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Free energy of an inhomogeneous superconductor: A wave-function approach
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A method for calculating the free energy of an inhomogeneous superconductor is presented. This method is
based on the quasiclassical linitr Andreev approximatiomf the Bogoliubov—de Gennéer wave function
formulation of the theory of weakly coupled superconductors. The method is applicable to any pure bulk
superconductor described by a pair potential with arbitrary spatial dependence, in the presence of supercurrents
and external magnetic field. We find that both the local density of states and the free energy density of an
inhomogeneous superconductor can be expressed in terms of the diagonal resolvent of the corresponding
Andreev Hamiltonian, which obeys the so-called Gelfand-Dikii equation. Also, the connection between the
well known Eilenberger equation for the quasiclassical Green’s function and the less known Gelfand-Dikii
equation for the diagonal resolvent of the Andreev Hamiltonian is established. These results are used to
construct a general algorithm for calculating fgauge invariantgradient expansion of the free energy density
of an inhomogeneous superconductor at arbitrary temperaf®@$63-18208)05138-§

[. INTRODUCTION to the critical temperaturd ., where the superconducting
order parameter is small, and a time-dependent Ginzburg-
The most interesting, and also most difficult, problems inLandau(TDGL) theory is well establishetf'° Recently, at-
the theory of weak couplingBCS) superconductivity are  tempts to develop a viable TDGL theory valid at all
those in which the pair potentigbrder paramet¢rhas both  temperaturé8-??yielded some promising results but contro-
spatial and time dependence. Examples of such problems aversy concerning this subject persi$t?®
the electromagnetic response of superconduétretaxation So far, all derivations of TDGL theories have been done
phenomena and collective modes in superconduétensiex by using Green's functions and functional integrals. Al-
motion in bulk superconductofs® quantum tunneling of though these methods are suitable for describing inhomoge-
vortices! phase slips in quasi-one-dimensional superconneous superconductors in the presence of impurities, super-
ducting wires-*? fluctuation effects abova.,™® etc. In  currents, and electromagnetic fields, they usually resort to
principle all these phenomena can be described in the framemncontrollable approximations during the decoupling of the
work of the microscopic theory of BCS superconductivity in higher order Green’s functions. These approximations may
one of its formulations based on either Green’s functidns, lead to unphysical solutions corresponding to states which
functional integrals? or the Bogoliubov—de Gennd8dG) cannot be described by any wave function. In fact, it is
equations?® i.e., the wave function formulation. Unfortu- known that the Green’s function method as is usually formu-
nately, such an approach is impractical due to formidabldated does not provide a complete dynamical description of
technical difficulties of solving the corresponding micro- the superconducting system and, therefore, it needs to be
scopic equations. The existence of the two well separatedxtended by some extra criterigdifferent from a variational
energy scales in the problem, namely, the Fermi en&gy principle) in order to eliminate the spurious, unphysical so-
and the magnitude of the gap functidnmakes the problem lutions from the correct on&.? A typical example in this
even more difficult as far as numerical calculations are conrespect is related to the ground state of the superfluitl He
cerned. However, if we are interested only in the low-energyStarting from the same BCS reduced Hamiltonian, one can
(or long wavelength physics of superconductors then the use at least two different form(sr, equivalently, decoupling
significant difference between these two energy scales allowschemekfor the second order correlation function which, in
us to employ the quasiclassical limit of the above mentionedjeneral, lead to different ground states and quasiparticle ex-
microscopic theories. The quasiclassical Green’s functiomitation spectrum(1) Gor’kov and Galitsk#® have obtained
method’ is probably the most efficient method developed soan isotropic ground state and excitation spectrum, whereas
far for solving problems involving inhomogeneous, nonequi-(2) Anderson and Morel® whose approach corresponds to a
librium superconductors. Nevertheless, this method has itBCS type of second order correlation function, have obtained
own limitations too(besides the fact that it is valid only on an anisotropic ground state and excitation spectrum. Interest-
sufficiently long length and time scales, for example, theingly, the ground state energy corresponding to the isotropic
complicated and counterintuitive boundary conditions usedtate is lower than the ground state energy of the anisotropic
in this method need to be determined from the underlyingstate, however, the former does not correspond to any state
microscopic theory, which often relies on questionable apwave function and therefore must be rejectédote that
proximationg. Therefore, it is highly desirable to develop an there exist other examples as well, where the Green’s func-
effective theory of weak coupling superconductivity which tion method can lead to an unphysical ground state with
technically is fairly simple and at the same time is generaknergy smaller than the one obtained by solving the corre-
enough to allow for a correct description of the above mensponding Schidinger equatiori’
tioned phenomena. Such an effective theory exists only close In view of this fact it is natural to consider the wave
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function, or BdG, formulation of weak coupling supercon- other, practically more useful pair potentials which are self-
ductivity to develop a TDGL theory. A first step in this re- consistent solutions of the corresponding Andreev
spect is to derive an expression for the free energy functionaquations?~*4 In fact the existence of these self-consistent
for an inhomogeneous superconductor in the time{air potentials are related to the supersymmetric property of
independentstationary situation. Such a derivation is the the properly transformed Andreev Hamiltoniésee Sec. ¥
subject of the present work. In this paper we present avhere the pair potential has the role of superpotefitiéh
method for calculating the free energy density of an inhomo£an be shown that whenever the pair of potential energies
geneous superconductor by employing the quasiclassic&le”erated by the superpot_en'ual are shape invariant the eigen-
limit of the wave function formulation of the theory of su- States of the corresponding supersymmetric Hamiltonians
perconductivity. The method is applicable to any pure bulkS@n be determined analytically by means of simple harmonic
superconductor described by a pair potential with arbitranPSCillator such as operator algebra. Apparently this simple
spatial dependence, in the presence of supercurrents and At r_ather important observation has not been rgcognlzed in
ternal magnetic field. We show that neither the eigenvalued€ literature. The problem of anomalous terms in the gradi-
nor the corresponding eigenfunctions of the BdG Hamil-SNt xpansion of the free energy density has been reconsid-
tonian are needed to calculate the free energy density, whiced by Hd® and Eilenberger and JacdB¢EJ by using the

can be expressed solely in terms of the diagonal resolvent &*act self-consistent solution of certain inhomogeneous su-
the corresponding Andreev Hamiltonian, resolvent whichPerconducting systems. These authors demonstrated that the

obeys the so-called Gelfand-Dikii equati®nOne of the actual origin of these anomalous terms are related to surface
main features of our method is that it provides a ratheft€mMs and terms originating from the possible discontinuities

simple and systematic way to derive ttgauge invariant of the pair potential or its derivatives. EJ have also devel-

gradient expansion of the free energy density at arbitranpP€d @ beautiful theory for calculating the free energy den-
temperatures. sity of a quasi-one-dimensional inhomogeneous supercon-

The BdG method has been applied previously in the jir-ductor in the clean limit and in the absence of supercurrents
erature to study the physical properties of inhomogeneou@nd magnetic field. Also, in a recent work Waxrfiastarting

superconductors. The first attempt in this respect has bedfP™ the Fredholm(functiona) determinant expression of
undertaken by the Orsay grodpi® They have determined the free energy of an inhomogeneous superconductor has
by solving the BAG equations in the quasiclassi¥dkBJ or shown that the later can be expressed in terms of the deter-
Andreey approximation the low-energy excitations in the Minant of a finite 4<4 matrix. However, no viable method
core of an isolated vortex. Also, de Gentfdsas shown that O calculating this determinant has been proposed. _
close toT, the BdG equations can be solved by employing '!'he paper is organized as follows. We beglr_w with a brief
the Rayleigh-Sclintinger perturbation theory and as a result"€View of the BdG method of superconductivi$ec. 1.
one obtains the Ginzburg-LandauGL) equations. Next, we express the free energy of a bglk sgperconductor in
Mathews* has also developed a systematic method of solv{€rms of the spectrum of the BAG Hamiltonian and the dis-
ing the BAG equations within the WKBJ approximation trlbut[on function of the qya5|part|cle(§ec. . The.qua5|-
which he applied to study the normal-superconductor boundclassical(Andreey approximation and the expression of the
ary in the intermediate state. Later on, he used the Bdd/€€ energy in this limit are presented in Sec. IV. Next, by

method to address the subtle issue of quasiparticle, chargind the wave function formulation of the theory of super-

and energy conservation in weak-coupling Super_conduc:tivity, we describe two different methods for calculat-

conductors® Mathews’ method has been further extendedNd the free energy density and the local density of states of
by Bardeenet al3 (BKJT) in their systematic and detailed 2" inhomogeneous superconductor. Both methods are based

analysis of the structure of an isolated vortex core. BKJTON €xpressing the free energy density of the superconductor

assumed a variational form for both the pair potential and thd t€rms of the diagonal resolvent of the so-called Gelfand-

vector potential and the variational parameters have been d&ikii équation. The first method, which is applicable only in
termined by minimizing the corresponding free energy_the absence of the magnetic field and for a real pair potential

Clearly’® applied the theory of BKJT in the vicinity of su- wit_h arbitrary spatial dependv_encv_e, is presented in Sec. vV,
perconducting transition temperatufe and, quite surpris- While the second method, which is more general and appli-
ingly, besides the expected Ginzburg-Landau terms in th&§aPle for superconductors in the presence of supercurrents
free energy functional he obtained several anomalous ternfdd magnetic field, is presented in Sec. V1. Finally, Sec. VII
as well. These findings have been received with great interef reserved for conclusions. Also, the derivation of bsth-

by the superconductivity community and several authorsd! and matrix Gelfand-Dikii equations, which play a key
have tried to explain the origin of these anomalous tetfms. '0l€ in our calculations of the free energy, are provided in
As a result of these research efforts it has been found thd¥V0 appendixes.

