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Multimagnon excitations in alternating spin/bond chains
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The nature of multimagnon excitations in alternating spin/bond ferromagnetic chains are studied using a
combination of scaling methods and the recursion method. Two-magnon excitations for a Heisenberg chain
with either alternating spin magnitudes,S andS8, or alternating nearest-neighbor couplings,J1 andJ2 can be
studied using real-space rescaling techniques. These results are then used to investigate three-magnon excita-
tions using the recursion method.@S0163-1829~98!02038-6#
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I. INTRODUCTION

In recent years various quasi-one-dimensional magn
systems have been synthesized. These systems inc
chains in which metal ions alternate regularly with orga
radicals,1 ordered bimetallic chains,2 and donor-accepto
electron-transfer salts.3 Much of the interest has been fo
cused on systems with antiferromagnetic ground states4 and
the nature of their excitation spectra. Many of these mater
can be described in terms of isotropic Heisenberg excha
interactions which may alternate in strength and sign al
the chain. The chains are often composed of two sublatt
which have unequal spin magnitudesS andS8 and magnetic
measurements5 indicate that these materials can be antifer
magnets, ferrimagnets or ferromagnets. In a previous pap6

we have studied the nature of one- and two-magnon exc
tions in an alternating bond/spin ferromagnetic chain for
case of general isotropic near-neighbor interactions. Bo
direct analytic method and second method based on a sc
transformation were used to study the relationship of bo
state branches to the scattering state continua. In the pre
work we extend our study to three-magnon excitations
alternating systems which can be described by an isotr
Heisenberg exchange interaction between near neighb
Although the one- and two-magnon problems can be redu
to single-particle problems,7,8 this is not possible for three
magnon excitations. The generalm-magnon problem in the
case of the uniform bond spinS5 1

2 chain has been solve
exactly using the Bethe ansatz9,10 but this method canno
generally be used for higher spin or for alternating syste
except in very special cases.11–15 We use the recursion
method16 to transform the three-magnon equations into
tridiagonal form which then provides a continued fracti
representation for the calculation of the density of states.
spin and/or bond alternation is responsible for gaps in
three-magnon continuum and this fact makes the termina
of the continued fraction more complicated than for unifo
chains. However, knowledge of the one- and two-magn
spectra can be used to predict the location of the gap e
and this is all that is needed to implement the terminat
procedure.

In Sec. II we describe the model and discuss the tw
PRB 580163-1829/98/58~14!/9156~10!/$15.00
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magnon excitations. In Sec. III we derive the three-magn
equations in a basis of three-spin deviations, and in Sec
we describe the recursion method and the termination pro
dure for the resulting continued fraction representation of
Green’s function. Section V describes our results and Sec
summarizes our findings.

II. THE MODEL

We consider a chain composed of two nonidentical s
lattices, each being uniform and homogeneous. The Ha
tonian for these two nonidentical one-dimensional sublatti
with alternating spin magnitudes,S and S8, and alternating
nearest-neighbor interactions can be expressed as

Ĥ52 (
n51

N/2

@J1~SW 2n8 •SW 2n11!1J2~SW 2n11•SW 2n128 !#, ~1!

where the total number of sites of the chainN is even and
J1 ,J2 represent the interactions which alternate in stren
along the chain.SW 2n8 andSW 2n11 are quantum spin operators
the even and odd sites, respectively, and they satisfy
usual commutation relations. We impose periodic bound
conditions to ensure translational invariance within sub
tices and thus the total wave vectorK is a good quantum
number and restricted to the rangeuKu<p/2a wherea is the
lattice spacing which will be set equal to unity in what fo
lows. Both the total spinSW tot

2 and the component in thez
direction Stot

z are constants of motion. The ferromagne
state in which all spins are aligned along some arbitrary
rection is an exact eigenstate ofĤ with eigenvalueE05
2(N/2)SS8(J11J2). We denote this state which has az
component of total spinStot

z 5(N/2)(S1S8) by u0& and we
take this to be our reference state.

The excitations relative to this reference state can be c
sified according to the total amount of reduction in thez
component of the total spin,Stot

z 5(N/2)(S1S8)2m, and
such a state is called am-magnon excitation. The genera
problem is to solve the Schro¨dinger equation

Ĥucm&5Em~K !ucm& ~2!
9156 © 1998 The American Physical Society
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for the excitation energiesEm(K) of them-magnon state as
function of total wave vectorK.

