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Micromagnetics of the single-domain state of square ferromagnetic nanostructures

R. P. Cowburn* and M. E. Welland
Nanoscale Science Group, Department of Engineering, University of Cambridge, Trumpington Street,
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Using numerical micromagnetics we have studied the potential energy surface in the vicinity of the two
principal remanent near single-domain states of nanoscale square-planar magnetic elements~magnetic nano-
structures!. We find that there is no metastability and therefore at any finite temperature the nanostructure must
adopt its ground state. We have derived an analytical solution to the micromagnetic equations describing the
properties of the near single-domain states by treating them as a small perturbation from the uniformly
magnetized case. The analytical solution shows that the energy surface between the states can be described by
a fourfold symmetric configurational anisotropy field, which can be several hundred Oersteds in strength and
which changes sign at a critical width to thickness aspect ratio. The analytical model gives good physical
insight into the origin of the configurational anisotropy and predicts a discontinuous transition with diverging
susceptibility to occur at the critical aspect ratio.@S0163-1829~98!02838-0#
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INTRODUCTION

The magnetism of reduced dimensionality structures
in recent years generated much experimental and theore
interest. Reduced dimensionality in this context means
one or more of the sample dimensions is small or com
rable to the exchange length of the material, which is of
order of ten nanometers for common ferromagnetic mat
als.

Two-dimensional~2D! magnetism has been extensive
studied in thin and ultrathin films and multilayers, leading
the discovery of several magnetic phenomena such as st
surface anisotropies, enhanced moments, and oscillator
terlayer exchange coupling.1 Advanced lithographic tech
niques such as electron beam or x-ray lithography or o
nanoscale assembly techniques are now opening up the
sibility of studying 1D and 0D magnets in the form of ma
netic wires and dots.2

Theoretical modeling is an essential part of studying s
structures. The semiclassical formalism of micromagnetic
an excellent tool for doing so.3,4 Except in special case
where the demagnetizing field is uniform, analytical soluti
of the micromagnetic equations is rare. Recent advance
computing power, however, have now made numerical s
tion feasible. Cuboidal particles5 and 2D plates6 have both
been studied by various workers using numerical microm
netics as well as more applied problems in data stor
technology.7

Brown’s fundamental theorem8 states that as the length
scale of a magnetic particle is reduced, there comes a poi
which the competition between exchange energy and ma
tostatic energy requires that a uniform magnetization dis
bution be adopted. The fundamental theorem was found
to be rigorously true for nonellipsoidal particles such
cubes and prisms,9 but can be made so if ‘‘uniform magne
tization’’ is replaced by ‘‘near-uniform magnetization.’’ In
recent paper,10 we showed theoretically that square-plan
elements show unexpectedly complex behavior in this n
single-domain regime, undergoing transitions through up
PRB 580163-1829/98/58~14!/9217~10!/$15.00
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three different near single-domain states as the element
and thickness is varied. In addition to the fundamental int
est in studying phase transitions in these reduced dimens
ality nanostructures, a precise understanding of the n
single-domain states is essential for potential technolog
applications, such as patterned media for high density d
storage11 or magnetoelectronic devices12 ~e.g., magnetic
memory chips, spin transistors, and hard-disk read hea!.
Studying the deviations from uniform magnetization of sm
cuboidal elements is also important in further understand
the long standing Brown’s paradox,13 which notes the dis-
crepancy between the nucleation fields predicted by rigor
analytical micromagnetic nucleation theory and many
perimentally measured coercive fields.

In this paper we present the results of a detailed study
the two principal near single-domain states of square-pla
magnetic elements~nanostructures!. In the first section we
use numerical micromagnetics to investigate the nature
the potential energy surface around the single-domain sta
In the second section we present an analytical solution to
micromagnetic equations for small cuboids within the fram
work of perturbation theory. These studies together pre
the existence of a strong anisotropy within the nanostr
tures, which we name a configurational anisotropy. This
isotropy field can be several hundred Oe’s in streng
changes sign at a critical width to thickness aspect ratio,
will dominate the magnetic behavior of the nanostructure

NUMERICAL SIMULATIONS

A. Numerical method

We have considered a series of square elements w
can be modeled using finite element methods as an ense
of cubic cells placed on a simple cubic lattice. The mesh
density was always chosen such that the elements wer
least 2 cells thick, and the size of each cell was less than
the exchange length. We checked that the final energy
culated by the simulation converged with increasing mesh
9217 © 1998 The American Physical Society
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9218 PRB 58R. P. COWBURN AND M. E. WELLAND
density, and used the form of the convergence to estimate
size of the error caused by finite meshing density. This w
generally less than 5%.

