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Full potential ab initio calculations of spiral spin density waves in fcc Fe
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All ab initio calculations of spiral spin density waves heretofore have used the atomic sphere approximation
(ASA) in which not only is the potential assumed spherical but also the direction of magnetization is taken
constant within each Wigner-Seitz sphere. We have performed full potential local density approximation
calculations fory-Fe spiral spin density waves with wave vectpt (27/a)(0,0¢) andg=(2#/a)(y,0,1),
finding the ground state at~0.55. The results differ quantitatively but not qualitatively from those of ASA
calculations. However, interesting results are obtained for the azimuthal angle of the magnetization
o(r)=qg-r+o(r), wheree'®(" is a function with the lattice periodicity which is calculated self-consistently.
[S0163-182608)04738-9

I. INTRODUCTION and the last section contains the results of our calculations

. | ith a di ion th f.
Very small clusters of fcc Fé€y-Fe) can be stabilized as along with & discussion thereo

precipitates in a Cu matrix. Larger clusters of fccyfamg Il. COMPUTATIONAL METHOD

were also stabilized and in both cases neutron scattering

revealed that the low-temperature ground state is a spiral We start with a 2& 20X 20 mesh in real space, sampling
spin density wave with wave vectar=(2/a)(0.1,0,1). the f(_:c unit cell at 8000 points. We will obtain spinor eigen-
Two different group& calculated the total energy for a large functions

number ofqg’s using the local spin density approximation

(LSDA) for exchange and correlation and found over a large Prnk(r])

range of lattice constants that the ground state is a spiral spin ( ,/,lnk(rj))

density wave withg=(27/a)(0,0,0.6). When the general-
ized gradient approximati8r(GGA) for exchange and cor-
relation was used,q=(27/a)(0,0,0.6) remained a local

minimum butg=(27/a)(0.5,0,1) became the ground state. . . : .
In no case was agreement with experiment obtained. AﬂranslatlonR]- followed by an operation which unwinds the

such calculations have been performed using the atomigPial spin density wave leaves the crystal invariant. These
sphere approximatiofASA) in which a spherical average of co_r;r:pt;und operafuonj form an ,lAb.ehan _IQLOUp]; |sor§|orphr]|c
the crystal potential is used within the entire Wigner-Seitz";’]It the ?ﬁgp fo orh inary trans anonTI. nerefore bloc SI

(WS) sphere; moreover, the direction of the spin polarizationt eoreém holds Tor t ese operators, allowing us t_o sample
vector is held fixed within the WS sphere. Thereforethe Qrdmary BZ_ in spite of the fact that _the spiral spin
it seemed worthwhile to attempt a full potential calculation, d€NSity wave is not commensurate with the crystal

not only to determine whether the disagreement betweeﬂer'Od'C'ty' . .
theory and experiment is a consequence of the ASA or Then averaging over the BZ and summing over bands we

an inherent failure of the exchange-correlation approxima-ev‘"‘lu"’Ite the spin density matrix

tions but also to determine whether the direction of magne-
tization changes at a fairly constant rate between atoms or
rather abruptly in the region midway between a pair of paﬁ(fj)kazl ; Dank (1)) Whrni(T}) 1)
atoms.

Because the full potential calculations are computation-
ally time consuming, we restrict our calculations in this pa-at all 8000r; in the unit cell. As in Refs. 2, 3, and 8, we
per toq’s of the form (27/a)(0,0«) and (27/a)(y,0,1). In  diagonalize the spin density matrices obtaining the spin
the following section we describe our computational methodotation matrix

at 4000k points in the Brillouin zoneg(BZ) on a 20x 20
X 20 simple cubic meshwheren is a band index. A lattice

4000 occ

B exdio(rj)/2]cog o(rj)/2]  exd —ie(r;)/2]sin o(r;)/2] .
u(rj) = —exfie(r))/2]sin 6(r;)/2] exd —ie(rj)/2]cod 6(r))/2])’ @
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where the polar angles are given by .
Pap()=Pap(n)+ 2 psf(RmQSE(r—Ry),  (8)

coso(rj)=Rep; (r)/|p;,(r)], (3a)