apart from the vortex problem anomalous terms in the free
energy density also appear in other problems involving inho-
mogeneous superconducting systems, such as the healing-
length problen?®3° the N-S proximity junction problent? The Bogoliubov—de Genne@dG), or wave function,
etc. Soon after the original work of Bar-Sagi and Kufler, formulation of the microscopic theory of weak coupling su-
who managed to find analytically a self-consistent solutiorperconductors represents an attractive alternative to the
of the BAG equations in the Andreev approximatioa., the  widely used Green'’s function and functional integral meth-
Andreev equationsby using a model pair potential(z) ods. The BdG method is conceptually simple, requires only
«tanh{z), an intense search has been started to discovnowledge of elementary quantum mechanics, yet it is gen-

Il. THE BOGOLIUBOV —de GENNES EQUATIONS
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eral and powerful. In what follows we apply this method to
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hole states and, as a result, the Bogoliubov quasiparticles

evaluate the free energy density of an inhomogeneous coitrave a mixed particle and holelike character. After diagonal-

ventionals-wave superconductor.
Mainly to establish notations, we begin with a brief re-
view of the basic equations of the BdG metH8cConsider a

pure bulk superconductor in the presence of a static magnetic

ization, Eqg.(2.1) reads

field. The system is described by the effective mean field

Hamiltoniart®

Hen= d3r[¢L(r)Ho<r)¢/g<r>+A<r>¢$<r)«/x{<r)

|A(N)|?
v

AT P (N (r) + (2.9)
where A(r) is the (mean-field pair potential, V is
the Gor'kov contact pairing interactiori.e., V(r—r’)
=Vs(r—r')], the field operatorsy,(r) and ¢ (r) destroy
and create, respectively, an electron at positiomith spin
orientationo=1,], and obey the usual fermionic anticom-
mutation relations

{0, (1)}=0,  {yl(n, ¢!, (r)}=0,
: (2.2
(G0, (1)} = 8,00 8(r—T"),

and, finally, the kinetic energy operator, measured with re-

spect to the Fermi enerdy, is given by

1 (. e \? -~
Ho(r):%(p—EA) —Eg, p=—ihV, (2.3

where the vector potentid(r) is related to the total mag-
netic fieldH(r) through the equatiohl(r)=V X A(r). In Eq.
(2.1, and throughout this paper, implicit summation over
repeated spin or pseudospin indices is assumed.

The effective Hamiltoniar(2.1) can be diagonalized by
using the Bogoliubov transformatiofis

Yi(0=20 [u(D v —vf (D7)],
(2.9
Yi(0=2 [u(Dy ol (7)),
wherei labels a complete set of quantum states in the rel
evant Hilbert space, the and y" are the Bogoliubov quasi-
particle annihilation and creation operators, respectively, an
satisfy the fermionic anticommutation rules
Yia ¥jpt=0, {yiarY}rﬁ}zaijaaﬁ- (2.5

The Bogoliubov amplitudes; andv; ought to be determined
by the condition that the transformatiofi.4) diagonalize
Hes; they obey the so-called Bogoliubov—de GenfRd4G)
equation$® which can be written in compact form

Ho(r)
A* (1)

A(r)

_Hg(r))\Pi(r):Ei\Pi(r)a

(2.6

whereW;=(u; ,v;)" is a pseudospinor in particle-hole space.

HBdG‘I’i(f)E(

Her=Eg* 2 Ei¥laYia: 2.7
where the ground state energy is given by
A(n)|?
Egz—zZ Eif d3r|ui(r)|2+f d3r # (2.9

According to the expressidf2.7) our system is equivalent to
an “ideal gas” of Bogoliubov quasiparticles with energies
E;, which are the eigenvalues of the BAG equati($).
For an arbitrary pair potentiak(r) the eigenvalue problem
determined by Eq(2.6), subject to suitable boundary condi-
tions, is difficult to solve even numerically.

lll. FREE ENERGY

By definition, the free energy is given Yy

F=(Hep)— TS+ Fy, 3.1
wheresS is the entropy, and
H(r)—Hgl?
f.ﬁf d3rFy(n), FH(r)=%, (3.2

is the positive magnetic field exclusion energy due to the
screening supercurrents induced by the applied fi¢ld
Also, we have assumed that the temperature distribution
across the system is homogeneous. The notation)

=Tr{p---} indicates the average over some statistical en-
semble described by the density matpix In thermal equi-
librium

_exp(—Hen/T)
P Tr{exp(— Heg/T)}

One defines the mean occupation number of levél ¢or-
responding to spin orientatiom by

(3.3

fia:<7i-ra7ia>! (34)

and one assumes that there is no magnetic ordering in the
system such that both spin orientations are equally likely,
de.,

fiEfiT:fil' (35)

It is known that the entropy of an ideal gas of fermionic
(quas)particles, which is not necessarily in equilibrium, can
be expressed in terms of the mean occupation numhers
ad®

S=-22 [fiInfi+(1-f)In(1-f)], (3.6

I
where the factor of 2 accounts for the two independent spin
orientations.

Thus, inserting Egs(2.7), (3.4), (3.6) into Eq. (3.1, the

Thus, the pair potential mixes coherently the particle andree energy of the system, which is a functional of the pair
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potentialA(r), the mean occupation numbdts and the vec- sume that the relatio3.9) is valid but, later on, we will

tor potentialA(r), can be written as relax this condition as wellsee Sec. V D So, we consider a
superconductor in which the quasiparticles are in thermal
FLA(r), fi,A(N)] equilibrium but the pair potential and the magnetic field may
have an arbitrary spatial variation. In this case the expression
=F=E4+ 22 Ef; of the free energy can be further simplified. Inserting Eqg.
1

(3.9 into Eqg. (3.7), and by taking into account Ed2.8),
after some straightforward algebra one obtains

|A(N)]?
3
37 +fdr v +Fy.

In thermodynamic equilibrium one requires the free energy (313
to be stationary with respect th, f;, andA. Hence, station- Apparently, in order to calculate the free enefgyl3) it is
arity with respect tdi) the pair potential yields the so-called necessary to know the spectrufi;} of the BdG Hamil-
gap equatior(i.e., the self-consistency condition for the pair tonian Hgqg for a given pair potentialA(r) (and boundary

=27, [fi In fi+(1—f)In(1—f)]+ Fy.

E
F= —ZTEi In( 2 cosho—

potentia) condition. Fortunately, this is not the case as several authors
have already showt;*® albeit in the absence of any mag-
_ _ R Cof netic field and by assuming that(r) depends only on a
AWM=V D¢ (n) VZ ui(Nof (N(1-2f), single spatial coordinate. Indeed, by employing the idetttity
(3.8 . )
(i) the mean occupation number of the statéor either two Cosﬁ(ﬁ) =[] |1+ % , (3.14
spin orientationpyields the usual Fermi distribution function 2] m="e 7mo(2m+1)
f=[expE/T)+1] (3.9 the free energy3.13 can be recast as
| I 1 .
and (iii) the vector potential yields the Maxwell equation w?+E? A(n)|?
) P Y a F=—-2T> In(ZH AL +jd3r| (] +Fy,
A i om>0  Op \
Vx[VxA(r)]sz(r), (3.10 (3.15

where w,, are fermionic Matsubara frequencies. The formal
divergence of the above expression of the free energy can be
e eliminated by subtracting fror (i.e., by measuringr with
j(n=2—Re >, [fu*(r)Pu(r) respect tp the free energyFy of the corresponding normal

m i state. Thus, by denoting#=F— Fy, we have

where the supercurrent density is given by

R . . € 2, 2 2
+(A=fui(NPuf(N],  P=p= - A(N). sr=—21S I T1 250 |2+f & (V)I ‘7
(3 1]) I on>0 W™ €
’ 2 2

In the absence of the magnetic field, the BdG equatiaré =_2T 2 In Det( m)

together with Eqs(3.8) and (3.9) yield the standard BCS omn>0 mtHo

result corresponding to a uniform and real pair potential A2

A(r)=A,; the eigenstatesare plane wave statél) and +f d3r v +Fy, (3.16
21,2

Ex= 1/§§+ AS, §k=hz—k—EF whereH, is the BdG Hamiltonian corresponding to the nor-

m

mal state of the systerfi.e., A=0), and{e;} denote the
spectrum ofH, .

U /1 14 ﬁ) - /1 1_& (312 Waxmari’ has shown that the infinite Fredholffunc-
k 2 E’ 2 EJ' tional) determinant in Eq(3.16), which contains in an en-

capsulated form all the information on the one-particle exci-

1 ¢ tanh E,/2T) ¢ 2 o1p tation_spectrum of the sup(_ercondgctor, can b_e expressed, at
V_NOZ fo k E—kZZWT“Z:O (wp+A) "™ least in the case of a guasi-one-dimensional inhomogeneous
8 superconductor and in the absence of the magnetic field, in
whereNj is the normal state density of statdsr both spin  terms of a finite 44 matrixM. However, the actual evalu-
orientation$ at the Fermi levelw, is a cutoff frequency of ation of this matrixM(x), which transports eigenfunctions
the order of the Debye frequency, amg=#T(2n+1) are  of Hpys from x=0 to x=L (L is the size of the system in
fermionic Matsubara frequencies. the relevantx direction is quite complicated and analytical
In what follows we will be interested in calculating the results are possible only for layered systems with a piecewise
free energyF for a spatially varying pair potential and mag- constant pair potential. In the work by Eilenberger and
netic field which do not necessarily obey the self-consistencyacob&’ the Fredholm determinant is calculated in terms of a
equations(3.8) and (3.10), (3.11). For the moment, we as- function £(x) which obeys an integral equation of Volterra
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type. This method seems to be somewhat simpler than Waxeq. (4.1) by the quantum numbaer. So, in the quasiclassical
man’s and allows for analytical result® the quasiclassical approximation the statieis specified by the quantum number

limit) in several nontrivial cases and, furthermore, provides & and the continuously varying parameterandr, which
viable procedure to obtain the gradient expansion of the fregniquely determine the position of the trajectory. Hence, the

energy density about its equilibrium value. _ trace with respect to the original statesnust be evaluated
In contrast to both above mentioned methods, which argccording to the formula

only applicable when\(r) varies along a given direction, in

the absence of any external field, and with the Bogoliubov ) dQ;

quasiparticles in thermal equilibrium with the superconduct- 2 "':”ﬁUFNOJ d Mf 4o > (4.3
ing condensate, our method of calculating the free energy of ' "

an inhomogeneous superconductor is valid for an arbitrarfFurthermore, we havéor brevity we omit the arguments
A(r), in the presence of an arbitrary static magnetic field, and ) R

it can be generalized for an arbitrary distribution functipn V2, =(V2P,+ 2ikFuVCDn—k§<I>n)exp(ikFur), (4.9
of the quasiparticles. Our method is based ongtasiclas-
sical approximatiorof the BdG equations which we describe
next.

