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Thermodynamic study of a lattice of compass needles in dipolar interaction
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We present the study of an original system, which is an experimental dipolar model allowing a precise
understanding of dipolar effects. This system is a square lattice of 22322 magnetized needles~compass
needles!. Its thermodynamic properties are studied by considering the action of a random external field sup-
posed to mimic the thermal fluctuations. In parallel, a Monte Carlo numerical simulation of the experimental
system is performed. Both studies show the existence of a phase transition between an ordered phase and a
disordered one. We introduce the notion of ‘‘line length’’ which is the relevant quantity to describe the
obtained configurations and to give a precise description of the observed transition. This phase transition is
characterized by the emergence of a preferential direction, called the ‘‘director,’’ and by an increase of the
average line length. The order parameter expressing the symmetry breaking is defined. Our results show an
example of a successful mapping of a dynamic dissipative system excited by a random field onto equilibrium
statistical mechanics.@S0163-1829~98!05638-0#
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I. INTRODUCTION

In the past, the dipolar interaction was generally not mu
studied in magnetism. This anisotropic long range interac
was usually neglected in magnetic materials because
much weaker than the exchange interaction. But since a
years ago, with the growing interest for the mesosco
physics, the dipolar interaction has become of great imp
tance. The discovery of new properties justifies the inte
for such systems. We can cite for example the domain st
tures in thin films, lattices of magnetic dots and hetero
neous nanocrystallized systems. Furthermore, close coll
rations between chemists and physicists give rise
fascinating molecular nanomagnetic systems such as M
and Fe8 clusters. Evidence for quantum tunneling of
magnetization is shown in these systems,1–3 and recent re-
laxation experiments on Fe8 are interpreted using the dip
fields.4,5 Nevertheless, it is not always straightforward ev
in these nice systems to have a clear idea of the pre
effects of the dipolar interaction since they may be either
measurable at the macroscopic scale, or hidden by var
distributions. Thus, the need for a complete and precise
derstanding of the dipolar effects is necessary and a dip
model may be of a great interest.

In most of the previous studies, the dipolar interacti
was added to the exchange one in order to study its effect
the existence and nature of phase transitions. It has b
shown for instance that a dipolar term introduced in the tw
dimensional~2D! Heisenberg model is able to stabilize
long range magnetic order; see for instance Refs. 6 an
For purely 2D dipolar models, theoretical and numeri
simulations results show that long range order exists for
Bravais lattices except for the square one. In this cas
‘‘Kosterlitz-Thouless-like transition’’ is expected, tha
means with an ordered phase characterized by a power
correlation function; see, e.g., Refs. 7 and 8. Howev
Prakash and Henley9 predict a long range ordered phase
sulting from a thermal fluctuation selection effect whi
breaks the continuous degeneracy of the ground state.
PRB 580163-1829/98/58~14!/9238~10!/$15.00
h
n
is
w

ic
r-
st
c-
-
o-
o
12
e

ar

se
t

us
n-
ar

on
en
-

7.
l
ll
a

aw
r,
-

his

selection induces a discrete fourfold symmetry. This p
nomenon is analogous to the ‘‘ordering due to disorde
which exists in the geometrically frustrated spins system10

We present in this paper an original experimental dipo
system made of 22322 compass needles on a squa
lattice.11 This system is a dipolar model where the dipo
effects are isolated since they are not mixed with other
fects such as for instance the exchange interaction. There
many studies are possible with this experimental model s
tem in order to understand precisely the dipolar interact
and its effects. We present here a study of the thermo
namic properties of this experimental dynamic dissipat
system by considering the action of a random external fi
supposed to mimic the thermal fluctuations. As we shall s
the experimental results obtained with such a random fi
and treated in a thermodynamic approach, are comparab
those obtained from a Monte Carlo numerical simulati
where the temperature allows the system to probe the p
space according to the Boltzmann statistics.

The outline of this paper is as follows. In Sec. II w
describe the experimental setup which allows the study
these compass needle lattices, and we describe some im
tant first observations of the square lattice behaviors w
various fields are applied and in particular random fiel
The conclusions of these first observations are compare
the case of the ‘‘pure’’ dipole square lattice. This comparis
shows the obvious higher order term effects in our exp
mental system. In Sec. III we describe the experiments
the Monte Carlo numerical simulation, and the results
presented in Sec. IV. Finally, the interplay between the
periments and the numerical simulation is discussed in S
V. A quantitative comparison between them is propos
leading to the conclusion that the mapping of this dynami
dissipative system excited by a random field onto the eq
librium statistical mechanics is successful.

