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Using numerical micromagnetics we have studied the potential energy surface in the vicinity of the two
principal remanent near single-domain states of nanoscale square-planar magnetic dl@mgmésic nano-
structures We find that there is no metastability and therefore at any finite temperature the nanostructure must
adopt its ground state. We have derived an analytical solution to the micromagnetic equations describing the
properties of the near single-domain states by treating them as a small perturbation from the uniformly
magnetized case. The analytical solution shows that the energy surface between the states can be described by
a fourfold symmetric configurational anisotropy field, which can be several hundred Oersteds in strength and
which changes sign at a critical width to thickness aspect ratio. The analytical model gives good physical
insight into the origin of the configurational anisotropy and predicts a discontinuous transition with diverging
susceptibility to occur at the critical aspect rafi860163-1828)02838-(

INTRODUCTION three different near single-domain states as the element size
and thickness is varied. In addition to the fundamental inter-
The magnetism of reduced dimensionality structures haest in studying phase transitions in these reduced dimension-
in recent years generated much experimental and theoreticality nanostructures, a precise understanding of the near
interest. Reduced dimensionality in this context means thadingle-domain states is essential for potential technological
one or more of the sample dimensions is small or compaapplications, such as patterned media for high density data
rable to the exchange length of the material, which is of thestoragé! or magnetoelectronic devic®s (e.g., magnetic
order of ten nanometers for common ferromagnetic materimemory chips, spin transistors, and hard-disk read heads
als. Studying the deviations from uniform magnetization of small
Two-dimensional(2D) magnetism has been extensively cuboidal elements is also important in further understanding
studied in thin and ultrathin films and multilayers, leading tothe long standing Brown’s paraddXwhich notes the dis-
the discovery of several magnetic phenomena such as strorgepancy between the nucleation fields predicted by rigorous
surface anisotropies, enhanced moments, and oscillatory imnalytical micromagnetic nucleation theory and many ex-
terlayer exchange couplifigAdvanced lithographic tech- perimentally measured coercive fields.
niques such as electron beam or x-ray lithography or other In this paper we present the results of a detailed study of
nanoscale assembly techniques are now opening up the pake two principal near single-domain states of square-planar
sibility of studying 1D and OD magnets in the form of mag- magnetic elementénanostructures In the first section we
netic wires and dot$. use numerical micromagnetics to investigate the nature of
Theoretical modeling is an essential part of studying suchhe potential energy surface around the single-domain states.
structures. The semiclassical formalism of micromagnetics i$n the second section we present an analytical solution to the
an excellent tool for doing sb* Except in special cases micromagnetic equations for small cuboids within the frame-
where the demagnetizing field is uniform, analytical solutionwork of perturbation theory. These studies together predict
of the micromagnetic equations is rare. Recent advances ithe existence of a strong anisotropy within the nanostruc-
computing power, however, have now made numerical solutures, which we name a configurational anisotropy. This an-
tion feasible. Cuboidal particleésand 2D plate3have both isotropy field can be several hundred Oe’s in strength,
been studied by various workers using numerical micromagehanges sign at a critical width to thickness aspect ratio, and
netics as well as more applied problems in data storageill dominate the magnetic behavior of the nanostructures.

technology’
Brown’s fundamental theoréhstates that as the length-
scale of a magnetic particle is reduced, there comes a point at NUMERICAL SIMULATIONS
which the competition between exchange energy and magne- )
tostatic energy requires that a uniform magnetization distri- A. Numerical method

bution be adopted. The fundamental theorem was found not \we have considered a series of square elements which
to be rigorously true for nonellipsoidal particles such ascan be modeled using finite element methods as an ensemble
cubes and prismiput can be made so if “uniform magne- of cubic cells placed on a simple cubic lattice. The meshing

tization” is replaced by “near-uniform magnetization.” In @ density was always chosen such that the elements were at
recent papel® we showed theoretically that square-planarleast 2 cells thick, and the size of each cell was less than half
elements show unexpectedly complex behavior in this neahe exchange length. We checked that the final energy cal-
single-domain regime, undergoing transitions through up ta@ulated by the simulation converged with increasing meshing
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density, and used the form of the convergence to estimate the (a) 1iIIT ORINERRIITIIILEIGERE iiiid
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theith cell. The magnitude of the magnetization within a cell z
is always the saturation magnetizatibh,. o .

