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Theory of magnetic short-range order in the t-J model
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Institut für Theoretische Physik, Universita¨t Leipzig, D-04109 Leipzig, Germany

~Received 1 April 1998!

A spin-rotation-invariant theory of antiferromagnetic short-range order~SRO! in the two-dimensionalt-J
model is presented based on the Green’s-function projection technique for the dynamic spin susceptibility
which is divided into a local and an itinerant contribution. The SRO is incorporated in the local contribution.
By a sum-rule-conserving mean-field approximation the two-spin correlation functions of arbitrary range, the
staggered magnetization, and the uniform static spin susceptibility are calculated self-consistently over the
whole doping and temperature region. A good agreement with available exact diagonalization data at ratiosJ/t
realistic for the cuprates is found. The antiferromagnetic long-range order atT50 is destroyed at the critical
doping dc55.9% (J/t50.4) in favor of a paramagnetic phase with SRO. The maxima in the doping and
temperature dependences of the uniform spin susceptibility found in exact diagonalization studies are explained
as an effect of antiferromagnetic SRO. Comparing the theory with magnetic susceptibility experiments on
La22dSrdCuO4, a reasonable agreement in the doping dependence is obtained.@S0163-1829~98!06838-6#
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I. INTRODUCTION

The pronounced antiferromagnetic~AFM! spin correla-
tions in high-Tc superconductors probed by neutro
scattering1,2 and their unconventional magnetic propertie
such as the maximum in the doping and temperature de
dences of the normal-state magnetic susceptibility
La22dSrdCuO4 ~LSCO!,3,4 yield a challenge for a micro
scopic theory of the dynamic spin susceptibilityx(q,v;T,d)
that takes into account the AFM short-range order~SRO!.

To explain the uniform static susceptibilityx(T,d) of
LSCO, the concept of magnetic SRO was elaborated in
three-band5 and one-band Hubbard models,6 and in thet-J
model.7–9 In the one-band correlation models, the evaluat
of SRO effects within a slave-boson functional-integ
scheme atT50 ~Refs. 6,7! yields a good agreement with th
doping dependence of the low-temperature magnetic sus
tibility of LSCO.3 To calculate the SRO~two-spin correla-
tion functions! in the t-J model near half-filling, Shimahara
and Takada8,9 proposed a spin-rotation-invariant Green
function decoupling scheme introducing site-dependent
tex parameters. In Ref. 9 the lowest-order corrections bt
are considered, so that the maximum inx as a function of
doping is not reproduced. Up to now, there has been
analytical approach to thet-J model that describes both th
doping and temperature dependences of SRO and thei
fects on the spin susceptibility in accordance with expe
ments. In a previous paper,10 hereafter referred to as I, w
developed a spin-rotation-invariant theory of SRO in t
square-lattice AFM Heisenberg model based on the Gree
function projection technique for the dynamic spin susce
bility, using the decoupling scheme by Shimahara a
Takada.8,9

In this paper we extend the Green’s-function project
approach of I and present a theory of AFM SRO for thet-J
model. We focus on the two-spin correlation functions
arbitrary range and on the uniform static spin susceptibi
as functions of doping and temperature over the whole ra
of variables. In particular, we study the competition betwe
PRB 580163-1829/98/58~14!/9402~6!/$15.00
,
n-
f

e

n
l

p-

r-

o

ef-
i-

’s-
i-
d

f
y
ge
n

magnetic long-range order~LRO! and SRO atT50. Our
main goals are to compare the theory with available ex
diagonalization data and with experiments on LSCO.

II. DYNAMIC SPIN SUSCEPTIBILITY

We start with thet-J model on the square lattice writte
in terms of Hubbard operatorsXi

pq5upi&^qi u@p,qP(0,s);s
56# as

H5Ht1HJ

52t (
^ i , j &,s

Xi
s0Xj

0s1
J

2 (
^ i , j &

S SiSj2
1

4
ninj D , ~1!

with Si5
1
2 (s,s8Xi

s0tss8Xi
0s8 and ni5(sXi

ss . For the cu-
prates, realistic values ofJ/t are 0.3&J/t&0.4.11

In the projection method~cf. I!, two sets of basis opera
tors, A5(A(1), . . . ,A(n))T and B5(B(1), . . . ,B(n))T, are
chosen to calculate the two-time retarded matrix Gree
function G(v)5^^A;B1&&v . Neglecting the self-energy de
fines a generalized mean-field approximation, and we ge

G~v!5~v2M 8M21!21M , ~2!

with the spectral moments

M5^@A,B1#&, M 85^@ i Ȧ,B1#&. ~3!

