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Thermodynamic study of a lattice of compass needles in dipolar interaction
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We present the study of an original system, which is an experimental dipolar model allowing a precise
understanding of dipolar effects. This system is a square lattice Bf222magnetized needlggompass
needles Its thermodynamic properties are studied by considering the action of a random external field sup-
posed to mimic the thermal fluctuations. In parallel, a Monte Carlo numerical simulation of the experimental
system is performed. Both studies show the existence of a phase transition between an ordered phase and a
disordered one. We introduce the notion of “line length” which is the relevant quantity to describe the
obtained configurations and to give a precise description of the observed transition. This phase transition is
characterized by the emergence of a preferential direction, called the “director,” and by an increase of the
average line length. The order parameter expressing the symmetry breaking is defined. Our results show an
example of a successful mapping of a dynamic dissipative system excited by a random field onto equilibrium
statistical mechanic$S0163-18288)05638-(

[. INTRODUCTION selection induces a discrete fourfold symmetry. This phe-

nomenon is analogous to the “ordering due to disorder”

In the past, the dipolar interaction was generally not muctwhich exists in the geometrically frustrated spins systefns.
studied in magnetism. This anisotropic long range interaction We present in this paper an original experimental dipolar
was usually neglected in magnetic materials because it i&YStem made of 2222 compass needles on a square

. 11 . . - .
much weaker than the exchange interaction. But since a fewtice-~ This system is a dipolar model where the dipolar
effects are isolated since they are not mixed with other ef-

yﬁa;?csgt%e Vélitholgein?erﬁxggn 'ﬂgebsécgor;eth; n:g;??r%o%'ﬁects such as for instance the exchange interaction. Therefore
physics, daip ecome ot great Imp many studies are possible with this experimental model sys-
tance. The discovery of new properties justifies the intere

; . m in order to understand precisely the dipolar interaction
for such systems. We can cite for example the domain strucsy, g its effects. We present here a study of the thermody-

tures in thin films, _Iattlces of magnetic dots and heterogey5mic properties of this experimental dynamic dissipative
neous nanocrystallized systems. Furthermore, close collab@ystem by considering the action of a random external field
rations between chemists and physicists give rise tQupposed to mimic the thermal fluctuations. As we shall see,
fascinating molecular nanomagnetic systems such as Mnle experimental results obtained with such a random field
and Fe8 clusters. Evidence for quantum tunneling of theand treated in a thermodynamic approach, are comparable to
magnetization is shown in these systeimsand recent re- those obtained from a Monte Carlo numerical simulation
laxation experiments on Fe8 are interpreted using the dipolawhere the temperature allows the system to probe the phase
fields*° Nevertheless, it is not always straightforward evenspace according to the Boltzmann statistics.
in these nice systems to have a clear idea of the precise The outline of this paper is as follows. In Sec. Il we
effects of the dipolar interaction since they may be either notlescribe the experimental setup which allows the study of
measurable at the macroscopic scale, or hidden by varioubese compass needle lattices, and we describe some impor-
distributions. Thus, the need for a complete and precise urfant first observations of the square lattice behaviors when
derstanding of the dipolar effects is necessary and a dipolafarious fields are applied and in particular random fields.
model may be of a great interest. The conclusions of these first observat}ons are compar.ed to
In most of the previous studies, the dipolar interactionthe case of the “pure” dipole square lattice. This comparison

was added to the exchange one in order to study its effects oi'oWs the obvious higher order term effects in our experi-
the existence and nature of phase transitions. It has bedfental system. In Sec. Ill we describe the experiments and

shown for instance that a dipolar term introduced in the twone Monte Carlo numerical simulation, and the results are

dimensional(2D) Heisenberg model is able to stabilize a pre_sented in Sec. IV. Fmglly, the '”“?rp"?‘y petween the ex
long range magnetic order; see for instance Refs. 6 and eriments and the numerical simulation is discussed in Sec.

