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Multimagnon excitations in alternating spin/bond chains
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The nature of multimagnon excitations in alternating spin/bond ferromagnetic chains are studied using a
combination of scaling methods and the recursion method. Two-magnon excitations for a Heisenberg chain
with either alternating spin magnitudésandS’, or alternating nearest-neighbor couplings,andJ, can be
studied using real-space rescaling techniques. These results are then used to investigate three-magnon excita-
tions using the recursion methd®&0163-182¢08)02038-9

I. INTRODUCTION magnon excitations. In Sec. Il we derive the three-magnon
equations in a basis of three-spin deviations, and in Sec. IV
In recent years various quasi-one-dimensional magnetiee describe the recursion method and the termination proce-
systems have been synthesized. These systems incluggre for the resulting continued fraction representation of the
chains in which metal ions alternate regularly with organicGreen’s function. Section V describes our results and Sec. VI
radicals! ordered bimetallic chairs,and donor-acceptor Summarizes our findings.
electron-transfer salfsMuch of the interest has been fo-
cused on systems with antiferromagnetic ground stated Il. THE MODEL
the nature of their excitation spectra. Many of these materials ) ) . .
can be described in terms of isotropic Heisenberg exchange W€ consider a chain composed of two nonidentical sub-
interactions which may alternate in strength and sign alon%tt'_ces' each being uniform and homogeneous. The Hamil-
the chain. The chains are often composed of two sublattice@Mnian for thgse two non|de_nt|cal one-dimensional subl_attlces
which have unequal spin magnitud®gndS’ and magnetic with alternz_itlng spin mag_nltudes andS’, and alternating
measurementsndicate that these materials can be antiferro-Nearest-neighbor interactions can be expressed as
magnets, ferrimagnets or ferromagnets. In a previous Japer, N/2
we have studied the nature of one- and two-magnon excita- N & & 2 2/
tions in an alternating bond/spin ferromagnetic chain for the H= n; [J1(SonSon+ 1) +32(Son+1-Soni2) ] (D)
case of general isotropic near-neighbor interactions. Both a
direct analytic method and second method based on a scalighere the total number of sites of the chainis even and
transformation were used to study the relationship of bound1,J2 represent the interactions which alternate in strength
state branches to the scattering state continua. In the presebng the chainégn andS,,,.; are quantum spin operators at
work we extend our study to three-magnon excitations inthe even and odd sites, respectively, and they satisfy the
alternating systems which can be described by an isotropiasual commutation relations. We impose periodic boundary
Heisenberg exchange interaction between near neighborsonditions to ensure translational invariance within sublat-
Although the one- and two-magnon problems can be reduceices and thus the total wave vectisris a good quantum
to single-particle problem&® this is not possible for three- number and restricted to the randd < w/2a wherea is the
magnon excitations. The generatmagnon problem in the |attice spacing which will be set equal to unity in what fol-
case of the uniform bond spi=; chain has been solved |oys. Both the total spirS2, and the component in the
exactly using the Bethe ans&t? but this method cannot gjirecion Si, are constants of motion. The ferromagnetic
generally be used for higher spin or for alternating systemg,se in which all spins are aligned along some arbitrary di-

except in very special casés.!® We use the recursion fon | ¢ oi tate BF with ei ueE. —
method® to transform the three-magnon equations into alection IS an exact eigenstate b with eigenvalueto=

tridiagonal form which then provides a continued fraction ~(N/2)SS (J1+1J2). V\_/ezdenote this s'Eate which hasza
representation for the calculation of the density of states. ThEoMPonent of total spii%,=(N/2)(S+S') by [0) and we
spin and/or bond alternation is responsible for gaps in thé2Ke this to be our reference state.
three-magnon continuum and this fact makes the termination The excitations relative to this reference state can be clas-
of the continued fraction more complicated than for uniformsified according to the total amount of reduction in the
chains. However, knowledge of the one- and two-magnorfomponent of the total spir§,=(N/2)(S+S’)—m, and
spectra can be used to predict the location of the gap edgésich a state is called @-magnon excitation. The general
and this is all that is needed to implement the terminatiorProblem is to solve the Schimger equation
procedure. R