To describe SRO effects in a wide doping region, t
localized-itinerant complementarity must be adequat
taken into account, which can be achieved by interpolat
between the Heisenberg limit (d50) and the low-density
limit ~free band electrons!. To this end, we exploit the rota
tional symmetry of the dynamic spin susceptibili
x12(q,v)52^^Sq

1 ;S2q
2 &&v . Thus, the equation of motion

v^^Sq
1 ;S2q

2 &&v5^^ iṠq
1 ;S2q

2 &&v permits us to separat
x12(q,v) into a local and an itinerant contribution,

x12~q,v!5xJ
12~q,v!1x t

12~q,v!, ~4!
9402 © 1998 The American Physical Society
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with

xJ,t
12~q,v!52

1

v
^^Jq

J,t ;S2q
2 &&v ; Jq

J,t5@Sq
1 ,HJ,t#. ~5!

The local and itinerant contributions predominate in t
Heisenberg and low-density limits, respectively. Both con
butions are calculated by the Green’s-function project
method employing decoupling procedures adapted to the
calized or itinerant characteristics.

First we consider the local contributionxJ
12(q,v). To

calculate the Green’s function̂̂ Jq
J ;S2q

2 &&v taking into ac-
count the AFM SRO, we choose the basis sets

A5~Jq
J ,i J̇q

J!T, B5~Sq
1 ,iṠq

1!T. ~6!

Concerning the spectral moments, we note that neglec
the self-energy~cf. I! corresponds to the approximation

2S̈2q
2 5vq

2S2q
2 , ~7!

wherevq is the spin-excitation spectrum~see below!. Then,
the second moment is given by

Mq
~2!5^@Jq

J ,2S̈2q
2 #&5vq

2Mq
~0! , ~8!

where

Mq
~0!5^@Jq

J ,S2q
2 #&528JC1,0~12gq!, ~9!

and gq5 1
2 (cosqx1cosqy). CR[Cn,m denotes the spin cor

relation function

CR5^S0
1SR

2&5
1

N (
q

^Sq
1S2q

2 &cosqR, ~10!

with R5nex1mey . Furthermore, we get Mq
(1)

5^@ i J̇q
J ,S2q

2 #&50 andMq
(3)5^@ i J̇q

J ,2S̈2q
2 #&5vq

2Mq
(1)50.

By Eq. ~2! and the moments~8! and ~9!, we obtain the
local contribution

xJ
12~q,v!52

Mq
~0!

2vq
S 1

v2vq
2

1

v1vq
D . ~11!

Calculating the spectrumvq according to Eq.~7! we take the
site representation, where2S̈i

2 contains products of thre
spin operators along nearest-neighbor sequences,
Si

2Sj
2Sl

1 , and spin-hole interaction terms, e.g.,Si
2Xj

20Xl
02

~j Þ i , lÞ i !. To approximate the spin-spin interactions, w
apply the decoupling procedure proposed by Shimahara
Takada:8,9

Si
2Sj

2Sl
15a1^Sj

2Sl
1&Si

21a2^Si
2Sl

1&Sj
2 , ~12!

where the vertex parametersa1 and a2 are attached to
nearest-neighbor and further-distant correlation functions
spectively. Compared to I, we have simplified the site dep
dence of the vertex parameters~a2

I 5a1
I [a1 , a3

I [a2!.
Decoupling the spin-hole interactions, we introduce a v

tex parameterl as follows:

Si
2Xj

20Xl
025l^Xj

20Xl
02&Si

2 . ~13!
-
n
o-

g

.g.,

nd

e-
-

r-

Following the approximation scheme of Ref. 9, we negl
the cross-correlation terms (}Jt) and thoset2 terms which
would violate the relation~7!. Finally, we obtain

vq
25~12gq!~A11A2gq!, ~14!

with

A154J2Fl n

2
2a1C1,01a2~C2,012C1,1!G

18t2@12l~n1F2,012F1,1!#, ~15!