II. EXPERIMENTAL SETUP AND LATTICE
OF COMPASS NEEDLES BEHAVIORS

The present study concerns a square lattice of 22322
magnetized needles separated by 12 mm. Each needle
9238 © 1998 The American Physical Society
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rhombic shape with semiaxis lengthsl 155 mm and l 2

51.5 mm, and a thickness of 0.2 mm. They are put o
nonmagnetic vertical axes and can rotate in the~x,y! plane.
Magnetic fields can be applied in the plane of the lattice
two independent perpendicular current layers. The lattic
shielded from parasitic fields and the earth field by soft m
netic sheet of metal. Residual fields are then compensate
applying a small constant field. The energy injected by
application of various fields is dissipated by weak dry fr
tion due to the contact between compass needles and
vertical axis, and by the viscous damping of the needle
the air. Data acquisition is performed by image process
which allows the measurements of each needle angle~but not
the velocities! and to compute all relevant quantities such
potential energy and torques. The accuracy of the meas
ment depends on the needle velocities and is better than
degrees in this study.

These lattices of magnetized needles are complex sys
with many metastable states. They are model systems
can illustrate for example the microscopic magnetic sta
ferromagnetic, paramagnetic and domain structures. T
also display magnetization reversal processes analogou
what occurs in real magnets, i.e., nucleation and avalanc
However, one should be very cautious with these analo
since the needles interact via dipolar interactions and not
the exchange one.

If a constant field is applied along the square axis dir
tions, strong enough to align all needles, then lowering
field to zero will let that ‘‘ferromagnetic’’ configuration un
changed. This structure is very stable since the demagn
ing field is not strong enough to disrupt it. If a constant fie
is applied along thep/4 direction, strong enough to align a
needles, and then switched off, the needles will split up o
the two closest lattice axes, forming lines in these two dir
tions. Now, let us consider the case of a field of rand
direction and amplitude~chosen between 0 andHmax! and
such that the frequency of this random field, i.e., the rate
change ofH in the range@0, Hmax#, is close to resonan
frequencies of this dynamic system~about 8 Hz!. If such a
field is applied to the lattice, we then observe oscillations
the needles: oscillations weakly disruptive for the lines
needles at low amplitude of the random field, i.e., for sm
values ofHmax, and larger oscillations or chaotic rotation
with increasingHmax, leading to short line lengths with sho
lifetimes. Thus, for high values ofHmax, we observe a dis-
ordered state which can illustrate the paramagnetic one~see
Fig. 1!. If the applied random field is then decreased ve
slowly, on different places of the lattice the needles man
to form antiparallel lines but some places of the lattice sh
parallel lines of needles. In the same way, if we switch
quickly the random excitation we then obtain a trapped c
figuration where the needles form lines of different sizes
the four lattice directions~see Fig. 2!.

Two main conclusions can be drawn from these first
servations. The first one is the obvious existence of f
anisotropy directions which correspond to the lattice ax
The second conclusion is the tendency of the system to f
lines of needles~along the square lattice axes!.

The origin of these observed anisotropy effects can
clarified by comparison with the square lattice of ‘‘pure
o
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dipoles. The dipolar interaction is described by the Ham
tonian:

Hdip5
1

2 (
i

(
j , j . i

1

r i j
3 Fm im j2

3

r i j
2 ~m ir i j !~m j r i j !G , ~1!

wherer i j 5r j2r i . One of the features of the dipolar intera
tion is its long range nature. For a three dimensional dipo
system, the interaction is strictly long range because of

FIG. 1. Experimental snapshot of a disordered configuration
tained while applying a field of random amplitude and directio
The amplitude is chosen between 0 andHmax. The frequency of this
random field, i.e., the rate of change ofH in the range@0, Hmax#, is
close to resonant frequencies of this dynamic system, i.e., abo
Hz.