In Sec. Il we describe the model and discuss the two- H| ¢m) = Em(K) | thm) 2
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for the excitation energies,,(K) of them-magnon state as a where the kefr,s) with r <s represents the state with single

function of total wave vectoK. deviations on theth andsth spins relative to the reference
state|0), while the ket|r,r) represents the state with two
A. One-magnon excitations spin deviations on the sametly) site. As in the one-magnon

problem, we consider the two-magnon Sainger equation

H|¢,)=E,|,), whereE, is the two-magnon excitation en-
N/2 ergy measured relative to the reference state engggylrhe
|ih1) = > [asn|2n) + a5, 1|2n+1)], (3)  equations relating the various amplitudes are obtained by
n=1 applying the Hamiltoniarl) to the general form of the wave
where the ketn) represents the state with taecomponent ~ function (10) and then equating the coefficients of each basis
of the nth spin reduced by one unit relative to the referenceket. The resulting equations can be artificially grouped into
state. The Schidinger equatiori:||¢1)=E1|¢1> results in WO sets. One set involves amplitudes with spin deviations

equations relating the neiaboring amolitudes separate_d by atlleast two sitest n) that we WiII_ refer as
q 9 9 g amplitudsg the “noninteracting equations.” The other set will be called

A general one-magnon state can be written as

[E;—S(J1+J,)]ay=— /_SS(Jlaz 1+ dp8, 1) the “interacting equations” and will involve amplitudes with
" A e spin deviations on the same or neighboring sites. It can easily
) be showf!®?°that the energy eigenvalues are simply the
E;—S'(J1+Jy)]a =—ySS(Jiay,tJ,a , d )
[Ex (J1#92) Jazn+ 1 (J182n* J2820+2) (4) sum of the energy of two noninteracting magnons
whereE; is measured relative to the reference state energy Eo(kq, ko) = E’li}(q’“2=E’l<‘11+ Eff: (12)

Ey. The eigenvalud, can be written as
wherek; andk, are the wave vectors of the individual mag-

1 .
EL=B+ = ux2+ 4|2, 5 nons, u, and u, label the branches of the single magnon
K 2HNX v © dispersion curves. The total wave veckork; +k, and the

relative wave vectog=(k;—k,)/2 can also be used to label

where . A ) :
the energies. Translational invariance requikeso be real
ve=1/SS(J,;eK+ e 1K), (6)  butk; andk, can be complex.
For real values ok; and k,, or equivalently, for real
1 values ofK andq, there are three energy regions which form
B=35(S+S)(J1+J2), (7)  three different energy continua due to the gap in the one
magnon dispersion curve. Depending on the values used for
and m1 and u,, they can be identified as “acoustic-acoustic,”
(m1=pu,=—1) “optic-optic,” (u,=pu,=+1) or “mixed-
X=(S=8")(J1+J2). B  mode” (uy=—u,=*1).

The solutions for these excitations are characterized by re?l Th(ﬁ knowledgz of the So'ﬂtlon O.f the_orE-rrllagnon prob-
wave vectors. The indexx=*1 labels the two branches em allows us to determine the regions in Bg(K) versus

which by convention are referred to as “optic” for the upper K plane where scattering state solution; corresponding to
branch and “acoustic” for the lower branch and the dimen-™ f_ree magnons are fc_)un_d_. These continua correspond to
sionless wave vectd( lies in the range 0#/2. In general, Selutions in which both individual wave vectoks andk,

there is a nonzero gap between the two branches at tHye real. However, by considering the possibility of solutions
Brillouin-zone boundary K = /2) with g complex, we also find the existence of “bound state”

solutions outside of these regions. These solutions can be

Egapzz\/m_ (9) f0L_md numerically by solving aA 4 eigenvalue problem or

using a real space rescaling procedit® The energy re-

This gap vanishes only in the uniform case whgreS’ and  gions where the scattering states are located are determined
J;=J,. Hence, an important difference between uniformby the one-magnon spectrum and the bound states are found
and nonuniform ferromagnetic chains is the presence of gapsutside these continua. Similarly, the complete two-magnon
in the excitation spectrum. Note that the gap discussed hempectrum, scattering plus bound states, will determine the
has nothing to do with the Haldane d&p? between the location of the continua for the three-magnon problem.
ground and excited states which also appears in some alter-

hating chains. Ill. THREE-MAGNON EXCITATIONS
B. Two-magnon excitations A general three-magnon state can be written as