The magnetostatic energy of a magnetization distribution F'G- 1. Examples of the magnetization vectorganthe flower
is calculated by evaluating the demagnetizing fiHIQ(r)at and(b) the leaf magnetization distribution in 3(!50><15 nm nano- .
every point in the element, and then calculating the Fesultingztrucwres' The central part shows a plan view, whereas the side
energy in the continuum limit according to arts show the left and right side surfaces.

aspect ratio greater than 2.7 had a leaf ground state. The fact
that a particular state might be the ground state is no guar-
antee, however, that it will be observed as the remanent state
of the nanostructure. Metastability is a common feature of
1 magnetic systems. In order to know if the predicted ground
- §V2 M.ﬂfi (4) state is an accurate prediction of the state which will be
: observed in a nanostructure in zero field, it is necessary to
The demagnetizing field itself is calculated from a convolu-study the potential energy surface in the vicinity of the two
tion of the magnetization with the three-dimensional La-near single-domain states. Knowledge of the shape of the
Bonte interaction matrix? energy surface is also important if one is to understand the
Boundary cells are treated slightly differently in calculat- static and temporal spin-reversal behavior of the nanostruc-
ing the exchange energy. The cell on the opposite side of aure.
free face is counted twice in performing the summation of We have started our investigation with a square-planar
Eq. (3). This is equivalent to assuming a uniform magneti-element of size 2820x10 nm, for which the ground state is
zation gradient all the way through the boundary cell. the flower. In order to provide a ready link with the large
~ Once able to calculate the energy of a given magnetizagmount of experimental work which is emerging in this field,
tion distribution, we then use the method of steepest descegfe nave assigned values b, andA which are characteris-

to f?nd the set p\*{{¢i 6;}}which min.imizes the total energy. tic of the magnetic alloy PermalloyNigFes, for which
As is characteristic of any hysteretic system, the starting con,

it ¢ the minimizati - hich “91,=800 emucm?® and A=1.05x10° ergcml). Our
itons ot the minimization can infiuence which enérgy mini- oq 15 can pe applied to other soft isotropic magnetic mate-
mum is eventually found. We shall make use of this impor-

tant point later in the paper. rials by scaling all lengths byA/M¢ and all energy densitig;
per moment byM4. We have then used our code to mini-

mize the energy of the element with different starting condi-
tions. We always start with a uniform distributidne., all

We showed previoust{ using numerical micromagnetics moments parall¢) but vary the in-plane direction. We find
that there are two principal near single-domain magnetizathat irrespective of the starting directiéwithin one octant
tion distributions relevant to small square-planar elementsthe element always minimizes towards a mean in-plane mag-
We have named these “flower” and “leaf” and present netization direction of 90°, which corresponds to the flower
them in Fig. 1 for reference. Elements small enough to adopdistribution. Even starting with the magnetization aligned to
a near single-domain states opposed to a vortex or buckled within 0.1° of the mean direction of the leaf distributire.,
statg as the ground state display either the flower or the leafy)=45.19 lead to a coherent rotation of the magnetization to
configuration, depending on the width to thickness aspedhe flower distribution. This is highly indicative of the leaf
ratio of the element. Elements with aspect ratio less than 2.3tate being an energy maximum and not a metastable mini-
were found to have a flower ground state whereas those witthum for this size element.

Ug=~— %f M(r)-H(r)dr, )

which is implemented discretely by

Ud:

B. Numerical results
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FIG. 2. A phase diagram of numerical simulation results, show-pseudoflower anéb) the pseudoleaf states, in a 3%357.5<15 nm
ing as a function of element size and thickness the finally attaine@nd 41.25%41.25<15 nm element, respectively.
equilibrium state. The solid line has gradient 2.7 and shows the
boundary between the flower and leaf ground states. For each sime<12 nm which do not involve pseudostates. We checked
lation, a uniformly magnetized state 0.1° away from the nongroundvhen the minimization terminated on a pseudostate that the
state direction was used as the starting conditi®n.indicates pseudostate was of lower energy than the corresponding full
flower, O indicates leaf,# indicates pseudoflower) indicates  state. This was always the case. Thus even though the
pseudoleaf. ground state may not be as simple as a full flower or leaf, it
) ) . is a general principle of these small square-planar elements
We then studied a slightly larger element of sizeihat metastability is always absent. The ground-state phase
33.3x33.3<10 nm. Such an element, having an aspect ratiQjjagram (when correctly calculated to also involve pseu-

of 3.33, is located on the other side of the flower-leaf phasgostatel should thus always be a good prediction of the
boundary and so has the leaf distribution as its ground stat@emanent state of the element.

