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Some aspects of the phase diagram of double-exchange systems
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The phase diagram of doped manganate compounds La12xAxMnO3 ~with divalent A) with small x is
studied. We analyze an extension of the double-exchange model using the Schwinger boson formalism. Earlier
work by de Gennes on the existence of a canted phase is reproduced, although this phase is shown to be
unstable towards phase separation in a broad regime of physical interest. We numerically solve the mean-field
equations for our model and exhibit its phase diagrams.
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I. INTRODUCTION

Doped manganese oxides show many unusual featu
the most striking being the colossal magnetoresistance in
ferromagnetic phase.1–3 The phase diagram, as a function
doping and temperature, is far from elucidated. At small d
ings, many experiments are interpreted in terms of the ph
diagram proposed by de Gennes,4 who studied the so-called
double-exchange model5 ~see below!. Some experiments in
deed confirm the predictions derived from this approac6

Others, however, seem to imply a more complex behav
including charge ordering7,8 or coexisting phases.9,10 In ad-
dition, these materials show a metal-insulator transition
low dopings and low temperatures.11

In the following, we will analyze the phase diagram
these systems using the Schwinger boson representation12 for
the magnetic moments, which are described by the dou
exchange model. We neglect the role of lattice distortio
which may be important at high dopings, where the Ja
Teller distortion present in undoped systems disappea13

The scheme that we use allows us to obtain a descriptio
the spin waves. In more conventional systems, it has b
shown that quantum and thermal fluctuations are adequa
described12,14 in this approach. The method has already be
used to study the quasiparticle coherence in the manga
oxides.15 Finally, the calculations reported here reprodu
the work of de Gennes4 in the zero-temperature, large-S
limit. The general features of the model are described in
next section. Sections III and IV adapt the Schwinger bo
method to the double-exchange model. The results foT
50 are presented in Sec. V, where the relation of our w
to the original calculation by de Gennes4 is discussed. Sec
tion VI is devoted to finite-temperature results. Finally, S
VII contains a discussion of experimental results and rela
theoretical work.

II. MODEL

In materials such as La12xAxMnO3 ~with A divalent!, a
fractionx of Mn ions are in 3d3 (Mn41) configurations, with
PRB 580163-1829/98/58~14!/9150~6!/$15.00
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the remaining fraction 12x in 3d4 (Mn31) states. In a cubic
crystal field, the Mn 3d levels split into a lowert2g triplet
and an uppereg doublet. Intra-atomic~‘‘Hund’s rules’’! cou-
plings overwhelm the crystal-field splitting, hence thet2g
levels are always triply occupied and form aS5 3

2 ‘‘core
spin.’’ In Mn31 ions, theeg orbitals are further split by a
static Jahn-Teller~JT! distortion, which, together with the
Hund’s rules, completely determines both the orbital as w
as spin state of theeg electron. Theeg electrons may be
represented by spinless, single-orbital fermions whose h
ping is modulated by the overlap of the core-spin wave fu
tions. If we treat the core spin on sitei using the Schwinger
representation, Si5

1
2 bia

† sabbib (a,b5↑,↓, (abia
† bia

52S), then theeg hole creation operatorc is
† may be fac-

tored into a spinless fermionc and the Schwinger bosonbis

that supply the core-spin orientation:c is
† 5ci

†bis . The role
of the core-spin overlap to electron hopping in these mat
als is widely appreciated~see, e.g., Refs. 4, 13, 15, and 16!.