The two-magnon statdg,) can be written as

|¢3>:i2kaijk|ijk>a (12

<j<

= a 2n,2m)+a 2n,2m+1 . . -
) n;m [@zn 2l AL ) where we define an orthonormal set of three spin deviation

states
+an-12m2n—1,2Mm) + @541 2mr1/20+ 1,2+ 1)],

(10 [i,1.K)=CijS Sy S¢|0) (13
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with Cjj being the coefficients normalizing these states ancrty of the Hamiltonian can be taken into account by first

satisfying transforming the statds, j,k) into center of mass and rela-
p tive coordinates
1
T |¢J5ék, i!-ykE-;X! ]l (16)
55 i, k=li;xy)
where
1
Coimp={ —————, two ofi,j,k equal, X=j—i=0,
2i,2j,2k 88’2(28’—1) J
1 y=k—j=0. (17)
Y- T ' There are two groups of ket§;x,y) for any pair of values
| V245’ (28’ ~1)(S'-1)

(14) (x,y) corresponding to each sublattice or equivalently to odd
or even values of. We define the Fourier transforms with

1 respect to the center of mass of each group as follows:
T i ij ’ N/2—1
NEEES 2 K
. N —1K(2r—x/3+y/3)| o -
C2i,2j,2(+l: 1 (15) |e:K,XaY>— N 20 € ! X y |2r,X,Y>,
_— =],
V8SS(25'-1) N/2-1
|0,K;x,y>= N E e—lK(23+1—x/3+y/3)|23+ 1;x,y),
In order to obtain the coefficients with two odd indices s=0
and one even index or with three odd indices, we need only (18
to exchanges with S'. wheree ando stand for the “even” and “odd” sublattice,

We consider the effect of the Hamiltonian on the com-respectively.
plete set of states in them=3 basis in the same way as was The effect of the Hamiltonian on these states can be sum-
done form=1 andm=2. The translational invariance prop- marized by the following two equations:

(Ez—exp)leKix,y)+ k5 le Kix,y+ 1) +p5 e Kix+1y) + o5,

+ 7|0, Kix=Ly+1)+25,l0,K;x+1y—1)=0, (19

e,K;x—1y)+oy leK;x,y—1)

(Es—ex)]0,Kix,y)y+ k5|0, Kix,y + 1) +pg [0, Kix+Ly) + 97 |0,K;x—Ly) +op [0, Kix,y—1)

+1yleKix=1y+1)+ 23, [e,K;x+1y—1)=0, (20

where the first equation represents the action of the Hamil- g1=2e+e'—2Jy,
tonian on an “even” ket and the second equation corre-
sponds to an “odd” ket. In this representation, the even and
odd kets can be visualized as a semi-infinite lattice of points
in the first quadrant of they plane. Three distinct groups of

82=8+28’_J1_J2,

kets can be identified according to whether they lie in the g4=2e+e’,

“bulk” ( x,y=2), on a “surface” k=2y=<1 or x<1y

=2) or on both surfacesx(y<1). es=2e+¢e’'—Js,
When the Hamiltonian acts on a ket in the bulboth

X,y=2), we have a set of equations that we shall refer to as Wo=— xJ1y35(S' — 1),

“noninteracting” and the coefficients in Eq19) have the
form shown in Table I. The notation used for the coefficients
in this table and for those that will follow, allow for a
straightforward transfer of an equation for an even[kéth
general form(19)] to an equation for an odd kéwith gen-
eral form(20)]. The coefficients are defined as follows:

TABLE I. Coefficients when the Hamiltonian is applied to an
even ket with bothx,y=2.

Noninteracting coefficients

X,y S)Ef K;y pgyy ﬂiy a'gyy Ti’y )‘i,y

e=S5(J1+Jy), (21 21,2m €g w w* w w* w* w
21,2m+1 €4 woow* w w* g w

e'=8'(3;+3,), 21+1,2m g4 woow* woowr owr W
21+1,2m+1 €4 woow* w * Wt w

go=¢e3=€g4=3¢,
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TABLE Il. Coefficients when the Hamiltonian is applied to an TABLE llI. Coefficients when the Hamiltonian is applied to an
even ket. One of the values »fandy is <1 while the other is=2. even ket with bothx,y<1.