) wherep,4(r) is given in Eq.(1),

sin o(rj)=—1m p; (r)/|p; (r)], (3b)

4000 occ
tan 6(r)) =2|py (rl/py(r) —p ()] (39 Pet(Rm)= 25002, > (Bsr =Rl ani(1))
In the present case where the magnetization spirals around in
thexy plane,f(r) = 7/2 so that the sine and cosine in E&) X( k(1| B(r =Rm)), ©
can be replaced by 4Z but ¢(r;) is not merelyg-R; as in
Refs. 2, 3, 6, and 8 but rather ] Qst(1) =5 () (1) = g5 () (1), (10
o(r)=q-r;+ {o(rj), 4) ¥5(r) is an atomic eigenfunctiorgg(r) is the corresponding

atomic pseudofunctiony,,(r) is a spin component of a
where(r;), which must be evaluated self-consistently, is acrystal pseudofunction, and thgs)'s are projectors for the
function such thag'*(")) has the crystal periodicity. nonlocal part of the pseudopotential. We construct our

Note that withz as the quantization direction and the Pseudopotential from a spin unpolarized atom@gq(r) is
magnetization lying in thety plane, if a given state is occu- the same for both spin components as are|B¢'’s. Note
pied, so is its time reversed partner. Then it is trivial to showthat pl{ contains a phase facter "4 Rm due to the fact that
that PTT(rj):Pu(rj)’ consistent Witha(rj):q-;-/z in Eq. the individual terms in Eqg. (9) can be written
(30). (BN #r10k(r + Re) Y nk(r + Rep) | (1)) and that, because

The diagonalizeg,4(r;) takes the form of the form of the potentiaEq. (7)], #;(¢) is a Bloch

function with a phase factoe'(¢~92)(el(k+*a2)1) = Gjmj-
pii(rp)+lpg (ry)] 0 larly, pj; contains a factoe'®Rm. The integrals in Eq(9)
0 pr(r)=lpy ()’ ) were all calculated in reciprocal space wher@aslike Ref.

13) the monopole components of the Coulomb potential aris-
from which, using the Ceperley-Adferform of LSDA  ing from theQg(r) contributions to Eq(8), as well as other
exchange-correlation potential for the full valence plus coreQ,, integrals, were calculated on the atomic mesh. The
charge density, we obtain higher Coulomb multipole components were smoothened as

_ in Ref. 13 and evaluated on a 386X 36 real space mesh.
v(rj)+Av(r)) 0 The exchange-correlation potenti@nd contribution to the
vo(rj)= 0 v(r)—Av(r)) (6) total energy were obtained by evaluating the totalcluding
' ' core charge density on the 3636 36 mesh, evaluating the
We then rotate p(r;) back to the crystal coordinate system potential (or energy density on the mesh, fitting in the
usingu'(r;), to obtair® atomic core region with a spherical function which was Fou-
rier transformed on the atomic mesh while the remainder was
fast fourier transformed. All calculations were performed at
(7 the lattice constant of the Cu matfi,6.822 Bohrs. The
secular equations were solved using our conjugate gradient
Then averaging this output potential with the input potentialmethod®®
from which our original set of spinor wave functions was
obtained, we create a new input Hamiltonian and iterate to
self-consistency, just as in ordinary energy band calculations.
The calculations are considerably more time consuming than In Fig. 1 the energy in mRy below the paramagnetic state
ordinary band calculations for several reasons among whicls shown alongg=(2+/a)(0,0) and q=(2n/a)(y.,0,1).
are that both components of the spinor must be expanded iHote g=0 is the ferromagnetic state of which there are two.
a basis set which doubles the size of the secular equation; @ur results are quite similar to the ASA calculatidfhs
obtain accurate values for the magnetization the calculatiowhose ground state ha@l~0.6 compared to outr~0.55.
must be converged to 0.05 meV in the total energy; the alAlthough the LSDA is satisfactory for describing ferromag-
lowed symmetry operations must leagaunchanged, which netic and antiferromagnetic systems we must conclude that it
increases the number &f points for which the calculation is incapable of yielding the correct spiral spin density wave
must be performedf: ground state. The GGA which is better in many respects than
We used Vanderbilt*¢ ultrasoft pseudopotential, expand- the LSDA for ferromagnets and antiferromagnets is not di-
ing in all plane waves with K+ G)?<40Ry. The plane rectly applicable to spiral spin density wavéswas easily
wave charge density contains fourier components up tapplied in the ASA because the direction of magnetization
2Gax Which fits with some room to spare in the 2@0  was held fixed within the WS sphgréhowever, it could be
X 20 reciprocal space mesh conjugate to our real space meskpplied to the diagonalized spin components of &g, ig-
We used ones, one p, and twod projectors. Because the noring the fact that the quantization direction is a function of
plane wave charge density is not norm conserving, the var; . Difficulties associated with the fact that (r;) reverses
lence spin density matrix must be reconstructed on the atorsign in the interstitial regions are easily overcome. We sus-
in the mth unit cell as follows*? pect that if the GGA were applied to E¢5), the results

