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Free energy of an inhomogeneous superconductor: A wave-function approach

Ioan Kosztin,* Šimon Kos, Michael Stone, and Anthony J. Leggett
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

~Received 26 March 1998!

A method for calculating the free energy of an inhomogeneous superconductor is presented. This method is
based on the quasiclassical limit~or Andreev approximation! of the Bogoliubov–de Gennes~or wave function!
formulation of the theory of weakly coupled superconductors. The method is applicable to any pure bulk
superconductor described by a pair potential with arbitrary spatial dependence, in the presence of supercurrents
and external magnetic field. We find that both the local density of states and the free energy density of an
inhomogeneous superconductor can be expressed in terms of the diagonal resolvent of the corresponding
Andreev Hamiltonian, which obeys the so-called Gelfand-Dikii equation. Also, the connection between the
well known Eilenberger equation for the quasiclassical Green’s function and the less known Gelfand-Dikii
equation for the diagonal resolvent of the Andreev Hamiltonian is established. These results are used to
construct a general algorithm for calculating the~gauge invariant! gradient expansion of the free energy density
of an inhomogeneous superconductor at arbitrary temperatures.@S0163-1829~98!05138-8#
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I. INTRODUCTION

The most interesting, and also most difficult, problems
the theory of weak coupling~BCS! superconductivity1 are
those in which the pair potential~order parameter! has both
spatial and time dependence. Examples of such problem
the electromagnetic response of superconductors,2 relaxation
phenomena and collective modes in superconductors,3 vortex
motion in bulk superconductors,4–6 quantum tunneling of
vortices,7 phase slips in quasi-one-dimensional superc
ducting wires,8–12 fluctuation effects aboveTc ,13 etc. In
principle all these phenomena can be described in the fra
work of the microscopic theory of BCS superconductivity
one of its formulations based on either Green’s function14

functional integrals,15 or the Bogoliubov–de Gennes~BdG!
equations,16 i.e., the wave function formulation. Unfortu
nately, such an approach is impractical due to formida
technical difficulties of solving the corresponding micr
scopic equations. The existence of the two well separa
energy scales in the problem, namely, the Fermi energyEF
and the magnitude of the gap functionD makes the problem
even more difficult as far as numerical calculations are c
cerned. However, if we are interested only in the low-ene
~or long wavelength! physics of superconductors then th
significant difference between these two energy scales all
us to employ the quasiclassical limit of the above mention
microscopic theories. The quasiclassical Green’s func
method17 is probably the most efficient method developed
far for solving problems involving inhomogeneous, noneq
librium superconductors. Nevertheless, this method has
own limitations too~besides the fact that it is valid only o
sufficiently long length and time scales, for example,
complicated and counterintuitive boundary conditions u
in this method need to be determined from the underly
microscopic theory, which often relies on questionable
proximations!. Therefore, it is highly desirable to develop a
effective theory of weak coupling superconductivity whi
technically is fairly simple and at the same time is gene
enough to allow for a correct description of the above m
tioned phenomena. Such an effective theory exists only c
PRB 580163-1829/98/58~14!/9365~20!/$15.00
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to the critical temperatureTc , where the superconductin
order parameter is small, and a time-dependent Ginzb
Landau~TDGL! theory is well established.18,19 Recently, at-
tempts to develop a viable TDGL theory valid at a
temperatures20–22yielded some promising results but contr
versy concerning this subject persist.23–26

So far, all derivations of TDGL theories have been do
by using Green’s functions and functional integrals. A
though these methods are suitable for describing inhomo
neous superconductors in the presence of impurities, su
currents, and electromagnetic fields, they usually resor
uncontrollable approximations during the decoupling of t
higher order Green’s functions. These approximations m
lead to unphysical solutions corresponding to states wh
cannot be described by any wave function. In fact, it
known that the Green’s function method as is usually form
lated does not provide a complete dynamical description
the superconducting system and, therefore, it needs to
extended by some extra criterion~different from a variational
principle! in order to eliminate the spurious, unphysical s
lutions from the correct one.27,28 A typical example in this
respect is related to the ground state of the superfluid H3.
Starting from the same BCS reduced Hamiltonian, one
use at least two different forms~or, equivalently, decoupling
schemes! for the second order correlation function which,
general, lead to different ground states and quasiparticle
citation spectrum:~1! Gor’kov and Galitskii29 have obtained
an isotropic ground state and excitation spectrum, wher
~2! Anderson and Morel,30 whose approach corresponds to
BCS type of second order correlation function, have obtain
an anisotropic ground state and excitation spectrum. Inter
ingly, the ground state energy corresponding to the isotro
state is lower than the ground state energy of the anisotr
state, however, the former does not correspond to any s
wave function and therefore must be rejected.27 Note that
there exist other examples as well, where the Green’s fu
tion method can lead to an unphysical ground state w
energy smaller than the one obtained by solving the co
sponding Schro¨dinger equation.27

In view of this fact it is natural to consider the wav
9365 © 1998 The American Physical Society
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9366 PRB 58KOSZTIN, KOS, STONE, AND LEGGETT
function, or BdG, formulation of weak coupling superco
ductivity to develop a TDGL theory. A first step in this re
spect is to derive an expression for the free energy functio
for an inhomogeneous superconductor in the tim
independent~stationary! situation. Such a derivation is th
subject of the present work. In this paper we presen
method for calculating the free energy density of an inhom
geneous superconductor by employing the quasiclass
limit of the wave function formulation of the theory of su
perconductivity. The method is applicable to any pure b
superconductor described by a pair potential with arbitr
spatial dependence, in the presence of supercurrents an
ternal magnetic field. We show that neither the eigenval
nor the corresponding eigenfunctions of the BdG Ham
tonian are needed to calculate the free energy density, w
can be expressed solely in terms of the diagonal resolven
the corresponding Andreev Hamiltonian, resolvent wh
obeys the so-called Gelfand-Dikii equation.31 One of the
main features of our method is that it provides a rat
simple and systematic way to derive the~gauge invariant!
gradient expansion of the free energy density at arbitr
temperatures.

The BdG method has been applied previously in the
erature to study the physical properties of inhomogene
superconductors. The first attempt in this respect has b
undertaken by the Orsay group.32,16 They have determined
by solving the BdG equations in the quasiclassical~WKBJ or
Andreev! approximation the low-energy excitations in th
core of an isolated vortex. Also, de Gennes16 has shown that
close toTc the BdG equations can be solved by employi
the Rayleigh-Schro¨dinger perturbation theory and as a res
one obtains the Ginzburg-Landau~GL! equations.
Mathews34 has also developed a systematic method of so
ing the BdG equations within the WKBJ approximatio
which he applied to study the normal-superconductor bou
ary in the intermediate state. Later on, he used the B
method to address the subtle issue of quasiparticle, ch
and energy conservation in weak-coupling sup
conductors.35 Mathews’ method has been further extend
by Bardeenet al.33 ~BKJT! in their systematic and detaile
analysis of the structure of an isolated vortex core. BK
assumed a variational form for both the pair potential and
vector potential and the variational parameters have been
termined by minimizing the corresponding free energ
Clearly36 applied the theory of BKJT in the vicinity of su
perconducting transition temperatureTc and, quite surpris-
ingly, besides the expected Ginzburg-Landau terms in
free energy functional he obtained several anomalous te
as well. These findings have been received with great inte
by the superconductivity community and several auth
have tried to explain the origin of these anomalous term37

As a result of these research efforts it has been found
apart from the vortex problem anomalous terms in the f
energy density also appear in other problems involving in
mogeneous superconducting systems, such as the hea
length problem,38,39 the N-S proximity junction problem,40

etc. Soon after the original work of Bar-Sagi and Kuper41

who managed to find analytically a self-consistent solut
of the BdG equations in the Andreev approximation~i.e., the
Andreev equations! by using a model pair potentialD(z)
}tanh(az), an intense search has been started to disco
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other, practically more useful pair potentials which are se
consistent solutions of the corresponding Andre
equations.42–44 In fact the existence of these self-consiste
pair potentials are related to the supersymmetric propert
the properly transformed Andreev Hamiltonian~see Sec. V!
where the pair potential has the role of superpotential.45 In
can be shown that whenever the pair of potential energ
generated by the superpotential are shape invariant the e
states of the corresponding supersymmetric Hamiltoni
can be determined analytically by means of simple harmo
oscillator such as operator algebra. Apparently this sim
but rather important observation has not been recognize
the literature. The problem of anomalous terms in the gra
ent expansion of the free energy density has been recon
ered by Hu46 and Eilenberger and Jacobs43 ~EJ! by using the
exact self-consistent solution of certain inhomogeneous
perconducting systems. These authors demonstrated tha
actual origin of these anomalous terms are related to sur
terms and terms originating from the possible discontinuit
of the pair potential or its derivatives. EJ have also dev
oped a beautiful theory for calculating the free energy d
sity of a quasi-one-dimensional inhomogeneous superc
ductor in the clean limit and in the absence of supercurre
and magnetic field. Also, in a recent work Waxman47 starting
from the Fredholm~functional! determinant expression o
the free energy of an inhomogeneous superconductor
shown that the later can be expressed in terms of the de
minant of a finite 434 matrix. However, no viable metho
for calculating this determinant has been proposed.

The paper is organized as follows. We begin with a br
review of the BdG method of superconductivity~Sec. II!.
Next, we express the free energy of a bulk superconducto
terms of the spectrum of the BdG Hamiltonian and the d
tribution function of the quasiparticles~Sec. III!. The quasi-
classical~Andreev! approximation and the expression of th
free energy in this limit are presented in Sec. IV. Next,
using the wave function formulation of the theory of supe
conductivity, we describe two different methods for calcul
ing the free energy density and the local density of state
an inhomogeneous superconductor. Both methods are b
on expressing the free energy density of the supercondu
in terms of the diagonal resolvent of the so-called Gelfa
Dikii equation. The first method, which is applicable only
the absence of the magnetic field and for a real pair poten
with arbitrary spatial dependence, is presented in Sec
while the second method, which is more general and ap
cable for superconductors in the presence of supercurr
and magnetic field, is presented in Sec. VI. Finally, Sec.
is reserved for conclusions. Also, the derivation of bothsca-
lar and matrix Gelfand-Dikii equations, which play a ke
role in our calculations of the free energy, are provided
two appendixes.

II. THE BOGOLIUBOV –de GENNES EQUATIONS

The Bogoliubov–de Gennes~BdG!, or wave function,
formulation of the microscopic theory of weak coupling s
perconductors represents an attractive alternative to
widely used Green’s function and functional integral me
ods. The BdG method is conceptually simple, requires o
knowledge of elementary quantum mechanics, yet it is g
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eral and powerful. In what follows we apply this method
evaluate the free energy density of an inhomogeneous
ventionals-wave superconductor.