FIG. 2. Example of an experimental trapped configuratio
When the system is disordered with a field of random amplitu
and direction~see Fig. 1!, then switching off quickly this excitation
leads the system to such a metastable state.
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9240 PRB 58ENRICK OLIVE AND PIERRE MOLHO
total energy divergence. In the case of 2D dipolar system,
interaction is strictly speaking not long range anymore si
the total energy converges. However the long range deno
nation is still used to describe the slow algebraic decay
this interaction compared to the usual exponential deca
the exchange interaction.

The dipolar interaction has also an anisotropic feat
which means that, in addition to the relative orientation
the magnetic moments~isotropic termmimj !, the interaction
depends on their orientation with regard to the vectorr i j
@anisotropic term (mir i j )(mj r i j )#. Thus the minimization of
the dipolar energy has to satisfy both aspects which lead
the natural notion of lines of dipoles. However, in spite
this anisotropic feature, the ground state of an infinite squ
lattice of ‘‘pure’’ dipoles, which is described by two antife
romagnetic sublattices, has a continuous degeneracy.7,9,12,13

If we consider a finite square lattice of such ‘‘pure’’ dipole
then the ground state is not continuously degenerated
more and dipoles form lines on the edge. In the case o
pure dipole lattice of the same 22322 size as our experimen
tal lattice, symmetry reasons lead to a microvortex struct
in the center of the lattice~Fig. 3!.

We shall describe now the particular case of the comp
needle lattices and explain why such a microvortex struc
cannot be observed in this system. Since the size of the c
pass needles~10 mm! is not small compared to the lattic
spacing~12 mm!, the dipolar approximation is obviously in
sufficient to describe the interaction between the comp
needles. It is thus advisable to take into account higher o
terms. Their main effect is to reinforce the anisotropic fe
ture of the dipolar interaction by reducing to four the po

FIG. 3. Ground state of a 22322 square lattice of ‘‘pure’’ di-
poles obtained by numerical simulation. Lines of dipoles are
served on the edges while in the center symmetry reasons lead
microvortex structure. The finite size effects remove the continu
degeneracy which exists in the infinite square lattice. As descr
in Sec. II, such a microvortex configuration cannot exist in
22322 experimental compass needle lattice because of the m
polar terms effects.
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sible orientations for each compass needle. This anisotr
effect of the multipolar terms is shown by Erber14 and
Klymenko.15 This degeneracy breaking by the multipol
terms which select the square lattice axes induces the s
lization of a long range order. Klymenko equally showed
long range order stabilization in diatomic polar molecules
the quadrupole interaction. In our case, due to the rhom
shape of the compass needles, the quadrupolar terms c
each other and the first multipolar terms are the octupo
ones.

Hence, as a result of these octupolar terms, the system
be trapped into metastable states such as the one show
Fig. 2. They also justify that such a configuration shown
Fig. 3 occurs only in the ‘‘pure’’ dipolar lattice, and can n
exist in the compass needle lattice where the ground sta
made of antiparallel lines of compass needles along the
tice axes.

III. EXPERIMENTS AND NUMERICAL SIMULATION

Until now, we have described in details our experimen
system, describing some of its behaviors and pointing ou
specificity compared to a purely dipolar lattice. We no
present the study where this 22322 square lattice of com
pass needles is subjected to an applied field of random d
tion and amplitude chosen between 0 andHmax. The fre-
quency of this random field, i.e., the rate of change ofH in
the range@0, Hmax#, is close to resonant frequencies of th
dissipative dynamic system~about 8 Hz!. As already said,
we observe oscillations of the needles, weakly disruptive
the lines of needles for small values ofHmax, and larger
oscillations or chaotic rotations with increasingHmax leading
to short line lengths with short lifetimes. Thus, observing t
lattice behaviors while increasingHmax, leads to a straight-
forward analogy in which the system exhibits a phase tr
sition between an ordered phase and a disordered one,
where the relevant excitations tend to destroy the lines
compass needle. In this analogy, the fluctuations induced
the random field represent the thermal fluctuations. The
fore, we want in the following to make a thermodynam
approach of this dynamic dissipative system in order to
such an analogy. In this approach, the upper limit valueHmax
of the random field will define a ‘‘temperature’’ scale.