A. One-magnon excitations

A general one-magnon state can be written as

uc1&5 (
n51

N/2

@a2nu2n&1a2n11u2n11&#, ~3!

where the ketun& represents the state with thez component
of the nth spin reduced by one unit relative to the referen
state. The Schro¨dinger equationĤuc1&5E1uc1& results in
equations relating the neigboring amplitudesar

@E12S~J11J2!#a2n52ASS8~J1a2n111J2a2n21!,

@E12S8~J11J2!#a2n1152ASS8~J1a2n1J2a2n12!,
~4!

whereE1 is measured relative to the reference state ene
E0 . The eigenvalueE1 can be written as

EK
m5B1

1

2
mAx214unKu2, ~5!

where

nK5ASS8~J1eiK1J2e2 iK !, ~6!

B5
1

2
~S1S8!~J11J2!, ~7!

and

x5~S2S8!~J11J2!. ~8!

The solutions for these excitations are characterized by
wave vectors. The indexm561 labels the two branche
which by convention are referred to as ‘‘optic’’ for the upp
branch and ‘‘acoustic’’ for the lower branch and the dime
sionless wave vectorK lies in the range 0 –p/2. In general,
there is a nonzero gap between the two branches at
Brillouin-zone boundary (K5p/2)

Egap52AB224SS8J1J2. ~9!

This gap vanishes only in the uniform case whereS5S8 and
J15J2 . Hence, an important difference between unifo
and nonuniform ferromagnetic chains is the presence of g
in the excitation spectrum. Note that the gap discussed
has nothing to do with the Haldane gap17,18 between the
ground and excited states which also appears in some a
nating chains.

B. Two-magnon excitations

The two-magnon statesuc2& can be written as

uc2&5 (
n<m

@a2n,2mu2n,2m&1a2n,2m11u2n,2m11&

1a2n21,2mu2n21,2m&1a2n11,2m11u2n11,2m11&#,

~10!
e
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where the ketur ,s& with r ,s represents the state with sing
deviations on ther th andsth spins relative to the referenc
stateu0&, while the ketur ,r & represents the state with tw
spin deviations on the same (r th) site. As in the one-magnon
problem, we consider the two-magnon Schro¨dinger equation
Ĥuc2&5E2uc2&, whereE2 is the two-magnon excitation en
ergy measured relative to the reference state energyE0 . The
equations relating the various amplitudes are obtained
applying the Hamiltonian~1! to the general form of the wave
function ~10! and then equating the coefficients of each ba
ket. The resulting equations can be artificially grouped in
two sets. One set involves amplitudes with spin deviatio
separated by at least two sites (m.n) that we will refer as
the ‘‘noninteracting equations.’’ The other set will be calle
the ‘‘interacting equations’’ and will involve amplitudes wit
spin deviations on the same or neighboring sites. It can ea
be shown6,19,20 that the energy eigenvalues are simply t
sum of the energy of two noninteracting magnons

E2~k1 ,k2!5EK,q
m1 ,m25Ek1

m11Ek2

m2, ~11!

wherek1 andk2 are the wave vectors of the individual ma
nons,m1 and m2 label the branches of the single magn
dispersion curves. The total wave vectorK5k11k2 and the
relative wave vectorq5(k12k2)/2 can also be used to labe
the energies. Translational invariance requiresK to be real
but k1 andk2 can be complex.

For real values ofk1 and k2 , or equivalently, for real
values ofK andq, there are three energy regions which for
three different energy continua due to the gap in the o
magnon dispersion curve. Depending on the values used
m1 and m2 , they can be identified as ‘‘acoustic-acoustic
(m15m2521) ‘‘optic-optic,’’ ( m15m2511) or ‘‘mixed-
mode’’ (m152m2561).

The knowledge of the solution of the one-magnon pro
lem allows us to determine the regions in theE2(K) versus
K plane where scattering state solutions corresponding
two free magnons are found. These continua correspon
solutions in which both individual wave vectorsk1 and k2
are real. However, by considering the possibility of solutio
with q complex, we also find the existence of ‘‘bound state
solutions outside of these regions. These solutions can
found numerically by solving a 434 eigenvalue problem o
using a real space rescaling procedure.6,19 The energy re-
gions where the scattering states are located are determ
by the one-magnon spectrum and the bound states are f
outside these continua. Similarly, the complete two-magn
spectrum, scattering plus bound states, will determine
location of the continua for the three-magnon problem.