Mainly to establish notations, we begin with a brief r
view of the basic equations of the BdG method.16 Consider a
pure bulk superconductor in the presence of a static magn
field. The system is described by the effective mean fi
Hamiltonian16

Heff5E d3rFcs
†~r!H0~r!cs~r!1D~r!c↑

†~r!c↓
†~r!

1D* ~r!c↓~r!c↑~r!1
uD~r!u2

V G , ~2.1!

where D~r! is the ~mean-field! pair potential, V is
the Gor’kov contact pairing interaction@i.e., V(r2r8)
5Vd(r2r8)#, the field operatorscs(r) and cs

†(r) destroy
and create, respectively, an electron at positionr with spin
orientations5↑,↓, and obey the usual fermionic anticom
mutation relations

$cs~r!,cs8~r8!%50, $cs
†~r!,cs8

†
~r8!%50,

~2.2!
$cs~r!,cs8

†
~r8!%5dss8d~r2r8!,

and, finally, the kinetic energy operator, measured with
spect to the Fermi energyEF , is given by

H0~r!5
1

2m S p̂2
e

c
AD 2

2EF , p̂52 i\¹, ~2.3!

where the vector potentialA~r! is related to the total mag
netic fieldH~r! through the equationH(r)5¹3A(r). In Eq.
~2.1!, and throughout this paper, implicit summation ov
repeated spin or pseudospin indices is assumed.

The effective Hamiltonian~2.1! can be diagonalized by
using the Bogoliubov transformations16

c↑~r!5(
i

@ui~r!g i↑2v i* ~r!g i↓
† #,

~2.4!

c↓~r!5(
i

@ui~r!g i↓1v i* ~r!g i↑
† #,

where i labels a complete set of quantum states in the
evant Hilbert space, theg andg† are the Bogoliubov quasi
particle annihilation and creation operators, respectively,
satisfy the fermionic anticommutation rules

$g ia ,g j b%50, $g ia ,g j b
† %5d i j dab . ~2.5!

The Bogoliubov amplitudesui andv i ought to be determined
by the condition that the transformations~2.4! diagonalize
Heff ; they obey the so-called Bogoliubov–de Gennes~BdG!
equations16 which can be written in compact form

HBdGC i~r![S H0~r! D~r!

D* ~r! 2H0* ~r! DC i~r!5EiC i~r!,

~2.6!

whereC i[(ui ,v i)
T is a pseudospinor in particle-hole spac

Thus, the pair potential mixes coherently the particle a
n-

tic
d

-

r

l-

d

.
d

hole states and, as a result, the Bogoliubov quasiparti
have a mixed particle and holelike character. After diagon
ization, Eq.~2.1! reads

Heff5Eg1(
i

Eig ia
† g ia , ~2.7!

where the ground state energy is given by

Eg522(
i

EiE d3ruv i~r!u21E d3r
uD~r!u2

V
. ~2.8!

According to the expression~2.7! our system is equivalent to
an ‘‘ideal gas’’ of Bogoliubov quasiparticles with energie
Ei , which are the eigenvalues of the BdG equations~2.6!.
For an arbitrary pair potentialD~r! the eigenvalue problem
determined by Eq.~2.6!, subject to suitable boundary cond
tions, is difficult to solve even numerically.

III. FREE ENERGY

By definition, the free energy is given by48

F5^Heff&2TS1FH , ~3.1!

whereS is the entropy, and

FH5E d3rFH~r!, FH~r!5
uH~r!2Hau2

8p
, ~3.2!

is the positive magnetic field exclusion energy due to
screening supercurrents induced by the applied fieldHa .
Also, we have assumed that the temperature distribu
across the system is homogeneous. The notation^¯&
[Tr$r̂¯% indicates the average over some statistical
semble described by the density matrixr̂. In thermal equi-
librium

r̂5
exp~2Heff /T!

Tr$exp~2Heff /T!%
. ~3.3!

One defines the mean occupation number of level ‘‘i ’’ cor-
responding to spin orientationa by

f ia5^g ia
† g ia&, ~3.4!

and one assumes that there is no magnetic ordering in
system such that both spin orientations are equally like
i.e.,

f i[ f i↑5 f i↓ . ~3.5!

It is known that the entropy of an ideal gas of fermion
~quasi!particles, which is not necessarily in equilibrium, ca
be expressed in terms of the mean occupation numberf i
as49

S522(
i

@ f i ln f i1~12 f i !ln~12 f i !#, ~3.6!

where the factor of 2 accounts for the two independent s
orientations.

Thus, inserting Eqs.~2.7!, ~3.4!, ~3.6! into Eq. ~3.1!, the
free energy of the system, which is a functional of the p
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potentialD~r!, the mean occupation numbersf i , and the vec-
tor potentialA~r!, can be written as

F@D~r!, f i ,A~r!#

[F5Eg12(
i

Ei f i

22T(
i

@ f i ln f i1~12 f i !ln~12 f i !#1FH .

~3.7!

In thermodynamic equilibrium one requires the free ene
to be stationary with respect toD, f i , andA. Hence, station-
arity with respect to~i! the pair potential yields the so-calle
gap equation~i.e., the self-consistency condition for the pa
potential!

D~r!5V~r!^c↑~r!c↓~r!&5V(
i

ui~r!v i* ~r!~122 f i !,

~3.8!

~ii ! the mean occupation number of the statei ~for either two
spin orientations! yields the usual Fermi distribution functio

f i5@exp~Ei /T!11#21, ~3.9!

and ~iii ! the vector potential yields the Maxwell equation

¹3@¹3A~r!#5
4p

c
j~r!, ~3.10!

where the supercurrent density is given by

j~r!52
e

m
Re (

i
@ f iui* ~r!P̂ui~r!

1~12 f i !v i~r!P̂v i* ~r!#, P̂[p̂2
e

c
A~r!.

~3.11!

In the absence of the magnetic field, the BdG equations~2.6!
together with Eqs.~3.8! and ~3.9! yield the standard BCS
result corresponding to a uniform and real pair poten
D(r)5D0 ; the eigenstatesi are plane wave statesuk& and

Ek5Ajk
21D0

2, jk5
\2k2

2m
2EF

uk5A1

2 S 11
jk

Ek
D , vk5A1

2 S 12
jk

Ek
D , ~3.12!

1

VN0
5E

0

vc
djk

tanh~Ek/2T!

Ek
52pT (

vn.0

vc

~vn
21D0

2!21/2,

whereN0 is the normal state density of states~for both spin
orientations! at the Fermi level,vc is a cutoff frequency of
the order of the Debye frequency, andvn5pT(2n11) are
fermionic Matsubara frequencies.

In what follows we will be interested in calculating th
free energyF for a spatially varying pair potential and mag
netic field which do not necessarily obey the self-consiste
equations~3.8! and ~3.10!, ~3.11!. For the moment, we as
y

l

y

sume that the relation~3.9! is valid but, later on, we will
relax this condition as well~see Sec. V D!. So, we consider a
superconductor in which the quasiparticles are in therm
equilibrium but the pair potential and the magnetic field m
have an arbitrary spatial variation. In this case the expres
of the free energy can be further simplified. Inserting E
~3.9! into Eq. ~3.7!, and by taking into account Eq.~2.8!,
after some straightforward algebra one obtains

F522T(
i

lnS 2 cosh
Ei

2TD1E d3r
uD~r!u2

V
1FH .

~3.13!

Apparently, in order to calculate the free energy~3.13! it is
necessary to know the spectrum$Ei% of the BdG Hamil-
tonianHBdG for a given pair potentialD~r! ~and boundary
condition!. Fortunately, this is not the case as several auth
have already shown,47,43 albeit in the absence of any mag
netic field and by assuming thatD~r! depends only on a
single spatial coordinate. Indeed, by employing the identit50

cosh2S x

2D5 )
m52`

` F11
x2

p2~2m11!2G , ~3.14!

the free energy~3.13! can be recast as

F522T(
i

lnS 2 )
vm.0

vm
2 1Ei

2

vm
2 D 1E d3r

uD~r!u2

V
1FH ,

~3.15!

wherevm are fermionic Matsubara frequencies. The form
divergence of the above expression of the free energy ca
eliminated by subtracting fromF ~i.e., by measuringF with
respect to! the free energyFN of the corresponding norma
state. Thus, by denotingdF[F2FN , we have

dF522T(
i

ln )
vm.0

vm
2 1Ei

2

vm
2 1e i

2 1E d3r
uD~r!u2

V
1FH

522T (
vm.0

ln DetS vm
2 1H BdG

2

vm
2 1H 0

2 D
1E d3r

uD~r!u2

V
1FH , ~3.16!

whereH0 is the BdG Hamiltonian corresponding to the no
mal state of the system~i.e., D50), and $e i% denote the
spectrum ofH0 .

Waxman47 has shown that the infinite Fredholm~func-
tional! determinant in Eq.~3.16!, which contains in an en-
capsulated form all the information on the one-particle ex
tation spectrum of the superconductor, can be expresse
least in the case of a quasi-one-dimensional inhomogene
superconductor and in the absence of the magnetic field
terms of a finite 434 matrix M . However, the actual evalu
ation of this matrixM (x), which transports eigenfunction
of HBdG from x50 to x5L (L is the size of the system in
the relevantx direction! is quite complicated and analytica
results are possible only for layered systems with a piecew
constant pair potential. In the work by Eilenberger a
Jacobs43 the Fredholm determinant is calculated in terms o
function E(x) which obeys an integral equation of Volterr
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type. This method seems to be somewhat simpler than W
man’s and allows for analytical results~in the quasiclassica
limit ! in several nontrivial cases and, furthermore, provide
viable procedure to obtain the gradient expansion of the
energy density about its equilibrium value.

In contrast to both above mentioned methods, which
only applicable whenD~r! varies along a given direction, in
the absence of any external field, and with the Bogoliub
quasiparticles in thermal equilibrium with the supercondu
ing condensate, our method of calculating the free energ
an inhomogeneous superconductor is valid for an arbitr
D~r!, in the presence of an arbitrary static magnetic field, a
it can be generalized for an arbitrary distribution functionf i
of the quasiparticles. Our method is based on thequasiclas-
sical approximationof the BdG equations which we describ
next.