Generally, in order to simulate thermal fluctuations on
dynamic system one may apply a random force. Althou
such a mapping of a dynamic system onto equilibrium s
tistical mechanics remains generally unsolved, it can
shown that under the condition of ‘‘detailed balance’’ th
mapping is successful~see for example Ref. 16!. The random
field we apply is of random amplitude and direction a
hence, uncorrelated at different times, but there exist spa
correlations for this applied random field which is uniform
each pulse. However, it is important to note that the relev
quantities in the equation of movement are the torques, e
mi3H, whereH is the random field. Therefore the rando
field which is uniform at each pulse, induces spatially unc
related torques due to the slight distribution of both need
magnetization and friction. Hence, we assume that the w
experimental inhomogeneities restore this spatially unco
lated aspect.

In the approach we want to develop, the fluctuations d
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to the applied random field represent the thermal fluct
tions. Thus, in order to compare both meanings of the te
perature, the experimental results will be compared t
Monte Carlo numerical simulation adapted to the experim
tal system. In this simulation, the system is not subjected
a random field but to the thermal fluctuations following t
Boltzmann statistics. The Hamiltonian which describes
compass needle interaction contains the dipolar term wri
in Eq. ~1!. In this simulation we choose free edge bounda
conditions and we take into account all the neighbors to s
the pair energies, since it is well known that, as oppose
the uniform long range interaction case, a mean field tre
ment is uncertain and sometimes inaccurate for anisotr
long range interactions such as the dipolar interaction~see
for example Refs. 17 and 18!.

As already said, the dipolar approximation is not su
cient to describe the compass needle interaction and hi
order terms are needed. In order to simplify the numer
calculations, these terms are not explicitly written but a
replaced by a simpler one which accounts for their biax
anisotropy effects described in Sec. II:

Hani5k(
i

m i
2sin2~2u i !,

wherem i are the magnetic moments andu i their angle with
the lattice axes. The constantk allows to adjust the strengt
of the anisotropy in order to reproduce the experimental
haviors, like the reversal of magnetization by avalanch
The best value that we found is when (km2)/(m2/a3)51,
where a is the lattice spacing which is a constant of t
system.

We have run the usual Monte Carlo method using
Metropolis algorithm~for details see for example Ref. 19!.
We defined the MCS~‘‘Monte Carlo step’’! time unit as 2N2

random trials for theN3N square lattice. We have com
puted up to 105 MCS for a given temperature and to be su
that transients have died, the first MCS were discarded
not used in computing averages of equilibrium thermo
namic quantities. Several lattice sizes from 10310 up to
28328 compass needles have been computed.

With regard to the experiments, the procedure is as
lows. A strong random field is applied to the lattice of com
pass needles in order to disorder it.Hmax is then slowly de-
creased down to the value we want to study. When
equilibrium is supposed to be reached~see Sec. IV A!, the
measurements begin. The image sampling frequency is
Hz. These four seconds are needed to analyse and stor
22322 compass needle angles. The experiment duratio
two hours which gives 1800 configurations of the system
a given value ofHmax.

IV. EXPERIMENTAL AND NUMERICAL RESULTS

A. Line length

We have mentioned in the first observations of the exp
mental system described in Sec. II that decreasingHmax very
slowly from a disordered state gives a configuration which
close to the ground state, i.e., we observe an antiparallel
configuration but in some places parallel lines can be form
since there is a strong line structure which traps the sys
-
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into metastable states. The main feature of such states i
existence of lines whether they are parallel or antiparal
Therefore, we will consider that for a given value ofHmax

the configurations are characterized by the line lengths.
though parallel and antiparallel lines do not have exactly
same energy, we observe that we can define an equilibr
average line length for a given value ofHmax. It means that
for different initial conditions at a given value of the rando
field, the system may be trapped in slightly different ener
minima but all are characterized by the same average
length and the same fluctuations around this value. The
fect of the random field is to break this line structure
reducing their average size. This description in terms of lin
of needles allows us to consider both the very stable ‘‘fer
magnetic’’ configuration and the ground state configurat
~antiparallel lines! as ordered states.

