthermore, we get Mgl)
=([133,5"q])=0 andM{=([iJ3,— 5" )= wzM{P=0.
By Eq. (2) and the moment$8) and (9), we obtain the
local contribution

. (17

MO 1
X5 (qw)=— - (

0= wg w+ g

qu

Calculating the spectrum, according to Eq(7) we take the

site representation, where SI_ contains products of three
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Following the approximation scheme of Ref. 9, we neglect
the cross-correlation terms<(it) and thoset? terms which
would violate the relatior{7). Finally, we obtain

05= (1= yg) (A1 +Az7g), (14)
ith
BN
Al: 4\] A E - a1C1’0+ az(C2‘0+ 2C1’1)
+8t[1-N(n+Fy0t2F 1 9], (15)
Ar=—16°a;Cy, (16)
and the transfer amplitudés=F ,

+0y0+ 1

Fr=(Xo°X3") =15 > FicoskR, (17)
k

whereF, = (X, °Xp*) andn=(n;).
Now we calculate the itinerant contributioy” (g, ).
By Eq. (5) we get

_ 1
X (@0)= =5 > (eiiq—@)Cig(@), (19
with e,= —4ty, and the Green’s function

Gig(@)=((Akqi S wi Akg= INXOXQZ,.  (19)

To calculateGyq(w) we take the basig=A,,, B=Sq+ and
get

M(kO) M(kl)
Gral@)= =i “a=yo (20
q

with the moments
M{S =([Axq.S_ql)=F«—Fkiq (2D)

andM{g)=([iA,S”4]). Performing a Hartree-Fock decou-
pling of the spin-hole interaction terms iAkq, we obtain
iAkq:(€k+q_ €At Tig
+[ exFr— €t qF kgt 23vq(Fk—Fiig)1Sq -
(22)

spin operators along nearest-neighbor sequences, e.g.,

S'S’S', and spin-hole interaction terms, e.§, X; °X?~

(j#1, 1#1i). To approximate the spin-spin interactions, we
apply the decoupling procedure proposed by Shimahara and

Takada®

5SS S =aS§)S TaxS ), (12

with

>

Tg=— §(6k+q_ €)Axq

1
+NE (Ek'+qu_€k’Fk+q)Ak’Q' (23)
k/

where the vertex parameterg; and a, are attached to ) o
nearest-neighbor and further-distant correlation functions, rel© keep the calculations tractable, the Fock ternTig is
spectively. Compared to I, we have simplified the site depent@ken into account effectively by the approximation
dence of the vertex parametdis,= o) =a;, ab=a,).

Decoupling the spin-hole interactions, we introduce a ver-
tex parametek as follows:

n
qu: - 775(£k+q_ ek)Akq ) (24)

where we have introduced the decoupling paramgtdihen

STX X=X OXPT)YS . (13 we have
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n sider higher-order sum rules involving higher correlation
W= ( 1- 775) (€x+q— €x)- (25  functions. Therefore, we treat only one parameter as doping
dependent.
By Egs.(18), (20), and(25) we obtain the itinerant contribu- ~ The parameters; and a, cannot be used to satisfy the
tion sum rule(32) with Eq. (31) at high hole densities because for
t=J thet? term in Eq.(15) will dominate theJ? term at high
xf(q,w)= 1 2 Fk+q_Fk. (26) enough doping levels. Therefore, the influencergp on the
(1— E) N E @k local contribution toS; S~ ;) rapidly weakens with increas-
) ing doping. Similarly, the parametey in the itinerant con-

tribution of Eq.(31) does not allow to satisfy the sum rule at
small doping levels, since the local contribution dominates
the itinerant one there. The vertex parameterhowever,
which describes the coupling between the spin and hole de-

To determine the distribution functidR,, occurring in the
local and itinerant contributionfsee Egs.(15), (17), and
(26)], from the Green’s functiof(X2" ; X, °)),,, we use the

Hubbard | approximatioft and get grees of freedom, is suitable to satisfy the sum (8B over
n the whole density region. As a consequence, we fix the pa-
Fi.= ( 1- —) f(Ey) (270  rametersa; , and i at their values in the limite=1 andn
2 —0, respectively, and take as doping dependent.
with First, we consider the undoped cases 1. In this limit,

the kinetic termH, of Eq. (1) has no influence on physical
n quantities and therefore the theory may not depentl &y
1- 5) ex—Jn, 28 this condition, as can be seen from E#5) and Fr=0 for
R+#0, we have to choose(n=1)=1. Thus, then=1 limit
wheref(w)= (el #/T+1)~1. The chemical potentigk is  becomes the Heisenberg limit, and E¢B4) to (16) agree