For purely 2D dipolar models, theoretical and numerical " g‘ qutarltr:tanve <|:0rr_1pa;|hsotnthbetween_ the;nthl_s gropos_edl,
simulations results show that long range order exists for a||ea Ing 1o the conclusion that the mapping of this dynamica

Bravais lattices except for the square one. In this case, %i)ssipative system excited by a random field onto the equi-

“Kosterlitz-Thouless-like transition” is expected, that lbrium statistical mechanics is successful.
means with an ordered phase characterized by a power law
correlation function; see, e.g., Refs. 7 and 8. However,
Prakash and Henléypredict a long range ordered phase re-
sulting from a thermal fluctuation selection effect which  The present study concerns a square lattice ok 22
breaks the continuous degeneracy of the ground state. Thimagnetized needles separated by 12 mm. Each needle has a

Il. EXPERIMENTAL SETUP AND LATTICE
OF COMPASS NEEDLES BEHAVIORS
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rhombic shape with semiaxis lengtHs=5mm and |,
=1.5mm, and a thickness of 0.2 mm. They are put onto
nonmagnetic vertical axes and can rotate in ¢hg) plane.
Magnetic fields can be applied in the plane of the lattice by
two independent perpendicular current layers. The lattice is {8
shielded from parasitic fields and the earth field by soft mag-
netic sheet of metal. Residual fields are then compensated b
applying a small constant field. The energy injected by the
application of various fields is dissipated by weak dry fric-
tion due to the contact between compass needles and the
vertical axis, and by the viscous damping of the needles in
the air. Data acquisition is performed by image processing
which allows the measurements of each needle afgienot

the velocitie$ and to compute all relevant quantities such as
potential energy and torques. The accuracy of the measure
ment depends on the needle velocities and is better than fivi
degrees in this study.

These lattices of magnetized needles are complex system
with many metastable states. They are model systems the
can illustrate for example the microscopic magnetic states: ) ) _ )
ferromagnetic, paramagnetic and domain structures. The 'FIG. 1._Exper|m_ental s_napshot ofadlsorde_red conflguratlon ob-
also display magnetization reversal processes analogous ﬁned while applying a field of random amplitude and direction.

. . . e amplitude is chosen between 0 &hg,,. The frequency of this
what occurs in real magnets, i.e., nucleation and avalanchels‘,jl.ndom field, i.e., the rate of changeldfin the rangd0, H ], is
y Iy i) m i)

I-!owever, one ShO_UId be Ve_ry <_:aut|oqs with _these anal()g'e_aose to resonant frequencies of this dynamic system, i.e., about 8
since the needles interact via dipolar interactions and not vig,_

the exchange one.

If a constant field is applied along the square axis direcdipoles. The dipolar interaction is described by the Hamil-
tions, strong enough to align all needles, then lowering theonian:
field to zero will let that “ferromagnetic” configuration un-
changed. This structure is very stable since the demagnetiz- 1 1 3
ing field is not strong enough to disrupt it. If a constant field Hdip:i Z ”Zi (3| ik (airip) (prig) [ (D)
is applied along ther/4 direction, strong enough to align all ' N N
needles, and then switched off, the needles will split up ontovherer;;=r;—r;. One of the features of the dipolar interac-
the two closest lattice axes, forming lines in these two direction is its long range nature. For a three dimensional dipolar
tions. Now, let us consider the case of a field of randonsystem, the interaction is strictly long range because of the
direction and amplitudéchosen between 0 and,,,,) and
such that the frequency of this random field, i.e., the rate of
change ofH in the range[0, H.J, is close to resonant
frequencies of this dynamic systefabout 8 Hz. If such a
field is applied to the lattice, we then observe oscillations of
the needles: oscillations weakly disruptive for the lines of
needles at low amplitude of the random field, i.e., for small
values ofH,,,x, and larger oscillations or chaotic rotations
with increasingH ax, leading to short line lengths with short
lifetimes. Thus, for high values dfi,,,, we observe a dis-
ordered state which can illustrate the paramagnetic(see
Fig. 1. If the applied random field is then decreased very
slowly, on different places of the lattice the needles manage
to form antiparallel lines but some places of the lattice show
parallel lines of needles. In the same way, if we switch off
quickly the random excitation we then obtain a trapped con-
figuration where the needles form lines of different sizes in
the four lattice directiongsee Fig. 2

Two main conclusions can be drawn from these first ob-
servations. The first one is the obvious existence of four
anisotropy directions which correspond to the lattice axes.
The second conclusion is the tendency of the system to form F|G. 2. Example of an experimental trapped configuration.
lines of needlegalong the square lattice ayes When the system is disordered with a field of random amplitude