The exchange energy of a given magnetization distri
tion is given by

Uex5
A

Ms
2 E u¹Mx~r !u21u¹M y~r !u21u¹Mz~r !u2 d3r ,

~1!

whereA is the exchange stiffness,Ms is the saturation mag
netization, andMi(r ) is the Cartesian component of magn
tization at positionr in the element. We have implemente
this in discrete mathematics by

Uex5
1

2
AV1/3(

i
(

j
sin2u i~f j2f i !

21~u j2u i !
2, ~2!

where V is the volume of each cell and$f i ,u i% are the
spherical polar coordinates of the magnetization direction
the i th cell. The magnitude of the magnetization within a c
is always the saturation magnetizationMs .

The magnetostatic energy of a magnetization distribut
is calculated by evaluating the demagnetizing fieldHd(r )at
every point in the element, and then calculating the resul
energy in the continuum limit according to

Ud52
1

2E M ~r !•Hd~r !d3r , ~3!

which is implemented discretely by

Ud52
1

2
V(

i
M i•Hi

d . ~4!

The demagnetizing field itself is calculated from a convo
tion of the magnetization with the three-dimensional L
Bonte interaction matrix.14

Boundary cells are treated slightly differently in calcula
ing the exchange energy. The cell on the opposite side
free face is counted twice in performing the summation
Eq. ~3!. This is equivalent to assuming a uniform magne
zation gradient all the way through the boundary cell.

Once able to calculate the energy of a given magnet
tion distribution, we then use the method of steepest des
to find the set of$$f iu i%%which minimizes the total energy
As is characteristic of any hysteretic system, the starting c
ditions of the minimization can influence which energy min
mum is eventually found. We shall make use of this imp
tant point later in the paper.

B. Numerical results

We showed previously10 using numerical micromagnetic
that there are two principal near single-domain magnet
tion distributions relevant to small square-planar eleme
We have named these ‘‘flower’’ and ‘‘leaf’’ and prese
them in Fig. 1 for reference. Elements small enough to ad
a near single-domain state~as opposed to a vortex or buckle
state! as the ground state display either the flower or the l
configuration, depending on the width to thickness asp
ratio of the element. Elements with aspect ratio less than
were found to have a flower ground state whereas those
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aspect ratio greater than 2.7 had a leaf ground state. The
that a particular state might be the ground state is no g
antee, however, that it will be observed as the remanent s
of the nanostructure. Metastability is a common feature
magnetic systems. In order to know if the predicted grou
state is an accurate prediction of the state which will
observed in a nanostructure in zero field, it is necessar
study the potential energy surface in the vicinity of the tw
near single-domain states. Knowledge of the shape of
energy surface is also important if one is to understand
static and temporal spin-reversal behavior of the nanost
ture.

We have started our investigation with a square-pla
element of size 20320310 nm, for which the ground state i
the flower. In order to provide a ready link with the larg
amount of experimental work which is emerging in this fie
we have assigned values toMs andA which are characteris
tic of the magnetic alloy Permalloy~Ni80Fe20, for which
Ms5800 emu cm23 and A51.0531026 erg cm21). Our
results can be applied to other soft isotropic magnetic m
rials by scaling all lengths byAA/Ms and all energy densities
per moment byMs . We have then used our code to min
mize the energy of the element with different starting con
tions. We always start with a uniform distribution~i.e., all
moments parallel!, but vary the in-plane direction. We fin
that irrespective of the starting direction~within one octant!,
the element always minimizes towards a mean in-plane m
netization direction of 90°, which corresponds to the flow
distribution. Even starting with the magnetization aligned
within 0.1° of the mean direction of the leaf distribution~i.e.,
f545.1°! lead to a coherent rotation of the magnetization
the flower distribution. This is highly indicative of the lea
state being an energy maximum and not a metastable m
mum for this size element.

FIG. 1. Examples of the magnetization vectors in~a! the flower
and~b! the leaf magnetization distribution in 60360315 nm nano-
structures. The central part shows a plan view, whereas the
parts show the left and right side surfaces.
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PRB 58 9219MICROMAGNETICS OF THE SINGLE-DOMAIN STATE . . .
We then studied a slightly larger element of si
33.3333.3310 nm. Such an element, having an aspect ra
of 3.33, is located on the other side of the flower-leaf ph
boundary and so has the leaf distribution as its ground s
This time the element always moved towards^f&545° and
hence the leaf distribution, even when started within 0.1°
the mean flower direction. The flower state must therefore
an energy maximum and not a metastable minimum.