Ek:

given by the number condition with the result of I. To determine the parametersand a,
5 in this limit, we use the sum rule and get=a;(T). To
== obtaina,(T), we take the Monte Carlo value of the ground-
n Fy. (29 .
N % state energy{3C; = —0.6693 (Ref. 13] and, following

Ref. 8, assume the ratjax,(T) — 1]/[ @1(T)—1]=0.8530 as
temperature independent.
Considering the limin— 0, the parametey is calculated

Note that the itinerant contributiof26) vanishes in the limit
n=1 (lim,_,F,=3) and becomes the familiar Lindhard

function forn-0. by a low-density expansion which, far=0, is detailed in

For both the local and itinerant contributions, we have he next section. Therebyy(T) turns out to be independent
checked that our scheme preserves the spin-rotation invarl. ‘ Vi P

ance, i.e., for the total susceptibility we havwgq,w) Of the vertex parameters.
=x*q,0)=3x" " (q,0). From Egs(4), (11), (9), and(26)

we get the static spin susceptibility IIl. MAGNETIC LONG-RANGE ORDER
81C 1 E_F VERSUS SHORT-RANGE ORDER
B 1,0 k— Fkaiq N _ _ .
X(@==—o—(1=y)+ R —— The critical behavior of the-J model is reflected in our
a (1— 715) N approach by the divergence of the local contributiorny€q)

(30) atQ=(w,7) asT—0, i.e., bywg(T=0)=0 [cf. Eq.(30)].
Accordingly, in the phase with AFM LRO which may occur

and the two-spin correlation function at T=0 only (in agreement with the Mermin-Wagner theo-
L Cio rem) we get the conditiomA;=A, [cf. Eq. (14)] and the
(SqS-g)=— " =(1—yg)[1+2ng(wg)] spin-wave spectrum
q
1 5 wi=—1602a,C1 (1 75). (33
+ F«—F n , . . . .
n K (P Fico)Na(wq) To calculate the correlation functiori$0) with Eq. (31) in
1- ) N the LRO phase, we separate the condensationChaatrising
from wy=0, as follows:
(31 c
whereng(w)=(e”’T—1)"1. By Egs.(10), (14) to (16), and Cr=1\/— f Ir+C cosQR+Ck, (34)
(31), the correlation functionsC,, ,, are evaluated self- !
consistently. where
For the determination of the decoupling paramejeand 1 1=
the vertex parametees;, «,, and\ we employ the sum rule IR:N > T Y cosgR (35)
+ 1
q
n
Coo=(Sg Sy )= > (320 with 15,=1.393 andl, ;= —0.551. C} is the itinerant con-

tribution which results from Eq31) in the T=0 limit mak-
Due to the mean-field approximations made to obtain theng use of wyq*Ey,q—Ex and of the identity[f(w)
excitation spectrd14) and (25), it is inappropriate to con- —f(@')]ng(w’' —w)=f(e')[1-f(w)],
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FIG. 1. Staggered magnetization as a function of hole doping for FIG. 2. Spin correlation functions vs doping =0 and J/t
different values ofl/t. =0.4 compared with ED daté®, Ref. 15.
. Sro— (14 8r 0)Fr by a recent cumulant approathwith decreasing ratiod/t,
Cr=Fr7 177 =& (36 the LRO is destroyed more rapidly upon doping, where our
(1— n= (1— —) S; values[ 6.(J/t=0.2)=4.7%] start to deviate from those
2 2 given in Ref. 14 §,(J/t=0.2)=3.2%)]; for more discussion

By Eq. (34) with R=(0,0) andR=(1,0) we get the nearest- Of those results, see the following section.
neighbor correlation function
|2 I 2 IV. COMPARISON WITH EXACT DIAGONALIZATION
Cio= —( \/ ) Cy

n
5 —Chy-Clom AND EXPERIMENTAL DATA

4ay 2 2\ey . .
Let us first test the validity region of the theory by com-
wherel =1lg g+ 110, and the condensation part paring our results for the spin correlation functions and the
n . Cio uniform static spin susceptibility(T,5) with exact diago-
C=5-Coo™ ~loo (38)  nalization(ED) datal®~1’

In Fig. 2 the doping dependence of the correlation func-
The staggered magnetizatiom is calculated from Eq(34) tions C,, ., [Eqs.(10) and(31)] at T=0 andJ/t=0.4 is de-

according to picted showing a good agreement with the ED results of Ref.
3 15. The sign changes i@, , reflect the AFM SRO. With
m?=lim (S,Sg)cos QR= EC' (39  increasing hole doping the SRO, i.¢G, |, gradually de-
IRl—oe creases, and fof=0.25 only nearest-neighbor spin correla-

tions survive.