The origin of these observed anisotropy effects can bend direction(see Fig. 1, then switching off quickly this excitation
clarified by comparison with the square lattice of “pure” leads the system to such a metastable state.
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AR T I B e e s ey e TN sible orientations for each compass needle. This anisotropic
L b T R gl N N effect of the multipolar terms is shown by Erfferand
FYNAN AT rsrsrern NN Klymenko!® This degeneracy breaking by the multipolar
A A A A terms which select the square lattice axes induces the stabi-
PY/ANAN AN s w s AN SN lization of a long range order. Klymenko equally showed a
YIRS Lo e EN SR long range order stabilization in diatomic polar molecules by
PYANANAN AN AN AN ANAN SN the quadrupole interaction. In our case, due to the rhombic
LI N N2 N2 N2 NP2 N2 UV NI S )

shape of the compass needles, the quadrupolar terms cancel
PYPNANANTN AN AN AN SN SN each other and the first multipolar terms are th tupolar
MV A AN AN E NI N NENIN NNy P are the octupola
PPN AN AN AN AN AN AN PN ones.
AV A YN ANINENINENENI N Ay Hence, asa result of these octupolar terms, the system can
PV PNANANANANANANAN AL P4 be trapped into metastable states such as the one shown in
MU R AN A NEN RN LN NS NN Fig. 2. They also justify that such a configuration shown in
PN ANANANANANANANANLN P Fig. 3 occurs only in the “pure” dipolar lattice, and can not
P YN AN ERN TR TN RN LN SN N exist in the compass needle lattice where the ground state is
P YA NANAN TR AN AN AN SN P made of antiparallel lines of compass needles along the lat-
N N R S P Y A Y AR tice axes.
PN ANASN AN TN T TN AN MY
LA NP S P N S N gl P S W
R T P N 2 Ill. EXPERIMENTS AND NUMERICAL SIMULATION
W b T e e e e e G e e e e e e e e - S e S Y

Until now, we have described in details our experimental

FIG. 3. Ground state of a 2222 square lattice of “pure” di- System, describing some of its behaviors and pointing out its
poles obtained by numerical simulation. Lines of dipoles are ob-Specificity compared to a purely dipolar lattice. We now
served on the edges while in the center symmetry reasons lead topesent the study where this 222 square lattice of com-
microvortex structure. The finite size effects remove the continuougpass needles is subjected to an applied field of random direc-
degeneracy which exists in the infinite square lattice. As describetion and amplitude chosen between 0 ddg.,. The fre-
in Sec. Il, such a microvortex configuration cannot exist in thequency of this random field, i.e., the rate of changeéHah
22x 22 experimental compass needle lattice because of the multthe rang€[0, H 4, iS close to resonant frequencies of this
polar terms effects. dissipative dynamic systerfabout 8 H2. As already said,

we observe oscillations of the needles, weakly disruptive for

total energy divergence. In the case of 2D dipolar system, thtéhe lines of needles for small values bf,., and larger
interaction is strictly speaking not long range anymore sincescillations or chaotic rotations with increasiHg,. leading
the total energy converges. However the long range denomte short line lengths with short lifetimes. Thus, observing the
nation is still used to describe the slow algebraic decay ofattice behaviors while increasind.,, leads to a straight-
this interaction compared to the usual exponential decay dbrward analogy in which the system exhibits a phase tran-
the exchange interaction. sition between an ordered phase and a disordered one, and

The dipolar interaction has also an anisotropic featuravhere the relevant excitations tend to destroy the lines of
which means that, in addition to the relative orientation ofcompass needle. In this analogy, the fluctuations induced by
the magnetic momentgsotropic termu; u;), the interaction  the random field represent the thermal fluctuations. There-
depends on their orientation with regard to the veatpr fore, we want in the following to make a thermodynamic
[anisotropic term fri;)(mrij)]. Thus the minimization of approach of this dynamic dissipative system in order to test
the dipolar energy has to satisfy both aspects which leads tsuch an analogy. In this approach, the upper limit valyg,
the natural notion of lines of dipoles. However, in spite of of the random field will define a “temperature” scale.
this anisotropic feature, the ground state of an infinite square Generally, in order to simulate thermal fluctuations on a
lattice of “pure” dipoles, which is described by two antifer- dynamic system one may apply a random force. Although
romagnetic sublattices, has a continuous degenératy'®  such a mapping of a dynamic system onto equilibrium sta-
If we consider a finite square lattice of such “pure” dipoles, tistical mechanics remains generally unsolved, it can be
then the ground state is not continuously degenerated anghown that under the condition of “detailed balance” the
more and dipoles form lines on the edge. In the case of aapping is successfigee for example Ref. 16The random
pure dipole lattice of the same 222 size as our experimen- field we apply is of random amplitude and direction and
tal lattice, symmetry reasons lead to a microvortex structurdence, uncorrelated at different times, but there exist spatial
in the center of the latticeFig. 3). correlations for this applied random field which is uniform at

