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Full potential ab initio calculations of spiral spin density waves in fcc Fe
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~Received 28 April 1998; revised manuscript received 3 June 1998!

All ab initio calculations of spiral spin density waves heretofore have used the atomic sphere approximation
~ASA! in which not only is the potential assumed spherical but also the direction of magnetization is taken
constant within each Wigner-Seitz sphere. We have performed full potential local density approximation
calculations forg-Fe spiral spin density waves with wave vectorq5(2p/a)(0,0,a) andq5(2p/a)(g,0,1),
finding the ground state ata'0.55. The results differ quantitatively but not qualitatively from those of ASA
calculations. However, interesting results are obtained for the azimuthal angle of the magnetization
w(r )5q•r1ŵ(r ), whereei ŵ(r ) is a function with the lattice periodicity which is calculated self-consistently.
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I. INTRODUCTION

Very small clusters of fcc Fe~g-Fe! can be stabilized as
precipitates in a Cu matrix. Larger clusters of fcc Fe97Co3

were also stabilized and in both cases neutron scatte
revealed1 that the low-temperature ground state is a sp
spin density wave with wave vectorq5(2p/a)(0.1,0,1).
Two different groups2,3 calculated the total energy for a larg
number ofq’s using the local spin density approximatio
~LSDA! for exchange and correlation and found over a la
range of lattice constants that the ground state is a spiral
density wave withq5(2p/a)(0,0,0.6). When the genera
ized gradient approximation4 ~GGA! for exchange and cor
relation was used,3 q5(2p/a)(0,0,0.6) remained a loca
minimum butq5(2p/a)(0.5,0,1) became the ground sta
In no case was agreement with experiment obtained.
such calculations have been performed using the ato
sphere approximation~ASA! in which a spherical average o
the crystal potential is used within the entire Wigner-Se
~WS! sphere; moreover, the direction of the spin polarizat
vector is held fixed within the WS sphere. Therefo
it seemed worthwhile to attempt a full potential calculatio
not only to determine whether the disagreement betw
theory and experiment is a consequence of the ASA
an inherent failure of the exchange-correlation approxim
tions but also to determine whether the direction of mag
tization changes at a fairly constant rate between atom
rather abruptly in the region midway between a pair
atoms.

Because the full potential calculations are computati
ally time consuming, we restrict our calculations in this p
per toq’s of the form (2p/a)(0,0,a) and (2p/a)(g,0,1). In
the following section we describe our computational meth
PRB 580163-1829/98/58~14!/9207~5!/$15.00
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and the last section contains the results of our calculati
along with a discussion thereof.

II. COMPUTATIONAL METHOD

We start with a 20320320 mesh in real space, samplin
the fcc unit cell at 8000 points. We will obtain spinor eige
functions

S c↑nk~r j !
c↓nk~r j !

D
at 4000k points in the Brillouin zone~BZ! on a 20320
320 simple cubic mesh,5 wheren is a band index. A lattice
translationRj followed by an operation which unwinds th
spiral spin density wave leaves the crystal invariant. Th
compound operations form an Abelian group, isomorp
with the group of ordinary translations. Therefore Bloch
theorem holds for these operators, allowing us to sam
the ordinary BZ in spite of the fact that the spiral sp
density wave is not commensurate with the crys
periodicity.6,7

Then averaging over the BZ and summing over bands
evaluate the spin density matrix

rab~r j !5
1

4000 (
k51

4000

(
n

occ

cank~r j !cbnk* ~r j ! ~1!

at all 8000r j in the unit cell. As in Refs. 2, 3, and 8, w
diagonalize the spin density matrices obtaining the spi1

2

rotation matrix
u~r j !5S exp@ iw~r j !/2#cos@u~r j !/2# exp@2 iw~r j !/2#sin@u~r j !/2#

2exp@ iw~r j !/2#sin@u~r j !/2# exp@2 iw~r j !/2#cos@u~r j !/2#
D , ~2!
9207 © 1998 The American Physical Society
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where the polar angles are given by

cosw~r j !5Re r↑↓~r j !/ur↑↓~r j !u, ~3a!

sin w~r j !52Im r↑↓~r j !/ur↑↓~r j !u, ~3b!

tan u~r j !52ur↑↓~r j !u/@r↑↑~r j !2r↓↓~r j !#. ~3c!