III. THREE-MAGNON EXCITATIONS

A general three-magnon state can be written as

uc3&5 (
i< j <k

ai jk u i jk &, ~12!

where we define an orthonormal set of three spin devia
states

u i , j ,k&5Ci jkSi
2Sj

2Sk
2u0& ~13!
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with Ci jk being the coefficients normalizing these states a
satisfying

C2i ,2j ,2k55
1

A8S83
, iÞ j Þk,

1

A8S82~2S821!
, two of i , j ,k equal,

1

A24S8~2S821!~S821!
, i 5 j 5k,

~14!

C2i ,2j ,2k1155
1

A8S82S
, iÞ j ,

1

A8SS8~2S821!
, i 5 j .

~15!

In order to obtain the coefficients with two odd indic
and one even index or with three odd indices, we need o
to exchangeS with S8.

We consider the effect of the Hamiltonian on the co
plete set of states in them53 basis in the same way as wa
done form51 andm52. The translational invariance prop
m
re
n

in
f
th

a

nt
d

ly

-

erty of the Hamiltonian can be taken into account by fi
transforming the statesu i , j ,k& into center of mass and rela
tive coordinates

u i , j ,k&[u j ;x,y&, ~16!

where

x5 j 2 i>0,

y5k2 j >0. ~17!

There are two groups of ketsu j ;x,y& for any pair of values
(x,y) corresponding to each sublattice or equivalently to o
or even values ofj . We define the Fourier transforms wit
respect to the center of mass of each group as follows:

ue,K;x,y&5A2

N (
r 50

N/221

e2ıK~2r 2x/31y/3!u2r ;x,y&,

uo,K;x,y&5A2

N (
s50

N/221

e2ıK~2s112x/31y/3!u2s11;x,y&,

~18!

wheree ando stand for the ‘‘even’’ and ‘‘odd’’ sublattice,
respectively.

The effect of the Hamiltonian on these states can be s
marized by the following two equations:
~E32«x,y
K,e!ue,K;x,y&1kx,y

e ue,K;x,y11&1rx,y
e ue,K;x11,y&1qx,y

e ue,K;x21,y&1sx,y
e ue,K;x,y21&

1tx,y
e uo,K;x21,y11&1lx,y

e uo,K;x11,y21&50, ~19!

~E32«x,y
K,o!uo,K;x,y&1kx,y

o uo,K;x,y11&1rx,y
o uo,K;x11,y&1qx,y

o uo,K;x21,y&1sx,y
o uo,K;x,y21&

1tx,y
o ue,K;x21,y11&1lx,y

o ue,K;x11,y21&50, ~20!
n

where the first equation represents the action of the Ha
tonian on an ‘‘even’’ ket and the second equation cor
sponds to an ‘‘odd’’ ket. In this representation, the even a
odd kets can be visualized as a semi-infinite lattice of po
in the first quadrant of thexy plane. Three distinct groups o
kets can be identified according to whether they lie in
‘‘bulk’’ ( x,y>2), on a ‘‘surface’’ (x>2,y<1 or x<1,y
>2) or on both surfaces (x,y<1).

When the Hamiltonian acts on a ket in the bulk~both
x,y>2), we have a set of equations that we shall refer to
‘‘noninteracting’’ and the coefficients in Eq.~19! have the
form shown in Table I. The notation used for the coefficie
in this table and for those that will follow, allow for a
straightforward transfer of an equation for an even ket@with
general form~19!# to an equation for an odd ket@with gen-
eral form ~20!#. The coefficients are defined as follows:

«5S~J11J2!, ~21!

«85S8~J11J2!,

«05«35«653«,
il-
-
d
ts

e

s

s

«152«1«822J1 ,

«25«12«82J12J2 ,

«452«1«8,

«552«1«82J2 ,

w052kJ1A3S~S821!,

TABLE I. Coefficients when the Hamiltonian is applied to a
even ket with bothx,y>2.

Noninteracting coefficients
x,y «x,y

K,e kx,y
e rx,y

e qx,y
e sx,y

e tx,y
e lx,y

e

2l ,2m «6 w w̄* w w̄* w̄* w

2l ,2m11 «4 w̄ w̄* w w* w̄* w

2l 11,2m «4 w w* w̄ w̄* w̄* w

2l 11,2m11 «48 w̄ w* w̄ w* w̄* w
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w252kJ1AS~2S821!,