Neighboring core spins are coupled via superexcha
through the O 2p orbitals.2,17 For pure LaMnO3 (x50), the
c-axis exchange is antiferromagnetic while the exchange
tween neighboring ions in a plane perpendicular toĉ is fer-
romagnetic. We have therefore chosen to study the mo
defined by the Hamiltonian21

H52
1

2
S (

^ i j &,s
@ t i j ci

†cjbisbj s
† 1H.c.#2(̂

i j &
Ji j Si•Sj ~1!

for a cubic lattice of Mn ions, where the exchangeJi j 5
2Jv,0 along vertical links andJi j 5Jh.0 along horizontal
links. The coexistence of in-plane ferromagnetic and out-
plane antiferromagnetic interactions is due to the presenc
the Jahn-Teller distortions, which modulate the possible tr
sitions between filled and emptyeg orbitals.17 Experiments
suggestJv'Jh'0.58 meV.18,19 The parameterst i j describe
the hopping betweeneg orbitals. Note that, when the cor
spin in neighboring sites is aligned, the effective hopping
given by S2t i j '100 meV, according to band-structur
calculations.20
9150 © 1998 The American Physical Society
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PRB 58 9151SOME ASPECTS OF THE PHASE DIAGRAM OF DOUBLE- . . .
The model has the unphysical feature that the excha
between core spins is fixed independent of the fermion
cupancy and hence it cannot reflect the difference betw
Mn31-Mn31, Mn31-Mn41, and Mn41-Mn41 exchange~note
that Mn41-Mn41 exchange, appropriate to pure CaMnO3, is
always antiferromagnetic17!. In addition, we assume a stron
static JT distortion that renders the conduction orbital n
degenerate, whereas in the real materials this distortion
ishes forx*0.2.

The model does capture what is perhaps the most im
tant aspect of the interaction between fermions and c
spins, namely, that ferromagnetic core-spin alignment le
to a larger fermion bandwidth and reduced kinetic ener
We aim to apply it in the small-x region of the phase dia
gram, where most of the links are between Mn31 ions, so
that the drawback mentioned in the preceding paragr
should not change significantly the results.

This hopping Hamiltonian itself, in the absence
Heisenberg exchange terms, was considered by Sark15

who found a finite-temperature transition between a fer
magnetic metal and a spin-disordered state, presumably
sulating, in which the fermion band is completely incohere

III. MEAN-FIELD THEORY

We now devise a mean-field theory for the Hamiltoni
of Eq. ~1!. We treat the spins using the Schwinger bos
description:12

Si•Sj5:
1

2
F i j

†Fi j :2S252:
1

2
A i j

†Ai j :1S2, ~2!

where

Fi j 5bi↑bj↑
† 1bi↓bj↓

† ,
~3!

Ai j 5bi↑bj↓2bi↓bj↑ ,

and :O: means normal ordering ofO. A Lagrange multiplier
L i is introduced at each site to enforce the local constr
(abia

† bia52S. Expressed in terms of bosonic and fermion
creation and annihilation operators, both the hopping
superexchange terms inH are quartic.

Following Sarker,15 we invoke a Hartree-Fock decouplin
of the hopping term,

ci
†cjFi j→2^ci

†cj&^Fi j &1ci
†cj^Fi j &1^ci

†cj&Fi j

1fluctuations

dropping the fluctuations. The Heisenberg exchange is s
larly decoupled, as in Ref. 12. We assume the mean-fi
solution is uniform:

^L i&5L,

^Fi j &5HFh on horizontal links

Fv on vertical links,

^Ai j &5HAh on horizontal links

Av on vertical links,
ge
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^ci
†cj&5H Ch on horizontal links

Cv on vertical links.
~4!

Since the Hamiltonian does not involveAh , there are at this
point six mean-field parameters.

The mean-field Hamiltonian, up to a constant, is th
given by a sum of three terms:

Hmf5Hhop1Hsw1Hcond,

with

Hhop52
S

2
thFh(̂

i j &

h~ci
†cj1cj

†ci !2
S

2
tvFv~ci

†cj1cj
†ci !

~5!

and

Hsw5L(
is

bis
† bis1

1

2
~JhFh2SthCh!(̂

i j &

h~F i j
† 1Fi j !

1
1

2 (̂
i j &

v@JvAv~A i j
† 1Ai j !2StvCv~F i j

† 1Fi j !#.

~6!