In the present case where the magnetization spirals aroun
thexy plane,u(r )5p/2 so that the sine and cosine in Eq.~2!
can be replaced by 1/& but w(r j ) is not merelyq•Rj as in
Refs. 2, 3, 6, and 8 but rather

w~r j !5q•r j1ŵ~r j !, ~4!

whereŵ(r j ), which must be evaluated self-consistently, is
function such thatei ŵ(r j ) has the crystal periodicity.

Note that with z as the quantization direction and th
magnetization lying in thexy plane, if a given state is occu
pied, so is its time reversed partner. Then it is trivial to sh
that r↑↑(r j )5r↓↓(r j ), consistent withu(r j )5p/2 in Eq.
~3c!.

The diagonalizedrab(r j ) takes the form

rD~r j !5S r↑↑~r j !1ur↑↓~r j !u 0

0 r↑↑~r j !2ur↑↓~r j !u
D , ~5!

from which, using the Ceperley-Adler9 form of LSDA
exchange-correlation potential for the full valence plus c
charge density, we obtain

vD~r j !5S v̄~r j !1Dv~r j ! 0

0 v̄~r j !2Dv~r j !
D . ~6!

We then rotatevD(r j ) back to the crystal coordinate syste
usingu†(r j ), to obtain10

v~r j !5S v̄~r j ! Dv~r j !e
2 iw~r j !

Dv~r j !e
iw~r j ! v̄~r j !

D . ~7!

Then averaging this output potential with the input poten
from which our original set of spinor wave functions w
obtained, we create a new input Hamiltonian and iterate
self-consistency, just as in ordinary energy band calculatio
The calculations are considerably more time consuming t
ordinary band calculations for several reasons among w
are that both components of the spinor must be expande
a basis set which doubles the size of the secular equatio
obtain accurate values for the magnetization the calcula
must be converged to 0.05 meV in the total energy; the
lowed symmetry operations must leaveq unchanged, which
increases the number ofk points for which the calculation
must be performed.11

We used Vanderbilt’s12 ultrasoft pseudopotential, expand
ing in all plane waves with (k1G)2,40 Ry. The plane
wave charge density contains fourier components up
2Gmax which fits with some room to spare in the 20320
320 reciprocal space mesh conjugate to our real space m
We used ones, one p, and twod projectors. Because th
plane wave charge density is not norm conserving, the
lence spin density matrix must be reconstructed on the a
in the mth unit cell as follows:12
in

e

l

to
s.
n
h
in
to
n
l-

to

sh.

a-
m

r̂ab
m ~r !5rab~r !1(

s,t
rst

ab~Rm!Qst
ab~r2Rm!, ~8!

whererab(r ) is given in Eq.~1!,

rst
ab~Rm!5

1

4000 (
k51

4000

(
n

occ

^bs~r2Rm!ucank~r !&

3^cbnk~r !ub t~r2Rm!&, ~9!

Qst~r !5cs* ~r !c t~r !2cs* ~r !w t~r !, ~10!

cs(r ) is an atomic eigenfunction,ws(r ) is the corresponding
atomic pseudofunction,cank(r ) is a spin component of a
crystal pseudofunction, and theubs& ’s are projectors for the
nonlocal part of the pseudopotential. We construct o
pseudopotential from a spin unpolarized atom soQst(r ) is
the same for both spin components as are theubs& ’s. Note
that rst

↑↓ contains a phase factore2 iq•Rm due to the fact that
the individual terms in Eq. ~9! can be written
^bs(r )uc↑nk(r1Rm)&^c↓nk(r1Rm)ub t(r )& and that, because
of the form of the potential@Eq. ~7!#, c↑(c↓) is a Bloch
function with a phase factorei (k2q/2)•r(ei (k1q/2)•r). Simi-
larly, r i j