and therefore, by using E¢R.3) in zero magnetic field, one
obtains

2

h ~ ~
IV. QUASICLASSICAL (ANDREEV) APPROXIMATION Ho¥i=— %(VZCD,;I— 2ikpuV® ) explikpur)

Superconductors are characterized by two different en- ~ A A
ergy scales, namely, the Fermi enelgyand the amplitude ~veu- (pPn)explikeur), (4.5
of the pair potentialgap function A, at zero temperature. here we have neglected the term involving the Laplacian of
The length scales corresponding to these energies are tge (Andreev approximationbecause
Fermi wavelength\ o~ k;l~ﬁvF/EF which gives the mean
inter-particle distance in the system, and the superconducting
coherence lengtl§,~%fve/Ay which determines the spatial m
extent of the pair correlation. Since in conventional super- F n
conductorEg> A (or A\g<&p), as long as we are interested According to the notion of minimal coupling, in finite mag-
only in the low-energyor long wavelengthproperties of the  netic field in Eq.(4.5 one needs to replace with P=p
system it is legitimate to employ the quasiclassical approxi-— (e/c)A.
mation of the theory of superconductivity. The BAdG equa- Note that conditior(4.6) may not hold for a small fraction
tions are valid on atomic scale and therefore the spinor wavef the total number of quasiclassical trajectories character-

functionsW;(r), which vary on a length scale set by*,  j,oq by u oriented almost perpendicular #d,,. The An-
contain more information than it is necessary to _calculate_, fofreev approximation also fails in spatial regions where the
example, the free energy and free energy density of an inhQsair potentialand/or its derivativeshas discontinuities, e.g.,
mogeneous superconductor. In general, this excess of infoly jnterfaces, boundaries, etc. These nonanalyticities(in
mation is eliminated at the end of the calculations by inte+efiect the fact that in such regions the pair potential changes
grating out the irrelevant high-energgf rapidly oscillating  rapnidly on atomic scale. Within the quasiclassical approxi-
degrees of freedom. A more practical approach is, howeve,stion this kind of behavior of\(r) can be described by
to eliminate these irrelevant degrees of freedom right at th?nonintuitive effective boundary conditions which must be
beginning of the calculations by replacing the BdG equationgjgrived starting from the underlying microscopic theory
by their qluasiclassical limit, i.e., the so-called Andreeviyhich is valid on atomic scale. It seems to be well estab-
equa.t|on§. For this purpose, one writes the spinor wave|ished by now that if one does not account properly for the
function W; as a rapidly oscillating phase factéwhich  4ssiple discontinuities in the pair potentiaind or its de-
changes on atomic length schtémes a slowly varying am-  yjyativeg these can lead to unphysicahomalousterms
plitude (which changes on a length scale set by the coherengg  he corresponding  Ginzburg-Landau free energy
length, i.e.’ functional6:4043
- A Finally, inserting Eq.4.1) into the BdG equation$2.6)
Wi(r)~Pq(r;u)explikeur). (4D and by taking into account Ed4.5), one arrives at the so-
Thus, in the quasiclassical approximation, the quasiparticlegalled Andreev equatioris
are moving along classical trajectories which are straight

2
n

~(Keéo) TT<1. (4.9

lines determined by the unit vector and the “impact pa- HaD, (1)= H(x) A(xu.ry) ®,(x:0,r,)
rameter” r, (which gives the distance of the quasiclassical AT A*(x;u,r,)  —H*(x) maL
trajectory from the origin of the coordinate systerthe po-

sition vector in Eq(4.1) reads =En(f1,rL)<I>n(x;f1,rl), (4.7

r=xu+r, , (42  Where
where the impact parameter vectoris normal tou. Nev-

ertheless, the motion along the quasiclassical trajectories is
guantized and the corresponding eigenstates are labeled in 4.9

~ . € e .
HEH(x)vau-(p—EA> =—ith(9X—vFE u-A(Xx).
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Note that in Eq.(4.8) only the directional derivativai-V H2+A% [H,A]
enters Which is_ equiva_\lent to the ordinary derivatiyealong _ Qp=Hp= —[H,A] H2+A2
the quasiclassical trajectory. Hence, the Andreev equations
(4.7), (4.9 are effectively one dimensional; the independent —ﬁ2v§¢9§+A2 —ihvp(dA)
: ; " . . ; _ , 5.1
variable isx (the position along the quasiclassical trajecipry 0 (3,A) — 120202+ A2 (5.9

and the other degrees of freedoﬁn,r(L) enter the equation
(and, therefore, the eigenvaluBg and eigenfunctionsb,) Q, can be brought to diagonal form by employing the
only as parameters through the spatial dependence of the pajhitary transformation

potential A(r). This is a key observation which allows us to

treat inhomogeneous superconductors characterized by a pair 1/1 1 i o1 1 1 —i
potential with arbitrary spatial dependence. U= Slio—i) u=u =5l i) (5.2
In terms of the energy spectrum of the Andreev Hamil-
tonian H, the free energydsF can be written agcf. Eq. e,
(3.16]
QAZU QAU= O H_ y (53)
8F=—2TmhveNg | d?r, where
w2 +EXOr,) Ho=H2+ A%+ hueA’ = — 720202+ A2+ hivg(9,A).

x> In ] ——D"— (5.4)

>0 w3+ eX(u,r,) 0. . .
Thus, the spectrum df{ ; is given by the combined spectra

g |A(f)|2+]__ of the two independent one-dimensional Sclinger-like
r H operatorsH.. .
A It is worthwhile noticing that the Hamiltoniaf), is su-
— 2 dQg persymmetric (SUSY) with A(x) playing the role of
ZTWﬁUFNO d I’l . 45
4 superpotential® In the language of SUSY quantum mechan-

) ics, H, and H_ correspond to the fermionic and bosonic
f d3r r)| sectors, respectively, and supersymmetry means that the in-
terchange of these two sectors@f, leaves the dynamics of
4.9 the system unchanged. The most useful properties which re-
sult from the SUSY of the Hamiltoniaf2, can be summa-
rized as follows*4>>°
In the above expression of the free energy the Fredholm (1) The Hamiltoniandd.. can be expressed in terms of the
determinant involves only the quantum states along an indiladder operators
vidual quasiclassical trajectory.
In what follows we derive a relatively simple formula for Q=—fivpdytA, QT'=fved,+A, (5.9
calculating the logarithm of the above Fredholm determmanh
and, consequently, the free energy. We begin with the case
of an inhomogeneous superconductor in the absence of su- H,=Q'Q, H_=0QQ" (5.6)
percurrents and magnetic field, where the Andreev equations
can be decoupled and, therefore, the calculations are fairly (2) The Hamiltonians H. are positive-semidefinite
simple. The more complicated case of a superconductor igospectralup to a zero modeoperators, i.e.,
the presence of the magnetic field and supercurrents requires
a completely different method for calculating the free energy Hids n= Eﬁq&i,n , (5.7
density. This method is presented in Sec. VI.

+H?2
X >, InDet( -

+Hg

where the eigenfunctiong.. , and ¢_ |, are related through

1 1
V. SUPERCONDUCTOR IN ZERO MAGNETIC FIELD ¢_'”:E Qi n, ¢+’”:E Q'¢_ ., |Ej>0.
n n
A. Free energy (5.9

A key step in our derivation of the free energy of an
inhomogeneous superconductor in zero magnetic field is the
observation, due originally to Bar-Sagi and Kupr? that
the square of the Andreev HamiltonidA.7), (4.8) can be
diagonalized and, therefore, the corresponding Andreev X
equations for the spinor wave functidr, decouple into two ¢¢,0=Nex4 + f dyA(y)
independent Schrdinger-like equations. Indeed, by dropping
all the arguments for brevity, and assuming without any losss normalizable. Since at most one of the above wave func-
of generality a real pair potential, one can write tions is normalizable it is clear that one may have only one

(3) The pairing of the eigenstates bf.. fails whenE,
=0. A zero modgeigenstate with zero energgxists when-
ever one of the wave functions

(5.9
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zero mode belonging to the spectrum of eithkr or H_ . =A,, whereA, is a suitably chosen constant pair potential,
Indeed, assuming, e.g., thdt, , exists, i.e.,H ¢, =0, e.g., the equilibrium BCS gap parameter at the considered
then temperaturel. One can expresl .. in these new units by
performing the following transformations in Ed@5.4): x
(¢ dH | 0=(b+dQ'Qlb. o) —XL, A—AAy, andH.—H_.Ay; one obtains
=[Ql¢+ =0=¢_ Qe =0, H.=H2+AZ+ A= -2+ A2+ 9 A, (5.10)

and similarly in the opposite case. The necessary conditiof} js also convenient to measure the free energy density in

that one ofép... o to be normalizable is that(x) has different njts 6fN,A2. We shall use these units throughout this sec-
signs atx= = along the corresponding quasiclassical tra-jjyn except where otherwise stated.

jectory. While for conventionas-wave superconductors this
condition is difficult to be.metm zero magnetic fieRiin the play no special role. The important thing is thet. are
case of, e.g., unconventiondiwave superconductors(x) decoupled and Schadinger-like.

can have different signs at the two opposite sides of a qua- now we introduce the diagonal resolverRs of the op-

siclassical trajectory_\gghich connects two diffe_rent lobes OferatorsHi which will play the central role in our method for
the order paramet@f°° When the zero mode is absent we

. evaluating the free energy of an inhomogeneous supercon-
say that supersymmetry is spontaneously broken and trﬁ’uctor in zero field. By definition

ground state ofQ), is degeneratdfor a givenu andr,).

