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Some aspects of the phase diagram of double-exchange systems
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The phase diagram of doped manganate compoungs,BaMnO; (with divalent A) with small x is
studied. We analyze an extension of the double-exchange model using the Schwinger boson formalism. Earlier
work by de Gennes on the existence of a canted phase is reproduced, although this phase is shown to be
unstable towards phase separation in a broad regime of physical interest. We numerically solve the mean-field
equations for our model and exhibit its phase diagrams.
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. INTRODUCTION the remaining fraction  x in 3d* (Mn®") states. In a cubic
) crystal field, the Mn 8 levels split into a lowett,, triplet
Doped manganese oxides show many unusual featurégng an uppee, doublet. Intra-atomi¢“Hund’s rules”) cou-
the most striking being the colossal magnetoresistance in thgings overwhelm the crystal-field splitting, hence

ferromagnetic phase? The phase diagram, as a function of |eyels are always triply occupied and formSs2 “core
doping and temperature, is far from elucidated. At small dOp'spin.” In Mn3* ions, thee, orbitals are further split by a

ings, many experiments are interpreted in terms of the phasgagic Jahn-TelleJT) distortion, which, together with the
diagram proposed by de Genrfesho studied the so-called  yng's rules, completely determines both the orbital as well
double-exchange mo&e_asc_ee below Some experiments in- 45 gpin state of the, electron. Thee, electrons may be
deed confirm the predictions derived from this appma“c_h-represented by spinless, single-orbital fermions whose hop-
Others, however, seem to imply a more compleox behaviorying is modulated by the overlap of the core-spin wave func-
o o e ramapion oonS: If e et the core spin on sising the Schinger
, - : _1 . = .

low dopings and low temperaturks. fepresentation, §= 2Dia0apbip (@B=1.1, Zabiobia

In the following, we will analyze the phase diagram of

these systems using the Schwinger boson represerifdiion éhat supply the core-spin orientatiomgTU:ciniU. The role

the magnetic moments, which are described by the doubl ) M .
exchange model. We neglect the role of lattice distortions?f the core-spin overlap to electron hopping in these materi-

which may be important at high dopings, where the Jahnf’llsl\ilS _W:]dbely_ appreciatec_lsee, €.g. Relfsa4,_13, 15, and)r;'LG
Teller distortion present in undoped systems disapp€ars. eighboring core spins are coupled via superexchange

H 2,17 —
The scheme that we use allows us to obtain a description ¢frough the O P orbitals™"" For pure LaMnQ (x=0), the

the spin waves. In more conventional systems, it has bee?faXiS exchange is antiferromagnetic while the exchange be-

shown that quantum and thermal fluctuations are adequatefyveen neighboring ions in a plane perpendiculac s fer-
described®in this approach. The method has already beefomagnetic. We have therefore chosen to study the model
used to study the quasiparticle coherence in the mangane8gfined by the Hamiltonign
oxides®® Finally, the czlculations reported here reproduce L
the work of de Gennésin the zero-temperature, large- _ + +
limit. The general features of the model are described in the H=- ES@%U Lti; i cjbiohj,+ H'C']_% 4ijS-§ @
next section. Sections Ill and IV adapt the Schwinger boson
method to the double-exchange model. The resultsTior for a cubic lattice of Mn ions, where the exchange=
=0 are presented in Sec. V, where the relation of our work-J, <0 along vertical links and;;=J,>0 along horizontal
to the original calculation by de Genfds discussed. Sec- links. The coexistence of in-plane ferromagnetic and out-of-
tion VI is devoted to finite-temperature results. Finally, Sec.plane antiferromagnetic interactions is due to the presence of
VII contains a discussion of experimental results and relatethe Jahn-Teller distortions, which modulate the possible tran-
theoretical work. sitions between filled and empgy orbitals!’ Experiments
suggest),~J,~0.58 meV'#!° The parameters; describe
II. MODEL the hopping betweery orbitals. Note that, when the core
' spin in neighboring sites is aligned, the effective hopping is
In materials such as La,A,MnO; (with A divalen), a  given by Sztij~100 meV, according to band-structure
fractionx of Mn ions are in 8% (Mn*") configurations, with  calculations’°