↓↑ contains a factoreiq•Rm. The integrals in Eq.~9!
were all calculated in reciprocal space whereas~unlike Ref.
13! the monopole components of the Coulomb potential a
ing from theQst(r ) contributions to Eq.~8!, as well as other
Qst integrals, were calculated on the atomic mesh. T
higher Coulomb multipole components were smoothened
in Ref. 13 and evaluated on a 36336336 real space mesh
The exchange-correlation potential~and contribution to the
total energy! were obtained by evaluating the total~including
core! charge density on the 36336336 mesh, evaluating the
potential ~or energy density! on the mesh, fitting in the
atomic core region with a spherical function which was Fo
rier transformed on the atomic mesh while the remainder w
fast fourier transformed. All calculations were performed
the lattice constant of the Cu matrix,14 6.822 Bohrs. The
secular equations were solved using our conjugate grad
method.15

III. RESULTS AND CONCLUSIONS

In Fig. 1 the energy in mRy below the paramagnetic st
is shown alongq5(2p/a)(0,0,a) and q5(2p/a)(g,0,1).
Noteq50 is the ferromagnetic state of which there are tw
Our results are quite similar to the ASA calculations2,3

whose ground state hada'0.6 compared to oura'0.55.
Although the LSDA is satisfactory for describing ferroma
netic and antiferromagnetic systems we must conclude th
is incapable of yielding the correct spiral spin density wa
ground state. The GGA which is better in many respects t
the LSDA for ferromagnets and antiferromagnets is not
rectly applicable to spiral spin density waves~it was easily
applied in the ASA because the direction of magnetizat
was held fixed within the WS sphere!; however, it could be
applied to the diagonalized spin components of Eq.~5!, ig-
noring the fact that the quantization direction is a function
r j . Difficulties associated with the fact thatr↑↓(r j ) reverses
sign in the interstitial regions are easily overcome. We s
pect that if the GGA were applied to Eq.~5!, the results
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would differ from the ASA results by more than they do wi
the LSDA because in the ASA there are no angular gradie
of the charge density. There is, however, no reason to ex
the GGA to yield agreement with experiment. The succes
the LSDA and GGA for ferromagnets and their failure f
spiral spin density waves could be related to the fact t
they become exact for ferromagnetic jellium but not for j
lium with a spiral spin density wave. Inclusion of the spi
orbit interaction we believe will have only a small effect o
these results but even if it is larger than we expect, ther
no a priori reason why it should minimize the energy at t
experimental value ofq. On the other hand, there should b
a term in the exchange-correlation energy density functio
proportional to u¹wu2. We have constructed such a ter
which we will presently show vanishes forq5(2p/a)
3(0,0,1). This term would then favor the energy minimu
occurring at or near thatq.

Figure 2 contains plots of the magnetization per unit c
evaluated in two ways. The solid line represents the ve
magnetization integrated over the Wigner-Seitz cell wher
the dashed line is the integrated magnitude of the magn
zation. Note that these differ even for the ferromag
(q50) because the minority spins electrons dominate in the
interstitial regions and very close to the atomic nuclei.16 For
reasons to become clear presently, we note that this di
ence vanishes at theX point @q5(2p/a)(0,0,1)#. Our mag-
netization curves differ markedly from the ASA curves2,3 for
q,0.3(2p/a) and are similar to them for largerq. This is a
consequence of the ASA high field ferromagnetic state be
the same as ours but the ASA low field state having ab
0.8mB less magnetization than ours. Other AS
calculations17 find that the low field state only exists over a
extremely narrow range of lattice constants~between about
6.84 to 6.87 Bohr!. Being so sensitive to the lattice consta
it is likely that its magnitude is sensitive to whatever a

FIG. 1. Energy of the spiral spin density wave for wave vect
along theGX andXW lines relative to that of nonmagnetic fcc Fe
the same lattice constant. The line denoted by plus symbols is
high spin state.
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proximations are made in its calculation. We followed t
high field magnetization curve forq5(2p/a)(0,0,a) from
a50.15 in steps of 0.01 toa50.19 after which it disap-
peared, while dropping toward but still well above the lo
field curve. The ASA calculations found that the low fie

s

he

FIG. 2. Integral of the magnitude of the magnetic moment o
the Wigner-Seitz cell~dashed line! and of the vector magnetic mo
ment ~solid line! for spiral spin density waves forq along theGX
andXW lines.