IV. QUASICLASSICAL „ANDREEV … APPROXIMATION

Superconductors are characterized by two different
ergy scales, namely, the Fermi energyEF and the amplitude
of the pair potential~gap function! D0 at zero temperature
The length scales corresponding to these energies are
Fermi wavelengthlF;kF

21;\vF /EF which gives the mean
inter-particle distance in the system, and the superconduc
coherence lengthj0;\vF /D0 which determines the spatia
extent of the pair correlation. Since in conventional sup
conductorsEF@D0 ~or lF!j0), as long as we are intereste
only in the low-energy~or long wavelength! properties of the
system it is legitimate to employ the quasiclassical appro
mation of the theory of superconductivity. The BdG equ
tions are valid on atomic scale and therefore the spinor w
functionsC i(r), which vary on a length scale set bykF

21 ,
contain more information than it is necessary to calculate,
example, the free energy and free energy density of an in
mogeneous superconductor. In general, this excess of in
mation is eliminated at the end of the calculations by in
grating out the irrelevant high-energy~of rapidly oscillating!
degrees of freedom. A more practical approach is, howe
to eliminate these irrelevant degrees of freedom right at
beginning of the calculations by replacing the BdG equati
by their quasiclassical limit, i.e., the so-called Andre
equations.51 For this purpose, one writes the spinor wa
function C i as a rapidly oscillating phase factor~which
changes on atomic length scale! times a slowly varying am-
plitude~which changes on a length scale set by the cohere
length!, i.e.,52

C i~r!'Fn~r;û!exp~ ikFûr!. ~4.1!

Thus, in the quasiclassical approximation, the quasiparti
are moving along classical trajectories which are strai
lines determined by the unit vectorû and the ‘‘impact pa-
rameter’’ r' ~which gives the distance of the quasiclassi
trajectory from the origin of the coordinate system!; the po-
sition vector in Eq.~4.1! reads

r5xû1r' , ~4.2!

where the impact parameter vectorr' is normal toû. Nev-
ertheless, the motion along the quasiclassical trajectorie
quantized and the corresponding eigenstates are labele
x-

a
e

re

v
-
of
ry
d

-

the

ng

r-

i-
-
e

r
o-
r-
-

r,
e
s

ce

s
t

l

is
in

Eq. ~4.1! by the quantum numbern. So, in the quasiclassica
approximation the statei is specified by the quantum numbe
n and the continuously varying parametersû and r' which
uniquely determine the position of the trajectory. Hence,
trace with respect to the original statesi must be evaluated
according to the formula

(
i

¯5p\vFN0E d2r'E dV û

4p (
n

¯ . ~4.3!

Furthermore, we have~for brevity we omit the arguments!

¹2C i5~¹2Fn12ikFû¹Fn2kF
2Fn!exp~ ikFûr!, ~4.4!

and therefore, by using Eq.~2.3! in zero magnetic field, one
obtains

H0C i52
\2

2m
~¹2Fn12ikFû¹Fn!exp~ ikFûr!

'vFû•~ p̂Fn!exp~ ikFûr!, ~4.5!

where we have neglected the term involving the Laplacian
Fn ~Andreev approximation! because

U ¹2Fn

kFû¹Fn
U;~kFj0!21!1. ~4.6!

According to the notion of minimal coupling, in finite mag
netic field in Eq. ~4.5! one needs to replacep̂ with P̂5p̂
2(e/c)A.

Note that condition~4.6! may not hold for a small fraction
of the total number of quasiclassical trajectories charac
ized by û oriented almost perpendicular to¹Fn . The An-
dreev approximation also fails in spatial regions where
pair potential~and/or its derivatives! has discontinuities, e.g.
at interfaces, boundaries, etc. These nonanalyticities inD~r!
reflect the fact that in such regions the pair potential chan
rapidly on atomic scale. Within the quasiclassical appro
mation this kind of behavior ofD~r! can be described by
~nonintuitive! effective boundary conditions which must b
derived starting from the underlying microscopic theo
which is valid on atomic scale. It seems to be well esta
lished by now that if one does not account properly for t
possible discontinuities in the pair potential~and or its de-
rivatives! these can lead to unphysicalanomalousterms
in the corresponding Ginzburg-Landau free ener
functional.36,40,43

Finally, inserting Eq.~4.1! into the BdG equations~2.6!
and by taking into account Eq.~4.5!, one arrives at the so
called Andreev equations51

HAFn~r![S H~x! D~x;û,r'!

D* ~x;û,r'! 2H* ~x!
D Fn~x;û,r'!

5En~ û,r'!Fn~x;û,r'!, ~4.7!

where

H[H~x!5vFû•S p̂2
e

c
AD52 i\vF]x2vF

e

c
û•A~x!.

~4.8!



io
n

y

p
to
p

il

ol
nd

r
an
a

f s
io
ai
r
ui
rg

n
th

ee

g
os

e

a

n-
ic
e in-
f

re-

e

nc-
ne

9370 PRB 58KOSZTIN, KOS, STONE, AND LEGGETT
Note that in Eq.~4.8! only the directional derivativeû•¹
enters which is equivalent to the ordinary derivative]x along
the quasiclassical trajectory. Hence, the Andreev equat
~4.7!, ~4.8! are effectively one dimensional; the independe
variable isx ~the position along the quasiclassical trajector!,
and the other degrees of freedom (û,r') enter the equation
~and, therefore, the eigenvaluesEn and eigenfunctionsFn)
only as parameters through the spatial dependence of the
potentialD~r!. This is a key observation which allows us
treat inhomogeneous superconductors characterized by a
potential with arbitrary spatial dependence.

In terms of the energy spectrum of the Andreev Ham
tonian HA the free energydF can be written as@cf. Eq.
~3.16!#

dF522Tp\vFN0E d2r'E dV û

4p

3(
n

ln )
vm.0

vm
2 1En

2~ û,r'!

vm
2 1en

2~ û,r'!

1E d3r
uD~r!u2

V
1FH

522Tp\vFN0E d2r'E dV û

4p

3 (
vm.0

ln DetS vm
2 1H A

2

vm
2 1H 0

2 D 1E d3r
uD~r!u2

V
1FH .

~4.9!

In the above expression of the free energy the Fredh
determinant involves only the quantum states along an i
vidual quasiclassical trajectory.

In what follows we derive a relatively simple formula fo
calculating the logarithm of the above Fredholm determin
and, consequently, the free energy. We begin with the c
of an inhomogeneous superconductor in the absence o
percurrents and magnetic field, where the Andreev equat
can be decoupled and, therefore, the calculations are f
simple. The more complicated case of a superconducto
the presence of the magnetic field and supercurrents req
a completely different method for calculating the free ene
density. This method is presented in Sec. VI.

V. SUPERCONDUCTOR IN ZERO MAGNETIC FIELD

A. Free energy

A key step in our derivation of the free energy of a
inhomogeneous superconductor in zero magnetic field is
observation, due originally to Bar-Sagi and Kuper,41,53 that
the square of the Andreev Hamiltonian~4.7!, ~4.8! can be
diagonalized and, therefore, the corresponding Andr
equations for the spinor wave functionFn decouple into two
independent Schro¨dinger-like equations. Indeed, by droppin
all the arguments for brevity, and assuming without any l
of generality a real pair potential, one can write
ns
t

air

air

-

m
i-

t
se
u-

ns
rly
in
res
y

e

v

s

VA[H A
2 5S H21D2 @H,D#

2@H,D# H21D2D
5S 2\2vF

2]x
21D2 2 i\vF~]xD!

i\vF~]xD! 2\2vF
2]x

21D2D , ~5.1!

VA can be brought to diagonal form by employing th
unitary transformation

U5
1

&
S 1 1

i 2 i D , U †5U215
1

&
S 1 2 i

1 i D , ~5.2!

i.e.,

VA8 5U21VAU5S H1 0

0 H2
D , ~5.3!

where

H65H21D26\vFD852\2vF
2]x

21D26\vF~]xD!.
~5.4!

Thus, the spectrum ofH A
2 is given by the combined spectr

of the two independent one-dimensional Schro¨dinger-like
operatorsH6 .

It is worthwhile noticing that the HamiltonianVA8 is su-
persymmetric ~SUSY! with D(x) playing the role of
superpotential.45 In the language of SUSY quantum mecha
ics, H1 and H2 correspond to the fermionic and boson
sectors, respectively, and supersymmetry means that th
terchange of these two sectors ofVA8 leaves the dynamics o
the system unchanged. The most useful properties which
sult from the SUSY of the HamiltonianVA8 can be summa-
rized as follows.54,45,55

~1! The HamiltoniansH6 can be expressed in terms of th
ladder operators

Q[2\vF]x1D, Q†5\vF]x1D, ~5.5!

as

H15Q†Q, H25QQ†. ~5.6!

~2! The Hamiltonians H6 are positive-semidefinite
isospectral~up to a zero mode! operators, i.e.,

H6f6,n5En
2f6,n , ~5.7!

where the eigenfunctionsf1,n andf2,n are related through

f2,n5
1

uEnu
Qf1,n , f1,n5

1

uEnu
Q†f2,n , uEnu.0.

~5.8!

~3! The pairing of the eigenstates ofH6 fails whenEn
50. A zero mode~eigenstate with zero energy! exists when-
ever one of the wave functions

f6,05N expS 6Ex

dyD~y! D ~5.9!

is normalizable. Since at most one of the above wave fu
tions is normalizable it is clear that one may have only o
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zero mode belonging to the spectrum of eitherH1 or H2 .
Indeed, assuming, e.g., thatf1,0 exists, i.e.,H1f1,050,
then

^f1,0uH1uf1,0&5^f1,0uQ†Quf1,0&

5iQuf1,0&i50⇒f2,0}Qf1,050,

and similarly in the opposite case. The necessary condi
that one off6,0 to be normalizable is thatD(x) has different
signs atx56` along the corresponding quasiclassical t
jectory. While for conventionals-wave superconductors thi
condition is difficult to be met in zero magnetic field,56 in the
case of, e.g., unconventionald-wave superconductorsD(x)
can have different signs at the two opposite sides of a q
siclassical trajectory which connects two different lobes
the order parameter.57–59 When the zero mode is absent w
say that supersymmetry is spontaneously broken and
ground state ofVA8 is degenerate~for a given û and r').
When the zero mode exists one has a good SUSY and
zero mode is the ground state ofVA8 .