Here, (h
^ i j & and (v

^ i j & represent sums over horizontal an
vertical links, respectively. In the sum over bonds, each bo
occurs once, and vertical bonds^ i j & always havei on even-
numbered planes andj on odd-numbered planes.

To the hopping and spin-wave HamiltoniansHhop1Hsw
we add a contribution from a fieldBis that couples linearly
to the Schwinger boson field:

Hcond52AN(
is

~Bis* bis1Bisbis* !, ~7!

where N is the total number of lattice sites. The Fouri
transformBks is a field that is conjugate to the Schwing
boson condensate order parameter:

Cks[
1

AN
^bks

† &52
1

N K ]F

]Bks
L , ~8!

whereF is the free energy.
DiagonalizingHsw, we find

Hsw5(
k,s

E~k!bks
† bks1(

k
~ALk

22Dk
22Lk!

2N(
k

~Bp2k↑* Bk↓!M
21~k!S Bp2k↑

Bk↓*
D ~9!

with p5(0,0,p),

M ~k!5S Lk2Vk Dk

Dk Lk1Vk
D ,

and

Lk5L2~JhFh1SthCh!~coskx1cosky!,

Dk52JvAvcoskz ,

Vk52Stvcoskz ,
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E~k![ALk
22Dk

21Vk .

When there is a condensate (T,Tc) the Bose spectrum is
gapless, withL5L* , where

L* [2~JhFh1SthCh!1A~JvAv!21~StvCv!2.

The dispersion then may be compared in thex→0 limit with
the spin-wave result

Esw~k!5SA@Jv1Jh~22coskx2cosky!#22Jv
2cos2 kz,

obtained by expanding about a~0,0,p! Néel state~alternating
ferromagnetic planes!. The basic functional dependence onk
is reproduced; this is a good preliminary check on the me
field ansatz.

Note also the particle-hole symmetry present in our me
field theory. This guarantees anx→12x symmetry in the
phase diagram. As mentioned above, exchange in p
CaMnO3 is different than in pure LaMnO3, due to the pres-
ence of the second set of emptyeg states. Hence, this sym
metry is an artifact of our model.

In deriving the mean-field equations for our model, w
must also include the condensate. The relationship betw
the fieldBks and the order parameterCks is

S Cp2k↑
Ck↓*

D5M 21~k!S Bp2k↑
Bk↓*

D . ~10!

Differentiating the condensate contribution to the free ene
with respect to a generic mean field parameterj gives

]Fcond

]j
5N(

k
~Cp2k↑* Ck↓!

]M ~k!

]j S Cp2k↑
Ck↓*

D .

Enacting a global SU~2! rotationbis→Uss8bis8 , it is easy
to show that the free energy is invariant under such a tra
formation. This approach to Schwinger boson condensa
can also be applied to the cases of the uniform ferromag
or antiferromagnet. It has the comforting feature of mak
the SU~2! invariance manifest from the outset~compare, e.g.,
with Ref. 14, in which the condensate always results in
moment in thex direction!.

Proceeding in our analysis, we assume condensation
at k50 andk5p. In order that the condensate give no co
tribution to the free energy, we require that

S Cp↑
C0↓*

D52XeigS cos 1
2 q

2sin 1
2 q

D ,

~11!

S 2Cp↓*
C0↑

D52YeidS cos 1
2 q

2sin 1
2 q

D ,

where

tan q5
JvAv

StvCv
, ~12!

and X, Y, g, and d are at this point arbitrary paramete
specifying the direction and magnitude of what is in gene
a canted~0,0,p! antiferromagnet.4 Equation~11! also is con-
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sistent with the free energy being a convex function of
order parameterCks . The condensate is then spatially var
ing, with

^bis&5C0s1Cpsei p•Ri. ~13!

The condensate contribution to the local magnetization^Si&
is easily computed andq is found to be the canting angle.