FIG. 3. Phase of the spiral spin density wavew~r ! for q
5(2p/a)(0,0,a) and r5b(0,6a/2,a/2) or b(6a/2,0,a/2).
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9210 PRB 58D. M. BYLANDER AND LEONARD KLEINMAN
curve disappeared at about the same point while rising
ward but still well below the high field curve.

Figure 3 contains plots18 of the phasew~r ! for q
5(2p/a)(0,0,a) for various values ofa and r5b(0,
6a/2,a/2) or r5b(6a/2,0,a/2). In each case the phas
shift between nearest neighbors atb50 andb51 is either
ap or ap22p. Depending on the sign of Rer↑↓(r ), the
phase takes the values 0 orp whenever Imr↑↓(r )50. Note
the very sharp peak inw~r ! near b50 and b51 for a
50.2. This is a remnant of the fact that in the ferromag
(q50) the magnetization reverses sign before the first n
of the 4s functions and is a consequence of Rer↑↓(r ) becom-
ing extremely small~but not changing sign! at the peak
maximum. This peak exists for alla excepta51, although it
is much smaller for largera. We calculatedw~r ! for each of
the q’s indicated in Figs. 1 and 2 and found that for 0.5<a
<0.95 it appears as ifq were (2p/a)(0,0,a22). The22,
of course, arises from a (2p/a)(0,0,22) reciprocal lattice
vector in ŵ(r ), the part ofw~r ! that is periodic modulo 2p.
Becauseq is only defined modulo a reciprocal lattice vecto
the q5(2p/a)(0,0,0.8) andq5(2p/a)(0,0,21.2) states
must be degenerate and have identicalw~r !. This is verified
by comparing thea50.8 anda51.2 phase shifts which dif-
fer only by a minus sign in Fig. 3. The only unexpected p
of this result is that they have a phase shift of 1.2p rather
than 0.8p between nearest neighbors. Comparing thea
50.2 and 0.4 phases one sees that the dip inw~r ! before its
rapid rise becomes more pronounced with increasinga. Thus
for larger a the larger but smoother phase shift of (a
22)p between neighbors is favored. It seems reasona
that to minimize the energy the phase should be cons
where the spin density~which is equal to 2ur↑↓(r )u! is large.
This is not possible in general without thec↑ andc↓* from
which r↑↓ is generated having very large kinetic energi
Thus the phases in Fig. 3 are fairly constant where the s
density is largest but are unable to maintain their cons
value to the point where the spin density becomes negligi

One may ask if the change in total phase shift betw
atoms fromap to (a22)p occurs exactly ata50.5 or
someplace betweena50.5 anda50.4, the closest smalle
value ofa for which we have performed the calculation. W
can see no reason why it should occur exactly ata50.5,
however, the phase shift between atoms returns toap at a
51.0 exactly. This follows from the fact thatw~r ! at a51
2d equals2w~r ! at a511d and the fact that aw which is
constant except for a discontinuous jump ofp is identical to
one where the jump is2p. Whenq5(2p/a)(0,0,1) or, for
that matter, wheneverq5 1

2 G whereG is a reciprocal lattice
vector, the phase may be a step function with the step oc
ring atRm/2. All that is required is thatr↑↓(r ) have the form

f (r )(11eiG•r)e2 iq•r52 f (r )cos 1
2G•r , where f (r ) is a real

positive function. Then Imr↑↓(r )50 sow~r ! must be 0 orp
and Rer↑↓(r ) changes sign atr5Rm/2, causingw~r ! to jump
discontinuously from 0 top at that point. Because the mag
netization does not spiral, but merely reverses sign in
case, theq5G/2 spiral spin density wave is an antiferroma
netic state. This explains why the two magnetization cur
in Fig. 2 become equal at theX point. It also explains why
the previously discussedu¹wu2 density functional term van
ishes at X. This term is proportional to ur↑↓¹r↓↑
o-
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e
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le
nt

.
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2r↓↑¹r↑↓u2 which atX vanishes everywhere and, in partic
lar, in the plane where¹w is infinite. For r5b(6a/2,
6a/2,0), q•r50 but alsoŵ(r ) is constant~for anya! so the
magnetization direction does not even wobble betwe
neighbors in anxy plane.