This time the element always moved towakds=45° and It has long been known that a squasingle-domairi.e.,

hence the leaf distribution, even when started within 0.1° O,y single domain, with perfectly uniform magnetization
the mean flower direction. The flower state must therefore b@jement cannot exhibit any in-plane shape anisotropy. The
an energy maximum and not a metastable minimum. fact that we observe energy differences between the({g#f
The two elements which we have so far studied have thus 450 anq the flower((¢)=90°) means that therés some
been free of metastability. We checked that this result wagiependence of energy on the in-plane net magnetization di-
independent of the meshing density. In order to see if this i$ection which must therefore come about as a result of the
a general feature of all small, square-planar elements, Weonyniformity of the magnetization distribution within the
have performed a slightly reduced version of this experimenfear single-domain state. A close examination of Fig. 1

on a number of different sized elements. For each elemenf,ows that there is some bending of the magnetization in the
we have dete_rmmed its gr(_)und-state distributioe., flower_ _vicinity of the element edges. If we are to explain the
or lea) from its aspect ratio. We have then started a mini-5rqund-state diagram it is therefore necessary to understand

mization from a uniformly magnetized state 0.1° away fromine influence of nonuniformity on the effective shape anisot-
the mean direction of thetherstate and monitored the mini- ¢\,

mization. The final equilibrium stat@e., flower or leaf was
then recorded. Figure 2 summarizes the results by showing
as a function of element size and thickness the final equilib-
rium state. The flower-leaf ground-state phase boundary line Analytical solution of micromagnetic problems is com-
has also been superimposed. For elements of thickness legaratively rare because generally it involves finding the so-
than 12 nm, one sees that the final equilibrium staterep- lution to nonlinear differential equations. Analytical solu-
resented by the pointsiways follows the ground state, even tions to Brown’s fundamental theorem critical sizand the
though the starting conditions of the minimization were cho-nucleation problef? have been presented for the special
sen to encourage selection of the other state. For elementsses of ellipsoidal particles which generate uniform demag-
thicker than 12 nm, the phase diagram shows the presence pétizing fields. The nonuniform demagnetizing field within
pseudoflower and pseudoleaf states. These states are the banellipsoidal bodies has also been calculdfeRecently,

sic flower and leaf states with lower reflection symmetry.the many soliton solution of the imaginary time sine Gordon
Figure 3 shows an example of a pseudoflower and &quation has been used to describe domain structure in rect-
pseudoleaf state. In the case of the pseudoflower shown, thegular magnetic platé&.Analytical solutions are desirable
mean in-plane magnetization direction#=76°, compared because they often give more physical insight into a problem
with the full flower value of 90°. In the case of the than a numerical simulation, and they also allow trends to be
pseudoleaf shown({¢$)=63°, compared with the full leaf predicted without the need to repeat the numerical simulation
value of 45°. The pseudoflower can be described as a fulinany times. We will show in this section that the near
flower with a small amount of leaf character and thesingle-domain states so far discussed can be described by a
pseudoleaf can be described as a full leaf with a smaljood analytical approximation because they can be treated as
amount of flower character. This makes the transition bea small perturbation from the truly single-domain state. In
tween the flower and leaf statemntinuouswhen pseu- this case, the micromagnetic equations can be linearized and
dostates are involved, which is to be contrasted with thea solution found. We shall work with two orthogonal basis
abrupt transition which occurs at smaller thicknesges,  perturbations, one possessing the symmetry of the flower

C. Analytical modeling
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state and the other the symmetry of the leaf state. We shathe out-of-plane case, the symmetry of the distribution re-
then consider a general state which is a linear combination ajuires a perturbation which is linear m(as measured from
the two. The total magnetic energy of the state can then bthe center of the elemenand which also is proportional to
expressed as a function of the coefficients of the linear comthe distance from the nonleading diagonal. This is achieved
bination and the mean in-plane magnetization direction anthy the term &+y)z. Thus, the full leaf perturbation can be
minimized with respect to these parameters. We are thus abieritten

to find analytically the nature of the near single-domain state

(i.e., flower- or leaflike¢ and its energy as a function of ele- 4 16 ,
ment size and aspect ratio. AdL(xy)= Q(Xz_yzmd’ﬁ E(X“_yﬂr)Ad’L '
In addition to providing the solution to a specific problem (6)
in nanoscale magnetism, we hope that it might be possible to 2r
generalize the formalism presented here to solve many other AbL(xy.2)= 2 (x+y)zA6, .

micromagnetic problems in a variety of particle shapes.