We shall describe now the particular case of the compasgsach pulse. However, it is important to note that the relevant
needle lattices and explain why such a microvortex structurguantities in the equation of movement are the torques, e.g.,
cannot be observed in this system. Since the size of the com; X H, whereH is the random field. Therefore the random
pass needlesl0 mm is not small compared to the lattice field which is uniform at each pulse, induces spatially uncor-
spacing(12 mm), the dipolar approximation is obviously in- related torques due to the slight distribution of both needles
sufficient to describe the interaction between the compasmagnetization and friction. Hence, we assume that the weak
needles. It is thus advisable to take into account higher ordexxperimental inhomogeneities restore this spatially uncorre-
terms. Their main effect is to reinforce the anisotropic fea-ated aspect.
ture of the dipolar interaction by reducing to four the pos- In the approach we want to develop, the fluctuations due
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to the applied random field represent the thermal fluctuainto metastable states. The main feature of such states is the
tions. Thus, in order to compare both meanings of the temexistence of lines whether they are parallel or antiparallel.
perature, the experimental results will be compared to a@herefore, we will consider that for a given value I8,
Monte Carlo numerical simulation adapted to the experimenthe configurations are characterized by the line lengths. Al-
tal system. In this simulation, the system is not subjected tghough parallel and antiparallel lines do not have exactly the
a random field but to the thermal fluctuations following the same energy, we observe that we can define an equilibrium
Boltzmann statistics. The Hamiltonian which describes th%verage line length for a given value Kf,.,. It means that
compass needle interaction contains the dipolar term writtefyy gifferent initial conditions at a given value of the random
in Eq. (1). In this simulation we choose free edge boundaryfie|d, the system may be trapped in slightly different energy
conditions and we take into account all the neighbors to surginima but all are characterized by the same average line
the pair energies, since it is well known that, as opposed t@ngth and the same fluctuations around this value. The ef-
the uniform long range interaction case, a mean field treaffect of the random field is to break this line structure by
ment is uncertain and sometimes inaccurate for anisotropigeducing their average size. This description in terms of lines
long range interactions such as the dipolar interact&®e  of needles allows us to consider both the very stable “ferro-
for example Refs. 17 and 18 magnetic” configuration and the ground state configuration
As already said, the dipolar approximation is not suffi- (antiparallel liney as ordered states.
cient to describe the compass needle interaction and higher T4 define lines at a given value of the random field in the
order terms are needed. In order to simplify the numericagxperimem or at a given value of the temperature in the
calculations, these terms are not explicitly written but arevonte Carlo simulation, each of the compass needles of a
replaced by a simpler one which accounts for their biaxialyiven configuration is virtually folded back to the nearest

anisotropy effects described in Sec. II: crystallographic axis. A needle is in the same line as its
neighbor if both are aligned with; which join them, and in
H = kZ w?sinZ(26,), the same direction. If they are aligned with but in the

opposite direction or if they are perpendicular, then they take
. ) ) part in two different lines. Each needle counts as a unit
where; are the magnetic moments afddtheir angle with  jength. Since the lines can equally form parallel or antipar-
the lattice axes. The constakllows to adjust the strength  gjie| configurations, we will focus on the average line length
of the anisotropy in order to reproduce the experimental bey, the perpendiculax andy directions. Note that in the nu-
haviors, like the reversal of magnetization by avalanchesmerical simulation this four state discretization procedure,
The best value that we found is wheku()/(1*/@%)=1,  \hich allows the computation of the average line lengths of
where a is the lattice spacing which is a constant of thecompass needles in the two perpendiculandy directions,
system. _ is not equivalent to a four-state model since we allow here all
We have run the usual Monte Carlo method using theyossible orientations for the needle angles between 0 and 2
Metropolis algorithm(for details see for example Ref. 19 qyring the calculations. The discretization procedure to four
We defined the MC$‘Monte Carlo step’) time unitas N> states only takes place to compute the line length.
puted up to 1B MCS for a given temperature and to be sureang I, for the 22<22 lattice are displayed versus time for
that transients have died, the first MCS were discarded anghree different values dfl a0y in eXperimentgFig. 4) and for
not used in computing averages of equilibrium thermody+hree different temperatures in the Monte Carlo simulation
namic quantities. Several lattice sizes fromxID up to  (Fig. 5).
28x 28 compass needles have been computed. It is obvious that at low values ¢, sShown in Fig. 4a),
With regard to the experiments, the procedure is as folang Jow temperatures shown in Figiah one of thex or y
lows. A strong random field is applied to the lattice of com- gjrections is favored in the sense that needle lines are pref-
pass needles in order to disorderHty,y is then slowly de-  erentially formed in this directiodlarger line length Thex
creased down to the value we want to study. When theyndy directions are equivalertt priori and one of them is
equilibrium is supposed to be reacheste Sec. IV A the  chosen by the system according to the initial configuration. If
measurements begin. The image sampling frequency is 0.25ne of the direction is initially favored the system will then
Hz. These four seconds are needed to analyse and store tfgep this alignment on average. If none of the direction is
22X 22 compass needle angles. The experiment duration igitially favored the system will then be guided to one of
two hours which gives 1800 configurations of the system fothem by the fluctuations. Thus, at low valueshf,, in the