~4! Probably the most useful feature of SUSY quantu
mechanics is that it allows us to calculate analytically b
the spectrum and the eigenfunctions of the partner Ham
niansH6 by means of simple algebraic manipulations, p
vided that the partner potentialsU6(x;a0)[D2(x;a0)
6\vFD8(x;a0) are shape invariant,60 i.e., when they obey
the condition45

U1~x;a0!5U2~x;a1!1R~a1!, ~5.10!

where a1 is a new set of parameters uniquely determin
from the old onesa0 via the mappinga15F(a0), and the
residual termR(a1) is independent ofx. A few examples of
superpotentials which yield shape invariant potenti
U6 are ~i! D(x;a0)}a0 tanh(hx), ~ii ! D(x;a0)}1
1a0 exp(2hx), ~iii ! D(x;a0)}a0 /@11exp(2hx)#, and ~iv!
D(x;a0)}a0(11hx). For all these model pair potentials th
eigenstates of the Andreev Hamiltonian can be determi
analytically by using the machinery of SUSY quantu
mechanics.45 Once the eigenstates ofHA have been deter
mined it is possible to evaluate numerically the value of
parameterh by imposing the self-consistency conditio
~3.8!. Successful calculations along this line have been
ported by Bar-Sagi and Kuper41,53 for the pair potential~i!,
by Clinton42 for case~ii !, and by Eilenberger and Jacobs43

for cases~iii !, ~iv!. Of course, in principle, it is possible t
obtain analytical results for all known nontrivial superpote
tials @i.e.,D(x) in our case# which lead to shape invariant~or
factorizable, in the language of Infeld and Hull61! potentials
U6(x) with the possibility of even satisfying the sel
consistency~gap! equation~3.8!. Unfortunately none of these
‘‘super’’ pair potentials correspond to real physical situatio
and, therefore, we will not pursue here this issue in any
ther details. Nevertheless, it is fair to recognize the poten
usefulness of the application of SUSY quantum mechanic
the study of inhomogeneous superconductors within
framework of the Andreev approximation, a fact which
our knowledge has not been fully realized so far in the
erature.

Before proceeding any further it is useful to introdu
new units for lengthL[\vF /D0;j0 , and for energyE
n

-

a-
f

he

he

h
-

-

d

s

d

e

-

-

s
r-
al
in
e

-

[D0 , whereD0 is a suitably chosen constant pair potenti
e.g., the equilibrium BCS gap parameter at the conside
temperatureT. One can expressH6 in these new units by
performing the following transformations in Eq.~5.4!: x
→xL, D→DD0 , andH6→H6D0 ; one obtains

H65H21D26D852]x
21D26]xD. ~5.11!

It is also convenient to measure the free energy densit
units ofN0D0

2 . We shall use these units throughout this se
tion, except where otherwise stated.

In what follows, the fact thatH6 are supersymmetric will
play no special role. The important thing is thatH6 are
decoupled and Schro¨dinger-like.

Now we introduce the diagonal resolventsR6 of the op-
eratorsH6 which will play the central role in our method fo
evaluating the free energy of an inhomogeneous super
ductor in zero field. By definition

R6~x;l![R6~x;l;û,r'!52^xu~l2H6!21ux&.
~5.12!

Hence

E
2`

`

dxR~x;l!52(
n

1

l2En
2 , ~5.13!

and a similar relation holds forR0 corresponding to the ref
erence state described by the HamiltonianH0 . In Eq. ~5.13!
we have used the shorthand notation

R[R11R2 . ~5.14!

Next, one integrates both sides of Eq.~5.13! with respect to
the spectral variablel

El

dlE
2`

`

dxR~x;l!52(
n

lnul2En
2u1const.

~5.15!

The integration constant on the right-hand side~RHS! of Eq.
~5.15! can be eliminated by subtracting from this equati
the one corresponding to the reference state. By introduc
the notation

dR[R2R0 , ~5.16!

we get

E
2`

l

dlE
2`

`

dxdR~x;l!52(
n

lnUl2En
2

l2en
2U. ~5.17!

Finally, by settingl52vm
2 in this last equation, the loga

rithm of the Fredholm determinant in Eq.~4.9! can be writ-
ten in terms of the diagonal resolventdR as

ln DetS vm
2 1H A

2

vm
2 1H 0

2 D 5(
n

lnS vm
2 1En

2

vm
2 1en

2 D
52E

2`

2vm
2

dlE
2`

`

dxdR~x;l!.

~5.18!

Thus, the free energy~4.9! becomes
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dF52TpE d2r'E dV û

4p (
vm.0

E
2`

2vm
2

dl

3E
2`

`

dxdR~x;l;û,r'!1E d3r
@D~r!#2

V
,

~5.19!

where, for clarity, we have listed all the arguments of t
diagonal resolvent.

Now the free energy density

dF5
d~dF!

d3r
5

d~dF!

dxd2r'

, ~5.20!

as a functional of the inhomogeneous pair potential, can
readily extracted from Eq.~5.19!

dF[dF@D~r!#5K 2pT (
vm.0

E
2`

2vm
2

dldRL 1
@D~r!#2

V
,

~5.21!

where ^¯&5*dV û/4p¯ means averaging over the dire
tions of the quasiclassical trajectories. Note that the o
difference between the cases, when the pair potential
pends only on one coordinate and when it has an arbitrar
dependence, is that in the former case the diagonal reso
does not depend on the impact parameterr' whereas in the
latter case it does. The above expression of the free en
density does not contain explicitly either the eigenvalues
the eigenfunctions of the Andreev HamiltonianHA . All the
information about the superconductor is encapsulated in
diagonal resolventdR which, however, needs to be dete
mined first in order to make Eq.~5.21! useful.

Since R6 are the diagonal resolvents of the on
dimensional Schro¨dinger operatorsH652]x

21U6 , with
U65D26D8, they obey the so-called Gelfand-Dik
equation62,31

22R6R69 1R68
214R6

2 ~U62l!51. ~5.22!

For completeness a simple derivation of this equation is p
vided in Appendix A~see also Ref. 63!. Equations~5.21! and
~5.22! tell us that the free energy density of an inhomog
neous superconductor can be expressed solely in terms o
solution of a nonlinear second order ordinary different
equation. Unfortunately the Gelfand-Dikii equation cann
be solved analytically for an arbitrary pair potential. How
ever, both the diagonal resolvent and the free energy den
can be calculated numerically once some appropriate bo
ary conditions have been specified. In this respect
method of calculatingdF is similar to the ones considered b
Waxman47 and Eilenberger and Jacobs.43 However, while
their methods are applicableonly to superconductors de
scribed by a pair potential which depends on a single spa
coordinate and in the absence of supercurrents and mag
field, our method is valid for pair potentials witharbitrary
spatial dependence, at any temperature and in the presen
supercurrents and magnetic field~see Sec. VI!. Another im-
portant feature of our approach is that it provides a sim
and systematic way for obtaining the gradient expansion
dF for an inhomogeneous superconductor withD~r! varying
slowly on a length scalel @j0 .
e

ly
e-

nt

gy
r

e

-

-
the
l
t

ity
d-
r

al
tic

e of

e
f

B. Gradient expansion

For the normal state the pair potentialU650, and Eq.
~5.22! yields

R0,65
1

2A2l
. ~5.23!

For an arbitrary pair potential the general solution of t
Gelfand-Dikii equation ~5.22! can be sought as a
asymptotic series expansion

R6~x;l!5
1

2 (
k50

`

Rk
6~x!~D22l!2k21/2, ~5.24!

whereD[D(x) is the pair potential of the inhomogeneou
superconductor, andRk

6(x) are expansion coefficients whic
ought to be determined. For the uniqueness~up to a sign! of
this expansion see, e.g., Ref. 31. Equation~5.24! is the main
ingredient in our derivation of the gradient expansion ofdF.
Our strategy is to express firstdF in terms of Rk

6(x), k
50,1,..., andthen to evaluate these expansion coefficien
The latter task can be accomplished in a systematic way
inserting Eq.~5.24! into the Gelfand-Dikii equation~5.22!
and equating the coefficients of the different integer pow
of z[D22l in the resulting equation. Although this metho
can be used to derive a cumbersome analytical expressio
the recursion relation obeyed by the coefficientsRk

6(x), in
practice it is more convenient to carry out the calculations
employing a computer software which is suitable for soph
ticated symbolical calculations, such asMATHEMATICA .64

It is easy to see that the first coefficientR0
651. Clearly,

for the normal stateR0,0
6 51 and the rest of the coefficient

vanish identically@cf. Eqs. ~5.23! and ~5.24!#, i.e., R0,k
6 50,

k51,2,... . Thus, if one definesdRk[Rk
11Rk

2 , k51,2,...,
one can write

dR~x;l!5S 1

AD22l
2

1

A2l
D

1
1

2 (
k51

`

dRk~x!~D22l!2k21/2, ~5.25!

and

E
2`

2vm
2

dldR~x;l!5E
2`

2vm
2

dlS 1

AD22l
2

1

A2l
D

1
1

2 (
k51

`

dRk~x!E
2`

2vm
2 dl

~D22l!k11/2

52~ uvmu2Avm
2 1D2!

1
1

2 (
k51

`
dRk~x!

~k21/2!~vm
2 1D2!k21/2.

~5.26!

Inserting Eq.~5.26! into Eq. ~5.21! yields
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dF54pT (
vm.0

~ uvmu2Avm
2 1D2!1

D2

V

1K (
k51

` F2pT (
vm.0

~vm
2 1D2!2k11/2G dRk~x!

2k21 L .

~5.27!

The first two terms on the RHS of Eq.~5.27! give the well
known bulk term contribution to the free energy density
the superconducting state with respect to the normal s
while the third term gives the actual gradient expansion
term of asymptotic power series of the derivatives of the r
pair potentialD(x).

Following the above mentioned strategy for calculati
the expansion coefficientsR6 , we wrote aMATHEMATICA

code which evaluates analytically, in a systematic fash
these coefficients. Here we apply our results to calculate
gradient expansion ofdF up to the fourth order terms, i.e.

dF'dF01dF21dF4 , ~5.28!

wheredF0 is given by the first two terms on the RHS of E
~5.27!. SincedR150 there is no first order correction todF.
In fact one can easily show, based on symmetry argume
that all odd order contributions to the gradient expans
vanishes identically. This does not mean, of course, tha
odd order expansion coefficientsdR2k11 are equal to zero.

To calculatedF2 one needs the following coefficients:

dR25
1

4
~D222DD9!, ~5.29a!

dR35
1

16
~20D2D822D9212D8D~3!22DD~4!!.

~5.29b!

Note that whiledR2 contains only terms of second order
the small parameterj0 / l , the coefficientdR3 contains both
second and fourth order terms as well. None of the hig
order coefficientsdRk contain other second order terms
j0 / l . One of the main features of our method is that it c
automatically collect all the terms of a given order in t
various relevant expansion coefficientsdRk . Inserting all the
second order terms from Eqs.~5.29! into Eq. ~5.27! one ob-
tains

dF25
1

12 K 2pT (
vm.0

F D8222DD9

~vm
2 1D2!3/215

D2D82

~vm
2 1D2!5/2G L .

~5.30!

One can easily see that the second term~proportional toD9)
on the RHS of Eq.~5.30! can also be expressed in terms
D82. Indeed, we have
f
te,
n
al

,
e

ts,
n
ll

r

n

DD9

~vm
2 1D2!3/25

D

~vm
2 1D2!3/2

dD8

dx

5
d

dx F DD8

~vm
2 1D2!3/2G2

D82

~vm
2 1D2!3/2

1
3D2D82

~vm
2 1D2!5/2. ~5.31!