IV. MEAN-FIELD EQUATIONS

We now are in a position to write down the mean-fie
equations. We work in the grand canonical ensemble, in
ducing a chemical potentialm for the fermions. This intro-
duces a seventh parameter, and we obtain the follow
seven equations:

2S5E d3k

~2p!3

Lk

ALk
22Dk

2
cothS E~k!

2kBTD1R221,

Av

Jv
5E d3k

~2p!3

Av cos2 kz

ALk
22Dk

2
cothS E~k!

2kBTD
1

AvR2

A~JvAv!21~StvCv!2
,

Fh5E d3k

~2p!3

~coskx1cosky!Lk

2ALk
22Dk

2
cothS E~k!

2kBTD1R2,

Fv52E d3k

~2p!3

coskz

expS E~k!

kBT D21

1
StvCv

A~JvAv!21~StvCv!2
,

~14!

Ch5
1

2 E d3k

~2p!3

coskx1cosky

expS e~k!2m

kBT D11

,

Cv5E d3k

~2p!3

coskz

expS e~k!2m

kBT D11

,

x5E d3k

~2p!3

1

expS e~k!2m

kBT D11

,

where R5AX21Y2 is the condensate amplitude,x is the
hole concentration, and

e~k!52SthFh~coskx1cosky!2StvFvcoskz

is the fermion dispersion. The integrals are performed o
the first Brillouin zone of the cubic lattice. There are sev
mean-field equations corresponding to seven mean-field
rameters. The parameters are

T,Tc : Av ,Fh ,Fv ,Ch ,Cv ,m,R ~L5L* !,

T.Tc : Av ,Fh ,Fv ,Ch ,Cv ,m,L ~R50!.
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There are three ordered phases~i.e., with R.0) of inter-
est ~where LRO means long-range order!:

~I! antiferromagnet~LRO at p!: Fv5Cv50,

~II ! canted ~LRO at 0 andp!: Av ,Cv50,

~III ! Ferromagnet~LRO at 0!: Av50.

These phases were identified by de Gennes;4 we have also
found evidence of phase separation belowTc ~see also Refs
22 and 23!, as we shall describe below. The disorderedR
50) states may also be classified:

~IV ! 3d local magnetic order:FvÞ0,FhÞ0,

~V! 2d local magnetic order:Fv5Cv50,FhÞ0,

~VI ! pure local:Av5Fv5Fh5Cv5Ch50.

Phase IV describes a standard paramagnetic system. At
ficiently high temperatures~phases V and VI!, neighboring
spins become totally uncorrelated; this is an artifact of
mean-field theory. In what follows we describe our analyti
and numerical investigations of the phase diagram.

V. T50, S˜` LIMIT

Our mean-field equations simplify considerably in t
limit of zero temperature andS→`. We examine the three
ordered (L5L* , R.0) phases,

~I! Av5Fh52S, Fv5Cv50,

~II ! Fv5A4S22Av
25StvCv /Jv , Fv5Fh52S,

~III ! Av50.

The canted phase II can smoothly interpolate between thp
antiferromagnet I and the ferromagnet III, withq going from
1
2 p to 0. We start with the canted structure, solving t
mean-field equationFv52Cv /Jv . We do this in the regime
x!1 by expanding the fermion dispersion relation

e~k!5e~0!1StvFv~12coskz!1
1

2
SthFh~kx

21ky
2!1¯ ;

sinceFv50 is a possible solution, we keep the fullc-axis
dispersion. We find that the solution is characterized by
dimensionless parameterr[8pJvth /tv

2 . For r .1, the only
solution hasFv5Cv50, and we have antiferromagnetism
finite doping. However, experiments19 suggest Jv
'0.58 meV while spin-density functional calculations20 sug-
gest tv'44 meV ~the physical hopping parameter isS2t
'100 meV). This givesr'0.33, so ther .1 regime is un-
physical for La12xAxMnO3. The ground-state energy per si
is found to be

E~ I!

NS2 522Jh2Jv24thx12pthx21¯ . ~15!