A25216J2a1C1,0, ~16!

and the transfer amplitudesFR[Fn,m ,

FR5^X0
10XR

01&5
1

N (
k

FkcoskR, ~17!

whereFk5^Xk
10Xk

01& andn5^ni&.
Now we calculate the itinerant contributionx t

12(q,v).
By Eq. ~5! we get

x t
12~q,v!52

1

vN (
k

~ek1q2ek!Gkq~v!, ~18!

with ek524tgk and the Green’s function

Gkq~v!5^^Akq ;S2q
2 &&v ; Akq5ANXk

10Xk1q
02 . ~19!

To calculateGkq(v) we take the basisA5Akq , B5Sq
1 and

get

Gkq~v!5
M kq

~0!

v2vkq
; vkq5

M kq
~1!

M kq
~0! , ~20!

with the moments

M kq
~0!5^@Akq ,S2q

2 #&5Fk2Fk1q ~21!

andM kq
(1)5^@ iȦkq ,S2q

2 #&. Performing a Hartree-Fock decou

pling of the spin-hole interaction terms iniȦkq , we obtain

iȦkq5~ek1q2ek!Akq1Tkq

1@ekFk2ek1qFk1q12Jgq~Fk2Fk1q!#Sq
1 ,

~22!

with

Tkq52
n

2
~ek1q2ek!Akq

1
1

N (
k8

~ek81qFk2ek8Fk1q!Ak8q . ~23!

To keep the calculations tractable, the Fock term inTkq is
taken into account effectively by the approximation

Tkq52h
n

2
~ek1q2ek!Akq , ~24!

where we have introduced the decoupling parameterh. Then
we have
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vkq5S 12h
n

2D ~ek1q2ek!. ~25!

By Eqs.~18!, ~20!, and~25! we obtain the itinerant contribu
tion

x t
12~q,v!5

1

S 12h
n

2DN
(

k

Fk1q2Fk

v2vkq
. ~26!

To determine the distribution functionFk , occurring in the
local and itinerant contributions@see Eqs.~15!, ~17!, and
~26!#, from the Green’s function̂^Xk

01 ;Xk
10&&v , we use the

Hubbard I approximation12 and get

Fk5S 12
n

2D f ~Ek! ~27!

with

Ek5S 12
n

2D ek2Jn, ~28!

where f (v)5(e(v2m)/T11)21. The chemical potentialm is
given by the number condition

n5
2

N (
k

Fk . ~29!

Note that the itinerant contribution~26! vanishes in the limit
n51 (limn→1Fk5 1

2 ) and becomes the familiar Lindhar
function for n→0.

For both the local and itinerant contributions, we ha
checked that our scheme preserves the spin-rotation in
ance, i.e., for the total susceptibility we havex(q,v)
[xzz(q,v)5 1

2 x12(q,v). From Eqs.~4!, ~11!, ~9!, and~26!
we get the static spin susceptibility

x~q!52
8JC1,0

vq
2 ~12gq!1

1

S 12h
n

2D 2

N
(

k

Fk2Fk1q

ek1q2ek
,

~30!

and the two-spin correlation function

^Sq
1S2q

2 &52
4JC1,0

vq
~12gq!@112nB~vq!#

1
1

S 12h
n

2DN
(

k
~Fk2Fk1q!nB~vkq!,

~31!

wherenB(v)5(ev/T21)21. By Eqs.~10!, ~14! to ~16!, and
~31!, the correlation functionsCn,m are evaluated self
consistently.

For the determination of the decoupling parameterh and
the vertex parametersa1 , a2 , andl we employ the sum rule

C0,05^S0
1S0

2&5
n

2
. ~32!

Due to the mean-field approximations made to obtain
excitation spectra~14! and ~25!, it is inappropriate to con-
ri-

e

sider higher-order sum rules involving higher correlati
functions. Therefore, we treat only one parameter as dop
dependent.

The parametersa1 and a2 cannot be used to satisfy th
sum rule~32! with Eq. ~31! at high hole densities because f
t*J the t2 term in Eq.~15! will dominate theJ2 term at high
enough doping levels. Therefore, the influence ofa1,2 on the
local contribution tô Sq

1S2q
2 & rapidly weakens with increas

ing doping. Similarly, the parameterh in the itinerant con-
tribution of Eq.~31! does not allow to satisfy the sum rule
small doping levels, since the local contribution domina
the itinerant one there. The vertex parameterl, however,
which describes the coupling between the spin and hole
grees of freedom, is suitable to satisfy the sum rule~32! over
the whole density region. As a consequence, we fix the
rametersa1,2 andh at their values in the limitsn51 andn
→0, respectively, and takel as doping dependent.