Upon integration with respect tox, the total derivative on the
RHS yields a surface term in the free energy which, fo
bulk superconductor with natural boundary conditions, va
ishes. Therefore, this total derivative can be dropped indF2 .
In more complex superconductivity problems such surfa
terms may lead to anomalous terms in the free ene
functional.43 Nevertheless, it is important to notice that it
always possible to express the gradient expansion of the
energy density in terms of even powers of the pair poten
and its derivatives. Another virtue of the computer imp
mentation of our method is that it can automatically perfo
these partial integrations and return the final result fordFk in
the desired form.

Thus, Eq.~5.30! can be rewritten as

dF25
1

4 K 2pT (
vm.0

F D82

~vm
2 1D2!3/22

D2D82

~vm
2 1D2!5/2G L .

~5.32!

Next, we perform the average overû, i.e., the directions
of the quasiclassical trajectories; the relevant expression

^ f ~D!D82&5^ f ~D!~ û•¹D!2&5^ninj& f ~D!~] iD!~] jD!

5
1

3
f ~D!d i j ~] iD!~] jD!5

1

3
f ~D!~¹D!2,

~5.33!

wheref (D) is an arbitrary function of the pair potential. Th
last result clearly depends on dimensionality; ind dimen-
sions^ninj&5(1/d)d i j . Inserting the above results into Eq
~5.32!, and restoring the original units, one obtains

dF25
1

12
pTN0~\vF!2 (

vm.0

vm
2

~vm
2 1D2!5/2 ~¹D!2,

~5.34!

This expression coincides with the well known Wertham
result@Eq. ~129! in Ref. 65# for a clean superconductor in th
absence of supercurrents and magnetic field, obtained
means of many-body Green’s functions.

The complexity of calculating the successive terms in
gradient expansion ofdF increases exponentially with th
order of the term. Nevertheless, by using the compu
implementation of our method we were able to compute
matter of minutes the fourth order termdF4 . For this pur-
pose one needs to evaluate the expansion coefficientsdRk ,
k53,...,6 andthen filter out all the fourth order terms in th
small parameterj0 / l . After collecting all these terms, we
obtain the following expression for the fourth order term
the gradient expansion ofdF
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dF45
1

16 K 2pT (
vm.0

F7

4 S 5D2vm
2

~vm
2 1D2!11/2

2
vm

2

~vm
2 1D2!9/2DD842

vm
2

~vm
2 1D2!7/2 D92G L .

~5.35!

This result has been obtained after dropping irrelevant t
derivatives in order to express the final result only in ter
of even powers of the first and second derivatives ofD, the
only ones which contribute to the fourth order term in t
gradient expansion. To obtain the final expression fordF4 all
we need to do is to average over the directions of the qu
classical trajectories and to restore the original units.

Apparently, in the derivation of the results presented
far, the particular form of the Fermi-Dirac distribution fun
tion of the quasiparticles together with formula~3.14! were
crucial. In what follows we show that this is not the case a
that our method of evaluating the free energy of an inhom
geneous superconductor can be formulated in a more ge
form which is also applicable for a nonequilibrium distrib
tion function f i of the quasiparticles. The basic idea is
express the free energy density in terms of thelocal density
of statescorresponding to the Andreev Hamiltonian~i.e.,
along an individual quasiclassical trajectory!.

C. Local density of states

In this section we present an alternative derivation of
expressions~5.27! of the free energy density for the case
thermal equilibrium without invoking formula~3.14! but
rather rewriting the summation~4.3! over the complete set o
statesi as

(
i

¯5p\vFN0E d2r'E dV û

4p (
n

¯

5p\vFN0E d2r'K E
0

`

r~E!dE¯L , ~5.36!

where the density of states~DOS! along the quasiclassica
trajectory determined by (û,r') is given by

r~E![r~E;û,r'!5(
n

d@E2En~ û,r'!#. ~5.37!

Here $En% represent the energy spectrum of the Andre
Hamiltonian. Next, let us define the DOS corresponding
the SUSY HamiltoniansH6

r̃~E!5r1~E!1r2~E![(
n

d~E22En
2!

5
1

2E (
n

d~E2En!5
r~E!

2E
. ~5.38!

Thus, from Eqs.~5.38! and~5.13!, by employing the formula

1

x6 i01 [ lim
«→01

1

x6 i«
57 ipd~x!1P

1

x
,

al
s

i-

o

d
-
ral

e

v
o

the DOSr(E) can be expressed in terms of the diagon
resolventR5R11R2 as

r~E!52Er̃~E!52
2E

p
Im (

n

1

E22En
21 i01

5
2E

p
lim

«→01

Im E
2`

`

dxR~x;E21 i«!. ~5.39!

Now combining equations~3.13!, ~5.36!, and~5.39! lead us
to the following expression for the free energy density:

F522pTE
0

`

dEr~E;r!lnS 2 cosh
E

2TD1
D2

V

524T lim
«→01

Im E
0

`

EdE lnS 2 cosh
E

2TD ^R~x;E21 i«!&

1
D2

V
, ~5.40!

where, by definition, the local DOS is given by

r~E;r![
2E

p
Im^R~x;E21 i01!&, ~5.41a!

or in conventional units@cf. Eq. ~5.36!#

r~E;r!52\vFN0E Im^R~x;E21 i01!&. ~5.41b!

The next step is to subtract from Eq.~5.40! the free en-
ergy density corresponding to the reference normal state
to replacedR in the resulting expression by its asymptot
series expansion~5.25!, i.e.,

dR~x;E21 i«!5S 1

AD22E22 i«
2

1

A2E22 i«
D

1
1

2 (
k51

`

dRk~x!~D22E22 i«!2k21/2.

~5.42!

Thus, the free energy densitydF5F2FN becomes

dF5dF022T(
k51

`

lim
«→01

Im E
0

`

EdE

3
ln@2 cosh~E/2T!#

~D22E22 i«!k11/2^dRk~x!&, ~5.43!

where, the zeroth order term in the gradient expansion ofdF
is given by

dF0524T lim
«→01

Im E
0

`

EdE lnS 2 cosh
E

2TD
3S 1

AD22E22 i«
2

1

A2E22 i«
D 1

D2

V
. ~5.44!

By employing contour integration in the complex plane,
can be shown~see Appendix C! that Eq. ~5.44! coincides
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precisely with the first two terms on the RHS of Eq.~5.27!.
Equation~5.43! can be further simplified through integratio
by parts

E
0

` EdE

~12E22 i«!k11/2 lnS 2 cosh
E

2TD
52

1

2T~2k21!
E

0

`

dE
tanh~E/2T!

~12E22 i«!k21/2.

~5.45!

Hence

dF5dF01 (
k51

`
^dRk~x!&

2k21
lim

«→01

Im E
0

`

dE

3
tanh~E/2T!

~12E22 i«!k21/2. ~5.46!

By using complex contour integration, it can be shown t
~see Appendix C!

ck~T![ lim
«→01

Im E
0

`

dE
tanh~E/2T!

~12E22 i«!k21/2

52pT (
vm.0

~vm
2 11!2k11/2

5 lim
«→01

Re E
0

`

dE
tanh~E/2T!

AẼ221~12Ẽ2!k21

, k52,3,...,

~5.47!

where Ẽ[E1 i«. Finally, inserting Eq.~5.47! into Eq.
~5.46! leads to our previous result~5.27! and, therefore, to
Eq. ~5.27! which can be also written as

dF5dF01 (
k52

`
ck~T!

2k21
^dRk~x!&. ~5.48!

The coefficientsck(T) can be calculated by using their inte
gral representation~5.47!. By employing the identity
tanh(E/2T)5122 f (E), where f (E) is the Fermi function,
one can separateck(T) into a temperature independent and
temperature dependent part; theT-independent part can b
calculated analytically andck(T) becomes

ck~T!5 lim
«→01

Re E
0

`

dE
122 f ~E!

AẼ221~12Ẽ2!k21

5
2k22~k22!!

~2k23!!!

2 lim
«→01

Re E
0

`

dE
2 f ~E!

AẼ221~12Ẽ2!k21
.

~5.49!
t

Furthermore, by repeated partial integration, the second t
on the RHS of Eq.~5.49! can be expressed as an improp
definite integral involving the derivatives of the Fermi fun
tion and the familiar BCS DOS

r0~E!5
EQ~E21!

AE221
. ~5.50!

For convenience we list below the expressions of the coe
cientsck(T) for k52 and 3

c2~T!5122E
0

`

r0~E!dES 2
] f

]ED5
rs~T!

rs~0!
, ~5.51!

c3~T!5
2

3
2

2

3 E
0

`

r0~E!dES 2
] f

]ED
2

1

3 E
0

`

r0~E!dES ] f

]ED 2

, ~5.52!

wherers(T) is the superfluid density at temperatureT.
As we have already mentioned, this second method

calculating the free energy of an inhomogeneous superc
ductor by means of the effective local density of sta
~5.41a! is quite general and in fact it is applicable for a
arbitrary distributionf i of the Bogoliubov quasiparticles, a
we show in the next section.

D. Nonequilibrium free energy density

Consider a superconducting state in which the quasipa
cles are out of equilibrium with the condensate. We a
assume that the superconducting state can be describe
the effective mean-field Hamiltonian~2.1!, with a pair poten-
tial D~r! and a nonequilibrium quasiparticle distributio
function f (E;r). Then, the local DOSr(E;r) given by Eq.
~5.41b! is applicable with the same diagonal resolventR6

studied in the previous sections. Thus, one can immedia
write down the expressions for the energy (W) and entropy
(S) densities of the system

W5
@D~r!#2

V
2E

0

`

EdEr~E;r!@122 f ~E;r!# ~5.53!

and

S5E
0

`

dEr~E;r!$ f ~E;r!ln f ~E;r!

1@12 f ~E;r!# ln@12 f ~E;r!#%. ~5.54!

The usefulness of these equations depends on the proble
hand. For example, if the system is in local thermal equil
rium, such that a local temperatureT(r) can be defined and
the distribution function of the quasiparticles can be e
pressed, e.g., asf (E;r)5(exp@E/T(r)#11)21, then it make
sense to define a free energy density through the usual
modynamic relationF5W2TS. Furthermore, assuming tha
the considered superconducting state is close to the equ
rium BCS state, it is straightforward to derive a gradie
expansion formula fordF along the line discussed in th
previous sections.
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VI. SUPERCONDUCTOR IN THE PRESENCE OF THE
MAGNETIC FIELD AND SUPERCURRENTS

A. Free energy

For D(r )5uDueiu complex, with a general spatial depe
dence of the phaseu, and in the presence of a static magne
field the squared HamiltonianH A

2 cannot be rotated into a
matrix with second-order differential operators on the dia
onal and off-diagonal terms equal to zero. Consequently
will go back to the expression for the free energy~4.9!, but
now written as

F522Tp\vFN0E d2r'E dV û

4p (
vm

ln Det~ ivm1HA!