To define lines at a given value of the random field in t
experiment or at a given value of the temperature in
Monte Carlo simulation, each of the compass needles o
given configuration is virtually folded back to the neare
crystallographic axis. A needle is in the same line as
neighbor if both are aligned withr i j which join them, and in
the same direction. If they are aligned withr i j but in the
opposite direction or if they are perpendicular, then they ta
part in two different lines. Each needle counts as a u
length. Since the lines can equally form parallel or antip
allel configurations, we will focus on the average line leng
in the perpendicularx andy directions. Note that in the nu
merical simulation this four state discretization procedu
which allows the computation of the average line lengths
compass needles in the two perpendicularx andy directions,
is not equivalent to a four-state model since we allow here
possible orientations for the needle angles between 0 andp
during the calculations. The discretization procedure to f
states only takes place to compute the line length.

The typical evolutions of the equilibrium line lengthsl x
and l y for the 22322 lattice are displayed versus time fo
three different values ofHmax in experiments~Fig. 4! and for
three different temperatures in the Monte Carlo simulat
~Fig. 5!.

It is obvious that at low values ofHmax shown in Fig. 4~a!,
and low temperatures shown in Fig. 5~a!, one of thex or y
directions is favored in the sense that needle lines are p
erentially formed in this direction~larger line length!. Thex
and y directions are equivalenta priori and one of them is
chosen by the system according to the initial configuration
one of the direction is initially favored the system will the
keep this alignment on average. If none of the direction
initially favored the system will then be guided to one
them by the fluctuations. Thus, at low values ofHmax in the
experiments and at low temperatures in the Monte Ca
simulation, we clearly define the existence of a preferen
direction which according to the initial configuration can
the x or y direction.

On the contrary one can see that, for higher amplitude
the random field shown in Fig. 4~c!, and higher temperature
in the Monte Carlo simulation shown in Fig. 5~c!, there is no
longer a preferential direction in the system since at ti
scale needed to define an average line length~at least few
seconds and few MCS!, both average line lengthŝl x& and
^ l y& are equal.
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FIG. 4. Experimental results~22322 lattice! for the equilibrium line lengthsl x andl y versus time, for three different values ofHmax: ~a!
below the critical value ofHmax; ~b! near the critical value ofHmax; ~c! above the critical value ofHmax.
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Hence, we observe a transition from a state defined by
existence of a preferential direction, to an isotropic o
where no privileged direction can be defined. Therefore,
order in this system should be characterized by the em
gence of a preferential direction. Furthermore, when the s
tem is close to this transition, one can see in Fig. 5~b! that the
thermal fluctuations in the Monte Carlo simulation allow t
system to change in time its preferential direction. Desp
this alternation, this figure shows that the favored direct
notion is still meaningful since this direction remains t
preferential one during time scale larger than the MCS ti
unit. This alternation phenomenon is less clear in exp
ments, see Fig. 4~b!, but it exists, see for instance att
'5500s. Probably the time scale needed for this alternat
phenomenon is larger than the experiment durations.

In conclusion, when decreasing the amplitude of the r
dom field in the experiments~or when cooling the system in
the Monte Carlo simulation!, from a disordered isotropic
phase without favored direction, a broken symmetry ari
inducing the emergence of a preferential direction. Besi
this emergence of a preferential direction, there is a sec
aspect which characterizes this transition, namely, an a
age line length increase as seen in Fig. 4 and Fig. 5. T
aspect will be discussed in Sec. IV C.

B. Order parameter, susceptibility, and specific heat

Following the previous description, the order is charact
ized by the emergence of a preferential direction. Since
given direction parallel and antiparallel lines are assume
be equivalent, it is straightforward to define the order para
e
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eter which breaks the symmetry. One only has to count
compass needles in bothx and y directions, namelynx and
ny . The difference betweennx and ny should then express
whether one direction is more ‘‘populated’’ than the othe
Besides, the favored direction may change in time near
transition. This alternation should not affect the order para
eter which must keep on expressing the existence of a
vored direction. Thus, the absolute value of the differen
unx2nyu allows to preserve this information. The order p
rameter defined in this way is written:

q5
1

N2 ^unx2nyu&, ~2!

whereN25nx1ny is the total number of needles. The ord
parameter is plotted versusHmax in Fig. 6~a! for the experi-
mental system, and versus the normalized temperatureT*
5kBT/(m2/a3), wherea is the lattice spacing, in Fig. 6~b!
for the Monte Carlo simulation.