1. The flower perturbation 3. Energy of the general state

The flower can be described as a perturbation from a W& now construct a general perturbation by taking a lin-

single-domain state oriented parallel to one edge of th&&" combination of the two basis perturbations

square element. If the main magnetization direction is taken _

to be along they axis, then the symmetry of the flower is Ap(Xy)=APe(X,y) +AdL(X,Y), .
expressed by an in-plane magnetization perturbation directed .

along thex axis and of a magnitude which depends on some A0(xy,2)=A0k(x.y,2) T A6 (X,Y,2).

function of the producky where the coordinates are mea- There is no need to write linear combination coefficients in
sured from the center of the square. In addition, we assumgq. (7) because they can be absorbed iftéq ,A ¢, A 6¢

an out-of-plane magnetization perturbation directed a'°”95ndA¢L A¢] ,A6, of Egs.(5) and(6). In addition to these

the z axis and of a magnitude which depends upon somg;y free parameters, we must also consider the mean in-plane
function of the producyz, wherez is also measured from magnetization directio(¢). The magnetic energy of this

the center of the element. We cannot knawriori the exact  ganera) state is given by the sum of its exchange energy and
profile of the magnetization perturbation for this depends orj¢ magnetostatic energy.

the details of the balance between the local demagnetizing The mean exchange energy density of the nanostructure is
field and the exchange field. We therefore consider a gener@kven by evaluating Eq.(1) for the perturbation

polynomial expansion. The reflection symmetry of the prob-x 4y \y A g(x.v.z) and then dividing by the element vol-
lem means that even terms are forbidden. It was found sufan(fé ,v)\//?],ich Egi\,/)é,s) g by
ficient to take terms ixy and (xy)* for the in-plane pertur- ’

bation and terms only igz for the out-of-plane perturbation. _ 4A
We thus write the perturbation for the flower as Eex= W{ 2(35A pZ+42A peA -+ 2TA p12)
_ AxyAge  64CyPA gL +8(35A p2+84A ¢ A p| +60A b/ 2)
Age(x,y)=— a2 ab
5 2 A6
) +35(1+r2)| AGR+AOAD +——| . (8)
4ryzA 6¢ 2
AOe(y, )= ————, -
a Because the exchange energy density depends only on mag-

netization gradients the seventh free parametép) (the
mean in-plane magnetization directjodoes not appear in
Eq. (8).

We shall now find an expression for the magnetostatic
‘energy in the element. For a given perturbation in spherical
polar coordinate$A ¢(x,y),A0(x,y,z)], the corresponding
Cartesian perturbation is

where a is the width of the elementa/r is its thickness
wherer is the width to thickness aspect ratio, and the vari-
ablesA ¢, A¢pr, andA 0 represent the overall strength of
the linear in-plane, the cubic in-plane, and the linear out-of
plane flower perturbation, respectively.

2. The leaf perturbation

In describing the leaf perturbation, the main magnetiza- —Ad(X,y)sin{ ¢)
tion is taken to lie along the leading diagonal of the square _ Ad(X.V)Co
element and the in-plane perturbation mangetization follows AM(x.y,2)=Ms p(xy)cos ) |. ©
the nonleading diagonal. Just as for the flower the in-plane A6(x,y,2)

perturbation at a given point depended on the distance fromy, e |imit of a small perturbation, the magnetostatic energy
thex axis times the distance from thyeaxis i.e., the product  gensity at a point in the nanostructure approximates to
xy), the leaf in-plane perturbation at a given point is taken to

depend on the distance from the leading diagonal times the cog ¢)
distance from the nonleading diagonal. Simple geometry .
shows that this product is described %% y?. The higher- Ea(x,y,2)=AM(x,y,2)-N(x,y.2)M| SiK) |, (10)

order polynomial term is in this case taken toxtfe- y*. For 0
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whereN(x,y,z) is the spatially variant demagnetizing tensor for the exchange energy, we integrate the magnetostatic en-
for the nanostructure. The terms on the right-hand side of thergy density throughout the volume of the element and then
dot product in the above equation give the local demagnetizdivide by the element volume in order to give the total mag-
ing field assuming a uniform magnetization. This will be netostatic energy as an average magnetostatic energy den-
slightly different from the true local field because what issity. When the demagnetizing tensor is expanded into its
really required is the local demagnetizing field due to theindividual elements and the reflection symmetry of the basis
perturbed distribution. However, the errors are of ortler’ perturbations used to simplify, the mean magnetostatic en-
and so can be ignored for small perturbations. As was donergy density is found to be