w452kJ1A~2S21!~2S821!,

w52kJ1ASS8,

andk5eiK /3. The presence of a prime on a coefficient ind
cates thatS should be replaced byS8 and vice versa, wherea
the presence of a bar indicates thatJ1 should be replaced by
J2 and vice versa in relation to the corresponding coeffici
without the bar or the prime. As usual, an asterisk (* ) indi-
cates that the complex conjugate of the coefficient sho
have been taken. For example, the coefficient«48 ~appearing
in Table I! is equal to 2«81« once the proper replacemen
of S and S8 are made in the definition of«4 . Similarly, w̄
52kJ2ASS8 onceJ1 is replaced byJ2 in the definition for
w. The coefficients corresponding to the action of the Ham
tonian on the odd kets are easily obtained by taking the e
coefficients and then adding or removing their primes or b
depending whether they are present or not. This is a di
result of the fact that one sublattice has the same equation
the other, only with the spinsS,S8 and bondsJ1 ,J2 ex-
changed. As an example, the coefficients obtained when
Hamiltonian acts on the odd ketuo,K;2l ,2m& are
(«68 ,w̄8,w8*,w̄8,w8*,w8*,w̄8), where we have applied thes
rules to the first row of coefficients in Table I.

The second group of equations corresponds to the
where eitherx or y is <1 while the other is>2 and we will
refer to this group as the two-bound one-free magnon gro
The coefficients are given in Table II. The final group
equations is obtained when the Hamiltonian is applied t
ket ue,K;x,y& with both x,y<1, i.e., for the case of thre
magnons on the same site or on nearest-neighbor sites
will refer to this group as the three-bound magnon gro
Table III gives the coefficients.

These three groups of equations are of course coupled
the complete solution of the three-magnon problem invol
finding the solutions of all of these groups together. Th
are two types of scattering state solutions to the complete
of equations. The first type has energy eigenvalues that
be written as the sum of the energy of three noninterac
magnons

TABLE II. Coefficients when the Hamiltonian is applied to a
even ket. One of the values ofx andy is <1 while the other is>2.

Two-bound and one-free magnon coefficients
x,y «x,y

K,e kx,y
e rx,y

e qx,y
e sx,y

e tx,y
e lx,y

e

0,2m «3 w w̄2* w̄* w2

0,2m11 «4 w̄ w̄2* w* w2

2l ,0 «3 w2 w̄* w w̄2*
2l 11,0 «4 w2 w* w̄ w̄2*
1,2m «5 w w* w̄2 w̄* w̄28* w

1,2m11 «58 w̄ w* w̄2
w* w̄28* w

2l ,1 «̄5 w̄ w̄* w w2* w̄* w28

2l 11,1 «̄58 w̄ w* w̄ w2* w̄* w28
t
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E3~K !5Ek1

m11Ek2

m21Ek3

m3, ~22!

wherek1 ,k2 ,k3 are all real andK5k11k21k3 . Figure 1~a!
shows the one-magnon excitation energies obtained from
~5! for the caseS52S851 andJ152J251 and Fig. 1~b!
shows the corresponding three-free continua. The gaps a
consequence of the presence of the energy gap betwee
optic and acoustic branches of the one-magnon disper
curve for all values of the wave vector. The lowest co
tinuum is due to the combination of three acoustic~A!
branches (m15m25m3521) and is labeled as ‘‘AAA’’;
the highest continuum is due to the combination of th
optic ~O! branches (m15m25m3511) and is labeled as
‘‘OOO.’’ The other two continua are mixed combination

TABLE III. Coefficients when the Hamiltonian is applied to a
even ket with bothx,y<1.

Three-bound magnon coefficients
x,y «x,y

K,e kx,y
e rx,y

e qx,y
e sx,y

e tx,y
e lx,y

e

0,0 «0 w0 w̄0*
0,1 «1 w̄ w̄2* w0* w4

1,0 «̄1
w2 w* w̄0 w̄4*

1,1 «2 w̄ w* w̄2 w2* w̄28* w28

FIG. 1. ~a! One magnon excitation branches~solid curves! and
~b! the corresponding three-free magnon scattering state cont
~shaded regions! for an alternating ferromagnetic chain withS
52S851 andJ152J251. The energy is in units ofJ1 and the total
wave vectorK is in units ofp/2.



s
s

ue

d

at
rm
te

(
e-

o
an
p

a
g
c

p
one-

are
rete

pe-
le
ecial

4
e-
we
In
ich
or

al
to
a

nc-
ed

r

nat-

-

9160 PRB 58SOUTHERN, MARTÍNEZ CUÉLLAR, AND LAVIS
and are labeled as ‘‘AAO’’ and ‘‘AOO.’’ As the difference
betweenS and S8 or J1 and J2 become larger, the gap
between the continua increase in magnitude and width.

The second type of continuum solution has eigenval
that can be written as

E3~K !5E2~k1 ,k2!1Ek3

m3. ~23!