pD(rj):(

u(r)) Av(rj)ei"’(ri))
Av(rj)e'etry) v(r))

v(rj)=(

Ill. RESULTS AND CONCLUSIONS



PRB 58 FULL POTENTIAL ab initio CALCULATIONS OF . .. 9209

T T T T T T T T T T T T

T
3——--5]
\
\

g

N
IS

M{pe)

A E(mRy) &

1.6

FIG. 1. Energy of the spiral spin density wave for wave vectors FIG. 2. Integral of the magnitude of the magnetic moment over
along thel'X andXW lines relative to that of nonmagnetic fcc Fe at the Wigner-Seitz cel(dashed lingand of the vector magnetic mo-
the same lattice constant. The line denoted by plus symbols is theent(solid line) for spiral spin density waves far along thel'X
high spin state. and XW lines.

. . proximations are made in its calculation. We followed the
would differ from the ASA results by more than they do with hiah fiel ot fou=(2 f
the LSDA because in the ASA there are no angular gradientsIg teld magnetization curve fay=(2m/a)(0,0a) from

. . a=0.15 in steps of 0.01 tew=0.19 after which it disap-
o e charge derty. There = Mowever, 10 eason 1 ©XPeBbared, whie cropping toward but il ell above he low
the LSDA and GGA for ferromagnets and their failure for ield curve. the calculations found that the low fie
spiral spin density waves could be related to the fact that
they become exact for ferromagnetic jellium but not for jel- 11
lium with a spiral spin density wave. Inclusion of the spin-
orbit interaction we believe will have only a small effect on ¢
these results but even if it is larger than we expect, there is
no a priori reason why it should minimize the energy at the
experimental value off. On the other hand, there should be o4,
a term in the exchange-correlation energy density functional
proportional to|V¢|2. We have constructed such a term

-2

o=0.4 N/\ @

which we will presently show vanishes fay=(2/a) OF—— 0

X(0,0,1). This term would then favor the energy minimum

occurring at or near thai. A4 08 =08 Ly
Figure 2 contains plots of the magnetization per unit cell

evaluated in two ways. The solid line represents the vector? . L5

magnetization integrated over the Wigner-Seitz cell whereas
the dashed line is the integrated magnitude of the magneti™ |
zation. Note that these differ even for the ferromagnet , |
(q=0) because the minority spselectrons dominate in the
interstitial regions and very close to the atomic nutfetor 34
reasons to become clear presently, we note that this differ 0=1.0 =12 L3
ence vanishes at thé point[g=(27/a)(0,0,1)]. Our mag-
netization curves differ markedly from the ASA cur¢ésor
0<0.3(27/a) and are similar to them for largex This is a
consequence of the ASA high field ferromagnetic state being 1+
the same as ours but the ASA low field state having about
0.8ug less magnetization than ours. Other ASA
calculationd’ find that the low field state only exists over an ° S . - — B - - L
extremely narrow range of lattice constafietween about

6.84 to 6.87 Bohr Being so sensitive to the lattice constant, FIG. 3. Phase of the spiral spin density wayér) for q
it is likely that its magnitude is sensitive to whatever ap-=(2#/a)(0,0a) andr=B(0,+al2,a/2) or B(*=al2,0a/2).