Two-bound and one-free magnon coefficients Three-bound magnon coefficients
X,y 85,3? K;y pi,y ﬂi,y Ug,y Ti,y )\;y X,y 85,'; K:,y pi,y ﬁg,y Ui,y Ti,y Ag,y
0,2m £3 w W w* Wy 0,0 g0 Wy Wi
0,2m+1 g4 w W * Wy 0,1 £1 w wh w W,
21,0 £3 W, w* w wh 1,0 & W, w* Wo wik
21+1,0 €4 W, w* w wh 11 £y w w* W, w3 wh* Wy
1,2m es w w* W, w* Wé* w
1,2m+1 e w w* Wo w* Wé* w
21,1 o wow wooowE oW w ES(K):EfllJr E’k‘22+ E/:; (22
21+1,1 P w w* w w3 w* Wy

wherek, ,k,, ks are all real andKK =k, +k,+k;. Figure 1a)
shows the one-magnon excitation energies obtained from Eq.
_ Y- Y (5) for the caseS=2S"=1 andJ;=2J,=1 and Fig. 1b)
W=~ rJpVS(28' 1), shows the corresponding three-free continua. The gaps are a
consequence of the presence of the energy gap between the
w,=—xJ;V(2S-1)(2S' —1), optic and acoustic branches of the one-magnon dispersion
curve for all values of the wave vector. The lowest con-
tinuum is due to the combination of three acousti)
w=—xJ;\SS, branches f1=pu,=pu3z=-1) and is labeled as “AAA”;

_ the highest continuum is due to the combination of three
and k=¢e'X”3, The presence of a prime on a coefficient indi- optic (O) branches fu;=u,=puz=+1) and is labeled as
cates tha8 should be replaced by’ and vice versa, whereas “O00.” The other two continua are mixed combinations
the presence of a bar indicates tlatshould be replaced by
J, and vice versa in relation to the corresponding coefficient One Magnon Excitations
without the bar or the prime. As usual, an asterisk indi- =
cates that the complex conjugate of the coefficient should *] .
have been taken. For example, the coefficieptappearing

in Table ) is equal to 2’ + ¢ once the proper replacements
of SandS' are made in the definition of,. Similarly, w 2'\
=—kJ,\SS oncel; is replaced by, in the definition for

w. The coefficients corresponding to the action of the Hamil-
tonian on the odd kets are easily obtained by taking the ever , ]
coefficients and then adding or removing their primes or bars

depending whether they are present or not. This is a direct
result of the fact that one sublattice has the same equations a

the other, only with the spin§,S’ and bondsJ;,J, ex- oS P s
changed. As an example, the coefficients obtained when the K
Hamiltonian acts on the odd keto,K;2l,2m) are Three Free Magnon Continua

— ! i r ! i -
(eg,W' W W', w ¥w *w’), where we have applied these £, .

rules to the first row of coefficients in Table I.
The second group of equations corresponds to the cast® ‘//

where eithex ory is <1 while the other is=2 and we will 5]
refer to this group as the two-bound one-free magnon group. %
The coefficients are given in Table Il. The final group of

equations is obtained when the Hamiltonian is applied to a o]

ket |e,K;x,y) with both x,y<1, i.e., for the case of three - / /

magnons on the same site or on nearest-neighbor sites. W

will refer to this group as the three-bound magnon group. +

Table Il gives the coefficients. o Z
These three groups of equations are of course coupled ani e os 1.0

the complete solution of the three-magnon problem involves K

finding the solutions of all of these groups together. There F|G. 1. (a) One magnon excitation branchésolid curves and

are two types of scattering state solutions to the complete s@#) the corresponding three-free magnon scattering state continua

of equations. The first type has energy eigenvalues that caghaded regionsfor an alternating ferromagnetic chain wi®

be written as the sum of the energy of three noninteracting-2S’=1 andJ,=2J,=1. The energy is in units af, and the total

magnons wave vectorK is in units of /2.
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Two Magnon Excitations Three —Magnon Scattering State Regions
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FIG. 3. Three-magnon scattering state continua for an alternat-
ing ferromagnetic chain witls=2S'=1 andJ;=2J,=1. The re-
sults of the three-freeshaded regionsand two-bound one-free con-
tinua (solid regiong are superimposed. The energy is in units) pf
and the total wave vectdf is in units of /2.