The two elements which we have so far studied have t
been free of metastability. We checked that this result w
independent of the meshing density. In order to see if thi
a general feature of all small, square-planar elements,
have performed a slightly reduced version of this experim
on a number of different sized elements. For each elem
we have determined its ground-state distribution~i.e., flower
or leaf! from its aspect ratio. We have then started a mi
mization from a uniformly magnetized state 0.1° away fro
the mean direction of theotherstate and monitored the min
mization. The final equilibrium state~i.e., flower or leaf! was
then recorded. Figure 2 summarizes the results by show
as a function of element size and thickness the final equ
rium state. The flower-leaf ground-state phase boundary
has also been superimposed. For elements of thickness
than 12 nm, one sees that the final equilibrium state~as rep-
resented by the points! always follows the ground state, eve
though the starting conditions of the minimization were ch
sen to encourage selection of the other state. For elem
thicker than 12 nm, the phase diagram shows the presen
pseudoflower and pseudoleaf states. These states are th
sic flower and leaf states with lower reflection symmet
Figure 3 shows an example of a pseudoflower and
pseudoleaf state. In the case of the pseudoflower shown
mean in-plane magnetization direction is^f&576°, compared
with the full flower value of 90°. In the case of th
pseudoleaf shown,̂f&563°, compared with the full lea
value of 45°. The pseudoflower can be described as a
flower with a small amount of leaf character and t
pseudoleaf can be described as a full leaf with a sm
amount of flower character. This makes the transition
tween the flower and leaf statescontinuouswhen pseu-
dostates are involved, which is to be contrasted with
abrupt transition which occurs at smaller thicknesses~i.e.,

FIG. 2. A phase diagram of numerical simulation results, sho
ing as a function of element size and thickness the finally attai
equilibrium state. The solid line has gradient 2.7 and shows
boundary between the flower and leaf ground states. For each s
lation, a uniformly magnetized state 0.1° away from the nongro
state direction was used as the starting condition.d indicates
flower, s indicates leaf,l indicates pseudoflower,L indicates
pseudoleaf.
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,12 nm! which do not involve pseudostates. We check
when the minimization terminated on a pseudostate that
pseudostate was of lower energy than the corresponding
state. This was always the case. Thus even though
ground state may not be as simple as a full flower or lea
is a general principle of these small square-planar elem
that metastability is always absent. The ground-state ph
diagram ~when correctly calculated to also involve pse
dostates! should thus always be a good prediction of t
remanent state of the element.

It has long been known that a square,single-domain~i.e.,
truly single domain, with perfectly uniform magnetization!
element cannot exhibit any in-plane shape anisotropy.
fact that we observe energy differences between the leaf~^f&
545°! and the flower~^f&590°! means that thereis some
dependence of energy on the in-plane net magnetization
rection which must therefore come about as a result of
nonuniformity of the magnetization distribution within th
near single-domain state. A close examination of Fig
shows that there is some bending of the magnetization in
vicinity of the element edges. If we are to explain th
ground-state diagram it is therefore necessary to unders
the influence of nonuniformity on the effective shape anis
ropy.

C. Analytical modeling

Analytical solution of micromagnetic problems is com
paratively rare because generally it involves finding the
lution to nonlinear differential equations. Analytical solu
tions to Brown’s fundamental theorem critical size15 and the
nucleation problem16 have been presented for the spec
cases of ellipsoidal particles which generate uniform dem
netizing fields. The nonuniform demagnetizing field with
nonellipsoidal bodies has also been calculated.17 Recently,
the many soliton solution of the imaginary time sine Gord
equation has been used to describe domain structure in
angular magnetic plates.18 Analytical solutions are desirabl
because they often give more physical insight into a prob
than a numerical simulation, and they also allow trends to
predicted without the need to repeat the numerical simula
many times. We will show in this section that the ne
single-domain states so far discussed can be described
good analytical approximation because they can be treate
a small perturbation from the truly single-domain state.
this case, the micromagnetic equations can be linearized
a solution found. We shall work with two orthogonal bas
perturbations, one possessing the symmetry of the flo

-
d
e
u-
d

FIG. 3. Examples of the magnetization vectors in~a! the
pseudoflower and~b! the pseudoleaf states, in a 37.5337.5315 nm
and 41.25341.25315 nm element, respectively.
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9220 PRB 58R. P. COWBURN AND M. E. WELLAND
state and the other the symmetry of the leaf state. We s
then consider a general state which is a linear combinatio
the two. The total magnetic energy of the state can then
expressed as a function of the coefficients of the linear c
bination and the mean in-plane magnetization direction
minimized with respect to these parameters. We are thus
to find analytically the nature of the near single-domain st
~i.e., flower- or leaflike! and its energy as a function of ele
ment size and aspect ratio.

In addition to providing the solution to a specific proble
in nanoscale magnetism, we hope that it might be possibl
generalize the formalism presented here to solve many o
micromagnetic problems in a variety of particle shapes.