=29), then theey hole creation operatogfxit, may be fac-
tored into a spinless fermion and the Schwinger bosdn,,
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The model has the unphysical feature that the exchange C, on horizontal links
between core spins is fixed independent of the fermion oc- <ciTc,->=
cupancy and hence it cannot reflect the difference between
Mn3*-Mn3*, Mn®*"-Mn**, and Mrf*-Mn*" exchanggnote  Since the Hamiltonian does not involv,, there are at this
that Mrf*-Mn** exchange, appropriate to pure CaMp@  point six mean-field parameters.
always antiferromagneti. In addition, we assume a strong  The mean-field Hamiltonian, up to a constant, is then
static JT distortion that renders the conduction orbital nongiven by a sum of three terms:
degenerate, whereas in the real materials this distortion van-
ishes forx=0.2. Hme= Hhop+ Hswt Heonds

The model does capture what is perhaps the most impoxg;iip
tant aspect of the interaction between fermions and core
spins, namely, that ferromagnetic core-spin alignment leads S bt + S + +
to a larger fermion bandwidth and reduced kinetic energy. Hhop™ — Ethfh;) (cjcj+cjci)— S W Fu(CiC+ ¢ Ci)

(4)

C, on vertical links.

We aim to apply it in the smal- region of the phase dia- ! (5)

gram, where most of the links are between ¥rnons, so
that the drawback mentioned in the preceding paragrapﬁnd
should not change significantly the results. 1
This hopping Hamiltonian itself, in the absence of =AY bl b, + E(thh—s'fhch)z h(j:i’g+j:ij)
i (ij)

Heisenberg exchange terms, was considered by Shrker, io
who found a finite-temperature transition between a ferro- 1
magnetic metal and a spin-disordered state, presumably in- N T ) — U =3
g p , P y +5 2 U3, A AL+ A = SLC(FL + Fpl.

sulating, in which the fermion band is completely incoherent. (i)

(6)
Here,2h<ij> and XV, represent sums over horizontal and

of Eq. (1). We treat the spins using the Schwinger bosonPCccurs once, and vertical bondig) always have on even-
descriptionl_2 numbered planes arndon odd-numbered planes.

To the hopping and spin-wave Hamiltoniah&,,+ Hy
1 . ) 1 . ) we add a contribution from a fielB;, that couples linearly
S-§=i5 FyFiji—S =i Ay i+ S (2)  to the Schwinger boson field:

Ill. MEAN-FIELD THEORY

where Hoond= — VN (B,biy+ Biybfs), )
lo
" —h.bl +b: bl
Fij =bitby; i by, where N is the total number of lattice sites. The Fourier
(3 transform By, is a field that is conjugate to the Schwinger
Ajj=bi;bj —b; by, boson condensate order parameter:

and O: means normal ordering @. A Lagrange multiplier 1 1/ oF
A; is introduced at each site to enforce the local constraint W ,=—(bl y=—— <_> (8)
Eabfabiazzs. Expressed in terms of bosonic and fermionic VN N\ 7Bks
creation and annihilation operators, both the hopping an
superexchange terms i are quartic.

Following Sarker® we invoke a Hartree-Fock decoupling
of the hopping term,

%hereF is the free energy.
DiagonalizingHs,,, we find

Haw= 2 E(K) BBt 2 (VA= A=Ay
clciFj— —(cleW (A +cley( A +(cle) 7 ’

+ fluctuations —N; (B*_, BkL)Ml(k)<Bg:kT) )
dropping the fluctuations. The Heisenberg exchange is simi- . :
larly decoupled, as in Ref. 12. We assume the mean-fiel/ith 7#=(0,0.m),
solution is uniform: A= Q, A,
(A=A, M= Ay A+ Q)

and

Fn on horizontal links
(Fij)= F, on vertical links, A=A = (InFnt StCh)(cosk,+ cosky),
An on horizontal links A=~ JpA cosks,