1E d3r
uD~r !u2

V
1FH . ~6.1!

Here we use the factorizationvm
2 1En

25( ivm1En)(2 ivm

1En), so the sum now goes over both positive and nega
Matsubara frequencies.

The determinant stays unchanged when we make the
tary transformation

HA[S 2 i\vF]x2vF

e

c
Au uDueiu

uDue2 iu i\vF]x2vF

e

c
Au

D
→H̃A[S e2 iu/2 0

0 eiu/2DHAS eiu/2 0

0 e2 iu/2D
5S 2 i\vF]x1vFmvsu uDu

uDu i\vF]x1vFmvsu

D .

~6.2!

Here

Au[û•A

and

vsu
[û•vs[û•

\

2m S ¹u2
2e

\c
AD ,

are, respectively, the components of the vector potential
the superfluid velocity in the direction of the quasiclassi
trajectory. In what follows, it is more convenient to use t
HamiltonianH̃A instead ofHA .

As in the absence of the magnetic field and supercurre
the Fredholm determinant in Eq.~6.1! can be calculated from
the trace of thematrix resolvent@cf. Eq. ~5.18!#

G~x,y;r' ,û;l![^xu~H̃A2l!21uy&.

We have
-
e

e

ni-

d
l

ts,

ln Det~ ivm1H̃A!5(
n

ln~ ivm1En!

52(
n
E2 ivm dl

En2l

52E2 ivm
dl Tr G~l!

52E2 ivm
dlE dx tr G~x,x;r' ,û;l!.

~6.3!

In Eq. ~6.3! the notation Tr means the trace of the different
operator, and so involves integration overx, while the sym-
bol tr means a summation over the two spin indices only
the following, for brevity we will omit the argumentsr' and
û.

As shown in Appendix B, the 232 matrix G(x,x;l) is
obtained from the matrix functiong(x;l)[G(x,x;l)s3 ,
which satisfies the Eilenberger equation

i\vFg81F S l2vFmvsu 2uDu

uDu 2l1vFmvsu

D ,gG50.

~6.4!

The Eilenberger~or quasiclassical Green’s! function g(x;l)
also satisfies

tr g50, g252
1

4\2vF
2 s0 . ~6.5!

In terms ofg(x;l), the free-energy density is given by

F52Tp\vFN0E dV û

4p (
vm

E2 ivm
dl tr$g~x;l!s3%

1
uD~r!u2

V
1FH . ~6.6!

B. Gradient expansion

To obtain the gradient expansion of the free energy d
sity F, we rewrite the Eilenberger equation~6.4! in the form

i\vFg81@V,g#1@A,g#50, ~6.7!

where

A5S l 2uDu

uDu 2l
D

is of the zeroth order and

V5S 2vFmvsu 0

0 vFmvsu

D
is of the first order in gradients of the order parameter.

The contribution of the zeroth order tog satisfies the
equation

@A,g0#50, ~6.8!
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and so it is at every point the Eilenberger function for
homogeneous superconductor with constant real order
rameter that would be equal touDu at that point. This may be
calculated explicitly from the resolvent. We find

g0~x;l!5
i

2\vFAl22uDu2
S l 2uDu

uDu 2l
D , ~6.9!

which indeed satisfies Eq.~6.8!.
To obtain the higher-order terms, it is convenient to tra

form to the basis of eigenvectors ofA. That is we find a
matrix B such thatB21AB5diag. The eigenvalues ofA are
6z with z[Al22uDu2, and

B5S l1z uDu

uDu l1z
D . ~6.10!

A general matrixM5M (0)s01¯1M (3)s3 ~wheresa , a
51,2,3, are the Pauli matrices, ands0 is the 232 identity
matrix! transforms into M̂[M̂ (0)s01¯1M̂ (3)s3
[B21MB, where

M̂ ~0!5M ~0!, ~6.11a!

M̂ ~1!5M ~1!, ~6.11b!

S M̂ ~2!

M̂ ~3!D 5
1

z S l i uDu

2 i uDu l
D S M ~2!

M ~3!D . ~6.11c!

This transformation is complex-orthogonal rather than u
tary, because it was supposed to rotate2 i uDus21ls3 with
one component purely imaginary intozs3 , as it, indeed,
does.

Next we define

R~x;l![B21g~x;l!B. ~6.12!

Then

B21g8B5R81@B21B8,R#. ~6.13!

From Eq.~6.10!, we obtain

B21B85
luDu8
2z2 s11B0 ,

whereB0 is proportional to the unit matrixs0 and, therefore,
contributes nothing to the commutator withR in Eq. ~6.13!.
Hence, in this new basis, Eq.~6.7! reads

i\vFR8~x;l!1@U,R~x;l!#1z@s3 ,R~x;l!#50,
~6.14!

whereU[B21VB1 i\vF(B21B8)(1) is given by

U ~1!5
i\vFluDu8

2z2 , ~6.15a!

U ~2!52
i uDuvFmvsu

z
, ~6.15b!

U ~3!52
lvFmvsu

z
, ~6.15c!
a-

-

i-

andR satisfies the conditions

tr R~x;l![0, R2[2
1

4\2vF
2 s0 . ~6.16!

It is this matrix functionR(x;l) that is the analog of the
scalar resolvent~5.12!; hence we denote it by the same le
ter. The functionR can be expanded into the asympto
series31

R5 (
n50

`

Rnz2n, ~6.17!

where

R0[B21g0B5
i

2\vF
s3 . ~6.18!

We have somewhat generalized Dikii’s work,31 because the
expansion parameterz21 is x dependent, and has to b
therefore, differentiated too when we substitute Eq.~6.17!
into Eq. ~6.14!. The derivative of thenth order term in the
expansion is

~Rnz2n!85Rn8z
2n2nRnz8z2n21.

If we multiply z by a constantC, both terms will be multi-
plied byC2n, so they are both of the ordern in z21. Equat-
ing the nth order term in Eq.~6.14! to zero, we obtain the
recurrence relation

i\vFS Rn82n
z8

z
RnD1@U,Rn#1@s3 ,Rn11#50.

~6.19!

If we write Rn5Rn
(0)s01¯1Rn

(3)s3 , then Rn
(0)50 since

tr R50, and the remaining components satisfy the followi
recurrence relations:

Rn11
~1! 52

1

2
\vFS Rn

~2!82n
z8

z
Rn

~2!D1U ~1!Rn
~3!2U ~3!Rn

~1! ,

~6.20a!

Rn11
~2! 5

1

2
\vFS Rn

~1!82n
z8

z
Rn

~1!D1U ~2!Rn
~3!2U ~3!Rn

~2! ,

~6.20b!

~Rn
~3!z2n!852

z2n

\vF
~U ~2!Rn

~1!2U ~1!Rn
~2!!. ~6.20c!

Note that there is no recurrence relation for the coe
cients Rn

(3) , but only for the derivative ofRn
(3)z2n. For z

5const, the theory in Ref. 31 guarantees that the right-h
side of Eq.~6.20c! is always a derivative of a polynomial in
entries ofU and their derivatives. The integration is, ther
fore, always possible, but it leaves an undetermined cons
in everyRn

(3) . These constants together with the constants
Rn

(0) ~which are set to zero in our case since trR50) deter-
mine the solution of Eq.~6.14! uniquely. The product of two
such solutions again solves Eq.~6.14!, so all the solutions of
Eq. ~6.14! form an infinitely dimensional commutative alge
bra over the field of complex numbers. Equivalently, th
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form a two-dimensional algebra over the field of formal s
ries in z21 with constant coefficients.

For z spatially dependent, a simple extension of Diki
theory shows that the right-hand side of Eq.~6.20c! can still
be integrated; now it will contain also powers and derivativ
of z21. However, the spatial dependence ofz forces all the
constants on the diagonal ofRn to be zero forn.0, so the
solution of Eq.~6.14! is completely determined by constan
on the diagonal ofR0 . Moreover, the only solution with
R05s0 is s0 itself, so an arbitrary solution can be written

R5R0
~0!s01R0

~3!R̃,

where R0
(0) and R0

(3) are complex numbers, andR̃ is the

uniquesolution withR̃05s3 . Hence, the spatial dependen
of z keeps the algebra two-dimensional, but reduces the
efficient field from formal infinite series to complex num
bers. The algebra is therefore reduced to the two-dimensi
Clifford algebra Cl(1,C). In our case,R5( i /2\vF)R̃. The
algebra structure thenforces R252(1/4\2vF

2)s0 , in agree-
ment with Eq.~6.16!.

In terms of the expansion coefficientsRn
(a) the free-energy

density has the form

F54Tp\vFN0E dV û

4p (
vm

E2 ivm
dl

3 (
n50

` i uDuRn
~2!~x;l!1lRn

~3!~x;l!

zn11 1
uDu2

V
1FH .

~6.21!

So, to evaluate the free energy density we just need to
the coefficientsRn

a from the recurrence relations~6.20! with
the initial condition~6.18!, substitute them into Eq.~6.21!,
and perform the Matsubara sum and thel andû integrations.
All the l integrals are of the form

I l,k[E2 ivm
dl

il

~Al22uDu2!2k11
, ~6.22!

wherek is a non-negative integer.
For k50, the integral diverges, and therefore needs s

cial treatment. If we subtract from Eq.~6.21! the free-energy
density of a normal metalFN then the difference of the cor
responding integrals becomes finite

I l,05E2 ivm
dlS il

Al22uDu2
2

il

Al2D 5uvmu2Avm
2 1uDu2.

~6.23!

Using R0
(3)5 i /2\vF , we find the zeroth-order contribu

tion to the free energy density

F0~r !2FN54pTN0 (
vm.0

vD

~vm2Avm
2 1uDu2!1

uDu2

V
1FH ,

~6.24!

where the spurious divergence of the infinite frequency s
can be eliminated, as usually, by cutting it off at the Deb
frequencyvD .
-

s

o-

al

d

e-

m
e

The first-order termF1(r) vanishes because it contain
one vectorû to be averaged over the unit sphere which giv
zero. Fork.1,

I l,k5
i 22k

2k21
~vm

2 1uDu2!2k11/2. ~6.25!

Finally, for the average over the directionû, we use the
symmetric integration formula

E dV û

4p
~v~1!•û!¯~v~2k!•û!

5
(p5perm~v~p1!•v~p2!!¯~v~p2k21!•v~p2k!!

~2k11!!
.

~6.26!

In this expression many of the terms will be the same. Ind
when vectorsv( j ) are all different the numerator on the RH
of Eq. ~6.26! contains only (2k)!/k!2k distinct terms rather
than (2k)!. Note that for an odd number of vectors, theû
integral vanishes.