First, we consider the undoped case,n51. In this limit,
the kinetic termHt of Eq. ~1! has no influence on physica
quantities and therefore the theory may not depend ont. By
this condition, as can be seen from Eq.~15! andFR50 for
RÞ0, we have to choosel(n51)51. Thus, then51 limit
becomes the Heisenberg limit, and Eqs.~14! to ~16! agree
with the result of I. To determine the parametersa1 anda2
in this limit, we use the sum rule and geta15a1(T). To
obtaina2(T), we take the Monte Carlo value of the groun
state energy@3C1,0520.6693J ~Ref. 13!# and, following
Ref. 8, assume the ratio@a2(T)21#/@a1(T)21#50.8530 as
temperature independent.

Considering the limitn→0, the parameterh is calculated
by a low-density expansion which, forT50, is detailed in
the next section. Thereby,h(T) turns out to be independen
of the vertex parameters.

III. MAGNETIC LONG-RANGE ORDER
VERSUS SHORT-RANGE ORDER

The critical behavior of thet-J model is reflected in our
approach by the divergence of the local contribution tox(q)
at Q5(p,p) asT→0, i.e., byvQ(T50)50 @cf. Eq. ~30!#.
Accordingly, in the phase with AFM LRO which may occu
at T50 only ~in agreement with the Mermin-Wagner the
rem! we get the conditionA15A2 @cf. Eq. ~14!# and the
spin-wave spectrum

vq
25216J2a1C1,0~12gq

2!. ~33!

To calculate the correlation functions~10! with Eq. ~31! in
the LRO phase, we separate the condensation partC, arising
from vQ50, as follows:

CR5A2
C1,0

a1
I R1C cosQR1CR

t , ~34!

where

I R5
1

N (
q
A12gq

11gq
cosqR, ~35!

with I 0,051.393 andI 1,0520.551. CR
t is the itinerant con-

tribution which results from Eq.~31! in theT50 limit mak-
ing use of vkq}Ek1q2Ek and of the identity @ f (v)
2 f (v8)#nB(v82v)5 f (v8)@12 f (v)#,
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CR
t 5FR

dR,02~11dR,0!FR

S 12h
n

2D S 12
n

2D . ~36!

By Eq. ~34! with R5(0,0) andR5(1,0) we get the nearest
neighbor correlation function

C1,052SA I 2

4a1
1

n

2
2C0,0

t 2C1,0
t 2

I

2Aa1
D 2

, ~37!

whereI 5I 0,01I 1,0, and the condensation part

C5
n

2
2C0,0

t 2A2
C1,0

a1
I 0,0. ~38!

The staggered magnetizationm is calculated from Eq.~34!
according to

m25 lim
uRu→`

^S0SR&cosQR5
3

2
C. ~39!

Finally, let us determine the parameterh at T50 in the
low-density limit. There the magnetizationm vanishes. By
Eqs.~14! to ~16! we havevq

258t2(12gq) at n50, andFR
is given byFR5n/21O(R2n2). Using Eqs.~10!, ~31! and
~36!, we expandCR up to the second order ofn:

CR52
J

t
C1,0KR1dR,0

n

2
1~hdR,021!

n2

4
1O~n3!,

~40!

with

KR5
1

N (
q

A2~12gq!cosqR. ~41!

By Eq. ~40! with R5(0,0) andR5(1,0) we get

h512
K0,0J/t

11K1,0J/t
, ~42!

whereK0,051.355 andK1,0520.198.
In Fig. 1 our results form as a function of the hole dopin

d512n are shown (m050.253). We obtain a strong sup
pression of the staggered magnetization with increasing d
ing due to spin-hole interactions, where at the critical va
dc(J/t) there is a transition from the LRO phase to a pa
magnetic phase with AFM SRO. At the ratioJ/t50.4 we get
dc55.9%, which agrees quantitatively with the value fou

FIG. 1. Staggered magnetization as a function of hole doping
different values ofJ/t.
p-
e
-

by a recent cumulant approach.14 With decreasing ratiosJ/t,
the LRO is destroyed more rapidly upon doping, where o
dc values@dc(J/t50.2)54.7%# start to deviate from those
given in Ref. 14@dc(J/t50.2)53.2%#; for more discussion
of those results, see the following section.