In both experiment and numerical simulation, due to t
finite size effects, the order parameter is not equal to on
finite temperature below the transition. Indeed, in order
minimize the system energy, the compass needles along
edge which is perpendicular to the preferential directio
form a transverse line parallel to the edge. As a result,
order parameter decreases. Above the transition, one can
from the Monte Carlo results that the larger the lattice si
the faster the decrease of the order parameter, showing th
would be zero for an infinite system. Nevertheless, the
served order parameter tails contain a well known unphys
aspect.20 At high temperature, the finite system is disorder
e
FIG. 5. Monte Carlo simulation results~22322 lattice! for the equilibrium line lengthsl x and l y versus Monte Carlo Step, for thre
different temperatures:~a! below the critical temperature;~b! near the critical temperature;~c! above the critical temperature.
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sincenx andny have identical fluctuations around the sam
average valuênx&5^ny&5N2/2. But the absolute value o
the differenceunx2nyu fluctuates around a nonzero valu
That is the reason for the unphysical nonvanishing order
rameter observed at high temperature.

The directional aspect which characterizes the transi
reminds what occurs in nematic liquid crystals. By analo
we call director the preferential direction. The 2D nemat
order parameter is defined as~see for instance Refs. 21 an
22!

qnematic52K 1

m (
i

cos2u i L ,

wherem is the number of molecules andu i their angle with
the director. In the case of our compass needles lattice
defined the director as thex or y direction. Let n*

FIG. 6. Order parameter:~a! versus the amplitudeHmax for the
experimental 22322 lattice. This applied random field is suppos
to mimic the thermal fluctuations;~b! versus temperature for two
lattice sizes in the Monte Carlo simulation.
a-

n
y

e

5Max(nx ,ny) be the number of needles aligned with th
director. The order parameter defined in Eq.~2! can then be
written:

q5
1

N2 ^n* 2~N22n* !&5
2

N2 ^n* &21.

The order parameter that we have defined is thus analog
to the one defined for the isotropic-nematic phase transit
It is also with a nematic analogy that Romano18 computed
the order parameter for a purely dipolar square lattice. In t
paper, the director was not restricted to thex and y direc-
tions. The critical temperature we deduced with our pro
dure in the numerical simulation, is in good agreement w
Romano who found a slightly smaller value due to the a
sence of multipolar terms.

The susceptibility associated to the order parameter, c
puted via the fluctuations ofunx2nyu is

xq5
1

N2

^unx2nyu2&2^unx2nyu&2

T8
,

whereT8 is eitherHmax in the experiments, or the norma
ized temperatureT* 5kBT/(m2/a3) in the Monte Carlo
simulation. Both susceptibilities defined in the experime
@Fig. 7~a!# and in the numerical simulation@Fig. 7~b!# display
a maximum which confirms the existence of a phase tra
tion.

Equilibrium states are meaningful in numerical simu
tions since the Monte Carlo technique allows to reach th
on reasonable time scales. But in the experiments the sys
may be trapped in configurations which are close to the m
mum of free energy and time scales needed to reach the
equilibrium state are too large. Nevertheless, we have
fined a relevant quantity, namely the average line leng
which reaches a well defined equilibrium value even if t
system is trapped in slightly different energy minima. The
fore, since the energy of the system computed in the exp
ments does not always correspond to the equilibrium~espe-
cially at low amplitude of the random field!, we do not
display results of the experimental specific heat but only
the Monte Carlo numerical simulation. The specific heat
computed, via thefluctuation-dissipation theorem, as fol-
lows:

CV5
^E2&2^E&2

kBT2 ,

whereE is the internal energy of the system,T is the tem-
perature andkB is the Boltzmann constant. The specific he
normalized byN2kB , is plotted in Fig. 8 for several lattice
sizes versus the normalized temperatureT* 5kBT/(m2/a3).
Figure 8 shows maxima which become sharper when
lattice size is increased. Besides, we verify the shift of
critical temperature which increases with the lattice si
This is what is to be expected for free edge boundary con
tions in spins lattices with exchange interactions.23 We also
verify the rounding of the specific heat in the temperatu
range@0.7–0.9#, which is due to the finite size effects~see
for instance Refs. 24 and 25!. Here the fluctuation-
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dissipation theorem is not valid anymore since the corre
tion length becomes of the same order of magnitude as
size of the system.