When the zero mode exists one has a good SUSY and the  R.(x;\)=R.(x;\;U,r;)=—(x|(A—H-) ).

zero mode is the ground state Qf, . (5.12
(4) Probably the most useful feature of SUSY quantum

mechanics is that it allows us to calculate analytically both

the spectrum and the eigenfunctions of the partner Hamilto- w

niansH. by means of simple algebraic manipulations, pro- f dxR(X;N)= —2 —,

vided that the partner potentialt). (x;a0)=A?%(x;a,) ’°° n AEy

+fiveA'(x;a0) areshape invarianf® i.e., when they obey and a similar relation holds fdR, corresponding to the ref-

the conditiort® erence state described by the Hamiltorigg. In Eq. (5.13

we have used the shorthand notation

In what follows, the fact thattl .. are supersymmetric will

Hence

(5.13

U, (x;a9)=U_(x;a1)+R(ay), (5.10

: : . R=R,+R_. (5.19
wherea; is a new set of parameters uniquely determined

from the old onesa, via the mappinga; =F(a,), and the  Next, one integrates both sides of Ef.13 with respect to
residual termR(a;) is independent of. A few examples of the spectral variabla
superpotentials which yield shape invariant potentials
U. are (i) A(x;ag)xagtanh@x), (i) A(x;ap)«l fkd)\f
+ag exp(7x), (i) A(X;ag)xag/[1+exp(=nx)], and(iv)
A(X;ag)*xag(1l+ nx). For all these model pair potentials the (5.19
eigenstates of the Andreev Hamiltonian can be determine
analytically by using the machinery of SUSY quantum
mechanic4® Once the eigenstates @{, have been deter-
mined it is possible to evaluate numerically the value of th
parametern by imposing the self-consistency condition
(3.8). Successful calculations along this line have been re- SR=R—R,, (5.16
ported by Bar-Sagi and Kup¥r3 for the pair potentiali),
by Clintorf? for case(ii), and by Eilenberger and Jacbs We get
for casedliii), (iv). Of course, in principle, it is possible to N .
qbtam analytlcgl results for a]l known nontr|V|a! sup_erpoten- f d)‘J’ dXxSR(X;:\) = _2 In
tials[i.e., A(x) in our cas¢which lead to shape invariafir —w —w
factorizable, in the language of Infeld and Htillpotentials _ . 5 . . :
U.(x) with the possibility of even satisfying the self- Finally, by settingh = —wp, in this last equation, the loga-
consistencygap equation(3.8). Unfortunately none of these 'ithm of the Fredholm determinant in EG.9) can be writ-
“super” pair potentials correspond to real physical situationst®" in terms of the diagonal resolvesR as
and, therefore, we will not pursue here this issue in any fur- 2 442
ther details. Nevertheless, it is fair to recognize the potential In De(% ZE In
usefulness of the application of SUSY quantum mechanics in wnt+Hy n
the study of inhomogeneous superconductors within the
framework of the Andreev approximation, a fact which to - f
our knowledge has not been fully realized so far in the lit-
erature.

Before proceeding any further it is useful to introduce
new units for lengthL=%Ave/Ay~&,, and for energyeé  Thus, the free energfs.9) becomes

dXR(X;\)=—>, In|]\—E2|+const.
o n

‘Fhe integration constant on the right-hand dB&1S) of Eq.
(5.15 can be eliminated by subtracting from this equation
the one corresponding to the reference state. By introducing
he notation

2
N—E2

2
A—e,

n

‘. (5.19

wﬁq-l— Eﬁ

2 2
wnt €,

_w2 0
md)\f dXxS6R(X;\N).

(5.18



9372 KOSZTIN, KOS, STONE, AND LEGGETT PRB 58

) dQ; — B. Gradient expansion
oF=2Tm | dr, 4 wm2>0 f,oc dx For the normal state the pair potentidl. =0, and Eq.
5 (5.22 yields
XJW dxSR(OX;\;U,r )+J dr [41)]
Cw H y Uyl | V y 1
Ro~= . (5.23
(5.19 MPNEY

where, for clarity, we have listed all the arguments of the
diagonal resolvent.
Now the free energy density

_d(6F)  d(8F)

— =, (5.20 15 .
o dxdr, R.(GN)=5 2, REGO(A2=X) K12 (524
: . . . k=0
as a functional of the inhomogeneous pair potential, can be
readily extracted from E¢5.19

For an arbitrary pair potential the general solution of the
Gelfand-Dikii equation (5.22 can be sought as an
asymptotic series expansion

where A=A(x) is the pair potential of the inhomogeneous

[A(N)]? superconductor, ané, (x) are expansion coefficients which

v ought to be determined. For the uniquen@gsto a sign of

this expansion see, e.g., Ref. 31. Equatii24) is the main

(5.2 ingredient in our derivation of the gradient expansiorSbf
where(---)=[dQ/4m-- means averaging over the direc- Our strategy is to express firéF in terms of Ri (x), k
tions of the quasiclassical trajectories. Note that the only=0,1,.., andthen to evaluate these expansion coefficients.
difference between the cases, when the pair potential déFhe latter task can be accomplished in a systematic way by
pends only on one coordinate and when it has an arbitrary inserting Eq.(5.29 into the Gelfand-Dikii equation5.22)
dependence, is that in the former case the diagonal resolveand equating the coefficients of the different integer powers
does not depend on the impact parametewhereas in the of Z=A2—\ in the resulting equation. Although this method
latter case it does. The above expression of the free energy@n be used to derive a cumbersome analytical expression for
density does not contain explicitly either the eigenvalues othe recursion relation obeyed by the coefficieR{s(x), in
the eigenfunctions of the Andreev Hamiltoniaf), . All the  practice it is more convenient to carry out the calculations by
information about the superconductor is encapsulated in themploying a computer software which is suitable for sophis-
diagonal resolvenR which, however, needs to be deter- ticated symbolical calculations, such msTHEMATICA .54
mined first in order to make Ed5.21) useful. It is easy to see that the first coefficigRf =1. Clearly,

Since R. are the diagonal resolvents of the one-for the normal statdR; ;=1 and the rest of the coefficients
dimensional SChlthngel’ operatorsH . = l? +U_, with vanish |dent|ca||y[cf Egs. (5.23 and (5 24)] ie., ROk_O
U.=A2+A’, they obey the so- _called Gelfand-Diki k=1,2,... . Thus, if one define8R=R; +R; , k=1,2,.

H 2,31 .
equatiofi one can write

—2R.R.+R2+4R% (U, —\)=1. (5.22

5FE§F[A(r)]=<27rT 2 mdA5R>

For completeness a simple derivation of this equation is pro- OR(X;N) =
vided in Appendix A(see also Ref. §3Equationg5.21) and

(5.22 tell us that the free energy density of an inhomoge- 1
neous superconductor can be expressed solely in terms of the + = E 5Rk(x)(A2—)\)‘k‘ 12 (5.25
solution of a nonlinear second order ordinary differential 21

equation. Unfortunately the Gelfand-Dikii equation cannot

be solved analytically for an arbitrary pair potential. How- an

ever, both the diagonal resolvent and the free energy density

can be calculated numerically once some appropriate bound- 1

ary conditions have been specified. In this respect ourf "d\ SR(x; A)‘f md?\( N \/—)

method of calculatingF is similar to the ones considered by

1 1 )
NS RN

Waxmart’ and Eilenberger and JacobsHowever, while 12 2 d
their methods are applicablenly to superconductors de- 5 2 SRy (X J m AT K2
scribed by a pair potential which depends on a single spatial k= — )
coordinate and in the absence of supercurrents and magnetic _ v awv

field, our method is valid for pair potentials witrbitrary _2(|wm| wmtA%)

spatial dependence, at any temperature and in the presence of 1 SR(X)

supercurrents and magnetic figlske Sec. V)l Another im- — =15
portant feature of our approach is that it provides a simple 2 =1 (k= l/2)("’mJFA )

and systematic way for obtaining the gradient expansion of (5.26)
SF for an inhomogeneous superconductor wiifn) varying

slowly on a length scale> ¢, . Inserting Eq.(5.26 into Eq. (5.21) yields
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A2 AA" A dA’
= — 2y — = -
SF 477Twm2>0 (Joml = Voi+4%)+ 5 (2T A (2T A0 dx
” SR (X) d AA’ A2
2 2\ —k+1/2 K - _
+<k§=:1 ZWT(»%O (wm_"A ) 2k—1 > dx (wr2n+A2)3/2 (wﬁq_{_AZ)S/Z
(5.2 3A%A"?

+———7s. .
(wﬁ]_’_ AZ)S/Z (5 31)
The first two terms on the RHS of E(.27) give the well . . . R
known bulk term contribution to the free energy density ofuﬂosn n_w:ladgratlon v;/::eretzgp;c_t bqthtgeftgtaledznvatlvggﬁ t?oe
the superconducting state with respect to the normal state, ylelds a sur werm n ree energy which, for a
ulk superconductor with natural boundary conditions, van-

while the third term gives the actual gradient expansion i : L
term of asymptotic power series of the derivatives of the rea shes. Therefore, this total derlva_\t|_v e can be droppedhg.
n more complex superconductivity problems such surface

pair potentiala (x). terms may lead to anomalous terms in the free energy
Following th ve mention r for calculatin - : L
ollowing the above mentioned strategy for calculat gfuncuonalf13 Nevertheless, it is important to notice that it is

the expansion coefficientR.., we wrote aMATHEMATICA : . )
" always possible to express the gradient expansion of the free

code which evaluates analytically, in a systematic fashion neray density in terms of even powers of the pair potential
these coefficients. Here we apply our results to calculate thg 9y Sity. np pair pc
and its derivatives. Another virtue of the computer imple-

gradient expansion ofF up to the fourth order terms, i.e., mentation of our method is that it can automatically perform
these partial integrations and return the final resultsieg in

5|:%5|:0+ 5F2+ 5F4, (5.28) the desired form. _
Thus, Eq.(5.30 can be rewritten as

wheresF is given by the first two terms on the RHS of Eq. 1 A'? A%A'?
(5.27). SincesR;=0 there is no first order correction &-. F2=Z <27TT z [(wz +Az)a/z_ (wz +A2)5’2}>'
In fact one can easily show, based on symmetry arguments, m m 53
that all odd order contributions to the gradient expansion (5.32
vanishes identically. This does not mean, of course, that all
odd order expansion coefficienfR,, . ; are equal to zero.