The termE2(k1 ,k2) corresponds to the energy of two boun
magnons at the real wave vectork11k2 and hence these
solutions have complex values ofk1 andk2 but a real value
of k3 . Still, these eigenstates correspond to scattering st
in which one magnon is free and two are bound. They fo
continua which overlap with the three-free magnon scat
ing state continua described above. Figure 2~a! shows the
two-magnon excitation spectrum for the same caseS
52S851,J152J251) obtained using the methods d
scribed by Medved, Southern, and Lavis6 and Fig. 2~b!
shows the corresponding two-bound one-free magnon c
tinua. Figure 3 shows the superposition of the three-free
two-bound one-free scattering state continua. In this exam
case, there are two gaps at small values ofK, three gaps at
intermediate values ofK and one gap for values ofK near
the Brillouin-zone boundary. At any fixed value of the tot
wave vectorK, the combined continua exhibit a varyin
number of gaps. The number of gaps depends on the spe

FIG. 2. ~a! Two-bound magnon state branches~solid dots! with
the two magnon scattering state continua~shaded regions! and ~b!
the two-bound one-free magnon scattering state continua~solid re-
gions! for an alternating ferromagnetic chain withS52S851 and
J152J251. The energy is in units ofJ1 and the total wave vecto
K is in units ofp/2.
s

es

r-

n-
d
le

l

ific

values ofS,S8,J1 , andJ2 . However, the energies of the ga
edges are completely determined by the corresponding
and two-magnon spectra.

In addition to these scattering state solutions, there
also three-magnon bound state energies which are disc
and are found outside the continua. It is only in certain s
cial integrable cases8 that the groups completely decoup
from one another and the bound states then have sp
features. In the two-magnon subspace,6 the problem of solv-
ing the combined set of equations~scattering plus bound
states! can be reduced to a numeric implementation of a
34 matrix eigenvalue problem. A similar approach to r
solving the three-magnon problem is not possible, as
would have to find the eigenvalues of an infinite matrix.
the next section, we will present a different approach wh
will give us a direct method of identifying bound states f
the three-magnon problem.

IV. RECURSION METHOD

The recursion method16,21,22can be used to obtain spectr
information about any Hamiltonian. The basic idea is
transform the Hamiltonian to a tridiagonal form so that
continued fraction representation of the local Green’s fu
tion can be obtained. The local Green’s function is defin
by

Gj~E1ıd!5^ j u~E2Ĥ1ıd!21u j & ~24!

FIG. 3. Three-magnon scattering state continua for an alter
ing ferromagnetic chain withS52S851 andJ152J251. The re-
sults of the three-free~shaded regions! and two-bound one-free con
tinua ~solid regions! are superimposed. The energy is in units ofJ1

and the total wave vectorK is in units ofp/2.
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whered is a small positive imaginary part in the energyE
andu j & is an arbitrary ket in the three-magnon basis. We w
start with the basis kets$ue,K;x,y&,uo,K;x,y&% and con-
struct a new basis,$uyn&%, in which the Hamiltonian assume
a tridiagonal form. The complete orthonormal set of sta
$uyn&% satisfies a three-term recursion relation

Ĥuyn&5anuyn&1bn11uyn11&1bnuyn21&, ~25!

wherean ,bnPRe. Hence the new matrix representation
the Hamiltonian in this basis is

Ĥ5S a0 b1

b1 a1 b2 0

b2 a2 b3

0 �

D ~26!

and the Green’s function for the initial ket$uy0&% is given
by the continued fraction16

G0~E!5
1

E2a02
b1

2

E2a12
b2

2

E2a22
b3

2

�

. ~27!

In carrying out the procedure described above, we cho
an initial ket ~or linear combination of kets! in the three-
magnon basis and generate the coefficientsan ,bn11 up to
some maximum value ofn5nmax. The asymptotic behavio
of these coefficients as function ofn depends upon the sca
tering state spectrum. If at a particular value of total wa
vector K, there are no gaps, then the coefficients will a
proach constant values asymptotically. However, if there
one or more gaps present, then the asymptotic behavio
oscillatory.22 In practice, we need only to calculate the coe
ficients up to some suitable value ofnmax and terminate the
continued fraction using our knowledge of the scatter
state spectrum as follows:

G0~E!5
1

E2a02
b1

2

A

E2anmax
2bnmax11

2 G0
`~E!

, ~28!

where G0
`(E) is the terminator which represents th

asymptotic terms. In the case of no gaps in the scatte
state continuum, the coefficientsan andbn converge to con-
stant values,

an5a

bn115bJ for n.nmax ~29!

and the terminator of the continued fraction satisfies
l

s

f

se

e
-
re
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-

g

g

G0
`~E!5

1

E2a2
b2

E2a2
b2

�

5
1

E2a2b2G0
`~E!