Using MATHEMATICA , we obtained the expansion of th
free energy density functional up to the eighth order in g
dients of the order parameter. The terms are getting prog
sively longer, so we list them below only up to the four
order. To make the formula shorter, we do not perform thû
averaging in the fourth order, just denote it by^¯& around
the 21 fourth-order terms. Leaving the explicit direction
averaging to the reader has been customary in the litera
Also, in the fourth-order terms we write primes instead
gradients. As an example,^vsuDu8vs8& means

1

15 (
i , j

$vsi~r !@] i uD~r !u#] jvs j~r !1vsi~r !@] j uD~r !u#] ivs j~r !

1vsi~r !@] j uD~r !u#] jvsi~r !%.

In this notation, the expansion up to the fourth order rea

F~r !2FN54pTN0 (
vm.0

vD

~vm2Avm
2 1uDu2!1

uDu2

V
1FH

1F2~r !1F4~r !, ~6.27a!

where

F2~r !5
1

3
pTN0m2vF

2(
vm

uDu2

~vm
2 1uDu2!3/2 vs

2

1
1

12
pTN0\2vF

2(
vm

vm
2

~vm
2 1uDu2!5/2 ~¹uDu!2

~6.27b!

and
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F4~r !5N0pT(
vm

K 5

4

vF
4m4uDu4vs

4

~vm
2 1uDu2!7/22

vF
4m4uDu2vs

4

~vm
2 1uDu2!5/22

25

8

vF
4\2m2uDu2vs

2uDu82

~vm
2 1uDu2!7/2 2

1

2

vF
4\2m2vs

2uDu82

~vm
2 1uDu2!5/2

1
35

8

vF
4\2m2uDu4vs

2uDu82

~vm
2 1uDu2!9/2 1

105

64

vF
4\4uDu4uDu84

~vm
2 1uDu2!11/22

3

64

vF
4\4uDu84

~vm
2 1uDu2!7/22

49

96

vF
4\4uDu2uDu84

~vm
2 1uDu2!9/2

2
5

2

vF
4\2m2uDu3vsuDu8vs8

~vm
2 1uDu2!7/2 1

vF
4\2m2uDuvsuDu8vs8

~vm
2 1uDu2!5/2 1

1

4

vF
4\2m2uDu2vs8

2

~vm
2 1uDu2!5/2 2

5

4

vF
4\2m2uDu3vs

2uDu9
~vm

2 1uDu2!7/2

1
vF

4\2m2uDuvs
2uDu9

~vm
2 1uDu2!5/2 1

3

16

vF
4\4uDuuDu82uDu9
~vm

2 1uDu2!7/2 2
77

48

vF
4\4uDu3uDu82uDu9
~vm

2 1uDu2!9/2 1
3

16

vF
4\4uDu2uDu92

~vm
2 1uDu2!7/2

2
1

80

vF
4\4uDu92

~vm
2 1uDu2!5/21

1

2

vF
4\2m2uDu2vsvs9

~vm
2 1uDu2!5/2 1

1

4

vF
4\4uDu2uDu8uDu-
~vm

2 1uDu2!7/2 1
1

40

vF
4\4uDu8uDu-

~vm
2 1uDu2!5/2 2

1

40

vF
4\4uDuuDu99

~vm
2 1uDu2!5/2L .

~6.27c!
n
-

al

u
s

n

fo
s

y

n

l

ity

e

.

The second order term~6.27b! is identical with Werthamer’s
result @Eq. ~129! in Ref. 65# for a clean superconductor i
finite magnetic field, and forvs50 this reduces to our pre
vious result~5.34!. In the same limiting casevs50 the ex-
pression~6.27c! of the fourth order term gives, up to a tot
derivative, the same result as Eq.~5.35!. The fact that the
two methods we used to calculateF4 are fully independent
of one another gives us confidence in the validity of o
results. However, the formula~6.27c! apparently disagree
with the result obtained by Tewordt.66 Work is in progress to
locate and understand the difference between these two
sults and we hope to report our findings in this regard i
future publication.

C. Local density of states

As we have seen in Sec. V C, an alternative route
calculating the free energy density of an inhomogeneous
perconductor is based on the local DOS. The free energ
a bulk superconductor can be written

F522T (
Ei>0

lnS 2 cosh
Ei

2TD1E d3r
uDu2

V
1FH

522pTE
0

`

dEr~E!lnS 2 cosh
E

2TD1E d3r
uDu2

V

1FH , ~6.28!

where the DOSr(E) in the quasiclassical approximatio
reads

r~E!5
1

p
ImF2\vFN0E d2r'E dxE dV û

4p
tr G~x,x;Ẽ!G ,

~6.29!

andẼ5E1 i«. Furthermore, Eqs.~6.12! and~6.10! allow us
to express the trace in Eq.~6.29! in terms of the diagona
resolventR(x;l)
r

re-
a

r
u-
of

tr G~x,x;Ẽ!5tr@g~x;Ẽ!s3#5tr@BR~x;Ẽ!B21s3#

52
i uDuR~2!~x;Ẽ!1ER~3!~x;Ẽ!

AẼ22uDu2
. ~6.30!

Hence, by employing the asymptotic expansion~6.17! the
local DOSr(r;E) and the corresponding free energy dens
F(r) can be written, respectively, in the following form;

r~r;E!5
4

p
\vFN0

3ImF E dV û

4p
(
n50

` i uDuR~2!~x;Ẽ!1ER~3!~x;Ẽ!

~AẼ22uDu2!n11
G

~6.31!

and

F~r!528T\vFN0 ImF E0

`

dE lnS 2 cosh
E

2T
D E dV û

4p

3 (
n50

` i uDuR~2!~x;Ẽ!1ER~3!~x;Ẽ!

~AẼ22uDu2!n11
G1

uDu2

V
1FH~r!.

~6.32!

Similarly to Eq. ~6.21!, first we need to determine th
relevant coefficientsRn

a from the recurrence relations~6.20!
with the initial condition~6.18!, then substitute them into Eq
~6.32!, and finally perform theE and û integrations. All the
E integrals are of the form
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JE,k5Im E
0

`

dE ln 2 cosh
E

2T

iE

~AẼ22uDu2!2k11

5Re E
0

`

dE ln 2 cosh
E

2T

E

~AẼ22uDu2!2k11
.

~6.33!

In Appendix C we show that the integrals defined by E
~6.22! and ~6.33! are related through

(
vm

I l,k52
2

p
JE,k , k50,1,2,... . ~6.34!

By employing this identity, a direct comparison betwe
Eqs. ~6.21! and ~6.32! shows that the two routes to the fre
energy density give the same result.

VII. CONCLUSIONS

In this paper we have presented a general method, b
on the semiclassical limit of the Bogoliubov–de Gennes~or
wave function! formulation of the theory of weak couplin
superconductivity, for calculating the~gauge invariant! free
energy density of an inhomogeneous superconductor wi
pair potential with arbitrary spatial variation and in the pre
ence of supercurrents and magnetic field. We have sh
that the free energy density can be expressed in terms o
diagonal resolvent of the Andreev Hamiltonian, the sem
classical limit of the BdG Hamiltonian, which obey the s
called Gelfand-Dikii equation. Since the solution of th
Gelfand-Dikii equation can be easily expressed in terms
an asymptotic series, our method is most suitable for obt
ing the gradient expansion of the free energy density w
the superconducting order parameter has slow spatial v
tions on a length scale set by the BCS coherence length
the best of our knowledge, this is the first time that the g
dient expansion of the free energy of a clean inhomogene
superconductor, in the general three-dimensional case an
the presence of supercurrents and external magnetic fi
has been obtained by employing the wave function~BdG!
formulation of the theory of superconductivity. Our result f
the second order term in the gradient expansion of the
energy density coincides with the result of Werthamer67,65

obtained more than three decades ago by using Green’s f
tions. However, our expression of the fourth order term
pears to be somewhat different from Tewordt’s Gree
function result66 and further investigation is needed to esta
lish the origin of this discrepancy. Nevertheless, since in
zero-field case we have arrived at the same result for
fourth order term in the gradient expansion of the free ene
by using two essentially different methods, we are confid
in the viability of our approach and results. We have a
shown that our method for calculating the free energy of
inhomogeneous superconductor is applicable for states
from equilibrium characterized by an arbitrary temperat
field and quasiparticle distribution function.
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APPENDIX A: THE GELFAND-DIKII EQUATION

Consider the one-dimensional Schro¨dinger operator

ĤS~x!52]x
21U~x!, ~A1!

defined on the intervalxP@a,b# ~any of a and b may be
infinite!, and the associated eigenvalue problem

ĤS~x!cn~x!5Encn~x!, ~A2!

corresponding to the homogeneous boundary condition

ac~x!1bc8~x!50 for x5a,b. ~A3!

Let us denote byca (cb) the solution of the equation

ĤS~x!c~x!5@2]x
21U~x!#c~x!5Ec~x!, ~A4!

whereE is an arbitrary real number, which obeys the boun
ary condition~A3! only at x5a (x5b) but not at the other
end of the interval. Then the Wronskian ofca andcb

W~E!5ca8~x!cb~x!2ca~x!cb8~x! ~A5!

does not depend onx and it is only a function ofE. Note that
W(E) vanishes only forE5En .

The Green’s functionG(x,y;E) associated toĤS is de-
fined through

ĤS~x!G~x,y;E!5ĤS~y!G~x,y;E!5d~x2y!, ~A6!

and can be expressed in terms of the Wronskian~A5! as

G~x,y;E!5K xU 1

ĤS2E
UyL

5
1

W~E!
@Q~x2y!cb~x!ca~y!

1Q~y2x!ca~x!cb~y!#, ~A7!

whereQ(x) is the step function. One can easily check th
Eq. ~A7! obeys Eq.~A6! and, because by construction sat
fies the boundary condition~A3!, G(x,y;E) is indeed the
Green’s function associated toĤS .

The diagonal resolvent ofĤS for a given energyE is
defined in terms of the Green’s function as
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R~x;E!5K xU 1

ĤS2E
UxL

5 lim
d→01

1

2
@G~x,x1d;E!1G~x1d,x,E!#

5
ca~x!cb~x!

W~E!
. ~A8!

By taking into account Eqs.~A8! and ~A4!, the first two
derivatives ofRE[R(x;E) can be written as~for brevity we
drop the arguments!

RE85
ca8cb1cacb8

W
~A9!

and

RE952~U2E!RE12
ca8cb8

W
. ~A10!

Then, combining Eqs.~A5!, ~A10!, and~A8! we arrive at

ca8cb85
W

4RE
~RE8

221!. ~A11!

Finally, inserting Eq.~A11! into Eq. ~A10! and after some
rearrangements one obtains the desired Gelfand-Dikii eq
tion

22RERE91RE8
214RE

2~U2E!51. ~A12!