Figure 3 shows the dependencey, at 5=0.25 on the
ratio J/t at T=0. Below the physically relevant parameter
rangeJ/t=0.3—0.4, our results considerably deviate from
the ED data, especially the functio® g andC, ;. In par-
ticular, at low doping our theory does not yield ferromag-
netic SRO (C;>0) observed in ED ford/t<0.1 and 6
=0.1251% These discrepancies are likely caused by our

Finally, let us determine the parametgrat T=0 in the
low-density limit. There the magnetizatian vanishes. By
Eqgs.(14) to (16) we havew;=8t%(1-y,) atn=0, andFg
is given byFr=n/2 +O(R?n?). Using Eqs.(10), (31) and
(36), we expandCg up to the second order af:

J n n?
Cr=— fcl,oKR+ 5R,o§ +(76ro—1) 77 o(n%),

(40)
Wlth 0.05 T T T T
1
Ke=1y % V2(1— y,)cosaR. (42)
By Eq. (40) with R=(0,0) andR=(1,0) we get
Kool/t
7= Kt “2
whereK =1.355 andK, ;= —0.198.
In Fig. 1 our results fom as a function of the hole doping

8=1—n are shown ny=0.253). We obtain a strong sup- -0.15 ' ' : :
pression of the staggered magnetization with increasing dop- 0 02 0.4 0.6 0.8 1

ing due to spin-hole interactions, where at the critical value I

oc(J/t) there is a transition from the LRO phase to a para- FiG. 3. Spin correlation function€, o (solid), C;, (dashe
magnetic phase with AFM SRO. At the ratidt=0.4 we get  andC, , (dotted vs J/t at T=0 andé=0.25 compared with the ED
6.=5.9%, which agrees quantitatively with the value foundresults(®) of Ref. 15(joined by the corresponding line style
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FIG. 4. Uniform static spin susceptibility vs doping att FIG. 5. Uniform static spin susceptibility vE at J/t=0.3 for

=0.3 and different temperaturég/t=0.1: solid, T/t=0.2: dashed, different dopinggsolid) compared with the ED resultglashedl of
T/t=0.3: dotted compared with the ED dai®) of Ref. 17(joined Ref. 17.
by the same line sty)e The inset shows the positioé, of the

maximum iny vs T together with the ED daté®, Ref. 17. the neutron-scattering data for the AFM correlation lerfgth,

we obtain for our choice of the vertex parametefsand a,

rough approximations made in the calculation of the itineranthe realistic valugl=117 meV.
propertieS. This may also eXplaiﬂ the deviation of our results As revealed by neutron-sca’[tering experiméntm (Com-
for the staggered magnetization with decreasiyg<0.4  mensurate AFM LRO is lost at 8,=2%, qualitatively
from those of Ref. 14. However, in the physical rangel kif agreeing with our results shown in F|g 1.
our theory provides a good description of SRO. The experimental doping dependence of the magnetic sus-

Next, we compare the spin susceptibilfyT, 5) with the  ceptibility exhibits a maximum as,,=0.25 over the whole
ED data of Ref. 17, available far/t=0.1. As shown in Flg accessible temperature region, 5&K=<400 K3 Figure 6
4, the doping dependence pfat J/t=0.3 and different tem-  compares our result fop(T, ) at 400 K andJ/t=0.3 (cor-
peratures is correctly reproduced but for the magnitude. of responding ta=0.39 eV andT/t=0.089 and the ED data
In our approach the increase gfupon doping is caused by at T/t=0.1 (Ref. 17 with the spin contribution to the mag-
the decrease of AFM SRQ@. Fig. 2), i.e., of the spin stiff-  netic susceptibility of LSCO at 400 K. The spin contribution
ness agalnst orientation along a homogeneous external mag- obtained from the measured total Susceptibmhjy sub-
netic field, where the itinerant contribution pp gradually tracting the diamagnetic core—9.9x 10~° emu/mol) and
wins over the local one. At large enough doping, the de+/an vieck (2.4<10°° emu/mol) contributions, which can
crease ofy with increasingd is due to the Paulilike itinerant pe taken as independent of doping and temperétdree
contribution. The smooth crossover from local to itinerantgpserved maximum position is well reproduced by our
behavior and the resulting SRO-induced maximumyadt  theory, which givess,,(400 K)=0.22. Note that choosing
Om(T) shifts to lower dopings with increasing temperature, j/t=0.4 (t=0.29 eV, T/t=0.12 does not significantly
since SRO effects are less pronounced at highécf. ).  change thes dependence of. Concerning the magnitude of