1. The flower perturbation

The flower can be described as a perturbation from
single-domain state oriented parallel to one edge of
square element. If the main magnetization direction is ta
to be along they axis, then the symmetry of the flower
expressed by an in-plane magnetization perturbation dire
along thex axis and of a magnitude which depends on so
function of the productxy where the coordinates are me
sured from the center of the square. In addition, we ass
an out-of-plane magnetization perturbation directed alo
the z axis and of a magnitude which depends upon so
function of the productyz, wherez is also measured from
the center of the element. We cannot knowa priori the exact
profile of the magnetization perturbation for this depends
the details of the balance between the local demagneti
field and the exchange field. We therefore consider a gen
polynomial expansion. The reflection symmetry of the pro
lem means that even terms are forbidden. It was found
ficient to take terms inxy and (xy)3 for the in-plane pertur-
bation and terms only inyz for the out-of-plane perturbation
We thus write the perturbation for the flower as

DfF~x,y!52
4xyDfF

a2 2
64x3y3DfF8

a6

~5!

DuF~y,z!5
4ryzDuF

a2 ,

where a is the width of the element,a/r is its thickness
wherer is the width to thickness aspect ratio, and the va
ablesDfF , DfF8 , andDuF represent the overall strength o
the linear in-plane, the cubic in-plane, and the linear out-
plane flower perturbation, respectively.

2. The leaf perturbation

In describing the leaf perturbation, the main magneti
tion is taken to lie along the leading diagonal of the squ
element and the in-plane perturbation mangetization follo
the nonleading diagonal. Just as for the flower the in-pl
perturbation at a given point depended on the distance f
thex axis times the distance from they axis~i.e., the product
xy!, the leaf in-plane perturbation at a given point is taken
depend on the distance from the leading diagonal times
distance from the nonleading diagonal. Simple geome
shows that this product is described byx22y2. The higher-
order polynomial term is in this case taken to bex42y4. For
all
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the out-of-plane case, the symmetry of the distribution
quires a perturbation which is linear inz ~as measured from
the center of the element! and which also is proportional to
the distance from the nonleading diagonal. This is achie
by the term (x1y)z. Thus, the full leaf perturbation can b
written

DfL~x,y!5
4

a2 ~x22y2!DfL1
16

a4 ~x42y4!DfL8 ,

~6!

DuL~x,y,z!5
2r

a2 ~x1y!zDuL .

3. Energy of the general state

We now construct a general perturbation by taking a l
ear combination of the two basis perturbations

Df~x,y!5DfF~x,y!1DfL~x,y!,
~7!

Du~x,y,z!5DuF~x,y,z!1DuL~x,y,z!.

There is no need to write linear combination coefficients
Eq. ~7! because they can be absorbed intoDfF ,DfF8 ,DuF

andDfL ,DuL8 ,DuL of Eqs.~5! and~6!. In addition to these
six free parameters, we must also consider the mean in-p
magnetization direction̂f&. The magnetic energy of this
general state is given by the sum of its exchange energy
its magnetostatic energy.

The mean exchange energy density of the nanostructu
given by evaluating Eq. ~1! for the perturbation
Df(x,y),Du(x,y,z) and then dividing by the element vo
ume, which gives

Ēex5
4A

105a2H 2~35DfF
2142DfFDfF8127DfF8

2!

18~35DfL
2184DfLDfL8160DfL8

2!

135~11r 2!S DuF
21DuFDuL1

DuL
2

2 D J . ~8!

Because the exchange energy density depends only on
netization gradients, the seventh free parameter^f& ~the
mean in-plane magnetization direction! does not appear in
Eq. ~8!.

We shall now find an expression for the magnetosta
energy in the element. For a given perturbation in spher
polar coordinates@Df(x,y),Du(x,y,z)#, the corresponding
Cartesian perturbation is

DM ~x,y,z!5MsF 2Df~x,y!sin̂ f&

Df~x,y!coŝ f&

Du~x,y,z!
G . ~9!

In the limit of a small perturbation, the magnetostatic ene
density at a point in the nanostructure approximates to

Ed~x,y,z!5DM ~x,y,z!•N= ~x,y,z!MsF coŝ f&

sin̂ f&

0
G , ~10!
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whereN= (x,y,z) is the spatially variant demagnetizing tens
for the nanostructure. The terms on the right-hand side of
dot product in the above equation give the local demagne
ing field assuming a uniform magnetization. This will b
slightly different from the true local field because what
really required is the local demagnetizing field due to
perturbed distribution. However, the errors are of orderDf2

and so can be ignored for small perturbations. As was d
a

le

e
zi
e
z-

e

e

for the exchange energy, we integrate the magnetostatic
ergy density throughout the volume of the element and t
divide by the element volume in order to give the total ma
netostatic energy as an average magnetostatic energy
sity. When the demagnetizing tensor is expanded into
individual elements and the reflection symmetry of the ba
perturbations used to simplify, the mean magnetostatic
ergy density is found to be
Ēd5
Ms

2r

a3 E
2a/2

a/2

dx E
2a/2

a/2

dy E
2a/2r

a/2r

dzH cos2̂ f&N12~x,y,z!DfF~x,y!1sin̂ f&N23~x,y,z!DuF~x,y,z!