. ~30!

Solving for G0
` , we have

G0
`~E!5

E2a6A~E2a!224b2

2b2
. ~31!

This is known as the square-root terminator and the choic
the positive or negative square root depends on whetherE is
less than or greater thana. The terminator determines th
analytic properties ofG0 . For example,G0 is complex in the
region ofE where the argument of the square root is negat
and this corresponds to the scattering state continuum. H
ever, G0 can also have isolated poles outside this ene
region due to the other terms in the continued fraction a
these energies are the bound states.

In the case of the square-root terminator,G0
`(E) is com-

plex when

Emin5a22b<E<a12b5Emax. ~32!

Hence the asymptotic values ofan andbn(a andb, respec-
tively! are related to the minimum energyEmin and maxi-
mum energyEmax of the continuum by

a5
1

2
~Emin1Emax!,

b5
1

4
~Emax2Emin!. ~33!

If, at a particular value ofK, the three-magnon continuum
has no gaps, we can terminate the continued fraction u
Eqs. ~31! and ~33!. However, the coefficients (an ,bn11) of
the continued fraction exhibit undamped oscillations if ga
are present. Turchiet al.22 generalized the termination pro
cedure for the calculation of the tail of the continued fracti
when the continuum has multiple gaps. In the present wo
the spin/bond alternation leads to several gaps in the th
magnon continuum depending on the spin magnitudes.
given values ofS, S8, J1 andJ2 , we use the one-magno
results to determine the three-free continua in the ene
(E3) versus wave vector (K) plane. We then use the two
bound magnon energies and the one-magnon excitation
ergy to determine the two-bound one-free continua in t
plane. These continua are then superimposed to determ
the number of gaps in the energy continua and the gap e
at any value of the total wave vectorK so that the appropri-
ate terminator can be used to study the density of states
the three-magnon problem.

V. RESULTS

Bell et al.20 studied the two-magnon spectrum of the a
ternating bondS5 1

2 Heisenberg chain and found a total
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four two-magnon bound state branches compared to the
form chain which only has one branch. Medvedet al.6 stud-
ied higher spin models and found that an additional bou
state branch appears when the spin magnitude is increas
S51. Here we extend these studies to the three-magnon
citations in alternating bond or spin chains. The uniformS
5 1

2 Heisenberg chain9,10 has a single three-magnon boun
state branch below the continuum throughout the first B
louin zoneuKu<p but additional bound states8 can appear
near the Brillouin-zone boundary for higher values ofS.
When an alternation of the spins or the bonds is introduc

FIG. 4. The three-magnon continua and the three-magnon bo
states~open circles! of the uniform spinS5S85

1
2 chain with alter-

nating bonds (J152J251). The energy is in units ofJ1 and the
total wave vectorK is in units ofp/2.
ni-

d
to

x-

-

d,

a folded Brillouin zone restricted touKu<p/2 becomes the
natural one, as it corresponds to two sites per primitive c
In the folded representation, the uniformS5 1

2 chain has a
single bound state branch which folds back atK5p/2 and
overlaps with the folded continuum. When alternation is
troduced, the ‘‘acoustic’’ branch of the three-magnon bou
state will remain with a gap between it and the ‘‘optic
branch at the new Brillouin-zone boundary. This ‘‘optic
branch may or may not lie entirely within the continuum.
it is below the continuum, it should only be present near
Brillouin-zone boundary and should become a resonant s
when it enters the continuum region at smallerK unless it
emerges again inside a continuum gap.

We first present some results for the caseS5S85 1
2 with

bond alternation. As the ratioJ2 /J1 is decreased from unity
a gap first appears in the continuum nearK5p/2 followed
by two additional gaps nearK50. Eventually these gap
extend across the entire zone and four distinct continua
formed. We have used the recursion method described ab
to calculate a local Green’s function corresponding to one
the kets$ue,K;x,y&,uo,K;x,y&% as a function of energy. The
three magnon bound states are identified from the imagin
part of the Green’s function. The bound state branch be
the lowest continuum develops a gap at the zone bound
and the upper branch only exists for a small region ofK
before it becomes a resonance inside the continuum. As
ratio of J2 /J1 decreases further, additional bound sta
branches are found in the two lowest gaps. However, we
not find any bound states in the highest gap. Figure 4 sh
the spectrum for 2J25J1 . The lowest gap contains two
bound state branches with a small gap between them aK
50 and the second gap has a single branch nearK5p/2.
These branches are in addition to the usual two branc
below the lowest continuum which have a small gap atK
5p/2.