IV. COMPARISON WITH EXACT DIAGONALIZATION
AND EXPERIMENTAL DATA

Let us first test the validity region of the theory by com
paring our results for the spin correlation functions and
uniform static spin susceptibilityx(T,d) with exact diago-
nalization~ED! data.15–17

In Fig. 2 the doping dependence of the correlation fun
tions Cn,m @Eqs. ~10! and ~31!# at T50 andJ/t50.4 is de-
picted showing a good agreement with the ED results of R
15. The sign changes inCn,m reflect the AFM SRO. With
increasing hole doping the SRO, i.e.,uCn,mu, gradually de-
creases, and ford*0.25 only nearest-neighbor spin correl
tions survive.

Figure 3 shows the dependence ofCn,m at d50.25 on the
ratio J/t at T50. Below the physically relevant paramet
rangeJ/t.0.320.4, our results considerably deviate fro
the ED data, especially the functionsC1,0 andC1,1. In par-
ticular, at low doping our theory does not yield ferroma
netic SRO (C1,0.0) observed in ED forJ/t,0.1 andd
50.125.16 These discrepancies are likely caused by o

r FIG. 2. Spin correlation functions vs doping atT50 andJ/t
50.4 compared with ED data~d, Ref. 15!.

FIG. 3. Spin correlation functionsC1,0 ~solid!, C1,1 ~dashed!,
andC2,0 ~dotted! vs J/t at T50 andd50.25 compared with the ED
results~d! of Ref. 15~joined by the corresponding line style!.
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rough approximations made in the calculation of the itiner
properties. This may also explain the deviation of our res
for the staggered magnetization with decreasingJ/t,0.4
from those of Ref. 14. However, in the physical range ofJ/t
our theory provides a good description of SRO.

Next, we compare the spin susceptibilityx(T,d) with the
ED data of Ref. 17, available forT/t>0.1. As shown in Fig.
4, the doping dependence ofx at J/t50.3 and different tem-
peratures is correctly reproduced but for the magnitude ox.
In our approach the increase ofx upon doping is caused b
the decrease of AFM SRO~cf. Fig. 2!, i.e., of the spin stiff-
ness against orientation along a homogeneous external
netic field, where the itinerant contribution tox gradually
wins over the local one. At large enough doping, the
crease ofx with increasingd is due to the Paulilike itineran
contribution. The smooth crossover from local to itinera
behavior and the resulting SRO-induced maximum ofx at
dm(T) shifts to lower dopings with increasing temperatu
since SRO effects are less pronounced at higherT ~cf. I!.
Correspondingly, the maximum position decreases with
creasing temperature, as shown in the inset of Fig. 4, in g
agreement with the ED results. Note that thedm(T) curve at
J/t50.4 ~which is not shown! nearly coincides with that a
J/t50.3. At T50, we getdm(0)50.33, being close to the
valuedm(0).0.4 found in the slave-boson theory of SRO7

However, contrary to Ref. 7, a weak nearest-neighbor S
persists ford.dm ~cf. Fig. 2!. For comparison we note tha
the slave-boson theory of SRO for the single-band Hubb
model6 yields dm(0)50.26 atU/t58.

In Fig. 5 the temperature dependence ofx at fixed doping
is plotted. The maximum atTm(d) and the crossover to th
high-temperature Curie-Weiss behavior can be understoo
a SRO effect, in analogy to the explanation of the dop
dependence. In particular, the maximum shifts fromTm(0)
.J in the Heisenberg limit to lower temperatures with i
creasing doping, since the SRO is less pronounced at hi
doping levels.

Finally, we compare our theory with experiments
La22dSrdCuO4. First, we consider the Heisenberg mod
which describes the undoped compound La2CuO4. Deter-
mining the exchange energy, as in I, by a least-squares fi

FIG. 4. Uniform static spin susceptibility vs doping atJ/t
50.3 and different temperatures~T/t50.1: solid,T/t50.2: dashed,
T/t50.3: dotted! compared with the ED data~d! of Ref. 17~joined
by the same line style!. The inset shows the positiondm of the
maximum inx vs T together with the ED data~d, Ref. 17!.
t
ts

ag-

-

t

,

-
d

O

rd
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g

er

l

to

the neutron-scattering data for the AFM correlation lengt2

we obtain for our choice of the vertex parametersa1 anda2
the realistic valueJ5117 meV.