1sin2̂ f&
N22~x,y,z!2N11~x,y,z!

2
DfL~x,y!1~sin̂ f&1coŝ f&!N23~x,y,z!DuL~x,y,z!J . ~11!
id.

nce
ls
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rgy
by
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s

We can make use of the scale-invariant nature of the dem
netizing field to rewrite this in the form

Ēd52Ms
2$CF

fDfFcos2̂ f&

1CF
f8DfF8cos2̂ f&1CF

u DuFsin̂ f&

1CL
fDfLsin2̂ f&1CL

f8DfL8sin2̂ f&

1CL
uDuL~sin̂ f&1coŝ f&!%, ~12!

where the spatially invariant factorsCF
f , CF

f8, andCF
u de-

pendonly on the width to thickness aspect ratio of the e
ment rand are given by

CF
f5

r

a3 E
2a/2

a/2

dx E
2a/2

a/2

dy E
2a/2r

a/2r

dzH 2
4xy

a2 N12~x,y,z!J ,

CF
f85

r

a3E
2a/2

a/2

dxE
2a/2

a/2

dyE
2a/2r

a/2r

dzH 2
64x3y3

a6 N12~x,y,z!J ,

CF
u 5

r

a3 E
2a/2

a/2

dx E
2a/2

a/2

dy E
2a/2r

a/2r

dzH 4ryz

a2 N23~x,y,z!J ,

~13!

CL
f5

r

a3 E
2a/2

a/2

dx E
2a/2

a/2

dy E
2a/2r

a/2r

dzH 2

a2 ~x22y2!

3@N22~x,y,z!2N11~x,y,z!#J ,

CL
f85

r

a3 E
2a/2

a/2

dx E
2a/2

a/2

dy E
2a/2r

a/2r

dzH 8

a4 ~x42y4!

3@N22~x,y,z!2N11~x,y,z!#J ,

CL
u5

r

a3 E
2a/2

a/2

dxE
2a/2

a/2

dyE
2a/2r

a/2r

dzH 2r

a2 ~x1y!zN23~x,y,z!J .

Concern might be expressed over whether some of th
integrals converge because the off-diagonal demagneti
g-

-

se
ng

tensor elements tend to infinity at the corners of a cubo
We verified that the divergence is of the form2ln « where«
is a measure of the distance from the corner. The diverge
is slow so that«3ln « converges rapidly to zero. The integra
are therefore convergent. A more rigorous analysis of
complete micromagnetic processes which occur at corn
has recently been presented by other workers.19

The closed-form results of these integrals are extrem
complex, and so we have evaluated them using numer
integration, presenting the results in Fig. 4. The total ene
density ansatz of the general perturbation is then given
the sum of the exchange energy density and the magn
static energy density. The true energy density of an elem
is given by the minimum ofĒtot . Since for a given elemen
Ētot is only a function of the six perturbation strength
DfF ,DfF8 ,DuF ,DfL ,DfL8 ,DuL and the mean in-plane
magnetization direction^f&, the minimization can be

FIG. 4. A numerical evaluation of theC factors as defined in
Eq. ~13! as a function of width to thickness aspect ratio,r .
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9222 PRB 58R. P. COWBURN AND M. E. WELLAND
achieved by simple analytical methods. The derivative ofĒtot
with respect to each of the six perturbation strengths is
culated analytically and set to zero. This yields six equati
with three sets of two being coupled. They can thus easily
solved to yield the minimizing values of the perturbati
strengths as

DfF5
5Ms

2a2

128A
~9CF

f27CF
f8!cos2̂ f&,

DfF85
235Ms

2a2

384A
~3CF

f25CF
f8!cos2̂ f&,

DuF5
3Ms

2a2

4A~11r 2!

3~CF
u sin̂ f&2CL

u@sin̂ f&1coŝ f&#!,
~14!

DfL5
15Ms

2a2

512A
~10CL

f27CL
f8!sin2̂ f&,

DfL85
235Ms

2a2

1024A
~6CL

f25CL
f8!sin2̂ f&,

DuL5
3Ms

2a2

4A~11r 2!
@2CL

u~sin̂ f&1coŝ f&!2CF
u sin̂ f&#.