a given value oH . experiments and at low temperatures in the Monte Carlo
simulation, we clearly define the existence of a preferential
IV. EXPERIMENTAL AND NUMERICAL RESULTS direction which according to the initial configuration can be

the x or y direction.

On the contrary one can see that, for higher amplitude of

We have mentioned in the first observations of the experithe random field shown in Fig.(d), and higher temperature
mental system described in Sec. Il that decreabipg,very  in the Monte Carlo simulation shown in Fig(c}, there is no
slowly from a disordered state gives a configuration which idonger a preferential direction in the system since at time
close to the ground state, i.e., we observe an antiparallel lingcale needed to define an average line lerigtieast few
configuration but in some places parallel lines can be formegeconds and few MQSboth average line lengthd,) and
since there is a strong line structure which traps the syster(l,) are equal.

A. Line length
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FIG. 4. Experimental result®2x 22 lattice for the equilibrium line lengths, andl, versus time, for three different valuesiaf,.,: (a)
below the critical value of,,,; (b) near the critical value ofl ,,; (c) above the critical value dff 4.

Hence, we observe a transition from a state defined by theter which breaks the symmetry. One only has to count the
existence of a preferential direction, to an isotropic onecompass needles in bothandy directions, namely, and
where no privileged direction can be defined. Therefore, the, . The difference between, andn, should then express
order in this system should be characterized by the ememwhether one direction is more “populated” than the other.
gence of a preferential direction. Furthermore, when the sysBesides, the favored direction may change in time near the
tem is close to this transition, one can see in Fi@) fhat the  transition. This alternation should not affect the order param-
thermal fluctuations in the Monte Carlo simulation allow the eter which must keep on expressing the existence of a fa-
system to change in time its preferential direction. Despitevored direction. Thus, the absolute value of the difference
this alternation, this figure shows that the favored directiorjn,—n,| allows to preserve this information. The order pa-
notion is still meaningful since this direction remains therameter defined in this way is written:
preferential one during time scale larger than the MCS time

unit. This alternation phenomenon is less clear in experi- 1

ments, see Fig. (8), but it exists, see for instance &t q=m(|nx—ny|>, (2
~5500. Probably the time scale needed for this alternation ) )

phenomenon is larger than the experiment durations. whereN“=n,+n, is the total number of needles. The order

In conclusion, when decreasing the amplitude of the ranParameter is plotted versity., in Fig. 6(a) for the experi-
dom field in the experiment®r when cooling the system in Mental system, and versus the normalized temperattire
the Monte Carlo simulation from a disordered isotropic =KsT/(1?/@%), wherea is the lattice spacing, in Fig.(6)
phase without favored direction, a broken symmetry ariseéor the Monte Carlo simulation. _
inducing the emergence of a preferential direction. Besides N both experiment and numerical simulation, due to the
this emergence of a preferential direction, there is a seconfhite size effects, the order parameter is not equal to one at
aspect which characterizes this transition, namely, an avefinite temperature below the transition. Indeed, in order to
age line length increase as seen in Fig. 4 and Fig. 5. Thifinimize the system energy, the compass needles along the
aspect will be discussed in Sec. IV C. edge which is perpendicular to the preferential direction,
form a transverse line parallel to the edge. As a result, the
order parameter decreases. Above the transition, one can see
from the Monte Carlo results that the larger the lattice size,
Following the previous description, the order is characterthe faster the decrease of the order parameter, showing that it
ized by the emergence of a preferential direction. Since in avould be zero for an infinite system. Nevertheless, the ob-
given direction parallel and antiparallel lines are assumed tserved order parameter tails contain a well known unphysical
be equivalent, it is straightforward to define the order paramaspect® At high temperature, the finite system is disordered

B. Order parameter, susceptibility, and specific heat

(a) (c)