To calculateSF, one needs the following coefficients:

wn>0

Next, we perform the average over i.e., the directions
of the quasiclassical trajectories; the relevant expression is

(F(A)A'2)=(f(A)(U-VA)?)=(nin))F(A)(FA)(4;A)

1
— 2_ " 1 1
PRp=7(A7- 2847, (529 = 1(8)8;(28)(38) =5 F(A)(VA)?,
(5.33
5R3=i(20A2A’Z—A”2+2A’A<3)— 2AA ™), wheref(A) is an arbitrary function of the pair potential. This
16 (5.298 last result clearly depends on dimensionality;dndimen-

sions(n;n;)=(1/d) ;. Inserting the above results into Eq.
(5.32, and restoring the original units, one obtains

Note that whileSR, contains only terms of second order in
the small parametef, /I, the coefficientdR; contains both _ 2 m 2
second anpd fourth c;)rder terms as well. Islone of the higher OF 2= mTNo( i) wm2>0 (w2 +A2)52 (VA%

order coefficientséR, contain other second order terms in (5.34
&o/l. One of the main features of our method is that it can_ ) o )

automatically collect all the terms of a given order in the This expression coincides with the well known Werthamer
various relevant expansion coefficied®, . Inserting all the ~ result[Eq. (129 in Ref. 65 for a clean superconductor in the

second order terms from Eg&.29 into Eq.(5.27) one ob- absence of supercurrents and magnetic field, obtained by
tains means of many-body Green’s functions.

The complexity of calculating the successive terms in the
gradient expansion ofF increases exponentially with the
[A’Z—ZAA" A2A'2 D order of the term. Nevertheless, by using the computer

2

1
F2=15 <27TT >

+5 implementation of our method we were able to compute in
2o | (02222 Y (L2 1 A2 ple ation of o ethod ere ab compute

matter of minutes the fourth order teré¥,. For this pur-
(5.30 pose one needs to evaluate the expansion coeffici#Rts
k=3,...,6 andhen filter out all the fourth order terms in the
One can easily see that the second tépnoportional toA”) small parametei,/l. After collecting all these terms, we
on the RHS of Eq(5.30 can also be expressed in terms of obtain the following expression for the fourth order term in
A’2. Indeed, we have the gradient expansion afF
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7 5A%w?2 the DOSp(E) can be expressed in terms of the diagonal
5F4— 2@ T 20 m resolventR=R, +R_ as
>
2 2 ~
© , g ” E)=2Ep(E)=— — & m —
- (w2+22)9/2>A - (w2 +22)7le ZD p(E)=2En(F) zn: E2+|0+
m m
2E ®
(5.39 =2 jim Im f dxR(x:E2+is).  (5.39

o
This result has been obtained after dropping irrelevant total e—0"

derivatives in order to express the final result only in terms\ow combining equation§3.13), (5.36), and(5.39 lead us

of even powers of the first and second derivatives\pthe {0 the following expression for the free energy density:
only ones which contribute to the fourth order term in the

gradient expansion. To obtain the final expressionste; all _
we need to do is to average over the directions of the quasif = =27 T dEP(E,r)'” 2 cosho | +
classical trajectories and to restore the original units.

AZ

V

Apparently, in the derivation of the results presented so ) )
far, the particular form of the Fermi-Dirac distribution func- = —4T lim Im fo EdE |”(2 COSh— (R(x;E*+ie))
tion of the quasiparticles together with formu@.14) were e=0"
crucial. In what follows we show that this is not the case and A2
that our method of evaluating the free energy of an inhomo-  + v (5.40

geneous superconductor can be formulated in a more general

form which is also applicable for a nonequilibrium distribu- where, by definition, the local DOS is given by
tion function f; of the quasiparticles. The basic idea is to
express the free energy density in terms of ltteal density
of statescorresponding to the Andreev Hamiltonidne.,
along an individual quasiclassical trajectpry

2E _
p(E;I’)E7 Im(R(x;E2+i0")), (5.413

or in conventional unit$cf. Eq. (5.36)]

C. Local density of states p(E:r)=2%vN,E Im(R(X;E2+iO+)>. (5.41h
In this section we present an alternative derivation of the
expressions5.27) of the free energy density for the case of ~ The next step is to subtract from E¢.40 the free en-
thermal equilibrium without invoking formulg3.14 but  ergy density corresponding to the reference normal state and
rather rewriting the summatiai@.3) over the complete set of to replacesR in the resulting expression by its asymptotic

states as series expansio(b.25), i.e.,
dQ; 1 1
coo=mhveN der u SR(X;E2+ie)= -
2 = mhuo | dr, S = e P = e
o0 1 o]
:WﬁvFNof dz“—<fo p(E)dE"'>, (5.36 +§ 2 5Rk(X)(A2—E2—is)7kfl/Z_
k=1
where the density of statg®0S) along the quasiclassical (5.42
trajectory determined bywr, ) is given by Thus, the free energy densisF = F — Fy becomes
p(E)Ep(E;ﬂ,rL)=; SE-En(ur)]. (537 SF—oF,_2TS lim Im FEdE
k=1 8*>0+ 0
Here {E,} represent the energy spectrum of the Andreev In[2 cosE/2T)]

Hamiltonian. Next, let us define the DOS corresponding to %
the SUSY Hamiltonian# .. (A*—E*-ie )kH/Z(&Rk(X> (543

where, the zeroth order term in the gradient expansio#Fof

p(E)=p.(E)+p_(E)=2, SE2-E?) is given by
n
© E
p(E ) 8Fo=—4T lim Imf EdEIn(Zcosh—)
2 S(E—Ep)="g (5.39 0 o 0 2T
2
Thus, from Eqs(5.38 and(5.13, by employing the formula « 1 _ 1 _|+= . (5.49
JA?—E?—ie -E?-i¢ \4
1
PENT.E lim A Tie =1i775(x)+77;, By employing contour integration in the complex plane, it

0" can be shown(see Appendix Cthat Eq.(5.449 coincides
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precisely with the first two terms on the RHS of E§.27). Furthermore, by repeated partial integration, the second term

Equation(5.43 can be further simplified through integration on the RHS of Eq(5.49 can be expressed as an improper

by parts definite integral involving the derivatives of the Fermi func-
tion and the familiar BCS DOS

foc EdE inl 2 cosh E
o (1-E7—ig)reN| 2coshyy _EO(E-1)
po(E)= = (5.50
1 o tanH E/2T)
T 2T(2k-1) JO dE (1-E2—ig)F 2 For convenience we list below the expressions of the coeffi-
cientscy(T) for k=2 and 3
(5.49
Hence c (T)=1—2F (E)dE(—a—f>=pS(T) (5.5
2 o PO JE| ps(0)
o (SR(X) f
SF=06Fy+ > ~—~—— lim Im [ dE 2 2 (- of
0 kgl 2k—1 e0t 0 C3(T):§_§ JO pO(E)dE(_é’_E
tanh(E/2T) 1 (= of | 2
“A-E=ie) 7 (549 =3 PO(E)dE(£> . (652
By using complex contour integration, it can be shown thaRNherepS(T) is the superfluid density at temperatdre
(see Appendix € As we have already mentioned, this second method of
calculating the free energy of an inhomogeneous supercon-
_ ® tanh(E/2T) ductor by means of the effective local density of states
C(T)= lim Im fo dEz—-m (5.413 is quite general and in fact it is applicable for an
e—0% (1-E°—ie) arbitrary distributionf; of the Bogoliubov quasiparticles, as
we show in the next section.
=27T 2 (wh+1) *H12
on>0 D. Nonequilibrium free energy density
- tanh(E/2T) Consider a superconducting state in which the quasiparti-
= lim ReJ’ dE , k=273..., cles are out of equilibrium with the condensate. We also
0 ~ ~ ) i
et A /E2—1(1—E2)"*1 assume that the superconducting state can be described by

the effective mean-field Hamiltonig@.1), with a pair poten-
(5.47  tial A(r) and a nonequilibrium quasiparticle distribution
_ function f(E;r). Then, the local DO%(E;r) given by Eq.
where E=E+ie. Finally, inserting Eq.(5.47 into Eq. (5.41b is applicable with the same diagonal resolvént
(5.46 leads to our previous resulb.27) and, therefore, to studied in the previous sections. Thus, one can immediately
Eq. (5.27) which can be also written as write down the expressions for the energy/)(and entropy
. (S) densities of the system
SF=6Fg+ >, c(T) (R(X)) (5.48 A2 (=
&y 2k—1 T - we A0 _f
\%

EdEp(E;r)[1—-2f(E;r)] (5.53
0

The coefficientx, (T) can be calculated by using their inte-

gral representation(5.47. By employing the identity and
tanhE/2T)=1-2f(E), wheref(E) is the Fermi function, "
one can separatg(T) into a temperature independent and a s:f dEp(E;n{f(E;r)In f(E;r)
temperature dependent part; thendependent part can be 0

calculated analytically and,(T) becomes

+[1-f(E;r)]In[1—-f(E;r)]}. (5.59
_ » 1-2f(E) The usefulness of these equations depends on the problem at
c(T)= lim Re JO dE —= . hand. For example, if the system is in local thermal equilib-
e—0" VEZ-1(1-E?)* 1 rium, such that a local temperatufgr) can be defined and
2k=2(k—2)1 the distribution function of the quasiparticles can be ex-
— i pressed, e.g., agE;r)=(exdE/T(r)]+1)" %, then it make
(2k=3) sense to define a free energy density through the usual ther-
modynamic relatiorr =W—TS. Furthermore, assuming that
_ lim Re fxdE 21(E) _ the considered su.pe_rcondl_Jcting state is closg to the equilib—
ot 0 \/Ez——l(l—fzz)kfl rium BCS state, it is straightforward to derive a gradient

expansion formula forSF along the line discussed in the
(5.49  previous sections.
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VI. SUPERCONDUCTOR IN THE PRESENCE OF THE
MAGNETIC FIELD AND SUPERCURRENTS

A. Free energy

For A(r)=|A|e'? complex, with a general spatial depen-
dence of the phasg and in the presence of a static magnetic
field the squared Hamiltoniaf( 4 cannot be rotated into a

KOSZTIN, KOS, STONE, AND LEGGETT

PRB 58

In Det(i wp+Ha)= 2>, IN(iwpn+Ey)
n

_i‘”m d)\
:_;f En—A

—ioy
matrix with second-order differential operators on the diag- = —J d\ Tr G(N)
onal and off-diagonal terms equal to zero. Consequently we

will go back to the expression for the free energy9), but

now written as

dQ;
47T” wE In Det(i wp+ Ha)

f:—szﬁvFNof dzrlf
A(r)|?
+f d3r #'F]:H. (6.1

Here we use the factorization? + E2= (i om+ Eq) (—iwm

+E,), so the sum now goes over both positive and negativ

Matsubara frequencies.