Notice that at this stage we have not yet minimized w
respect to^f&; this will be done later. Substituting thes
minimizing values back into the original energy density a
satz gives the energy density minimum for a given^f& as

Ētot5
Ms

4a2

A
$P cos22^f&1Q sin22^f&1R%, ~15!

which can be rewritten as

Ētot5
Ms

4a2

A
$~Q2P!sin22^f&1P1R%, ~16!

where the variablesP,Q,R depend only on the aspect rat
of the element and are defined as

P5
5

768
~227CF

f2
142CF

fCF
f8235CF

f82
!,

Q5
5

2048
~260CL

f2
184CL

fCL
f8235CL

f82
!, ~17!

R5
23

16~11r 2!
CF

f2
.

P, Q, andR are plotted in Fig. 5 as a function of the el
ment aspect ratio. Notice that in Eq.~16! the part of Ētot
which is proportional toR and therefore expresses the ener
contribution of out-of-plane perturbation does not depe
upon ^f&. This is because the symmetry of the out-of-pla
parts of the two basis perturbations is such that they are
orthogonal. Consequently, one can simply show thatCF

u

l-
s
e

-

y
d
e
ot

52CL
u , which causes thêf& dependent parts ofR to cancel.

We shall return to the physical significance of this later.
The final minimization of Eq.~16! with respect tô f& is

now easily achieved, and yields

^f&5
p

4
, Ētot5

Ms
4a2

A
~Q1R! for P.Q,

~18!

^f&5
p

2
, Ētot5

Ms
4a2

A
~P1R! for P,Q.

Thus, within the framework of small perturbations, our an
lytical theory predicts that depending on the element asp
ratio r the ground-state magnetization distribution is eith
entirely flowerlike (P,Q) or is entirely leaflike (P.Q).
There should not be any mixed~i.e., pseudoflower or
pseudoleaf! states. The variation of the energy surface b
tween the two states is of the form sin22^f&, which describes
a fourfold symmetry anisotropy. We name this a configu
tional anisotropy, for it comes from the different magnetiz
tion configurations~i.e., flower or leaf! which occur as the
mean in-plane magnetization direction is rotated in the pla
The critical aspect ratio at whichP5Q and therefore at
which the element ground state changes between the flo
and leaf can be read off from the inset of Fig. 5 as 2.7
60.001 which is in excellent agreement with the value
2.760.05 obtained during our numerical simulations.

As well as using the analytic formulas to predict th
flower-leaf phase boundary gradient, we can also calcu
the magnitude of the configurational anisotropy. We defi
the in-plane fourfold symmetric configurational anisotro
constantK1

config such that the dependence of energy dens
on the mean magnetization direction is described by

E5
K1

config

4
sin22^f&. ~19!

Comparison with Eq.~16! yields immediately the result

K1
config5

4Ms
4a2

A
~Q2P!, ~20!

or in terms of an anisotropy field

2K1
config

Ms
5

8Ms
3a2

A
~Q2P!. ~21!

FIG. 5. The functionsR, P, and Q as a function of width to
thickness aspect ratio,r . Inset is a close up in the vicinity of the
intersection ofP andQ which corresponds to the transition betwe
flower and leaf states.
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In Fig. 6 we have plottedQ-P and alsor 2(Q-P). The latter,
while still being dimensionless, shows the form of the var
tion of anisotropy field with element size at constant thic
ness. One sees that the anisotropy field increases almos
early with element size.

DISCUSSION

A. Comparison of the analytical model with the numerical
simulations

It is important to establish that our analytical model r
produces the results obtained by numerical simulations.
this end, we have used the numerical code to find the e
librium magnetization distribution of a magnetic eleme
with a510 nm andr 52. We then foundDf(x,y) and
Du(x,y,z)as predicted by the analytical model, and plott
in Fig. 7 a comparison of numerically and analytically det
mined line sections. One sees that the agreement is
good. This shows that the functions which we chose in E
~5! and ~6! to represent the flower and leaf perturbatio
were suitable.

We then used the numerical code to calculate the t
magnetic energy of elements of a variety of sizes and th
nesses. Figure 8 compares the numerical calculation with
analytical values predicted by Eq.~14!. The agreement is
very good for most of the thickness range shown. At
upper end of the size range the uncertainty in the numer
values increases because of the need to reduce the me
density in order to limit the total number of cells. One wou
also expect, however, the analytical model to slightly ov
estimate the magnitude of the energy at higher sizes for
sons which will be discussed in the following section. D
spite these uncertainties, the agreement between the
models is good enough even at larger sizes to be useful

FIG. 6. ~a! The functionQ-P as a function of width to thicknes
aspect ratio,r ; ~b! the functionr 2(Q-P) againstr , which has the
same form as the dependence of configurational anisotropy on
ment size at constant thickness.
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There are two other points of agreement between the a
lytical model and the numerical simulations. The first is t
analytical prediction of 2.73360.001 as the critical aspec
ratio compared with the numerically found value of 2
60.05. The second is the analytical prediction of a disc
tinuous transition between the leaf and the flower states w
out any metastability. This last point agrees with t
numerical experiments for element thicknesses less than
nm.

le-

FIG. 7. A comparison between the numerical simulation~solid
points indicate flower, open points indicate leaf! and the analytical
model~lines! for line sections through a 1031035 nm element.~a!
is the in-plane angular perturbation and~b! is the out-of-plane an-
gular perturbation.