3.5 - -

20

3|

N L 1 I I . ‘I 1 1 I
om0 2x0* 3x10* 4xct o 1x0* 2¢0" 30 4x10* o 1a0* 2x10" 3q0* 4x10*
Time (MCS) Time (MCS) Time (MCS)

FIG. 5. Monte Carlo simulation result22x 22 latticg for the equilibrium line lengths$, andl, versus Monte Carlo Step, for three
different temperaturega) below the critical temperaturéb) near the critical temperaturé;) above the critical temperature.
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1 r . T =Max(n,,n,) be the number of needles aligned with the
director. The order parameter defined in E2).can then be
written:

o8}

— * 2 * — *
0.6

The order parameter that we have defined is thus analogous
to the one defined for the isotropic-nematic phase transition.
04l ] It is also with a nematic analogy that Romahocomputed
the order parameter for a purely dipolar square lattice. In that
paper, the director was not restricted to thandy direc-
02l ] tions. The critical temperature we deduced with our proce-
dure in the numerical simulation, is in good agreement with
. Romano who found a slightly smaller value due to the ab-
0 \ : j sence of multipolar terms.

0 0.1 0.2 0.3 0.4 0.5 The susceptibility associated to the order parameter, com-
(@) H (Oe) puted via the fluctuations gh,—n,| is

_i <|nx_ny|2>_<|nx_ny|>2

Xq N2 T ’

08} L . :
whereT’ is eitherH,,,, in the experiments, or the normal-

ized temperatureT* =kgT/(u?/a®) in the Monte Carlo
simulation. Both susceptibilities defined in the experiments
[Fig. 7(@)] and in the numerical simulatidifrig. 7(b)] display

a maximum which confirms the existence of a phase transi-
tion.

Equilibrium states are meaningful in numerical simula-
tions since the Monte Carlo technique allows to reach them
on reasonable time scales. But in the experiments the system
may be trapped in configurations which are close to the mini-
mum of free energy and time scales needed to reach the real
equilibrium state are too large. Nevertheless, we have de-
fined a relevant quantity, namely the average line length,
which reaches a well defined equilibrium value even if the
(b) T system is trapped in slightly different energy minima. There-
fore, since the energy of the system computed in the experi-
ments does not always correspond to the equilibr{espe-
cially at low amplitude of the random fieldwe do not
display results of the experimental specific heat but only for
the Monte Carlo numerical simulation. The specific heat is

] ) ) ) computed, via thédluctuation-dissipation theoremas fol-
sincen, andn, have identical fluctuations around the same|qys:

average valuén,)=(n,)=N?%2. But the absolute value of
the difference|n,—n,| fluctuates around a nonzero value. (E®)—(E)?
That is the reason for the unphysical nonvanishing order pa- =
rameter observed at high temperature.

The directional aspect which characterizes the transition ] . )
reminds what occurs in nematic liquid crystals. By analogyVhereE is the internal energy of the systeffiis the tem-
we call director the preferential direction. The 2D nematic Perature andg is the Boltzmann constant. The specific heat,

order parameter is defined é&e for instance Refs. 21 and Normalized byNkg, is plotted in Fig. 8 for several lattice
22) sizes versus the normalized temperatlite= kg T/ (u?/a3).

Figure 8 shows maxima which become sharper when the
> lattice size is increased. Besides, we verify the shift of the

0.6

041t

0.2}

FIG. 6. Order parametefa) versus the amplitudel ,,,, for the
experimental 2X 22 lattice. This applied random field is supposed
to mimic the thermal fluctuationgp) versus temperature for two
lattice sizes in the Monte Carlo simulation.

T T

critical temperature which increases with the lattice size.
This is what is to be expected for free edge boundary condi-
tions in spins lattices with exchange interactiéh§Ve also
wherem is the number of molecules ari their angle with  verify the rounding of the specific heat in the temperature
the director. In the case of our compass needles lattice weange[0.7-0.9, which is due to the finite size effec{see
defined the director as the or y direction. Let n* for instance Refs. 24 and 25Here the fluctuation-

1
Onematic 2< E 2 cog 0,
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FIG. 8. Monte Carlo simulation results for the specific heat
computed from the internal energy fluctuations for several lattice
sizes. The presence of specific heat maxima, increasing and becom-
15 ing sharper with the lattice size confirms the existence of a phase
transition.
creasingH ., or the Monte Carlo temperature. In order to
Xq 10 describe more precisely this second aspect of the transition,
we introduce a new quantity which is closely related to the
line length. Instead of describing the system in terms of
. lines, we describe it in terms of lines disruptions which
5 means that we are now interested in the bonds of the square
’ lattice. In Sec. IV A, we have considered an analysis proce-
* : dure where each needle is folded back to the nearest crystal-
lographic axis to compute the line length. This means that we
0 L i defined 4<4=16 possible states for a bond which links two
° 0.5 ! 15 2 needles. These states and their degeneracy are shown in Fig.
(b) T 9. The six states shown in Fig(&#) describe bonds that do

not disrupt lines of needles whereas the ten states shown in
%ig. 9b) do. These latter bonds are callei@fectsin the
sense that they are defects in the making of lines.