As revealed by neutron-scattering experiments,1 the~com-
mensurate! AFM LRO is lost at dc.2%, qualitatively
agreeing with our results shown in Fig. 1.

The experimental doping dependence of the magnetic
ceptibility exhibits a maximum atdm.0.25 over the whole
accessible temperature region, 50 K<T<400 K.3 Figure 6
compares our result forx(T,d) at 400 K andJ/t50.3 ~cor-
responding tot50.39 eV andT/t50.088! and the ED data
at T/t50.1 ~Ref. 17! with the spin contribution to the mag
netic susceptibility of LSCO at 400 K. The spin contributio
is obtained from the measured total susceptibility3 by sub-
tracting the diamagnetic core (29.931025 emu/mol) and
Van Vleck (2.431025 emu/mol) contributions, which can
be taken as independent of doping and temperature.4 The
observed maximum position is well reproduced by o
theory, which givesdm(400 K)50.22. Note that choosing
J/t50.4 ~t50.29 eV, T/t50.12! does not significantly
change thed dependence ofx. Concerning the magnitude o
x, the theoretical susceptibility is too low as compared w

FIG. 5. Uniform static spin susceptibility vsT at J/t50.3 for
different dopings~solid! compared with the ED results~dashed! of
Ref. 17.

FIG. 6. Uniform static spin susceptibility as a function of dopin
at T5400 K. The theoretical result obtained atJ/t50.3 and t
50.39 eV ~solid! is compared with the ED data atT/t50.1 ~d,
dotted line! from Ref. 17 and with the spin contribution~j! to the
~corrected! experimental susceptibility of La22dSrdCuO4 ~Refs. 3
and 4!.
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experiments, whereas the ED result lies in between. F
this we conclude that part of the discrepancy in the mag
tude of the spin susceptibility may be due to the use of
~single-band! t-J model.

Regarding the doping dependence ofx(T,d) below 400 K
(T/t,0.1), the theory yields a shift of the maximum pos
tion dm(T) towards higher values~cf. Fig. 4!, which is as-
cribed to the doping and temperature dependences of S
However, such a shift was not observed experimentally.3

The observed temperature dependence of the mag
susceptibility shows~for d&0.21! a maximum, where the
temperature of the maximum decreases with increas
doping.3 This behavior may be qualitatively explained as
SRO effect, as discussed above~Fig. 5!.

V. SUMMARY

In this paper we have developed a spin-rotation-invari
theory of antiferromagnetic short-range order in the tw
dimensional t-J model. The basic characteristics of o
theory are the following.

~i! The dynamic spin susceptibility is divided, by th
equation of motion, into a local and an itinerant co
tribution.

~ii ! Both contributions are treated by the Green’s-funct
projection technique and a generalized mean-field
proximation. For the local contribution, we choose
two-operator basis to take SRO into account.

~iii ! The SRO is described in terms of two-spin correlati
functions of arbitrary range over the whole dopin
and temperature region.
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~iv! The parameters introduced at the decoupling of
higher spectral moments are determined from the s
rule and the ground-state energy of the Heisenb
model.

Our approach provides a suitable description of pa
correlation functions and of the uniform static susceptibil
x(T,d). The main results are summarized as follows.

~i! The comparison of the two-spin correlation functio
with exact diagonalization data yields a good agre
ment but for small ratiosJ/t(&0.3).

~ii ! At T50, the antiferromagnetic long-range order
rapidly destroyed upon doping, where ford.5.9%
(J/t50.4) a paraphase with SRO appears.

~iii ! The maxima in the doping and temperature dep
dences ofx(T,d) as compared with exact diagona
ization data are well reproduced and explained
SRO effects.

~iv! Comparing the theory with magnetic susceptibili
experiments on La22dSrdCuO4, a reasonable agree
ment is found, in particular, as the doping depende
is concerned.

From the agreement of our theory with experiments
conclude that the concept of magnetic SRO may be deci
in explaining the unconventional properties of the cupra
and the superconducting pairing mechanism. Thus, our
sults support the conclusions drawn in Refs. 6 and 7. I
promising to extend the Green’s-function projection theo
by the inclusion of self-energy effects to describe adequa
the spin dynamics in the presence of SRO.
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