The determinant stays unchanged when we make the uni-

tary transformation
e )
—iﬁv,:r?x—v,: EAU |A|e|0
HAE

—i . €
|A|e ' |ﬁl)|:07X_U|:EAu

efi0/2 0 ei(9/2 0
( 0 eiH/Z)HA( 0 ei0/2)

—Fy=
—ihvp5x+vpmvsu |A]
- |A| ihvpdy+vemus |
(6.2
Here
A,=U-A
and
~ . h v 2eA
USU=U‘DS=U'ﬁ e—h—c ,

are, respectively, the components of the vector potential and
the superfluid velocity in the direction of the quasiclassical,
trajectory. In what follows, it is more convenient to use the

Hamiltonian, instead ofH, .

As in the absence of the magnetic field and supercurrents, V=
the Fredholm determinant in E¢.1) can be calculated from

the trace of thematrix resolventcf. Eq. (5.18]

G(X,y;r L U N)=(X|(Fa—N) " Hy).

We have

—lopy ~
=—f d)\fdxtr G(X,X;r ,U;N).

(6.3

In Eq. (6.3 the notation Tr means the trace of the differential
operator, and so involves integration overwhile the sym-
bol tr means a summation over the two spin indices only. In
the following, for brevity we will omit the arguments and

u.
As shown in Appendix B, the 2 matrix G(X,X;\) is

gbtained from the matrix functiomy(x;\)=G(X,x;\)o3,

which satisfies the Eilenberger equation

)\_UFmUSu —|A|

=0.
IA| —\+vEmus,

ifiveg’ + .9

(6.9

The Eilenbergefor quasiclassical Green'sunction g(x;\)
also satisfies

1
tr g=0, gzz—mao. (6.5
F

In terms ofg(x;\), the free-energy density is given by

dQ

. _
477"‘,2m

F=2wawFNof "TAN tr{gOGN) s

|A(N)|?
+

+Fy. (6.6)

B. Gradient expansion

To obtain the gradient expansion of the free energy den-
sity F, we rewrite the Eilenberger equatiof.4) in the form

ihveg’ +[V,9]+[A,9]=0, (6.7

A:(|Z| _—lﬂ

is of the zeroth order and

where

_UFmUSu 0 )

0 vaUSu

is of the first order in gradients of the order parameter.
The contribution of the zeroth order g satisfies the
equation

[A!go:l:o! (68)
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and so it is at every point the Eilenberger function for aandR satisfies the conditions
homogeneous superconductor with constant real order pa-

rameter that would be equal (4| at that point. This may be

calculated explicitly from the resolvent. We find
—[A|

i N
XN)=——————
9ol )2ﬁUF\/>\2—|A|2(IAI —A

which indeed satisfies E¢6.8).

), (6.9

1

) — 2 _ =
tr ROX;\)=0, R prEm:

It is this matrix functionR(x;\) that is the analog of the
scalarresolvent(5.12; hence we denote it by the same let-
ter. The functionR can be expanded into the asymptotic
series?

To obtain the higher-order terms, it is convenient to trans-

form to the basis of eigenvectors & That is we find a
matrix B such thatB ~*AB=diag. The eigenvalues & are

+ ¢ with = \?—]A]?, and
N+ A
Al N+¢

. (6.10

A general matrixM =M ©@gy+---+ Mg, (Whereo,, a
=1,2,3, are the Pauli matrices, ang is the 2<2 identity

matrix)  transforms  into  M=M©@gq+---+ Mgy
=B~ !MB, where
MO=MO, (6.113
MO =MD, (6.11H

M2

M) 1) A ilAl
M@ 2l —ilal A ) M“))' (6119

R=2 Ry ™", (6.17
n=0
where
i
=Rp-1 —
Ro—B goB ZhUF 0'3. (61&

We have somewhat generalized Dikii's workbecause the
expansion parametef ! is x dependent, and has to be,
therefore, differentiated too when we substitute Ej17)
into Eq. (6.14). The derivative of thenth order term in the
expansion is

(R ™) =R\ =R ¢

If we multiply £ by a constantCC, both terms will be multi-
plied byC ™", so they are both of the ordarin 1. Equat-

ing the nth order term in Eq(6.14) to zero, we obtain the
recurrence relation

This transformation is complex-orthogonal rather than uni-

tary, because it was supposed to rotatéA|o,+ A o5 with
one component purely imaginary intfo5, as it, indeed,
does.

Next we define

R(x;\)=B~g(x;\)B. (6.12

Then
B !'g’'B=R’+[B"!B',R].
From Eq.(6.10, we obtain

NA[Y

B 1B'= 2_4"2 o1t By,

(6.13

whereB,, is proportional to the unit matrixy and, therefore,
contributes nothing to the commutator wighin Eq. (6.13.
Hence, in this new basis, E.7) reads

itveR (X;N) +[U,R(X;N) ]+ {[o3,R(X;N)]=0,

6.14)
whereU=B"VB+i#v(B 'B")® is given by
ihoen| A"
Q""" "~
U S (6.15a
i|A|U|:mUSU
Ud=— ———, (6.15bh
¢
)\UFmUSU
U(3)=—T, (6.150

ifLUF( qu_n g_ Rn

{ +[U,Rp]+[03,Ry41]=0.

(6.19

If we write R,=RVoy+---+R®ay, thenR®=0 since
tr R=0, and the remaining components satisfy the following
recurrence relations:

RY =- % th( R —ng—é: RZ |+ UDRP-UBRY,
(6.203
1 '
R =% ﬁv,:( R(nl)’—n? R<nl>) +UPRP-UCRE,
(6.20b
g—n
(R§§>g*“)':2E(U<Z>Rgl>—u<1>R§3>). (6.200

Note that there is no recurrence relation for the coeffi-
cientsR®, but only for the derivative oR(®)¢~". For ¢
=const, the theory in Ref. 31 guarantees that the right-hand
side of Eq.(6.209 is always a derivative of a polynomial in
entries ofU and their derivatives. The integration is, there-
fore, always possible, but it leaves an undetermined constant
in evernyf). These constants together with the constants in
R (which are set to zero in our case sincéRtr0) deter-
mine the solution of Eq6.14) uniquely. The product of two
such solutions again solves E§.14), so all the solutions of
Eq. (6.14 form an infinitely dimensional commutative alge-
bra over the field of complex numbers. Equivalently, they
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form a two-dimensional algebra over the field of formal se- The first-order termF,(r) vanishes because it contains

ries in ¢~ * with constant coefficients. . ~ one vectow to be averaged over the unit sphere which gives
For ¢ spatially dependent, a simple extension of Dikii's zero, Fork>1,

theory shows that the right-hand side of E§.209 can still

be integrated; now it will contain also powers and derivatives oK
of 1. However, the spatial dependence/drces all the [ = : 2 | |A[2)"k+12 6.2

| Ak g (@Rt AR T (6.29
constants on the diagonal &, to be zero fom>0, so the 2k—1

solution of Eq.(6.14) is completely determined by constants
on the diagonal ofR,. Moreover, the only solution with

o9 . , , Finally, for the aver ver the direction w th
Ro= 0y is oy itself, so an arbitrary solution can be written as ally, for the average over the direction we use the

symmetric integration formula
R=R{ oo+ RPYR,

dQ; - R
where RY® and R{® are complex numbers, arid is the J 47: (V1) W) (V21 1)
uniquesolution withR,= o3. Hence, the spatial dependence
of { keeps the algebra two-dimensional, but reduces the co- Ew:pem(v(wl)-l?(wz))'“(v(w2k,1>'v<w2k))
efficient field from formal infinite series to complex num- - (2k+1)! -
bers. The algebra is therefore reduced to the two-dimensional
Clifford algebra CI(1C). In our caseR=(i/2hvs)R. The (6.29

algebra structure theforces R=— (1/4h%v2) oy, in agree-
ment with Eq.(6.16).