For a given configuration, we are now interested in the
number of defectsl among theB=2N(N— 1) bonds of the

dissipation theorem is not valid anymore since the correlas

tion length becomes of the same order of magnitude as thlélxN square lattice. We can describe the equilibrium states

size of the system of the system in terms of equilibrium number of defe@dls

The presence of specific heat maxima, increasing with th hich means that for a given value sy in exp(_anmen_ts or
lattice size and which seems to lead to a divergence, co or a given temperature in the Monte Carlo simulation, the

firms the existence of a phase transition revealed both in th%ystem is characterized by an average number of defects and

experiments and in the numerical simulation by the order
parameter susceptibiltes. 777 (&=2) ? ---------------- .- (g=%)

FIG. 7. Susceptibility associated to the order parameter for th
22x 22 lattice;(a) versus the amplitudél ., for the experimental
lattice; (b) versus the temperature in the Monte Carlo simulation.

PO . (g=2) e _
C. “Defects” in the making of lines M (g=2)
A
We have shown that the phase transition was character- e ¢ (g=2)
ized by two aspects. The first one deals with the emergence @ )
of a director when decreasing the amplitude of the random

field through a critical value or when cooling the system in  F|G. 9. Possible statéand their degeneraay for a bond of the

the Monte Carlo simulation through the critical temperature square lattice when each compass needle is folded back to the four
We have defined the order parameter which breaks the isokxes. The bonds ife) do not disrupt lines of needles. On the con-
ropy of the disordered phase. The second aspect which chatary, the bonds in(b) disrupt lines of needles and are therefore
acterizes this transition is the line length increase with decalled defects.
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by fluctuations around this value. The ground state is a zero 1
defect structure. The completely disordered configuration is

not characterized b{d) =B defects because of entropy con-
siderations. Indeed, the only way to have this number of 08
defects is when each needle is perpendicular to its four near-
est neighbors. Thus, there is only a small number of such
states. We can see that among the sixteen states in Fig. 9, ten

0.6
are defined adefectswhich gives a probability for a bond to

be a defect of 5/8. Thus, when the correlations between the &
needles disappea¢d)=5B/8. Hence, the maximum of en- 0.4

tropy, as a function ofl is obtained for(d)="5B/8. If (d) | p
<5B/8, then the fluctuations statistically create defects and
when(d)>5B/8 then the fluctuations statistically annihilate
defects.

We can now define a parametérwhich is expected to
vary from one in the ordered state, to zero in the completely
disordered one 0 .

0.2}

8 (a) H (Oe)
(=1~ g5 (d).

The evolution of(8) is shown for the experiments in Fig. .

10(a) versusH ., and for the Monte Carlo simulation in :[Zl O 28x28
Fig. 1ab) versus the temperature. The data computed in the 0.8 N
numerical simulation show that the different curves corre- Ave o 22x22
sponding to several lattice sizes tend to converge in a unique v 15x15
curve above the critical temperature. Thus, the number of 06} |
defects per bond becomes nearly independent of the lattice a 10x10
size above the transition. Furthermore, even at very high 8
temperature, the system does not reach its maximum of en- 04l o
tropy which means that there are still remaining correlations
that prevent the system from being completely disordered.
Hence, thedefectvariable shows that even far above the
transition there is a remaining short range order.

0.2} o 1

V. DISCUSSION

. . : . 0 0.5 1 1.5 2
This experimental and numerical study of a square lattice -
of compass needles showed the existence of a phase transi-

tion between an ordered phase and a disordered one. We g1 10, Evolution of thes parameter(a) versus the amplitude