APPENDIX B: THE MATRIX GELFAND-DIKII
EQUATION

In this appendix we will study the Andreev Hamiltonia

ĤA52 is3]x1Ds1eis3u ~B1!

and obtain a relation, analogous to the Gelfand-Dikii eq
tion, obeyed by the diagonal part of its resolvent

Gab~x,y;E!5K a,xU 1

ĤA2E
Ub,yL . ~B2!

Here the indicesa and b label components in the two
dimensional Nambu space.

To derive the Gelfand-Dikii analog we must first wri
Gab(x,y;E) in a form similar to the expression we use
earlier for the resolventG(x,y;E) of the Schro¨dinger Hamil-
tonian. Recall that there we had

G~x,y;E!5
1

W~E!
ca~x!cb~y!, ~B3!

where W(E)5W(ca ,cb)5ca8cb2cb8ca is the Wronskian
of the two solutionsca , cb of the homogeneous Schro¨dinger
equationĤca,b5Eca,b , and is independent ofx.

We will begin by constructing the resolventGab(x,y;E)
for the Andreev Hamiltonian on a finite interval@a,b#. If
required, the limit of an infinite domain can be taken lat
To specify the problem completely we must impose bou
a-

-

.
-

ary conditions on the wave functions ata, b in such a way
that the Hamiltonian is self-adjoint. This requires that t
condition for hermiticity

^c1uĤAc2&2^ĤAc1uc2&52 ic1
†s3c2ua

b50 ~B4!

be satisfied in a manner that treatsc1 and c2 on an equal
footing, thus ensuring that the domain ofĤA and ĤA

† coin-
cide. We impose the vanishing condition at each end se
rately. Thus

c1u* c2u2c1l* c2l50, x5a,b, ~B5!

whereu andl refer to the upper and lower components ofc,
respectively. We disentanglec1 , c2 by dividing by c1u* c2l

and find, for example,

c2u

c2l
U

x5a

5S c1l

c1u
D * U

x5a

. ~B6!

Equation~B6! requires that allc in the domain ofĤA obey

cu

c l
U

x5a

5eiua ~B7!

for some real angleua . Similarly

cu

c l
U

x5b

5eiub. ~B8!

These boundary anglesua,b parametrize the family of pos
sible self-adjoint boundary conditions. Physically one m
think of them as the phases of the order parameter of a
perconductor with an infinitely large energy-gap abutting
ends of the interval.

We now notice that, for any two solutionsc1 , c2 of the
equation

~2 is3]x1Ds1eis3u!c1,25Ec1,2, ~B9!

whereE is real, the quantity

w~c1 ,c2![c1
†~x!s3c2~x! ~B10!

is independent ofx. To prove this, simply differentiatew
and use Eq.~B9!. We will see thatw(c1 ,c2) plays the same
role for the Andreev equation as the Wronskian plays for
Schrödinger equation. For example, using the boundary c
dition we see thatc1

†s3c1505c2
†s3c2 . Combining this

with the constancy ofw(c1 ,c2), we see thatw must vanish
identically if the two solutionsc1 , c2 are proportional to
one another. Conversely, if for two solutions ofĤAc5Ec
we have w(c1 ,c2)50 at some point~and hence at all
points! in the interval, then

~cu1* cu22c l1* c l2!ua50 ~B11!

or

S cu1

c l1
D * U

x5a

5
c l2

cu2
U

x5a

. ~B12!

The two solutions therefore satisfy the same differen
equation with the same initial boundary condition, and
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must be proportional. We have therefore shown t
w(c1 ,c2) provides the same test for linear independence
the WronskianW(c1 ,c2).

The resolventGab(x,y;E) will have the form

Gab~x,y;E!5Ab
L~y!Ca

L~x! for x,y,

5Ab
R~y!Ca

R~x! for x.y, ~B13!

where Ca
L(x), Ca

R(x) are solutions of the homogeneou
equation and satisfy the boundary condition on the left (L)
or right (R) hand boundary, respectively. The jum
condition obtained by integrating

~2 is3]x1Ds1eis3u2E!G~x,y;E!5s0d~x2y!
~B14!

across the pointx5y is

i ~s3!aa8@Ca8
L

~y!Ab
L2Ca8

R
~y!Ab

R#5dab . ~B15!

To solve Eq.~B15! we defineW5C†Ls3CR and use the
conditionsC†Ls3CL5C†Rs3CR50. For example, on mul-
tiplying Eq. ~B15! by Ca

†L we find

iCa
†L~s3!aa8Ca8

L Ab
L2 iCa

†L~s3!aa8Ca8
R Ab

R5Cb
†L .

~B16!

This collapses to

2 iWAb
R5Cb

†L~y!. ~B17!

In this manner we obtain

Gab~x,y;E!52
i

W*
Ca

L~x!Cb
†R~y! for x,y,

5
i

W
Ca

R~x!Cb
†L~y! for x.y. ~B18!

Notice thatGab(x,y;E)5Gba* (y,x;E) as befits the resol
vent of a self-adjoint operator.

For the Schro¨dinger problem the Gelfand-Dikii equatio
applies to the diagonalx5y entry in the resolvent. Ou
matrix-valuedGab(x,y;E) is discontinuous atx5y and, as
explained in earlier sections, we must defineGab(x,x;E) by
taking an average of the left- and right-hand limits

Gab~x,x;E!5
i

2 F 1

W
Ca

R~x!Cb
†L~x!2

1

W*
Ca

L~x!Cb
†R~x!G .

~B19!

It turns out thatGab(x,x;E) is not quite the most convenien
quantity to work with. Instead we use the matrix

gab~x;E!5Gab8~x,x;E!~s3!b8b . ~B20!

The utility of this modification is related to the coefficient
]x in the Andreev equation beings3 instead of the identity.

If one takes the square of the matrixgab , again using
C†Ls3CL5C†Rs3CR50, one finds that

gab
2 5

1

4 F2
1

W
Ca

RCb8
†L

~s3!b8b2
1

W*
Ca

LCb8
†R

~s3!b8bG .
~B21!
t
s
Now

gab
2 Cb

L52
1

4W*
Ca

LCb8
†R

~s3!b8bCb
L52

1

4
Ca

L .

~B22!

Similarly

gab
2 Cb

R52
1

4
Ca

R . ~B23!

Provided thatE is not an eigenvalue we haveWÞ0, so the
two column vectorsCa

R andCa
L are linearly independent an

together span the two-dimensional vector space at each p
x. Consequently these last two equations are telling us t

gab
2 52

1

4
dab . ~B24!

We also see that the trace ofg vanishes;

gaa5
1

2 S i

W
W2

i

W*
W* D50. ~B25!

We can therefore find three~generally complex! numbers
a1 , a2 , a3 such that

a1
21a2

21a3
251 ~B26!

and

gaa5
i

2
~a1s11a2s21a3s3!. ~B27!

After inserting Eq.~B19! into Eq. ~B20! we may now seek
the Andreev-equation analog of the Gelfand-Dikii relatio
Because the Andreev equation is first-order, we have onl
differentiate once with respect tox before we are able elimi-
nate the]xC ’s using Eq.~B9!. We immediately find that

i ]xg5@g,s3~E2Ds1eis3!#. ~B28!

The equation~B28! is well-known in the superconductiv
ity literature as a form of the Eilenberger equation. T
present derivation is much simpler than those usually
duced. In particular the normalization condition Eq.~B24!
appears automatically and does not have to be introduce
hand. It also has the added advantage of demonstrating
the Eilenberger equation should be regarded as the And
problem analog of the Gelfand-Dikii equation.

Notice that the position dependent matrixgab(x) is the
diagonal part of@s3(ĤA2E)#21. Equation ~B28! asserts
that it commutes withs3(ĤA2E), i.e.,

05@s3~ĤA2E!,g#. ~B29!

In this appendix we have so far assumed thatE is real.
Under this condition it is easy to show that

c†5cTs1 , ~B30!

so for example, we could also define the Wronskian ana
as
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w~c1 ,c2!5c1
T~2 is2!c2 . ~B31!

In this form the antisymmetryw(c1 ,c2)52w(c2 ,c1) is
manifest. More importantly after replacingc† by cTs1 in
the appropriate places the expression~B18! continues to be
valid for complex values ofE.

APPENDIX C: RELATIONSHIP BETWEEN I l,k AND JE,K

To prove Eq. ~6.34! we examine the integrals in Eq
~6.33!. Again, fork50, the integral diverges. By subtractin
the contribution of the normal metal from the free-ener
density, the integral takes the form

JE,05Re E
0

`

dE ln 2 cosh
E

2T S E

AẼ22uDu2
21D .

~C1!

This integral still diverges logarithmically. We can formal
integrate by parts

JE,05ReF ~AẼ22uDu22E!ln 2 cosh
E

2TG
0

`

2Re E
0

` dE

2T
tanh

E

2T
~AẼ22uDu22E!. ~C2!

At E50, the boundary term vanishes~as «→01, the con-
tribution from the square root is pure imaginary; the seco
term is zero altogether!. As E→`, the boundary term goe
to 2uDu2/4T. To do the regularization consistently, we ha
to discard the boundary term. In the remaining integral,
can replaceE by Ẽ in the argument of tanh, so we can wri

JE,05
1

2
Re E

01 i«

`1 i« dE

T
tanh

E

2T
~AE22uDu22E!.

~C3!

We note that the integrand becomes complex conjugate u
E→E* . Thus, by extending the lower limit of integration t
2`1 i«, we automatically obtain just the real part
y

.

y

y

nd

e
e

e

pon

JE,05
1

4 E
2`1 i«

`1 i« dE

T
tanh

E

2T
~AE22uDu22E!. ~C4!

We can now formally close the contour of integration arou
the imaginary upper half axis where tanh(E/2T) has simple
poles at the~positive! fermionic Matsubara frequencies, an
obtain the result

JE,052p (
vm.0

~vm2Avm
2 1uDu2!. ~C5!

This result together with Eq.~6.23! yield Eq. ~6.34! for k
50.

For k>1 everything is straightforward. The integralJE,1
does not contribute because the first-order term is zero du
symmetry discussed above. Fork.1, JE,k converges. Inte-
grating by parts and extending the contour gives

JE,k5ReF 21

2k21

ln 2 cosh~E/2T!

~AẼ22uDu2!2k21G
0

`

1
1

4~2k21!
E

2`1 i«

`1 i« dE

T

tanh~E/2T!

~AE22uDu2!2k21
.

~C6!

The integrated out term vanishes. To perform the integral
again close the contour in the upper half plane and obta

JE,k5
1

4~2k21! (
vm.0

2p i
2

~A2vm
2 2uDu2!2k21

5
p

2~2k21! (
vm

1

~ i !2k22~Avm
2 1uDu2!2k21

~C7!

By comparing this result with Eq.~6.25! one can infer that
Eq. ~6.34! holds for any positive integerk.
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