24
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curve disappeared at about the same point while rising to- 4 - - - -

ward but still well below the high field curve.

Figure 3 contains plot& of the phaseq(r) for q /\
=(2m/a)(0,0) for various values ofa and r=g(0,
+al2,a/l2) or r=8(*al2,0a/2). In each case the phase 3 0207 T
shift between nearest neighbors@t 0 andB8=1 is either ¢
am or am—2m. Depending on the sign of Re (r), the
phase takes the values 0 srwhenever Inmp; (r)=0. Note
the very sharp peak ir(r) near 3=0 and 8=1 for « 2F §
=0.2. This is a remnant of the fact that in the ferromagnet
(g=0) the magnetization reverses sign before the first node
of the 4s functions and is a consequence of Rgr) becom-
ing extremely small(but not changing signat the peak 1
maximum. This peak exists for all excepta=1, although it
is much smaller for largesr. We calculatedp(r) for each of
the g's indicated in Figs. 1 and 2 and found that for €.&
=<0.95 it appears as i) were (27/a)(0,0a0—2). The -2, 0
of course, arises from a (@a)(0,0,—2) reciprocal lattice
vector in(r), the part ofe(r) that is periodic modulo 2. - - s -
Becausey is only defined modulo a reciprocal lattice vector, ©° 0.2 04 06 p 08 1
the g=(2#/a)(0,0,0.8) andgq=(2n/a)(0,0,—1.2) states . . .
must be degenerate and have identigal). This is verified q:'(:lzci/al)l'(of); g?; a(r)1fd ;gfrjgzgl’;s;ii?g; I;?gng?aésr%e;o:

by Comparing ther=0.8 anda=1.2 phase shifts which dif- =pB(al2,+a/2,0) (short dashes and r=gB(a/2,0+a/2) (solid
fer only by a minus sign in Fig. 3. The only unexpected Parting).

of this result is that they have a phase shift of7dl /ather

than 0.8r between nearest neighbors. Comparing the

=0.2 and 0.4 phases one sees that the dip(in before its ~ —p|1Vpy [ which atX vanishes everywhere and, in particu-

rapid rise becomes more pronounced with increasinbhus lar, in the plane wheréVe is infinite. For r=p8(*a/2,

for larger o the larger but smoother phase shift of (  +a/2,0),q-r=0 but alsop(r) is constantfor any @) so the

—2)m between neighbors is favored. It seems reasonablmagnetization direction does not even wobble between

that to minimize the energy the phase should be constameighbors in arxy plane.

where the spin densitywhich is equal to 2o, (r)|) is large. We have also performed a standard calculation of an an-

This is not possible in general without thle and ¢} from tiferromagnetic state starting from a superposition of atomic

which p,, is generated having very large kinetic energies.spin densities alternating in direction on altern#€e0,1)

Thus the phases in Fig. 3 are fairly constant where the spiitomic planes. This converges to a state which is unrelated to

denSity is Iargest but are unable to maintain their Constarﬂhe a=1 antiferromagnetic state. It lies above it in energy,

value to the point where the spin density becomes negligible3 g1 mRy below the nonmagnetic state. Its spin density is
One may ask if the change in total phase shift betweenyrastically different. If we call the atom &0,0,0 a spin up

atoms fromam to (a—2)7 occurs exactly alw=0.5 or  atom, then (0,&/2) is an octahedral point, equidistant from
someplace betweea=0.5 anda=0.4, the closest smaller foyr spin down atoms in the (0&?2) plane at

value of« for which we have performed the calculation. We (+ /2 0a/2) and (0:+a/2,a/2) and two spin up atoms at

can see no reason why it should occur exactlyrat0.5,  (0,0,0 and (0,0a). In the a=1 antiferromagnet the spin
however, the phase shift between atoms returne#@at @ gensity is down at (0,8/2) but in the standard antiferromag-
=1.0 exactly. This follows from the fact thaf(r) ata=1  netitis up, i.e., it is opposite to the spin of a majority of its
— & equals—¢(r) ata=1+ 5 and the fact that @ which is  nearest neighbors. This is less surprising when one notes that
constant except for a discontinuous jumpmofs identical to gt the octahedral point in the ferromagnet the minority spins
one where the jump is-7. Whenq=(2=/a)(0,0,1) or, for  gominate.