FIG. 8. A comparison between the equilibrium energy densi
calculated by numerical simulation~open points indicate 5 nm
thick, solid points indicate 10 nm thick! and the analytical mode
~lines! for different size elements.~a! is for the flower state and~b!
is for the leaf state.
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B. Limits of validity of the analytical model

There are two approximations which have been made
the analytical model. The first is that the equilibrium pertu
bation can be described by the functionsDf(x,y) and
Du(x,y,z) given by Eqs.~5! and ~6!. In reality, it is likely
that the precisely required function would also invol
higher-order polynomial terms. The second approximat
has already been mentioned and is the fact that the dem
netizing field due to theunperturbedmagnetization is taken
as the internal field, whereas a precise calculation would
the demagnetizing field due to theperturbedmagnetization.
In failing to take this into account, one is ignoring the ma
netostatic interaction between volume charges within
perturbed distribution.

The first approximation introduces the same proportio
error for any size element~at fixed aspect ratio!. This can be
seen by the following. Suppose that there is a general pe
bation Df(x/a,y/a,z/a)for which an element of sidea1 is
in equilibrium, but which is not necessarily of the simp
form of Eq. ~5!. At any point in the element, the exchang
energy density is proportional tougradDf(x/a,y/a,z/a)u2

and the magnetostatic energy density is proportional
Df(x/a,y/a,z/a) ~in the limit of assumption 2 holding!.
Consider now another element of the same aspect ratio
of side a2 and consider the perturbatio
(a2 /a1)2Df(x/a,y/a,z/a) applied to it. The local magneto
static energy density, being scale invariant, will be increa
by a factor (a2 /a1)2. Because grad is a linear operator, t
local exchange energy density will also be increased b
factor (a2 /a1)2. Thus, (a2 /a1)2Df(x/a,y/a,z/a) is the
equilibrium distribution for the new element. In other word
as an element scales, the overallshapeof its perturbation
does not change, but only its magnitude. Thus if, say 10%
the energy of an equilibrium distribution is due to a pert
bation which is distributed according tox5y5, then that pro-
portion will not change as the element size is reduced.

The second approximation becomes increasingly accu
as the element size is reduced. Each volume charge i
magnitude proportional toDf and so the interaction energ
between volume charges is proportional toDf2. Thus the
relative error is proportional toDf. Now we know from the
previous paragraph thatDf scales witha2 and so the relative
error scales witha2, vanishing for small elements. We es
mate that an overall precision of 10% can be achieved in
analytical model as long as all of the perturbation stren
parameters are less than approximation 20°~0.35 rad!.

One of the curious differences between the analytical
numerical work is that the numerical simulations show
abrupt transition at the critical aspect ratio for element thi
nesses less than 12 nm and a smooth transition for th
nesses greater than 12 nm. By contrast, the analytical m
only contains absolute length scales as a final scaling fac
meaning that qualitative behavior can only depend upon
aspect ratio and not the absolute size. Inclusion of high
order perturbations as described above would not cha
this. Correction of the second approximation could, howev
introduce a change in qualitative behavior for different e
ment sizes. More specifically, in order to predict a grad
transition, additional harmonic terms would be required
Eq. ~16!. Numerical results not shown here show that t
in
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energy surface between the basis states does develop a
in sin24^f& for larger elements. Such a term~if, as it is, of the
correct sign! would indeed break the abruptness of the tra
sition from ^f&545° to ^f&590°. It is not unreasonable to
suppose that this higher harmonic appears because o
introduction of nonlinearity due to the second approximat
breaking down, and as such is a finite-size effect. A coroll
of this is that the real transition becomes rigorously abru
with the in-plane susceptibility diverging, in the limit of th
element size tending to zero or alternatively the excha
length tending to infinity. Further work is required to see
this is strictly a first-order phase transition according to
renormalization group.