The presence of specific heat maxima, increasing with
lattice size and which seems to lead to a divergence, c
firms the existence of a phase transition revealed both in
experiments and in the numerical simulation by the or
parameter susceptibilities.

C. ‘‘Defects’’ in the making of lines

We have shown that the phase transition was charac
ized by two aspects. The first one deals with the emerge
of a director when decreasing the amplitude of the rand
field through a critical value or when cooling the system
the Monte Carlo simulation through the critical temperatu
We have defined the order parameter which breaks the
ropy of the disordered phase. The second aspect which c
acterizes this transition is the line length increase with

FIG. 7. Susceptibility associated to the order parameter for
22322 lattice;~a! versus the amplitudeHmax for the experimental
lattice; ~b! versus the temperature in the Monte Carlo simulatio
-
he

e
n-
he
r

r-
ce
m

.
t-

ar-
-

creasingHmax or the Monte Carlo temperature. In order
describe more precisely this second aspect of the transi
we introduce a new quantity which is closely related to t
line length. Instead of describing the system in terms
lines, we describe it in terms of lines disruptions whi
means that we are now interested in the bonds of the sq
lattice. In Sec. IV A, we have considered an analysis pro
dure where each needle is folded back to the nearest cry
lographic axis to compute the line length. This means that
defined 434516 possible states for a bond which links tw
needles. These states and their degeneracy are shown in
9. The six states shown in Fig. 9~a! describe bonds that do
not disrupt lines of needles whereas the ten states show
Fig. 9~b! do. These latter bonds are calleddefectsin the
sense that they are defects in the making of lines.

For a given configuration, we are now interested in t
number of defectsd among theB52N(N21) bonds of the
N3N square lattice. We can describe the equilibrium sta
of the system in terms of equilibrium number of defects^d&
which means that for a given value ofHmax in experiments or
for a given temperature in the Monte Carlo simulation, t
system is characterized by an average number of defects

e

FIG. 8. Monte Carlo simulation results for the specific he
computed from the internal energy fluctuations for several lat
sizes. The presence of specific heat maxima, increasing and be
ing sharper with the lattice size confirms the existence of a ph
transition.

FIG. 9. Possible states~and their degeneracyg! for a bond of the
square lattice when each compass needle is folded back to the
axes. The bonds in~a! do not disrupt lines of needles. On the co
trary, the bonds in~b! disrupt lines of needles and are therefo
called defects.
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by fluctuations around this value. The ground state is a z
defect structure. The completely disordered configuratio
not characterized bŷd&5B defects because of entropy co
siderations. Indeed, the only way to have this number
defects is when each needle is perpendicular to its four n
est neighbors. Thus, there is only a small number of s
states. We can see that among the sixteen states in Fig. 9
are defined asdefects, which gives a probability for a bond to
be a defect of 5/8. Thus, when the correlations between
needles disappear,^d&55B/8. Hence, the maximum of en
tropy, as a function ofd is obtained for̂ d&55B/8. If ^d&
a5B/8, then the fluctuations statistically create defects a
when^d&s5B/8 then the fluctuations statistically annihila
defects.

We can now define a parameterd which is expected to
vary from one in the ordered state, to zero in the comple
disordered one

^d&512
8

5B
^d&.

The evolution of^d& is shown for the experiments in Fig
10~a! versusHmax, and for the Monte Carlo simulation in
Fig. 10~b! versus the temperature. The data computed in
numerical simulation show that the different curves cor
sponding to several lattice sizes tend to converge in a un
curve above the critical temperature. Thus, the numbe
defects per bond becomes nearly independent of the la
size above the transition. Furthermore, even at very h
temperature, the system does not reach its maximum of
tropy which means that there are still remaining correlatio
that prevent the system from being completely disorder
Hence, thedefect variable shows that even far above t
transition there is a remaining short range order.

V. DISCUSSION

This experimental and numerical study of a square lat
of compass needles showed the existence of a phase tr
tion between an ordered phase and a disordered one.
defined relevant quantities such as the average line length
the compass needles in the perpendicularx andy directions.
These quantities allow to give a detailed description of
observed transition which is characterized by the emerge
of a preferential direction, and by an increase of the aver
line length. The first aspect describes a broken symmetry
the associated order parameter has been defined. Fur
more, a description in terms of lines disruptions~calledde-
fects! showed that above the transition the system is
completely disordered showing a remaining short range
der.