For r ,1, we have a solution with nonzeroFv . We find
uf-

e
l

e

E~ II !

NS2 522Jh2Jv24thx12pg~r !thx21¯ ,

~16!

g~r !5
p2r 2pa sin2a

~sin a2a cosa!2 ,

wherea(r )P@0,p# is defined implicitly by the equation

a2sin a cosa5pr . ~17!

We obtainFv5xtv /Jv1O(x2) in this regime. Forr , 1
2 ,

g(r ),0 and the coefficient ofx2 is negative, indicating
phase separation. For1

2 ,r ,1, g(r ).0 and there is a homo
geneous, thermodynamically stable canted phase, origin
identified by de Gennes.4 Our estimater'0.33 suggests tha
phase separation is likely.

Within the canted phase, asx increases from 0 to12 , the
canting angle decreases fromq5 1

2 p ~p is long-range or-
dered LRO! to q50 ~0 is long-range ordered LRO!. The
transition from canted to ferromagnetic order is continuo
occurring at a critical concentrationx* determined by the
simultaneous solution of the two equations,

x* 5E d3k

~2p!3 Q„m2e~k!…,

2Jv

tv
5E d3k

~2p!3 coskzQ„m2e~k!…, ~18!

in the two variablesx* andm. For sufficiently largeJv , q is
nonzero even at half-filling and the system remains can
for all x.

It is interesting to note that the same regimes with
same critical values for the parameterr can be obtained by
minimizing the mean-field energy in the manner proposed
de Gennes.4 Phase separation was already implicit in the c
culations reported there.

VI. FINITE- T PHASES

To explore the finite-temperature phases of our model,
have solved the mean-field equations numerically using
MINPACK routineHYBRD.F. ~To simplify matters, we assume
Jv5Jh[J andtv5th[t.) We found that there is often mor
than one solution to the mean-field equations; in such ca
we computed the energy of each solution and identified
minimum total energy state. To compare with the analyti
results of the previous section, we computed the energy
sus concentrationx for three different values ofr , all at a
temperature well belowTc ~see Fig. 1!. This verified our
prediction of phase separation for 0,r , 1

2 .
In Figs. 2 and 3 we plot phase diagrams forJ/t50.01

(r 50.251) andJ/t50.03 (r 50.754), respectively. Region
are labeled I through VI corresponding to the six pha
discussed above~recall that a condensate is present only
phases I, II, and III!. We find that forJ/t50.01 all of region
II is unstable toward phase separation. ForJ/t50.03, we
found a first-order line separating phases I and II from
disordered phases. This is so even atx50; the mean-field
theory predicts a first-order transition from the~0,0,p! Néel
state to a magnetically disordered state. This is perhap
worrisome artifact of the mean-field theory. In addition, t
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transitions between the disordered phases may well bec
smooth crossovers when fluctuation effects are accou
for. Indeed, application of the Schwinger boson formalism
the Heisenberg model12 leads to a spurious high-temperatu
mean-field transition to a state in which the magnon ba

FIG. 1. Energy per siteE/N ~solid! versus concentrationx for
Jv5Jh[J, tv5th[t51 at temperatureT50.01t for three different
values ofr 58pJ/t: ~a! r 50.25, ~b! r 50.50, ~c! r 50.75. To as-
certain the sign of]2E/]x2, we have subtracted fromE/N the lin-
ear part; the dashed curve is the remaining contribution. Note
E(x) is convex for smallx in ~a! and~b!, indicative of phase sepa
ration.