— Mgr al2 al2 al2r .
Ed: 3 dx j dy f dz COSZ(ﬁ)le(X,y,Z)A(ﬁF(X,y)+S|n<¢>N23(X,y,Z)AHF(X,y,Z)
a —al2 —al2 —al2r

N Y,2)—N Y,
+ sin( gy 222 . 10V 2) ) 4 (xoy)+ (SN )+ cos ) Nagx.y. DA By (x,y.2) (11)

We can make use of the scale-invariant nature of the demagensor elements tend to infinity at the corners of a cuboid.

netizing field to rewrite this in the form We verified that the divergence is of the forain £ wheree
_ ) is a measure of the distance from the corner. The divergence
Eq=—MZ{CEA prcos ¢) is slow so that3In & converges rapidly to zero. The integrals

are therefore convergent. A more rigorous analysis of the
complete micromagnetic processes which occur at corners
has recently been presented by other workgrs.

The closed-form results of these integrals are extremely
0 . complex, and so we have evaluated them using numerical
+C/A G, (sSin{ p)+cog )}, (12) integration, presenting the results in Fig. 4. The total energy

where the spatially invariant factos?, C¢’, andC? de-  density ansatz of the general perturbation is then given by

pendonly on the width to thickness aspect ratio of the ele-the sum of the exchange energy density and the magneto-
mentrand are given by static energy density. The true energy density of an element

is given by the minimum oE,,. Since for a given element

+CE' AprcosZ ¢) + CLA Oesin( ¢)

+CPA ¢ sin2( )+ CP' A p| sin2( )

¢:_f dxf alr N (x.y.2) E. is only a function of the six perturbation strengths
F —al2 —a/2r a? 12 Ade , APl A0, Adp , A ,A6, and the mean in-plane
magnetization direction(¢), the minimization can be
f al2r [ 64)( }
dxf j TN X,Y,Z
—al2 al2 —alr 12( Y ) (a) 0.5 T
0.4 1
o r al2 al2 al2r 4r
CF:§ dxf dyf dz[ v N23xyz)] 0.3
—al2 —al2 —al2r UU-
(13 0.2
r al2 al2 al2r 2
Ct== de dy dz[—z(xz—yz) 0.1}
as J-an -a2 —a/2r a 0 .
0 5 10 15
X[N2oAX,y,z) = N11(X,yaz)]] ) Aspect ratio
(b) 05 ‘ ;
r a2 a2 al2r 8 04l C¢ i
CE”=—gf de dyf dZ[—4(x4—y“) ol
a —al2 —a2 —al2r a 03I C‘z A
—
© 02l
X[N2ax,y,2) =N1s(X,y,2) ]|, c?
0.1F L
al2r 0 . !
sz— dxf dyf 2(x+y)zN23(xyz) 0 5 10 15
—al2 —al2 —al2r Aspect ratio

Concern might be expressed over whether some of these FIG. 4. A numerical evaluation of th€ factors as defined in
integrals converge because the off-diagonal demagnetizingg. (13) as a function of width to thickness aspect ratio,
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achieved by simple analytical methods. The derivativgtgf 0
with respect to each of the six perturbation strengths is cal-
culated analytically and set to zero. This yields six equations -0.005 |-
with three sets of two being coupled. They can thus easily be
solved to yield the minimizing values of the perturbation
strengths as -0.01
sa’ 0.015 ‘ -
A =—5er (9CE—T7CE')cos2 ), "o 5 10 15
Aspect ratio
2 2
' b b FIG. 5. The functionsRR, P, andQ as a function of width to
Ade 384A (3CE—5CE")cosA ), thickness aspect ratio, Inset is a close up in the vicinity of the
intersection ofP andQ which corresponds to the transition between
3M§a2 flower and leaf states.

A= A1+ 1)
X (CEsin( ) — C[sin{ ¢} +cog ¢)]),

2 ) (14

Ap = (10CP—7CP")sin2( ¢),

512A

2 2

- > $_gcd’
1024A (6CP—5CP")sin( ),

A=

3MZa? 0 0.ai
Angm[ZCL(sm( ¢)+cog ¢)) — Cesi p) ].

=2C{, which causes thép) dependent parts d® to cancel.
We shall return to the physical significance of this later.