FIG. 2. () Two-bound magnon state branchsslid dots with
the two magnon scattering state contifghaded regionsand (b)
the two-bound one-free magnon scattering state confisolad re-
gions for an alternating ferromagnetic chain wi8=2S'=1 and
J;=2J,=1. The energy is in units af, and the total wave vector

K'is in units of /2. values ofS,S',J;, andJ,. However, the energies of the gap
edges are completely determined by the corresponding one-

and are labeled as “AAO” and “AOOQ."” As the differences and two-magnon spectra.

betweenS and S’ or J; and J, become larger, the gaps |5 aqdition to these scattering state solutions, there are
between the continua increase in magnitude and width. 5155 three-magnon bound state energies which are discrete
The second type of continuum solution has eigenvaluegng are found outside the continua. It is only in certain spe-
that can be written as cial integrable casésthat the groups completely decouple
from one another and the bound states then have special
features. In the two-magnon subspédke problem of solv-
ing the combined set of equatioriscattering plus bound
state$ can be reduced to a numeric implementation of a 4
X4 matrix eigenvalue problem. A similar approach to re-
solving the three-magnon problem is not possible, as we
§Would have to find the eigenvalues of an infinite matrix. In
he next section, we will present a different approach which
will give us a direct method of identifying bound states for
the three-magnon problem.

E3(K)=E2(k1,k2)+E’k‘:. (23

The termE,(k4,k,) corresponds to the energy of two bound
magnons at the real wave vectky+k, and hence these
solutions have complex values kf andk, but a real value
of k5. Still, these eigenstates correspond to scattering stat
in which one magnon is free and two are bound. They for
continua which overlap with the three-free magnon scatter
ing state continua described above. Figufa) Zhows the
two-magnon excitation spectrum for the same caSe (
=2S'=1J,=2J,=1) obtained using the methods de-
scribed by Medved, Southern, and L&viand Fig. 2Zb)
shows the corresponding two-bound one-free magnon con- The recursion methd&?!*’can be used to obtain spectral
tinua. Figure 3 shows the superposition of the three-free anghformation about any Hamiltonian. The basic idea is to
two-bound one-free scattering state continua. In this examplgansform the Hamiltonian to a tridiagonal form so that a
case, there are two gaps at small valueXpfthree gaps at continued fraction representation of the local Green’s func-
intermediate values d and one gap for values &€ near tion can be obtained. The local Green’s function is defined
the Brillouin-zone boundary. At any fixed value of the total by

wave vectorK, the combined continua exhibit a varying

number of gaps. The number of gaps depends on the specific Gj(E+18)=(j [(E— H+ 8 1j) (29

IV. RECURSION METHOD
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where § is a small positive imaginary part in the energy

and|j) is an arbitrary ket in the three-magnon basis. We will Gy (E)= 5
start with the basis ket$|e,K;x,y),|0,K;x,y)} and con- E_a_ b
struct a new basig| v,)}, in which the Hamiltonian assumes b?
a tridiagonal form. The complete orthonormal set of states E-a- o
{|vn)} satisfies a three-term recursion relation
1
- = (30)
H| vn) =8| v,) +bny 1| vy 1)+ byl v 1), (29 E—a—b“Gy(E)
wherea, b, Re. Hence the new matrix representation ofSolving for Gy, we have
the Hamiltonian in this basis is
GH(E) = E—a*(E—a)’—4b? @D
ap by ° 2b? '
- b, a; b, 0 This is known as the square-root terminator and the choice of
H= (200 the positive or negative square root depends on whéiher

b2 2 PS less than or greater tham The terminator determines the
analytic properties o,. For exampleG, is complex in the
region ofE where the argument of the square root is negative
and this corresponds to the scattering state continuum. How-
ever, G, can also have isolated poles outside this energy
region due to the other terms in the continued fraction and

0

and the Green'’s function for the initial kel o)} is given
by the continued fractiohi