FIG. 2. Phase diagram forJ/t50.01 (r 50.251) obtained from
numerical solution of the mean-field equations. The dark solid
separating phases II and IV is first order. All other transitions
second order. Dotted lines represent transitions between disord
states. Region II is phase separated.
me
ed
o

-

width vanishes, analogous to phase~VI !.
Sarker15 has discussed the behavior of the electron sp

tral function and found it to be entirely incoherent when t
core spins are disordered. Writing~at finite-temperatureT)

Gab
R ~k,t !52 i ^$cka~ t !,ckb

† ~0!%&Q~ t !,

Gab
R ~k,v!5E

2`

`

dv8
rab~k,v8!

v2v81 i01 ,

we find, at the mean-field level,

rab~k,v!5E d3q

~2p!3 @nab~q!1dab f ~k1q!#

3d„v1E~q!2e~k1q!1m…, ~19!

wherenab(q)5^bqa
† bqb& and f (p)5^cp

†cp& are equilibrium
averages. The contribution of the condensate to the spe
density results in well-defined quasiparticle peaks. For
stance,

r↑↑
cond~k,v!5Y2sin2~q/2!d„v1E~0!2e~k!1m…

1X2cos2~q/2!d~v1E~p!2e~p2k!1m…,

whereX, Y, andq describe the amplitude and orientation
the condensate@recall Eq.~11!#. The remaining contribution
to the spectral functionDr is incoherent and spectrall
broad.15 Our calculation allows for condensation both atk
50 as well as atk5p, and as expected there are two qu
siparticle peaks when translational symmetry is brok
~phase I!. A detailed study ofr~k,v! in the various ordered
and disordered phases is pending.

at

e
e
red

FIG. 3. Phase diagram forJ/t50.03 (r 50.754) obtained from
numerical solution of the mean-field equations. A small sliver of
p-ordered phase exists in the lower left corner. The dark solid
separating phases I and IV as well as II and IV is first order.
other transitions are second order. As in Fig. 2, dotted lines re
sent transitions between disordered states.
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VII. CONCLUSIONS

We have shown that the double-exchange model ha
variety of possible phase diagrams, controlled by the par
eter r[8pJvth /tv

2 . For realistic values ofr , 0.05<r<0.2,
we find a phase diagram similar to the one proposed by
Gennes,4 except that the canted phase is replaced by a re
of phase separation~note that this result can also be deriv
within the technique proposed there!. In addition, the transi-
tion to the paramagnetic phase may be of first order, and
paramagnetic phase itself is anisotropic. Forr . 1

2 , we find
that the canted phase is stable. The main source of un
tainty in the value ofr arises from the lack of a precis
determination of the hoppings, which may depend on
composition and details of the lattice structure.3 Perhaps both
situations may be realized experimentally.

Coulomb interactions will prevent charge separation
large scales. The electrostatic energy required to break
system into charged domains of sidel goes ase2x2/e l ,
wheree is the dielectric constant. The magnetic energy c
to create a domain wall of sizel is roughlyJv( l /a)2, where
a is the lattice spacing. Hence, the domain size,l goes as
a4/3(Jve/e2x2)1/3, which should be on the order of a fe
lattice constants.

Phase separation in these compounds has previous
discussed phenomenologically in Ref. 22, and in Ref. 23
the context of numerical results for the ferromagnetic Kon
lattice in one, two, and infinite dimensions. At large valu
d
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of the Hund’s-rule coupling, this model reduces to t
double-exchange model, plus antiferromagnetic interacti
between the core spins. In-plane ferromagnetic interacti
do not arise, as they are induced by the secondeg band. Our
results, forT50, are qualitatively in agreement with thos
reported in Ref. 23, provided that one identifies our can
phase with the incommensurate order reported there.

Our calculation reproduces the observed magnon sp
trum at zero doping,18 except for a small anisotropy gap. I
the canted phase, the long-wavelength spin waves behav
Av i(kx

21ky
2)1v'kz

2. In the phase-separated regime, loc
ized ferromagnetic and antiferromagnetic modes are
pected, which may have been observed experimentally.19

A detailed study of transport properties lies beyond
scope of the present calculation. It is interesting to no
however, that, in the presence of phase separation, hop
is suppressed in the out-of-plane direction in the antifer
magnetic domains. This effect can contribute to mak
these compounds insulating at low dopings, in agreem
with experiments.24,25
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