The final minimization of Eq(16) with respect to(¢) is
now easily achieved, and yields

o _ M4 2
<¢>:Za Etot:T(Q+R) for P>Q,
D 19

Thus, within the framework of small perturbations, our ana-
lytical theory predicts that depending on the element aspect

Notice that at this stage we have not yet minimized withratio r the ground-state magnetization distribution is either
respect to(¢); this will be done later. Substituting these entirely flowerlike P<Q) or is entirely leaflike P>Q).

minimizing values back into the original energy density an-There should not be any mixed.e.,

satz gives the energy density minimum for a gien as

4,2

Aa {P cog2(¢)+Q sirf2(¢)+R}, (15

Eior=

which can be rewritten as

g
sa

Eio=—x {(Q P)siP2(¢)+P+R}, (16

where the variable®,Q,R depend only on the aspect ratio

of the element and are defined as

( 27C¢ +42c¢ct —35c:<” ),

pseudoflower or
pseudoledf states. The variation of the energy surface be-
tween the two states is of the form €), which describes
a fourfold symmetry anisotropy. We name this a configura-
tional anisotropy, for it comes from the different magnetiza-
tion configurationd(i.e., flower or leaf which occur as the
mean in-plane magnetization direction is rotated in the plane.
The critical aspect ratio at whicR=Q and therefore at
which the element ground state changes between the flower
and leaf can be read off from the inset of Fig. 5 as 2.733
+0.001 which is in excellent agreement with the value of
2.7+0.05 obtained during our numerical simulations.

As well as using the analytic formulas to predict the
flower-leaf phase boundary gradient, we can also calculate
the magnitude of the configurational anisotropy. We define

~ 768 the in-plane fourfold symmetric configurational anisotropy
constantk $°"9 sych that the dependence of energy density
5 , )2 on the mean magnetization direction is described by
Q= 55zg(—60C{ +84CCl —35C! "),  (17)
2048 config
. E= Sirf2( ¢). (19
R= 16(1+r?) CF ' Comparison with Eq(16) yields immediately the result
P, Q, andR are plotted in Fig. 5 as a function of the ele- 4M4

2
— (Q—P), (20

ment aspect ratio. Notice that in E(L6) the part of Eyy Kionﬂg
which is proportional tdR and therefore expresses the energy

contribution of out-of-plane perturbation does not dependr in terms of an anisotropy field
upon{¢). This is because the symmetry of the out-of-plane config 3.2
parts of the two basis perturbations is such that they are not 2K3 _ 8Msa
orthogonal. Consequently, one can simply show tB4t Ms A

(Q—P). (21)
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FIG. 7. A comparison between the numerical simulatisalid
points indicate flower, open points indicate leahd the analytical
gjodel(lines) for line sections through a 2010X5 nm element(a)
is the in-plane angular perturbation at is the out-of-plane an-
gular perturbation.

FIG. 6. (a) The functionQ-P as a function of width to thickness
aspect ratior; (b) the functionr?(Q-P) againstr, which has the
same form as the dependence of configurational anisotropy on el
ment size at constant thickness.

In Fig. 6 we have plotte®-P and alsar?(Q-P). The latter, There are two other points of agreement between the ana-
while still being dimensionless, shows the form of the varia-lytical model and the numerical simulations. The first is the
tion of anisotropy field with element size at constant thick-analytical prediction of 2.7380.001 as the critical aspect

ness. One sees that the anisotropy field increases almost lifatio compared with the numerically found value of 2.7
early with element size. +0.05. The second is the analytical prediction of a discon-

tinuous transition between the leaf and the flower states with-
out any metastability. This last point agrees with the
DISCUSSION numerical experiments for element thicknesses less than 12

nm.
A. Comparison of the analytical model with the numerical

simulations

It is important to establish that our analytical model re-
produces the results obtained by numerical simulations. To
this end, we have used the numerical code to find the equi-
librium magnetization distribution of a magnetic element
with a=10 nm andr=2. We then foundA ¢(x,y) and
A 6(x,y,z)as predicted by the analytical model, and plotted
in Fig. 7 a comparison of numerically and analytically deter-
mined line sections. One sees that the agreement is very
good. This shows that the functions which we chose in Egs.
(5) and (6) to represent the flower and leaf perturbations
were suitable.