1 these energies are the bound states.
Go(BE)= > : (27) In the case of the square-root terminat®f,(E) is com-
E—ay— by plex when
b2
E—a,— —2b2 E,..=a—2b<E<a+2b=E,,. (32)
3
E-a,—— Hence the asymptotic values af, andb,(a andb, respec-

tively) are related to the minimum enerdg,,, and maxi-

_ . mum energyEax Of the continuum by
In carrying out the procedure described above, we choose

an initial ket (or linear combination of kejsin the three- 1

magnon basis and generate the coefficienis, ., up to a= E(Emin+ Emax

some maximum value ai=n.,,,. The asymptotic behavior

of these coefficients as function nfdepends upon the scat- 1

tering state spectrum. If at a particular value of total wave b= Z(Emax— Emin)- (33
vector K, there are no gaps, then the coefficients will ap-

proach constant values asymptotically. However, if there argf, at a particular value oK, the three-magnon continuum
one or more gaps present, then the asymptotic behavior isas no gaps, we can terminate the continued fraction using
oscillatory.22 In practice, we need only to calculate the coef-Eqs. (31) and (33). However, the coefficientsa(, ,b,,.;) of
ficients up to some suitable value of,,, and terminate the the continued fraction exhibit undamped oscillations if gaps
continued fraction using our knowledge of the scatteringare present. Turchét al?? generalized the termination pro-

state spectrum as follows: cedure for the calculation of the tail of the continued fraction
when the continuum has multiple gaps. In the present work,
1 the spin/bond alternation leads to several gaps in the three-
Go(E)= > , (29 magnon continuum depending on the spin magnitudes. For
E—ag— b1 given values ofS, S’, J; andJ,, we use the one-magnon

results to determine the three-free continua in the energy
> ~ (E3) versus wave vectorK) plane. We then use the two-

max bnmax+1Go(E) bound magnon energies and the one-magnon excitation en-

ergy to determine the two-bound one-free continua in this

where Gj(E) is the terminator which represents the plane. These continua are then superimposed to determine
asymptotic terms. In the case of no gaps in the scatteringhe number of gaps in the energy continua and the gap edges
state continuum, the coefficierds andb,, converge to con-  at any value of the total wave vectkrso that the appropri-
stant values, ate terminator can be used to study the density of states for
the three-magnon problem.

E-a,

a,=a
" for n>n. (29) V. RESULTS
Pn+1=Db

Bell et al?° studied the two-magnon spectrum of the al-
and the terminator of the continued fraction satisfies ternating bondS= 3 Heisenberg chain and found a total of
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a folded Brillouin zone restricted tiK|< /2 becomes the
natural one, as it corresponds to two sites per primitive cell.
In the folded representation, the unifor+3 chain has a
single bound state branch which folds backkat /2 and
overlaps with the folded continuum. When alternation is in-
troduced, the “acoustic” branch of the three-magnon bound
state will remain with a gap between it and the “optic”
branch at the new Brillouin-zone boundary. This “optic”
branch may or may not lie entirely within the continuum. If
it is below the continuum, it should only be present near the
Brillouin-zone boundary and should become a resonant state
when it enters the continuum region at smaklemunless it
emerges again inside a continuum gap.

We first present some results for the c&eS' =1 with
bond alternation. As the ratid, /J, is decreased from unity,
a gap first appears in the continuum né&ar /2 followed
by two additional gaps neak=0. Eventually these gaps
extend across the entire zone and four distinct continua are
formed. We have used the recursion method described above
to calculate a local Green’s function corresponding to one of
the kets{|e,K;x,y),|0,K;x,y)} as a function of energy. The
three magnon bound states are identified from the imaginary
part of the Green’s function. The bound state branch below
the lowest continuum develops a gap at the zone boundary
and the upper branch only exists for a small regionKof
before it becomes a resonance inside the continuum. As the
ratio of J,/J; decreases further, additional bound state
branches are found in the two lowest gaps. However, we do

not find any bound states in the highest gap. Figure 4 shows
FIG. 4. The three-magnon continua and the three-magnon bourithe spectrum for 2,=J;. The lowest gap contains two
states(open circles of the uniform spinS=S'=3 chain with alter- ~ bound state branches with a small gap between thek at
nating bonds {;=2J,=1). The energy is in units oJ; and the =0 and the second gap has a single branch Kearr/2.
total wave vectoK is in units of 7/2. These branches are in addition to the usual two branches
below the lowest continuum which have a small gaKat
four two-magnon bound state branches compared to the uni= /2.
form chain which only has one branch. Medvetal ® stud- Exact results can be obtained in the case where either
ied higher spin models and found that an additional boundr J, is zero for all values o6 andS'. We will discuss this
state branch appears when the spin magnitude is increased@ase next as it provides a useful reference for comparing our
S=1. Here we extend these studies to the three-magnon exesults with both]; andJ, nonzero. This limit will also help
citations in alternating bond or spin chains. The unifd8m understand why there are no bound states in the highest gap
=1 Heisenberg chaft® has a single three-magnon bound for the cases=S'=3.
state branch below the continuum throughout the first Bril- In the J,—0 limit, the Hamiltonian(1) becomes
louin zone|K|< but additional bound statésan appear
near the Brillouin-zone boundary for higher values Sf
When an alternation of the spins or the bonds is introduced,