C. Physical interpretation

The major motivation for producing an analytical mod
was to gain insight into the physical processes driving
flower to leaf transition. One surprising result to come out
the model is the fact that the transition isnot driven by
out-of-plane perturbations. Equation~16! shows that there is
a contribution to the total magnetic energy from the out-
plane perturbation~via the termR! at least for small aspec
ratios, but that it does not depend upon^f&, i.e., which of the
flower or leaf basis states is adopted.

It is the form of theC factor curves which gives the clu
to the physical driving force. It is possible to show that
any equilibrium state the magnetostatic energy density is
rectly proportional to the total energy density. Thus, t
magnetostatic energy density of the leaf state must exc
~in magnitude! that of the flower state for larger aspect ratio
Now the definition of theC factors given in Eq.~12! is such
that they are directly proportional to the magnetostatic
ergy density of the perturbation. We have plottedCF

f andCL
f

against aspect ratio in log-log form in Fig. 9. The gui
gradient lines show thatCF

f falls of approximately with 1/r
at larger r whereasCL

f falls off with a lower power law,
closer to 1/Ar . It is these different dependences which are
the heart of the flower to leaf transition. We can explain t
dependences by considering the part of the sample w
experiences the greatest perturbation and hence which
tributes most to the overall magnetostatic energy density.
the flower, it is close to the corners, whereas for the leaf i
close to the middle of the edges. Now for the flower, t

FIG. 9. The principal in-plane perturbationC factors plotted
against width to thickness aspect ratio on a logarithmic scale.
dashed guide lines show gradients of21 and20.5.
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magnetostatic energy of the perturbation depends uponoff-
diagonal demagnetizing tensor terms, and so the e
charges nearest to any given point inside the element do
contribute. Consequently, most of the edge charges whic
contribute to the magnetostatic energy density at a point
far away from that point, i.e., in the far field and so t
dependence on aspect ratio is simply 1/r . Conversely, the
magnetostatic energy of the leaf perturbation depends u
diagonal demagnetizing tensor terms, and so most of
magnetostatic energy density at a point is due to the nea
edge charges. These are mostly in the near field, and so
dependence on aspect ratio is of lower power than 1/r . We
can thus explain why there is a change over from flower
leaf ground state as the aspect ratio is increased.

D. Technological significance

One of the most striking findings of this work is th
strength of the configurational anisotropy. Although due t
small perturbation from the uniform state, the configuratio
anisotropy field is very strong. Substituting the values fo
40 nm340 nm310 nm Permalloy element~which is the size
future magnetoelectronic devices might use! into Eq. ~21!
gives an anisotropy field of 107 Oe, which is to be compa
with the uniaxial anisotropy field of field cooled Permallo
of the order of 4 Oe.20 Elements of the same thickness but
larger lateral size, which will most probably find technolog
cal application first, will have an even stronger anisotro
field, although the analytical model is not quantitatively va
for these large perturbations. There are two consequenc
this. Firstly, the remanent magnetization will point along t
diagonals, reducing say the giant magnetoresistance resp
by one half. Secondly, and perhaps most significantly,
element switching field will be much greater than it othe
wise would have been. Higher write currents will therefo
be needed, leading to increased power dissipation.

Conversely, our work shows that square elements wh
are 2.7 times wider than they are thick should be isotro
~in-plane!. They should thus have an extremely high susc
tibility which can be tuned by simply varying the aspect ra
and which could find important applications in magnetic s
sors.
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CONCLUSION

We have studied theoretically the energy surface in
vicinity of the two equilibrium near single domain states
nanoscale square-planar magnetic elements~magnetic nano-
structures!. We find from numerical simulations that met
stability is absent and at any finite temperature the sys
must adopt its ground state.

We have then modeled the flower and leaf states ana
cally as small perturbations from the uniformly magnetiz
state. We find that the energy surface between the state
be described by a fourfold symmetric configurational anis
ropy field which changes sign at a critical width to thickne
aspect ratio. We have derived an equation predicting
strength of the configurational anisotropy as a function
element size and thickness, obtaining excellent agreem
with the numerical simulations for the value of the critic
aspect ratio. We find that the configurational anisotropy fi
can be several hundred Oe’s in strength, which will domin
the spin-reversal process and which may have other tec
logical implications. The analytical model allows importa
physical quantities of the nanostructures such as energy
anisotropy to be rapidly calculated without performing lo
numerical simulations. More importantly, however, it giv
good insight into the physical origin of the configuration
anisotropy. The leaf energy density falls off less rapidly w
increasing aspect ratio than the flower energy density
cause the former involves mainly near field demagnetiz
terms whereas the latter involves mainly far field terms. O
of-plane perturbations are found to be unimportant in sel
ing between the two states. The analytical model itself p
dicts a discontinuous transition to occur at the critical asp
ratio. The approximations used by the model are such
this will become rigorously valid in the limit of the infinite
exchange length or zero element size.
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