Exact results can be obtained in the case where eitheJ1
or J2 is zero for all values ofS andS8. We will discuss this
case next as it provides a useful reference for comparing
results with bothJ1 andJ2 nonzero. This limit will also help
understand why there are no bound states in the highest
for the caseS5S85 1

2 .
In the J2→0 limit, the Hamiltonian~1! becomes

Ĥ5 (
n51

N/2

Ĥ2n
b , ~34!

nd
TABLE IV. Three-magnon excitations for chains of isolated blocks in units ofJ1 and whereJ5J1(S
1S8). The degeneracy of the levels due to the three-free~3f!, two-bound one-free~2b1f!, and three-bound
~3b! states has been indicated.

Three-magnon excitation energies in theJ2→0 limit
S,S8 0 J 2J2J1 2J 3J23J1 3J2J1 3J

Degeneracy 3f, 2b1f, 3b 3f, 2b1f, 3b 2b1f, 3b 3f, 2b1f 3b 2b1f 3f

1/2, 1/2 0,0,2 1,1,2 2,2 2,2 3
1, 1/2 0,0,0 1.5,1.5,2 2,2 3,3 4.5
3/2, 1/2 0,0,0 2,2,2 3,2 4,4 5 6
1, 1 0,0,0 2,2,2 3,2 4,4 5 6
3/2, 1 0,0,0 2.5,2.5,2.5 4,4 5,5 6.5 7.5
3/2, 3/2 0,0,0 3,3,3 5,5 6,6 6 8 9
2, 3/2 0,0,0 3.5,3.5,3.5 6,6 7,7 7.5 9.5 10.5
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where

Ĥ2n
b 52J1SW 2n8 •SW 2n11 ~35!

and the energy can be expressed in terms of the total spJ
of each noninteracting block. When the system is in our r
erence stateu0&, all the blocks have a total spinJ5S1S8
and the total energy isE052J1SS8(N/2). One-magnon ex-
citations correspond to having a single deviation in any blo
and the energy transitions for the one-magnon excitations

DEJ,Jz51J→J21,Jz51J215J1~S1S8!,

DEJ,Jz51J→J,Jz51J2150, ~36!

which agree with Eq.~5! when evaluated forJ250. The
two-magnon excitations can have either two single dev
tions in different blocks~2f! or in the same block~2b!. When
in different blocks, the energy is simply the sum of tw
single excitations and correspond to the excitations for tw
free magnons. Two deviations in the same block involv
transition Jz51J→Jz51J22. A state with Jz51J22

FIG. 5. The three-magnon continua for theS52S851 uniform
bond chain. The open circles represent the three magnon b
states. The energy is in units ofJ1 and the total wave vectorK is in
units of p/2.
f-

k
re

-

-
a

could correspond to states with total spin equal toJ, J21
or J22, and the excitation energies are given by

DE2b5H 0

J1~S1S8! if S1S8> 3
2 ,

2J1~S1S8!2J1 if S1S8>2.
~37!

Combining the transitions for two deviations in differe
blocks or in the same block, we obtain the following tw
magnon states:

DE55
0 2f ,2b,

J1~S1S8! 2 f ,~2b if S1S8> 3
2 !,

2J1~S1S8!2J1 ~2b if S1S8>2!,

2J1~S1S8! 2 f .

~38!

Similarly, the three-magnon states are the result of co
bining three deviations that could be in three separate blo
~3f!, two in one block and the other in a different bloc
~2b1f!, or the three in the same block~3b!. These three case
can be summarized as follows:

nd
FIG. 6. The three-magnon continua for theS52S851, J1

54J251 chain. The open circles represent the three magnon bo
states. The energy is in units ofJ1 and the total wave vectorK is in
units of p/2.
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DE55
0 3f ,2b1 f ,~3b if S1S8> 3

2 !

J1~S1S8! 3 f ,2b1 f ,~3b if S1S8>2!

2J1~S1S8!2J1 ~2b1 f if S1S8>2!,~3b if S1S8> 5
2 !

2J1~S1S8! 3 f ,~2b1 f if S1S8> 3
2 !

3J1~S1S8!23J1 ~3b if S1S8>3!

3J1~S1S8!2J1 ~2b1 f if S1S8>2!

3J1~S1S8! 3 f .