N/2

A=> AS,, (34)
n=1

TABLE IV. Three-magnon excitations for chains of isolated blocks in unitd;oénd whereZ =J,(S
+8’). The degeneracy of the levels due to the three-fBfg two-bound one-fre¢2b1f), and three-bound
(3b) states has been indicated.

Three-magnon excitation energies in the—0 limit

S, 0 = 2E-J, 25 3-3J; 3E-J; 3E
Degeneracy 3f, 2b1lf, 3b 3f, 2b1f, 3b 2b1f, 3b 3f, 2b1f 3b 2b1f 3f
1/2, 112 0,0+ 1,1~ —-,— 2,— 3
1,1/2 0,0,0 1515 - 3,3 45
3/2, 1/2 0,0,0 2,22 3 4,4 5 6
1,1 0,0,0 2,2,2 3; 4.4 5 6
3/2, 1 0,0,0 25,2525 4.4 55 6.5 7.5
3/2, 3/2 0,0,0 3,3,3 55 6,6 6 8 9
2,3/2 0,0,0 3.5,3.5,3.5 6,6 7,7 7.5 9.5 10.5
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Three —Magnon Excitations Three —Magnon Excitations

K K

FIG. 5. The three-magnon continua for t8e2S' =1 uniform FIG. 6. The three-magnon continua for t&=2S'=1, J;
bond chain. The open circles represent the three magnon bound4J,=1 chain. The open circles represent the three magnon bound
states. The energy is in units &f and the total wave vectd is in states. The energy is in units f and the total wave vectdf is in

units of /2. units of /2.
where could correspond to states with total spin equaltol—1
or J—2, and the excitation energies are given by
F3n= 315" Son+1 (35) .
and the energy can be expressed in terms of the totalJspin AE =4 Ji(StS) if S+S'= 3 (37)
of each noninteracting block. When the system is in our ref- 2J,(S+S)-J;, if S+S'=2.

erence stat¢0), all the blocks have a total spib—=S+S’
and the total energy iEg=—J;SS (N/2). One-magnon ex-
citations correspond to having a single deviation in any block

and the energy transitions for the one-magnon excitations a Combining the transitions for two deviations in different

rt‘Y:Iocks or in the same block, we obtain the following two-
magnon states:

AEJ,JZ= +J~>J71,JZ=+J—1:J1(S+ S,
0 2f,2b,

Ji(S+S') 2f,(2b if S+S'=32),
AE;5,-+3-39,-+3-1=0, (36) AE= , _ , (39
2J,(S+S')-J; (2b if S+S'=2),
_ _ 2J,(S+8") 2f.
which agree with Eq(5) when evaluated fod,=0. The
two-magnon excitations can have either two single devia-
tions in different blockg2f) or in the same block2b). When Similarly, the three-magnon states are the result of com-
in different blocks, the energy is simply the sum of two bining three deviations that could be in three separate blocks
single excitations and correspond to the excitations for two{3f), two in one block and the other in a different block
free magnons. Two deviations in the same block involve g&2b1f), or the three in the same blo¢Bb). These three cases
transition J,=+J—J,=+J—2. A state withJ,=+J—-2 can be summarized as follows:
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(0 3f201f,(3b if S+S'=2)

J(S+S)  3f,2b1f,(3b if S+S'=2)

23,(S+S')—J; (2blf if S+S'=2),(3b if S+5'=)

AE={ 23,(S+S') 3f,(2blf if S+S'=2) (39
3J,(S+S)—3J; (3b if S+S'=3)

3J,(S+S)—J; (2blf if S+S'=2)

| 30y(S+S)  3f.