In terms of the expansion coefficierRé“) the free-energy
density has the form

In this expression many of the terms will be the same. Indeed
when vectory ;) are all different the numerator on the RHS
of Eq. (6.26) contains only (&)!/k!2¥ distinct terms rather

than (X)!. Note that for an odd number of vectors, the

dQ; —iwy integral vanishes.
F:4T7TﬁUFNof ar > dx Using MATHEMATICA, we obtained the expansion of the
“m free energy density functional up to the eighth order in gra-
o i|A|R§12)(X;>\)+)\R§13)(X;)\) |A|2 d_ients of the order parameter. The terms are getting progres-
P T + T+FH. sively longer, so we list them below only up to the fourth

order. To make the formula shorter, we do not perform&he

(6.22 averaging in the fourth order, just denote it fy-) around
) . ~ the 21 fourth-order terms. Leaving the explicit directional

So, to evaluate the free energy density we just need to findyeraging to the reader has been customary in the literature.
the coefficientRy from the recurrence relatiort6.20 with  Also, in the fourth-order terms we write primes instead of
the initial condition(6.18, substitute them into Eq6.21),  gradients. As an exampléyg/A|’v.) means
and perform the Matsubara sum and thendu integrations.
All the \ integrals are of the form

1
15 2 wsNIAIAMGs1) Fvs(DIF|AM1dv5(r)
(6.22 |

oy iN
I = N ——, .
& f (VNZ=[A[)2t +osi(N[F]A(r)[19jvsi(r)}.

wherek is a non-negative integer.
For k=0, the integral diverges, and therefore needs spe
cial treatment. If we subtract from E(6.21) the free-energy

In this notation, the expansion up to the fourth order reads

density of a normal metdty then the difference of the cor- “D |A|2
responding integrals becomes finite F(r)—Fn=47TNg ZO (om— \/wrzn+ |A|?)+ T+ Fy
~iom ix ix +F,(r)+Fy(r) (6.27a
| :f I\ ——=——=| =|on— Vo, +|A|% 2 ath )
(6.23 where
Using R{®=i/2%ve, we find the zeroth-order contribu- 1 A2
tion to the free energy density Fo(r)=2= 7_r-|-NOmzv§2 — Ug
wp |A2 3 Om (C!)m+|A| )
Fo(r)—Fn=4mTN, E>O (wm—\/wzm+|A|2)+T+FH, R R > wh vIAD?
®Om AT 1% RN
(6.24 1277700 RS (ot AP
where the spurious divergence of the infinite frequency sum (6.27H

can be eliminated, as usually, by cutting it off at the Debye
frequencywp . and
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Fu(r)=NomT>,

©m

5 vem*A|%vd  vEmiAPv? 250ER2m2|A|Z03A]'2 1 vERPmPui|A|"?
4(w§1+|A|2)7/2 (wr2n+|A|2)5/2 8 (wﬁl+|A|2)7/2 2 (wﬁl+|A|2)5l2

350pha2m?|A%v2|A|’2  105vRRYAIYA'Y 3 uvRRYA]’Y 49uRhAlPA]M4
8 (B +[ADT2 T 64 (02 +[ADT2 64 (w2 +][A[DT? 96 (wd+]A[H)2

5 vEh?m?|APug Al'v.  vERPm?|AludAl'v. 1 vERPm?|Al%vl? 5 viEh2m?|A|Pv3|Al"

2 (wht[AP)? (5 +[AP)? 74 (WG AP)? 4 (0f+][AP)7?

oin?m?(Alw2|A]" 3 uvinY|A|AIZA]" 77 oA ARR|A[2A]" 3 vinf|A[2[A]"2
(R +AP)Z 716 (0p+[A)? 48 (oft[AP)P? 7 16 (wft+[AP)?

1 vphA]"? 1 uER?m?APol 1 uphdAPPIALY|A|" 1 vERYAT|AI" 1 vRERAAA|"
80 (w+[A[%2 7 2 (0 +[A[%2 4 (0pH[AHT? 40 (0 AT 40 (wp+[A[2)%2)

(6.279
|
The second orde_r teri®.27h is identical with Werthamer’s tr G(x,x.E) =tr[g(x;E)o3]=tr[BR(x;E)B*1(r3]
result[Eqg. (129 in Ref. 65 for a clean superconductor in
finite magnetic field, and fors=0 this reduces to our pre- i|A|R<2)(x;E)+ER(3>(x;E)
vious result(5.34). In the same limiting case;=0 the ex- =2 . (6.30
pression(6.279 of the fourth order term gives, up to a total VE2— |A|2

derivative, the same result as E&.395. The fact that the
two methods we used to calculafg are fully independent ) ) ]
of one another gives us confidence in the validity of ourHence, by employing the asymptotic expansi@nl?) the
results. However, the formulé6.279 apparently disagrees l0cal DOSp(r;E) and the corresponding free energy density
with the result obtained by Teworfft Work is in progress to  F(r) can be written, respectively, in the following form;
locate and understand the difference between these two re-
sults and we hope to report our findings in this regard in a 4
future publication. p(rE)=— fiveNg

o

C. Local density of states

dQ; = i|A|IR?(x;E)+ER®(x;E)
As we have seen in Sec. V C, an alternative route for X1m f >
calculating the free energy density of an inhomogeneous su- 41 n=o0 (+ [E2_ |A|?)n+L

perconductor is based on the local DOS. The free energy of

a bulk superconductor can be written (6.30
E; 5 A7 and
J’L‘——ZTE%‘,O In(ZCoshﬁ +f o+ Fi
_ ZTdeE E)in| 2 cosh— +Jd3 [Af* ) il
=-enT | p(E)In| 2 cos >T SNVE F(r)=—8ThvgNg Im JOdEIn 2cosh—T f i
+Fy, (6.28 - -
: “ iAIR?(xE)+ERA(xE)] |Al2
where the DOSp(E) in the quasiclassical approximation X2 = +—+Fn(n).
reads n=0 (‘/E2—|A|2)”+1 \%
6.3
E—1I2h Nfdz fdfdmte E o
p( )_; m UENp rL X E r (X1X1 ) ’

(6.29 Similarly to Eq. (6.2, first we need to determine the
relevant coefficient&; from the recurrence relatior(§.20
andE=E+ie. Furthermore, Eqg6.12 and(6.10 allow us  With the initial condition(6.18), then substitute them into Eq.
to express the trace in E¢6.29 in terms of the diagonal (6.32, and finally perform theE andu integrations. All the
resolventR(x;\) E integrals are of the form
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In Appendix C we show that the integrals defined by Eqs.  APPENDIX A: THE GELFAND-DIKII EQUATION
(6.2 and(6.33 are related through Consider the one-dimensional Sctinger operator

2 He(x)=—d2+U(x), Al
> |)\’k:—;~]E,k, k=0,1,2,... . (6.39 s) U (A1)
om defined on the intervake[a,b] (any ofa andb may be
infinite), and the associated eigenvalue problem
By employing this identity, a direct comparison between
Egs.(6.21) and(6.32 shows that the two routes to the free

energy density give the same result. Hs(X) ¢n(X) = Eqihn(X), (A2)

corresponding to the homogeneous boundary condition
VIl. CONCLUSIONS
ap(X)+ By’ (x)=0 for x=a,b. (A3)
In this paper we have presented a general method, based

on the semiclassical limit of the Bogoliubov—de Genf@s Let us denote by, (i) the solution of the equation
wave function formulation of the theory of weak coupling
superconductivity, for calculating th@auge invariantfree " —_ P _
energy density of an inhomogeneous superconductor with a Hs() P00 =1= it U 1900 =Eg(x), (Ad)

pair potential with arbitrary spatial vgria_tion and in the Pres-yhereE is an arbitrary real number, which obeys the bound-
ence of supercurrents and magnetic field. We have showgry condition(A3) only atx=a (x=b) but not at the other
that the free energy density can be expressed in terms of tkb

diagonal resolvent of the Andreev Hamiltonian, the semi- ¥nd of the interval. Then the Wronskian #f and s
classical limit of the BAG Hamiltonian, which obey the so- , ,

called Gelfand-Dikii equation. Since the solution of the WI(E) = #ra(X) hp(X) — ha(X) ¢hp(X) (AS)
Gelfand-Dikii equation can be easily expressed in terms of o )

an asymptotic series, our method is most suitable for obtaind€S not depend onand itis only a function oE. Note that
ing the gradient expansion of the free energy density wheNV(E) vanishes only foE=E,. .

the superconducting order parameter has slow spatial varia- The Green’s functiorG(x,y;E) associated tdg is de-
tions on a length scale set by the BCS coherence length. Tidned through

the best of our knowledge, this is the first time that the gra-

dient expansion c_)f the free energy of a.clean.inhomogeneou.s AX)G(x,V;:E)=A«Y)G(x,V;E)=8(x—Yy), (A6)
superconductor, in the general three-dimensional case and in

the presence t_)f supercurrents and external magnetic field,q can be expressed in terms of the Wronskiss) as
has been obtained by employing the wave functiBdG)
formulation of the theory of superconductivity. Our result for

the second order term in the gradient expansion of the free Gxy:E)={ x 1

energy density coincides with the result of Werthah&t Yo e E y

obtained more than three decades ago by using Green'’s func- s

tions. However, our expression of the fourth order term ap- 1

pears to be somewhat different from Tewordt's Green's = ——[O(X—Y) hp(X) Pa(y)
function result® and further investigation is needed to estab- W(E)

lish the origin of this discrepancy. Nevertheless, since in the

zero-field case we have arrived at the same result for the T Oy =X) ha(X) h(Y)], (A7)

fourth order term in the gradient expansion of the free energﬁ

. . . . here®(x) is the step function. One can easily check that
by using two essentially different methods, we are confiden . :
in the viability of our approach and results. We have also d. (A7) obeys Eq(A6) and, because by construction satis-

shown that our method for calculating the free energy of ar{ies the boundary conditio(A?), G(x,y;E) is indeed the

inhomogeneous superconductor is applicable for states f4preen’s function associated kbs.
from equilibrium characterized by an arbitrary temperature The diagonal resolvent dflg for a given energyE is
field and quasiparticle distribution function. defined in terms of the Green'’s function as
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ary conditions on the wave functions at b in such a way
ROGE)={ X| = X that the Hamiltonian is self-adjoint. This requires that the
Hs—E condition for hermiticity
1 Hawo)—(H =—iyl b= B4
— lim Z[G(x.x+ 5 E)+G(x+5X.E)] (P1|Ha2) —(Hath| o) = —igh10353=0  (B4)
s—0% be satisfied in a manner that treats and ¢, on an equal
Do) () footing, thus ensuring that the domain ldf, and H coin-
= TR (A8)  cide. We impose the vanishing condition at each end sepa-
W(E) rately. Thus
By taking into account Eqs(A8) and (A4), the first two * =0 x=ab B5
derivatives ofRe=R(x;E) can be written agfor brevity we Viwea™ V2 =0, Y B5)
drop the arguments whereu and| refer to the upper and lower components/of

respectively. We disentanglg,, ¢, by dividing by 7, ¢

R/ — athot Yatby and find, for example,

and L e (—“) . (B6)
Yol VW) |,
RE=2(U-E)Rg+2 lﬂ\j\l/ﬂb_ (A10) Equation(B6) requires that ally in the domain 0ﬂ3|A obey
Then, combining EqSA5), (A10), and(A8) we arrive at ﬂ —gifa (B7)
d/' X=a
lp;%:ﬁ(R{f— 1). (A11l)  for some real angl®,. Similarly
Finally, inserting Eq.(A11) into Eq. (A10) and after some Wy _ oy
rearrangements one obtains the desired Gelfand-Dikii equa- E b_e : (B8)
tion =
PR ) These boundary angles, , parametrize the family of pos-
—2RegRe+Rg™+4Rg(U-E)=1. (A12)  sible self-adjoint boundary conditions. Physically one may
think of them as the phases of the order parameter of a su-
APPENDIX B: THE MATRIX GELFAND-DIKII perconductor with an infinitely large energy-gap abutting the
EQUATION ends of the interval.