Correspondingly, the maximum position decreases with i”‘é, the theoretical susceptibility is too low as compared with
creasing temperature, as shown in the inset of Fig. 4, in goo

agreement with the ED results. Note that #gT) curve at
J/t=0.4 (which is not showh nearly coincides with that at
J/t=0.3. At T=0, we getd,,(0)=0.33, being close to the -,
value §,,(0)=0.4 found in the slave-boson theory of SRO. - .
However, contrary to Ref. 7, a weak nearest-neighbor SRO
persists for§> &, (cf. Fig. 2). For comparison we note that
the slave-boson theory of SRO for the single-band Hubbard
modef yields 6,,(0)=0.26 atU/t=8.

In Fig. 5 the temperature dependenceydit fixed doping
is plotted. The maximum af,(8) and the crossover to the
high-temperature Curie-Weiss behavior can be understood as
a SRO effect, in analogy to the explanation of the doping 0 - ' - '
dependence. In particular, the maximum shifts frogy0) 0 0.1 0.2 0.3 0.4 0.5
=J in the Heisenberg limit to lower temperatures with in- 5
creasing doping, since the SRO is less pronounced at higher g 6. Uniform static spin susceptibility as a function of doping
dopl_ng levels. ) _ at T=400 K. The theoretical result obtained att=0.3 andt

Finally, we compare our theory with experiments on—o.39 eV (solid) is compared with the ED data avt=0.1 (@,
La, ;Sr,CuQ,. First, we consider the Heisenberg model dotted ling from Ref. 17 and with the spin contributiill) to the
which describes the undoped compound,@#O,. Deter-  (correctedl experimental susceptibility of LasSrCuQ, (Refs. 3
mining the exchange energy, as in |, by a least-squares fit tand 4.

2110~ emu/mol]
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experiments, whereas the ED result lies in between. Froniv) The parameters introduced at the decoupling of the

this we conclude that part of the discrepancy in the magni- higher spectral moments are determined from the sum
tude of the spin susceptibility may be due to the use of the rule and the ground-state energy of the Heisenberg
(single-bang t-J model. model.

Regarding the doping dependencedT, 5) below 400 K
(T/t<0.1), the theory yields a shift of the maximum posi- Our approach provides a suitable description of pair-
tion 6,,(T) towards higher valueécf. Fig. 4), which is as-  correlation functions and of the uniform static susceptibility
cribed to the doping and temperature dependences of SR®(T,d). The main results are summarized as follows.
However, such a shift was not observed experimentally. i

The observed temperature dependence of the magnetic?
susceptibility showgfor §<0.21)) a maximum, where the
temperature of the maximum decreases with increasin%i)
doping® This behavior may be qualitatively explained as a
SRO effect, as discussed aba¥eg. 5).

The comparison of the two-spin correlation functions
with exact diagonalization data yields a good agree-
ment but for small ratiog/t(=<0.3).

At T=0, the antiferromagnetic long-range order is
rapidly destroyed upon doping, where fér>5.9%
(J/It=0.4) a paraphase with SRO appears.

(i) The maxima in the doping and temperature depen-

V. SUMMARY dences ofy(T,8) as compared with exact diagonal-
In this paper we have developed a spin-rotation-invariant ization data are well reproduced and explained as
theory of antiferromagnetic short-range order in the two- SRO effects.
dimensionalt-J model. The basic characteristics of our (iv) Comparing the theory with magnetic susceptibility
theory are the following. experiments on La sSrsCuQ,, a reasonable agree-
() The dynamic spin susceptibility is divided, by the ment is found, in particular, as the doping dependence
equation of motion, into a local and an itinerant con- is concerned.

_ tibution. _ From the agreement of our theory with experiments we

(i) Both contributions are treated by the Green’s-functionconcude that the concept of magnetic SRO may be decisive
projection technique and a generalized mean-field apm explaining the unconventional properties of the cuprates
prOXimation. For the local Contribution, we choose adand the Superconducting pairing mechanism. Thus’ our re-
two-operator basis to take SRO into account. sults support the conclusions drawn in Refs. 6 and 7. It is

(i) The SRO is described in terms of two-spin correlationpromising to extend the Green’s-function projection theory
functions of arbitrary range over the whole doping by the inclusion of self-energy effects to describe adequately
and temperature region. the spin dynamics in the presence of SRO.
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