In Table IV, we have tabulated the three-magnon excitatioror two in the same block2b1f) as indicators, we expect to
energies derived from thd,—0 limit for different S,S’ find three-magnon bound states below the continua associ-
chains indicating whether the excitation corresponds to thregated with the levels 02, 22-J,, 22, 32-3J,, and
deviations in separate blockf), two in one block(2b1f) or 35 —J,, whereE=J,(S+S'). Of course, all three types of
all three in the same block8b). The first observation is that the |evels are bound whely=0. However, the bound states
the number of levelgnot considering degeneracincreases  should split from the rest of the levels ondg is different
from a minimum of 4 to a maximum of 7 as the total spin from zero. For the special case 8=S' =1, bound state
(S+8') of the chain increases. Also, these energy levelgyranches should only appear below the lowest continuum
separate as the total spin gets larger and this increases thgq in the first gap if we use the indicators above. This
possibility that gaps will appear even in the case of homogeprediction agrees with the results shown in Fig. 4 except for
neous bonds. _ the appearance of an additional bound state branch in the
The degeneracy of each three-magnon level in dhe  fjrst gap at smalK and another branch in the second gap
—0 limit allows us to predict where three-magnon boundnear the Brillouin-zone boundary. If we associate these ad-
states can be found whely is nonzero. Using the levels gitional branches with the 3f states, then bound states only
which correspond to three deviations in the same bl8tk  seem to appear below the three-free continua which have a
contribution from at least one acoustic free magnon state.
The “O00” three-free continuum does not seem to have an
E associated bound state branch. If one of the spin magnitudes
is increased to unity, we might expect an additional bound
state branch below the lowest continuum. However, if such a
state appears it will only be easily visible near the Brillouin-
zone boundary. As the total sp®+S’ increases further,
additional bound states in the gaps should be present. It is
clear that the Z—J, and 3 —J, levels will only appear
S for chains withS+S'=2 and the & —3J, level for chains

) IRk A e ey

b
S=25"=1.

Three—Magnon Excitations

We will now briefly discuss some results for the alternat-
ing S=2S'=1 chain. TheJ,=0 limit predicts that wider

4

% gaps appear dug to the fact that t.he levels separate as the total
L R e i
2

values ofK as a consequence of the spin alternation.JAs
decreases, more gaps start to appear and widen as shown in
Fig. 6. Using the recursion method, we find bound states
below the lower edge of the three-magnon continuum and in
the first two gaps as expected from the—0 analysis. In
general, the results for 8&=2S'=1 alternating bond chain
look quite similar to theS=S' =3 alternating bond chain.

As a final example we consider tfg=S"=1 alternating
bond chain with 4,=J,. Figure 7 indicates that additional

K continua and gaps appear due to the larger value of the total

FIG. 7. The three-magnon continua for tf&=S'=1, J,  SPin. In this case we find bound state branches below the
=4J,=1 chain. The open circles represent the three magnon boun@west continuum as well as in the first and fourth gaps. The
states. The energy is in units &f and the total wave vectdt isin ~ procedure described here can be easily carried out for any
units of 7/2. values ofS, S, J;, andJ,.

D S—




PRB 58 MULTIMAGNON EXCITATIONS IN ALTERNATIN G . .. 9165

VI. SUMMARY neous bonds indicate complete agreement. We extended the

. . . study of Bell et al?® of the alternating bonds=1/2 two-
In this paper we have described a simple method for
. . . magnon spectrum to the three-magnon problem. When a
studying the spectrum of three-magnon excitations in alter; S : :
Rond alternation is introduced, gaps immediately appear and

nating spin or bond chains. The method can be used for both | ...
: . . dditional bound states are found. Asdecreases, the con-
integrable and nonintegrable models. The recursion metho, . :

inua start to collapse into very predictable levels.

is used to calculate a local Green'’s function in the three- In conclusion. we have presented a direct and relativel
magnon basis for fixed values of the spin and bond magni- ' b y

tudes and the total wave vectisr The eneray values of the simple procedure to search for bound states in alternating
; . ) =nhergy spin/bond chains. The recursion method was used very effec-
continuum edges at fixed can be obtained from the knowl-

. ... lively to achieve this purpose and the generalization to an
edge of the corresponding one and two magnon excitation ;
S 9 . m-magnon problem would be straightforward.
spectrum. This information is then used to terminate the con-
tinued fraction representation of the Green’s function using
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