. ) . o We now notice that, for any two solutionf,, ¢, of the
In this appendix we will study the Andreev Hamiltonian equation

|:|A=—i(7307X+A0'1€i‘T30 (Bl) (_i()'gﬁx‘f‘AO'leiU?’e)lﬂl’Z:Elﬁl’z, (Bg)

and obtain a relation, analogous to the Gelfand-Dikii equawhereE is real, the quantity
tion, obeyed by the diagonal part of its resolvent :
W( 1, 2) = 1 (X) o3¢f2(X) (B10)

B,y>_ (B2) is independent ok. To prove this, simply differentiatev
and use Eq(B9). We will see thatw (¢, ,») plays the same
- . role for the Andreev equation as the Wronskian plays for the
Here the indicesa and S label components in the two- Schralinger equation. For example, using the boundary con-
dimensional Nambu space. . . dition we see that)lozi=0=ylosi,. Combining this
To derive the Gelfand-Dikii analog we must first write | o' constancy 0}'\/(%,1’02), Wé cee thaw must vanish

G,.s(X,y;E) in a form similar to the expression we used . : : : :
ap - -
earlier for the resolver®(x,y;E) of the Schrdinger Hamil- identically if the two SO|UtI.0nSﬂ1, & are.propAortlonaI to
one another. Conversely, if for two solutions laf,¢y=E

tonian. Recall that there we had ]
we havew(i,,1,)=0 at some point(and hence at all
points in the interval, then

(h1tbuo— Wir2)|a=0 (B11)

Gap(X,y;E)= < a,X|
Ha—E

1
G(x,y;E)= W(E) Pa(X) Pp(Y), (B3)

where W(E) =W(,, ) = ity — i tba is the Wronskian

of the two solutionsy, , ¢, of the homogeneous Schiinger

equationH Yap=Et,p, and is independent of. Yo\ *
We will begin by constructing the resolve@,, s(x,y;E) (W)

for the Andreev Hamiltonian on a finite intervph,b]. If

required, the limit of an infinite domain can be taken later.The two solutions therefore satisfy the same differential

To specify the problem completely we must impose boundequation with the same initial boundary condition, and so

x=a d/u2

(B12)

X=a
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must be proportional. We have therefore shown thatNow
w(i1,4,) provides the same test for linear independence as
the WronskianW( ¢4, ).

2 \PL:_L\PL\I,TR(O_) \I,L:_E\I,L
The resolvenG ,4(x,y;E) will have the form Yap™* p AW+ et g U3BBT B 4 e
G5, Y;E)=AL(y)PL(x) for x<y (822
s b “ ’ Similarly
=AR(y)¥R(x) for x>y, (B13) 1
2 R_ R
where ¥L(x), ¥R(x) are solutions of the homogeneous 9ap¥p=—7 Va- (B23)

equation and satisfy the boundary condition on the Ieft ( . _ .
or right (R) hand boundary, respectively. The jump- Provided that is not an eigenvalue we haW#0, so the

condition obtained by integrating two column vectorslfz and\Ifb are linearly independent and
. together span the two-dimensional vector space at each point
(—iogdx+Ac€' 93 —E)G(X,y;E)=0pd(X—Y) x. Consequently these last two equations are telling us that
(B14)
. . 1
across the poink=y is 9(213: -7 Sap- (B24)

i(03) 0 [P5,(Y)AL—TR, (y)AR]=65,,. (B15
(78)aa LV o (VAG=Y o0 (Y)AG] b ) We also see that the trace gfvanishes;

To solve Eq.(B15) we defineW=¥"-¢;¥R and use the

c_onc_jitions\IfTLas\Isz\PTIRUQ,\II_R:O. For example, on mul- g(m=1 ('_ W— N W ) -0 (B25)
tiplying Eq. (B15) by ¥!- we find 2\W wW*
i‘I’ZL(Us)aar‘I’LrA'[;—iWZL(Ug)aarWRrA§=WLL- We can therefore find thregenerally complexnumbers
“ “ (B16) a1, @, ag such that
This collapses to aj+as+as=1 (B26)
—IWAS=W I (y). (B17) and
In this manner we obtain i
) gaa:§(5110'1+320'2+330'3)- (B27)
i
By — L 1R
=—— <
Cap(X.YiE) W VoW E(y) for x<y, After inserting Eq.(B19) into Eq. (B20) we may now seek

. the Andreev-equation analog of the Gelfand-Dikii relation.
_ I—‘PS(X)‘I’EL(Y) for x>v. (B18) B_ecausg the Andregv equation is first-order, we have _on_ly to
W differentiate once with respect tobefore we are able elimi-

) ) nate thed,¥’s using Eq.(B9). We immediately find that
Notice thatG ,4(x,y;E)=G},(Y.Xx;E) as befits the resol-

vent of a self-adjoint operator. i9,0=[g,03(E—Ace'73)]. (B28)
For the Schrdinger problem the Gelfand-Dikii equation
applies to the diagonak=y entry in the resolvent. Our The equatior(B28) is well-known in the superconductiv-
matrix-valuedG,4(x,y;E) is discontinuous ax=y and, as ity literature as a form of the Eilenberger equation. The
explained in earlier sections, we must deflBgs(x,x;E) by ~ present derivation is much simpler than those usually ad-
taking an average of the left- and right-hand limits duced. In particular the normalization condition E§24)
- L appears automatically and does not have to be introduced by

! R L L R hand. It also has the added advantage of demonstrating that
CapXXB) =7 |y Va0V g ()= g ValX) Wy (X)}' the Eilenberger equation should be regarded as the Andreev
(B19 problem analog of the Gelfand-Dikii equation.

It turns out thaiG ,5(X,X; E) is not quite the most convenient Notice that the position de_plendent matggﬁ(x) Is the
quantity to work with. Instead we use the matrix diagonal part of{o3(HA—E)]™". Equation(B28) asserts

that it commutes withry(HA—E), i.e.,
gaﬁ(x;E):Gaﬁ’(xa)(;E)(o-S),B’,B- (BZO)

The utility of this modification is related to the coefficient of
dy in the Andreev equation beings instead of the identity.

If one takes the square of the matigx;, again using

L L_ap 1R R_ : Un
Yt W=V "W "=0, one finds that

0=[a3(HA—E),gl. (B29)

In this appendix we have so far assumed thas real.
der this condition it is easy to show that

Yp'=yToy, (B30)

1 1 1
2 _T | _ = Ry, TL _ L, TR
9ap=7 | ~w VoV e (03 g VeV g (03)ps). so for example, we could also define the Wronskian analog
(B21) as
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W( iy, o) =i (—i03) s B31 1 (=+ie dE
(f1,h2)=dh1(—i02) b2 (B31) ‘JE,OZ_j —tanh—(m— E). (C4
In this form the antisymmetryw( ¢, o) = —W(i5,¢4) IS 4 Jtic
manifest. More importantly after replacing’ by ¢'o; in _ )
the appropriate places the expressiBi8) continues to be We can now formally close the contour of mtegrauon around
valid for complex values oE. the imaginary upper half axis where taBHf{T) has simple
poles at thgpositive) fermionic Matsubara frequencies, and

APPENDIX C: RELATIONSHIP BETWEEN 1), AND Jg  °Ptain the result

To prove Eq.(6.349 we examine the integrals in Eq.
(6.33. Again, fork=0, the integral diverges. By subtracting Jeo=—m 2>0 (0m—ont+|A]?). (CH
the contribution of the normal metal from the free-energy “m

density, the integral takes the form This result together with Eq6.23 yield Eq. (6.34 for k

» E
Jeo=Re f dE In 2 cosh=
0

=0.
o E _1). For k=1 everything is straightforward. The integrd ,

VE2—|A|? does not contribute because the first-order term is zero due to
C1) symmetry discussed above. For 1, Jg  converges. Inte-

This integral still diverges logarithmically. We can formally grating by parts and extending the contour gives

integrate by parts

= E
Jg o= RE{(\/Ez— |A|?—E)In 2 coshﬁ}
0

; R{ —1 In2 coskE/2T)
EKT NN oKk—1 2 r12v2k-1
(VE2-|a[p)2 ]

® 1 »+ie dE  tanh(E/2T)
_ E Az NRN— —_—
Re fo tanh + (VE*~[A]*~E). (C2) 4(2k=1) J-wsie T (JEZ=]A[P)%?
At E=0, the boundary term vanishéas s —0+, the con- (Co)

tribution from the square root is pure imaginary; the secon . . .
term is zero altogethgrAs E— o, the boundary term goes dl'he integrated out term vanishes. To perform the integral we

to —|A|?/4T. To do the regularization consistently, we haveagain close the contour in the upper half plane and obtain
to discard the boundary term. In the remaining integral, we

can replacé& by E in the argument of tanh, so we can write 2

1
Jek=5m— E 2i
Ek 4(2k—1) om>0 (\/_wﬁ,]_|A|2)2k71

1 ©+ie dE E

Jeo== Rej — tanh—= (VE?—|A|°—E).

2 Joue T 2T Ty 1 -
(C3 2(2k-1) & (i)zkfz(\/wfn+|A|2)2kfl

We note that the integrand becomes complex conjugate upon

E—E*. Thus, by extending the lower limit of integration to By comparing this result with Eq6.25 one can infer that

—o+ig, we automatically obtain just the real part Eq. (6.39 holds for any positive integek.
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