that matter, whenevey= 3G whereG is a reciprocal lattice We have also examined thgr) for q=(2#/a)(v,0,1)
vector, the phase may be a step function with the step occugyq plot it in Fig. 4 fory=0.2 along inequivalent nearest
ring atR,/2. All that is required is thgp, (r) have the form neighbor directions. For= 8(0,+a/2,+a/2),o(r) is a step
f(r)(1+e'® e 9 =21(r)cos3G-r, wheref(r) is a real function of height, i.e., thex=0 plane is antiferromag-
positive function. Then Inp; (r)=0 so¢(r) must be 0 orr  netic. Forr=g(a/2,=a/2,0) the total phase shift between
and Rep; (r) changes sign at=R.,/2, causingp(r) to jump  nearest neighbors igm. Forr = 3(a/2,0a/2) the phase shift
discontinuously from O tar at that point. Because the mag- is (1+ y) = between neighbors and for 8(a/2,0,—a/2) it
netization does not spiral, but merely reverses sign in thiss (y—1)m7+27=(1+ y)w. Thus thex=a/2 plane is anti-
case, they= G/2 spiral spin density wave is an antiferromag- ferromagnetic but with the spins rotated byw and
netic state. This explains why the two magnetization curve¢l+ y) = relative to the atom ai0,0,0. At W, however, the

in Fig. 2 become equal at th¢ point. It also explains why phase shift between nearest neighbors for both
the previously discussd® ¢|? density functional term van- r=g(a/2,0a/2) andr=g(a/2,0,—a/2) is —0.5x rather than
ishes at X. This term is proportional to|p; Vp,; the 1.57 one would have predicted from the<0.5 results.
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Thus forq=(27/a)(v,0,1) the crystal is best described as phase shifts revealed three facts that had not previously been
being antiferromagnetic igz planes of atoms with the quan- appreciated(1) When the phase shift between neighboring
tization axis rotating throughym between atomic planes. atoms ism, the entire phase shift occurs discontinuously
When y=0 this is better described as ferromagnetie = midway between atoms where the spin density vanishes, i.e.,
planes of atoms with the magnetization reversing sign midthe q=3G spiral spin density wavés an antiferromagnetic
way between planes. state although not the usual or@) The phase is a highly

In conclusion, we have calculated the properties of fcocnonmonotonic function for<<0.5.(3) Although the smallest
iron in its spiral spin density wave ground state without anypossible spin rotation between neighboring atomssswith
potential or magnetization direction approximations. Othery<1, the system chooses the larger rotation @) as
than differences in the low spin ferromagnetic state whichts ground state for 05 a<1. Since the spin density polar-

extend out tay=0.3(27/a) our magnetization vs wave vec- ization is a continuous functiofexcept fora=1), these two
tor curves are qualitatively the same as those obtained froffptations are not equivalent.

ASA calculations whereas our energy vs wave vector curves
are qualitatively the same for ajj. Since these fail to yield
the experimental ground stagewe have concluded that cur-
rent exchange-correlation approximations are inadequate.
We note that the LSDA only distinguishes between up and These calculations were performed at the Texas Ad-
down spins at a point in space and is completely oblivious tovanced Computing Center of the University of Texas at Aus-
the fact that the local quantization direction is a function oftin and supported by the University and NPACI. The re-
position; furthermore there does not appear to be a uniquelgearch was supported by the Welch Foundatidouston,
correct way to apply the GGA to this case. Our study of theTX) and the NSF under Grant No. DMR-9614040.
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