We then used the numerical code to calculate the total
magnetic energy of elements of a variety of sizes and thick-
nesses. Figure 8 compares the numerical calculation with the
analytical values predicted by E¢l4). The agreement is
very good for most of the thickness range shown. At the
upper end of the size range the uncertainty in the numerical
values increases because of the need to reduce the meshing
density in order to limit the total number of cells. One would

also expect, however, the analytical model to slightly over- G, 8. A comparison between the equilibrium energy densities
estimate the magnitude of the energy at higher sizes for regaiculated by numerical simulatiofopen points indicate 5 nm
sons which will be discussed in the following section. De-thick, solid points indicate 10 nm thitkand the analytical model
spite these uncertainties, the agreement between the twmnes) for different size elementsa) is for the flower state anth)
models is good enough even at larger sizes to be useful. is for the leaf state.

a (nm)
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B. Limits of validity of the analytical model 1 —

There are two approximations which have been made in
the analytical model. The first is that the equilibrium pertur-
bation can be described by the functioAsp(x,y) and
A6(x,y,z) given by Egs.5) and(6). In reality, it is likely
that the precisely required function would also involve

higher-order polynomial terms. The second approximation i o =05
has already been mentioned and is the fact that the demag- - -1
netizing field due to thenperturbedmagnetization is taken 0.01 )
as the internal field, whereas a precise calculation would use 1 10
the demagnetizing field due to tiperturbedmagnetization. Aspect ratio

In failing to take this into account, one is ignoring the mag-

netostatic interaction between volume charges within the FIG. 9. The principal in-plane perturbatiod factors plotted

perturbed distribution. against wiqlth t(_) thickness asp_ect ratio on a logarithmic scale. The
The first approximation introduces the same proportionaf@shed guide lines show gradients-ef and—0.5.

error for any size elemerat fixed aspect ratjo This can be

seen by the following. Suppose that there is a general pertupnergy surface between the basis states does develop a term

bation A ¢(x/a,y/a,z/a)for which an element of sida, is  in Si4(¢) for larger elements. Such a teiify as it is, of the

in equilibrium, but which is not necessarily of the simple correct sign would indeed break the abruptness of the tran-

form of Eq. (5). At any point in the element, the exchange Sition from (¢)=45° to (¢)=90°. It is not unreasonable to

energy density is proportional ttgradh ¢(x/a,y/a,z/a)|? _suppose_that this _hlghe_r harmonic appears becaus_e of the

and the magnetostatic energy density is proportional t(5ntrodgct|on of nonlinearity dL_Je to_the second approximation

A¢(x/a,yla,zla) (in the limit of assumption 2 holding breaking down, and as such is a finite-size effect. A corollary

Consider now another element of the same aspect ratio, b@f this is that the real transition becomes rigorously abrupt,
of side a, and consider the perturbation with the in-plane susceptibility diverging, in the limit of the
(a,/a,)?A d(x/a,y/a,zla) applied to it. The local magneto- element size tendm_g to zero or altern_atlvely_the exchan_ge
static energy density, being scale invariant, will be increaseéﬁngFh ter_1d|ng to infinity. Further Work_l_s required o see i
by a factor @,/a,)2. Because grad is a linear operator, thethis is str_lctly a first-order phase transition according to the
local exchange energy density will also be increased by s&normalization group.
factor (a,/a;)?. Thus, @,/a;)?A¢(x/a,y/a,z/a) is the
equilibrium distribution for the new element. In other words, C. Physical interpretation
as an element scales, the oversiiapeof its perturbation . o ) )
does not change, but only its magnitude. Thus if, say 10%, of 1h€ major motivation for producing an analytical model
the energy of an equilibrium distribution is due to a pertur-Was t0 gain insight into the physical processes driving the
bation which is distributed according #8y5, then that pro- flower to leaf transition. One surprising result to come out of
portion will not change as the element size is reduced. ~ the model is the fact that the transition mt driven by
The second approximation becomes increasingly accuraf@t-0f-plane perturbations. Equatiobe) shows that there is
as the element size is reduced. Each volume charge is G contribution to the total magnetic energy from the out-of-
magnitude proportional td¢ and so the interaction energy Plane perturbatiorvia the termR) at least for small aspect
between volume charges is proportional Ae2. Thus the ratios, but that it d.oes not d_epend up@h), i.e., which of the
relative error is proportional td¢. Now we know from the ~flower or leaf basis states is adopted.
previous paragraph thate scales witha? and so the relative Itis the form of theC factor curves which gives the clue
error scales witra?, vanishing for small elements. We esti- {© the physical driving force. It is possible to show that in
mate that an overall precision of 10% can be achieved in th@"Y €quilibrium state the magnetostatic energy density is di-

analytical model as long as all of the perturbation strengttf€Ctly proportional to the total energy density. Thus, the
parameters are less than approximation @035 rad. magnetostatic energy density of the leaf state must exceed