defined relevant quantities such as the average line lengths gf _ for the experimental 22 22 lattice:(b) versus the temperature
the compass needles in the perpendiculandy directions.  in the Monte Carlo simulation for the several lattice size%.=1
These quantities allow to give a detailed description of the_g(d)/5B, defined with the defect variable, is such ti#at 1 in
observed transition which is characterized by the emergenage ordered statézero defedt and §=0 in the completely disor-
of a preferential direction, and by an increase of the averaggered statémaximum number of defedid)=5B/8).
line length. The first aspect describes a broken symmetry and
the associated order parameter has been defined. Furthare reduced to a simple biaxial anisotropy term. Furthermore,
more, a description in terms of lines disruptiocslledde-  the temperature has two meanings. In the Monte Carlo simu-
fects showed that above the transition the system is notation the temperature allows the system to probe the phase
completely disordered showing a remaining short range orspace according to the Boltzmann statistics whereas in the
der. experiments thermal fluctuations are simulated by an applied
All the results presented in this paper displayed goodandom field. The mapping of a dynamic dissipative system
qualitative agreements between the experiment and the nento equilibrium statistical mechanics is a crucial problem
merical simulation. However, both have their own approxi-which leads to fascinating fundamental questions. The re-
mation level. On one hand, the experimental lattice of comsults presented in this paper show a successful example of
pass needles is a complicated dynamic magnetic system. Tlsech a mapping.
velocities and dissipation are not taken into account in the Beyond the good qualitative agreement observed between
configurations analysis, but only the needles angles whickhe experiment and the numerical simulation, we now want
are measured by regular snapshots. On the other hand, ttecompare the results in a quantitative way in order to bring
interaction Hamiltonian of the same system is analyzed by amore evidence to this successful mapping. To compare the
usual Monte Carlo numerical simulation. The energy is ap+tesults we need to renormalize the applied random field. A
proximately known because of the multipolar terms whichtheoretical approach to associate a temperature to each value
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3.5 — , . 1 , S .
3 I o experiments
081 o o MC simulation
2.5 *

0.6

: -

0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2
H (Oe) (a) T

FIG. 11. Variation of the Monte Carlo reduced temperaflite 20 T —
as a function oH 5., maximum value of the applied random field, '
for the 22< 22 lattice size. Assuming that the applied random field o experiments
gives rise to fluctuations analogous to the thermal fluctuations, this /\
variation is deduced from the superposition of theparameter .15
curves of the experiments and the Monte Carlo simulatse® Fig.

10).

e MC simulation

of H s iS NOt straightforward for this complicated dissipa- X4 1°

tive dynamic system. But, in some sense we can have a mea-

sure of this renormalization. Indeed, imposing a superposi-

tion between the experimental and numerical results for the

the 6 parameter, allows us to determine the temperature as-

sociated to each value of the applied random field which

mimics the thermal fluctuations. This leads to a nonlinear "\S\O\

evolution of the Monte Carlo temperature versHis, .y . — |

shown in Fig. 11. We can now compare the experiment and 0 0.5 1 15 2

the numerical simulation for the order parameter, shown in b)

Fig. 1), and for the order parameter susceptibility, shown

in Fig. 12b). Thus, as one can see, a satisfactory agreement FIG. 12. Comparison between experimer{@ben circley and

is obtained. Monte Carlo numerical resultilled circles for (a) the order pa-
Therefore, we are able to find a good agreement betweemrmeter versus the Monte Carlo reduced temperattirand (b) the

a thermodynamic analysis of a dissipative dynamic systemrder parameter susceptibility verstis. The experimental curves

excited by a random field, and the numerical simulation ofpresented in this figure assume the renormalization of the experi-

the hamiltonian of the same system treated by an usudhental random fieldH ., shown in Fig. 11.

Monte Carlo technique. This good agreement assumes a non-

linear variation of our “experimental temperature” as a whole study which brings new parameters, like the ones de-

function of the applied random field. Understanding such ascribing the moment distribution, the random field frequency

variation is not easy because of the complicated and highlgompared with the Monte Carlo unit step, and even the

nonlinear dynamics of this system, and further studies shouldhoice of the numerical method its¢Nonte Carlo might be

be necessary. In particular, an additional numerical simulanot efficient since no temperature is app)iednother pos-

tion where the compass needle lattice is subjected to a rasible approach is to compute the average kinetic energy from

dom field, as in the experiments, would be useful and interthe velocities measurements which would be of great interest

esting to compare with our results. One could study in thisand may be used to bear out the nonlinear evolution shown

way the effect of a spatial disorder which has to be intro-in Fig. 11.

duced in the system, since the applied random field is uni-

form at each pulfse, i_n order to restore the spatially uncorre- ACKNOWLEDGMENTS

lated aspect which is necessary for a successful mapping.

One could see for example the effect of a small spatial dis- The authors would like to thank R. Ballou, G. Bertotti, J.

tribution of the magnetic moments. Such a simulation is d-. Porteseil, and L. Thomas for helpful discussions.
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