All the results presented in this paper displayed go
qualitative agreements between the experiment and the
merical simulation. However, both have their own appro
mation level. On one hand, the experimental lattice of co
pass needles is a complicated dynamic magnetic system.
velocities and dissipation are not taken into account in
configurations analysis, but only the needles angles wh
are measured by regular snapshots. On the other hand
interaction Hamiltonian of the same system is analyzed by
usual Monte Carlo numerical simulation. The energy is
proximately known because of the multipolar terms wh
ro
is
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are reduced to a simple biaxial anisotropy term. Furtherm
the temperature has two meanings. In the Monte Carlo si
lation the temperature allows the system to probe the ph
space according to the Boltzmann statistics whereas in
experiments thermal fluctuations are simulated by an app
random field. The mapping of a dynamic dissipative syst
onto equilibrium statistical mechanics is a crucial proble
which leads to fascinating fundamental questions. The
sults presented in this paper show a successful examp
such a mapping.

Beyond the good qualitative agreement observed betw
the experiment and the numerical simulation, we now w
to compare the results in a quantitative way in order to br
more evidence to this successful mapping. To compare
results we need to renormalize the applied random field
theoretical approach to associate a temperature to each v

FIG. 10. Evolution of thed parameter:~a! versus the amplitude
Hmax for the experimental 22322 lattice;~b! versus the temperatur
in the Monte Carlo simulation for the several lattice sizes.^d&51
28^d&/5B, defined with the defect variable, is such thatd51 in
the ordered state~zero defect!, andd50 in the completely disor-
dered state~maximum number of defect̂d&55B/8!.
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of Hmax is not straightforward for this complicated dissip
tive dynamic system. But, in some sense we can have a m
sure of this renormalization. Indeed, imposing a superp
tion between the experimental and numerical results for
the d parameter, allows us to determine the temperature
sociated to each value of the applied random field wh
mimics the thermal fluctuations. This leads to a nonlin
evolution of the Monte Carlo temperature versusHmax
shown in Fig. 11. We can now compare the experiment
the numerical simulation for the order parameter, shown
Fig. 12~a!, and for the order parameter susceptibility, sho
in Fig. 12~b!. Thus, as one can see, a satisfactory agreem
is obtained.

Therefore, we are able to find a good agreement betw
a thermodynamic analysis of a dissipative dynamic sys
excited by a random field, and the numerical simulation
the hamiltonian of the same system treated by an u
Monte Carlo technique. This good agreement assumes a
linear variation of our ‘‘experimental temperature’’ as
function of the applied random field. Understanding suc
variation is not easy because of the complicated and hig
nonlinear dynamics of this system, and further studies sho
be necessary. In particular, an additional numerical sim
tion where the compass needle lattice is subjected to a
dom field, as in the experiments, would be useful and in
esting to compare with our results. One could study in t
way the effect of a spatial disorder which has to be int
duced in the system, since the applied random field is u
form at each pulse, in order to restore the spatially unco
lated aspect which is necessary for a successful mapp
One could see for example the effect of a small spatial
tribution of the magnetic moments. Such a simulation i

FIG. 11. Variation of the Monte Carlo reduced temperatureT*
as a function ofHmax, maximum value of the applied random fiel
for the 22322 lattice size. Assuming that the applied random fie
gives rise to fluctuations analogous to the thermal fluctuations,
variation is deduced from the superposition of thed parameter
curves of the experiments and the Monte Carlo simulation~see Fig.
10!.
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whole study which brings new parameters, like the ones
scribing the moment distribution, the random field frequen
compared with the Monte Carlo unit step, and even
choice of the numerical method itself~Monte Carlo might be
not efficient since no temperature is applied!. Another pos-
sible approach is to compute the average kinetic energy f
the velocities measurements which would be of great inte
and may be used to bear out the nonlinear evolution sho
in Fig. 11.
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FIG. 12. Comparison between experimental~open circles! and
Monte Carlo numerical results~filled circles! for ~a! the order pa-
rameter versus the Monte Carlo reduced temperatureT* and~b! the
order parameter susceptibility versusT* . The experimental curves
presented in this figure assume the renormalization of the exp
mental random fieldHmax shown in Fig. 11.
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