One of the curious differences between the analytical andn Magnitudg that of the flower state for larger aspect ratios.
numerical work is that the numerical simulations show anNoW the definition of theC factors given in Eq(12) is such
abrupt transition at the critical aspect ratio for element thick-nat they are directly proportional to the magnetostatic en-
nesses less than 12 nm and a smooth transition for thickrgy density of the perturbation. We have plot@fiandC{"
nesses greater than 12 nm. By contrast, the analytical mod@gainst aspect ratio in log-log form in Fig. 9. The guide
only contains absolute length scales as a final scaling factogiradient lines show that{ falls of approximately with 1/
meaning that qualitative behavior can only depend upon that largerr whereasC{ falls off with a lower power law,
aspect ratio and not the absolute size. Inclusion of highereloser to 1{r. It is these different dependences which are at
order perturbations as described above would not changhe heart of the flower to leaf transition. We can explain the
this. Correction of the second approximation could, howeverdependences by considering the part of the sample which
introduce a change in qualitative behavior for different ele-experiences the greatest perturbation and hence which con-
ment sizes. More specifically, in order to predict a graduatributes most to the overall magnetostatic energy density. For
transition, additional harmonic terms would be required inthe flower, it is close to the corners, whereas for the leaf it is
Eq. (16). Numerical results not shown here show that theclose to the middle of the edges. Now for the flower, the



PRB 58 MICROMAGNETICS OF THE SINGLE-DOMAIN STAE... 9225

magnetostatic energy of the perturbation depends wbbn CONCLUSION
diagonal demagnetizing tensor terms, and so the edge

charges nearest to any given point inside the element do not W.e have studied thgoietlcally thg energy sgrface in the
contribute. Consequently, most of the edge charges which aycinity of the two equilibrium near single domain states of
anoscale square-planar magnetic eleménegnetic nano-

contribute to the magnetostatic energy density at a point ar& X X , X
far away from that point, i.e., in the far field and so the structures We find from numerical simulations that meta-
dependence on aspect ratio is simply.1Conversely, the Stability is apsent and at any finite temperature the system
magnetostatic energy of the leaf perturbation depends updiust adopt its ground state. _
diagonal demagnetizing tensor terms, and so most of the We have then modeled the flower and leaf states analyti-
magnetostatic energy density at a point is due to the neareS@lly as small perturbations from the uniformly magnetized
edge charges. These are mostly in the near field, and so tiféate. We find that the energy surface between the states can
dependence on aspect ratio is of lower power thanWe  be described by a fourfold symmetric configurational anisot-
can thus explain why there is a change over from flower tgopY field which changes sign at a critical width to thickness

leaf ground state as the aspect ratio is increased. aspect ratio. We have derived an equation predicting the
strength of the configurational anisotropy as a function of

element size and thickness, obtaining excellent agreement
with the numerical simulations for the value of the critical
One of the most striking findings of this work is the aspect ratio. We find that the configurational anisotropy field
strength of the configurational anisotropy. Although due to aan be several hundred Oe’s in strength, which will dominate
small perturbation from the uniform state, the configurationakhe spin-reversal process and which may have other techno-
anisotropy field is very strong. Substituting the values for gogical implications. The analytical model allows important
40 nmx40 nmx10 nm Permalloy elemertwhich is the size  physical quantities of the nanostructures such as energy and
future magnetoelectronic devices might ugsto Eq. (21)  anisotropy to be rapidly calculated without performing long
gives an anisotropy field of 107 Oe, which is to be comparetyumerical simulations. More importantly, however, it gives
with the uniaxial aniSOtrOpy field of field cooled Perma”oy good |nS|ght into the physicai Origin of the Configurationai
of the order of 4 O&° Elements of the same thickness but of anisotropy. The leaf energy density falls off less rapidly with
Iarger lateral size, which will most probably find technologi- increasing aspect ratio than the flower energy density be-
cal application first, will have an even stronger anisotropycause the former involves mainly near field demagnetizing
field, although the analytical model is not quantitatively valid terms whereas the latter involves mainly far field terms. Out-
for these large perturbations. There are two consequences gf-plane perturbations are found to be unimportant in select-
this. Firstly, the remanent magnetization will point along thejng between the two states. The analytical model itself pre-
diagonals, reducing say the giant magnetoresistance respongets a discontinuous transition to occur at the critical aspect
by one half. Secondly, and perhaps most significantly, theatio. The approximations used by the model are such that

element switching field will be much greater than it other-this will become rigorously valid in the limit of the infinite
wise would have been. Higher write currents will thereforeexchange length or zero element size.

be needed, leading to increased power dissipation.
Conversely, our work shows that square elements which
are 2.7 times wider than they are thick should be isotropic ACKNOWLEDGMENTS
(in-plane. They should thus have an extremely high suscep-
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