~39!
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In Table IV, we have tabulated the three-magnon excitat
energies derived from theJ2→0 limit for different S,S8
chains indicating whether the excitation corresponds to th
deviations in separate blocks~3f!, two in one block~2b1f! or
all three in the same block~3b!. The first observation is tha
the number of levels~not considering degeneracy! increases
from a minimum of 4 to a maximum of 7 as the total sp
(S1S8) of the chain increases. Also, these energy lev
separate as the total spin gets larger and this increase
possibility that gaps will appear even in the case of homo
neous bonds.

The degeneracy of each three-magnon level in theJ2
→0 limit allows us to predict where three-magnon bou
states can be found whenJ2 is nonzero. Using the level
which correspond to three deviations in the same block~3b!

FIG. 7. The three-magnon continua for theS5S851, J1

54J251 chain. The open circles represent the three magnon bo
states. The energy is in units ofJ1 and the total wave vectorK is in
units of p/2.
n

e

ls
the
-

or two in the same block~2b1f! as indicators, we expect to
find three-magnon bound states below the continua ass
ated with the levels 0,J, 2J2J1 , 2J, 3J23J1 , and
3J2J1 , whereJ5J1(S1S8). Of course, all three types o
the levels are bound whenJ250. However, the bound state
should split from the rest of the levels onceJ2 is different
from zero. For the special case ofS5S85 1

2 , bound state
branches should only appear below the lowest continu
and in the first gap if we use the indicators above. T
prediction agrees with the results shown in Fig. 4 except
the appearance of an additional bound state branch in
first gap at smallK and another branch in the second g
near the Brillouin-zone boundary. If we associate these
ditional branches with the 3f states, then bound states o
seem to appear below the three-free continua which hav
contribution from at least one acoustic free magnon st
The ‘‘OOO’’ three-free continuum does not seem to have
associated bound state branch. If one of the spin magnitu
is increased to unity, we might expect an additional bou
state branch below the lowest continuum. However, if suc
state appears it will only be easily visible near the Brilloui
zone boundary. As the total spinS1S8 increases further,
additional bound states in the gaps should be present.
clear that the 2J2J1 and 3J2J1 levels will only appear
for chains withS1S8>2 and the 3J23J1 level for chains
with S1S8>3. Hence we do not expect to observe a
bound states in the highest gap for the casesS5S85 1

2 and
S52S851.

We will now briefly discuss some results for the altern
ing S52S851 chain. TheJ250 limit predicts that wider
gaps appear due to the fact that the levels separate as the
spin of a block increases, even in the case of no bond a
nation. As can be seen in Fig. 5 one gap is present for sm
values ofK as a consequence of the spin alternation. AsJ2
decreases, more gaps start to appear and widen as sho
Fig. 6. Using the recursion method, we find bound sta
below the lower edge of the three-magnon continuum an
the first two gaps as expected from theJ2→0 analysis. In
general, the results for aS52S851 alternating bond chain
look quite similar to theS5S85 1

2 alternating bond chain.
As a final example we consider theS5S851 alternating

bond chain with 4J25J1 . Figure 7 indicates that additiona
continua and gaps appear due to the larger value of the
spin. In this case we find bound state branches below
lowest continuum as well as in the first and fourth gaps. T
procedure described here can be easily carried out for
values ofS, S8, J1 , andJ2 .

nd
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VI. SUMMARY

In this paper we have described a simple method
studying the spectrum of three-magnon excitations in al
nating spin or bond chains. The method can be used for b
integrable and nonintegrable models. The recursion met
is used to calculate a local Green’s function in the thr
magnon basis for fixed values of the spin and bond ma
tudes and the total wave vectorK. The energy values of the
continuum edges at fixedK can be obtained from the know
edge of the corresponding one and two magnon excita
spectrum. This information is then used to terminate the c
tinued fraction representation of the Green’s function us
the approach described by Turchiet al.22

In general, we find the usual bound state branch below
lower edge of the three magnon continuum for every c
studied. Comparison of our results to the known analyti
results of Bethe9,10 for the S5S851/2 chain with homoge-
em

g

n

B

a

x-
r
r-
th

od
-
i-

n
n-
g

e
e
l

neous bonds indicate complete agreement. We extended
study of Bell et al.20 of the alternating bondS51/2 two-
magnon spectrum to the three-magnon problem. Whe
bond alternation is introduced, gaps immediately appear
additional bound states are found. AsJ2 decreases, the con
tinua start to collapse into very predictable levels.

In conclusion, we have presented a direct and relativ
simple procedure to search for bound states in alterna
spin/bond chains. The recursion method was used very ef
tively to achieve this purpose and the generalization to
m-magnon problem would be straightforward.
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