We have also performed a standard calculation of an
tiferromagnetic state starting from a superposition of atom
spin densities alternating in direction on alternate~0,0,1!
atomic planes. This converges to a state which is unrelate
the a51 antiferromagnetic state. It lies above it in energ
3.81 mRy below the nonmagnetic state. Its spin density
drastically different. If we call the atom at~0,0,0! a spin up
atom, then (0,0,a/2) is an octahedral point, equidistant fro
four spin down atoms in the (0,0,a/2) plane at
(6a/2,0,a/2) and (0,6a/2,a/2) and two spin up atoms a
~0,0,0! and (0,0,a). In the a51 antiferromagnet the spin
density is down at (0,0,a/2) but in the standard antiferromag
net it is up, i.e., it is opposite to the spin of a majority of i
nearest neighbors. This is less surprising when one notes
at the octahedral point in the ferromagnet the minority sp
dominate.

We have also examined thew~r ! for q5(2p/a)(g,0,1)
and plot it in Fig. 4 forg50.2 along inequivalent neares
neighbor directions. Forr5b(0,6a/2,6a/2),w(r ) is a step
function of heightp, i.e., thex50 plane is antiferromag-
netic. For r5b(a/2,6a/2,0) the total phase shift betwee
nearest neighbors isgp. For r5b(a/2,0,a/2) the phase shift
is (11g)p between neighbors and forr5b(a/2,0,2a/2) it
is (g21)p12p5(11g)p. Thus thex5a/2 plane is anti-
ferromagnetic but with the spins rotated bygp and
(11g)p relative to the atom at~0,0,0!. At W, however, the
phase shift between nearest neighbors for b
r5b(a/2,0,a/2) andr5b(a/2,0,2a/2) is 20.5p rather than
the 1.5p one would have predicted from theg,0.5 results.

FIG. 4. Phase of the spiral spin density wavew~r ! for
q5(2p/a) ~0.2,0,1! and for r5b(0,6a/2,6a/2) ~long dashes!, r
5b(a/2,6a/2,0) ~short dashes!, and r5b(a/2,0,6a/2) ~solid
line!.
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Thus forq5(2p/a)(g,0,1) the crystal is best described
being antiferromagnetic inyzplanes of atoms with the quan
tization axis rotating throughgp between atomic planes
When g50 this is better described as ferromagneticxy
planes of atoms with the magnetization reversing sign m
way between planes.

In conclusion, we have calculated the properties of
iron in its spiral spin density wave ground state without a
potential or magnetization direction approximations. Oth
than differences in the low spin ferromagnetic state wh
extend out toq50.3(2p/a) our magnetization vs wave vec
tor curves are qualitatively the same as those obtained f
ASA calculations whereas our energy vs wave vector cur
are qualitatively the same for allq. Since these fail to yield
the experimental ground stateq, we have concluded that cur
rent exchange-correlation approximations are inadequ
We note that the LSDA only distinguishes between up a
down spins at a point in space and is completely oblivious
the fact that the local quantization direction is a function
position; furthermore there does not appear to be a uniq
correct way to apply the GGA to this case. Our study of
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phase shifts revealed three facts that had not previously b
appreciated.~1! When the phase shift between neighbori
atoms isp, the entire phase shift occurs discontinuous
midway between atoms where the spin density vanishes,
the q5 1

2 G spiral spin density waveis an antiferromagnetic
state although not the usual one.~2! The phase is a highly
nonmonotonic function fora,0.5.~3! Although the smallest
possible spin rotation between neighboring atoms isap with
a,1, the system chooses the larger rotation of (a22)p as
its ground state for 0.5<a,1. Since the spin density polar
ization is a continuous function~except fora51!, these two
rotations are not equivalent.
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