<A”>:[AU on vertical links, Q.= —St,cosk,,
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E(k)5m+ Q. sistent with the free energy being a convex function of the
order parameteW¥ .. The condensate is then spatially vary-
When there is a condensat&<T.) the Bose spectrum is ing, with
gapless, withA=A*, where ,
<bi0>:q’00+\1’ﬂ'a’e|”'Ri- (13)
— 2 2
A* =2(InFint SHCh) +V(3,4,) + (SLC,)* The condensate contribution to the local magnetizati®i

The dispersion then may be compared inxhe0 limit with is easily computed and is found to be the canting angle.
the spin-wave result

IV. MEAN-FIELD EQUATIONS

SW( I\ — _ _ 2_ 12
E (k)_s\/[J“+Jh(2 cosky—cosk,)] Jvco§ Kz, We now are in a position to write down the mean-field

obtained by expanding about®0,r) Néel state(alternating ~ €duations. We work in the grand canonical ensemble, intro-
ferromagnetic plangsThe basic functional dependencelon ducing a chemical potential for the fermions. This intro-
is reproduced; this is a good preliminary check on the meanduces a seventh parameter, and we obtain the following

field ansatz. seven equations:
Note also the particle-hole symmetry present in our mean- 3
field theory. This guarantees at-1—Xx symmetry in the S= d°k Ay cotk( E(k) YR?-1
phase diagram. As mentioned above, exchange in pure (2m)3 \/Aﬁ—Aﬁ 2kgT '
CaMnQ; is different than in pure LaMng) due to the pres-
ence qf the sepond set of emmy states. Hence, this sym- A, dk A, cog k, E(k)
metry is an artifact of our model. 3= 53 s T
In deriving the mean-field equations for our model, we v (2m) \/Ak_Ak B
must also include the condensate. The relationship between 5
the field By, and the order parametdr, is + AR
VA% +(St,C,)?
( kI :M1(k)(B”*"T). (10)
vy Bk, d*k  (cosky+cosky) Ay E(k) )
itterentiati ot =) e 7 A2 2kgT) TR

Differentiating the condensate contribution to the free energy (2m) 2\/Ak—Ak B
with respect to a generic mean field parameteives

’ P d3k cosk, . St,C,

JF oM v V= )
LN N S AR A ”*”)- (2m* {E® V3, 4,)%+(S1,C,)?
713 K 7=k o0& K| ex T -1
B

Enacting a global S(2) rotationb;,—U /b, , it is easy (14)
to show that the free energy is invariant under such a trans- 1 &k cosk+cos K,

formation. This approach to Schwinger boson condensation == 5 ,
can also be applied to the cases of the uniform ferromagnet 2] (2m) e(k)—u ‘1
or antiferromagnet. It has the comforting feature of making kgT

the SU?2) invariance manifest from the outsebmpare, e.g.,

with Ref. 14, in which the condensate always results in a d3k cosk,
moment in thex direction. C= (2m)3 e(K)— ,
Proceeding in our analysis, we assume condensation only % T +1
B

atk=0 andk=r. In order that the condensate give no con-
tribution to the free energy, we require that

1
(\P”T)——Xeiy( cos; ¢

* .
0l —sin1 o

_f d3k 1
=) @ p(E(k)—M) ot
P kT

(11)  where R=X?+Y? is the condensate amplitude,is the

(_\P*l) _ ( cosi hole concentration, and
T=-Ye€?

Wo; —sinz 9/’ e(K) = — St,T(cosk, + cosk,) — St, F,cosk,
where is the fermion dispersion. The integrals are performed over
the first Brillouin zone of the cubic lattice. There are seven
A, mean-field equations corresponding to seven mean-field pa-
tan 9= StC,” (12 rameters. The parameters are

and X, Y, vy, and é are at this point arbitrary parameters T<T:: A,.Fn.F,.Ch.Cy o, R (A=A%),
specifying the direction and magnitude of what is in general
a canted0,0,m) antiferromagnet.Equation(11) also is con- T>T.: A, Fn,Fy ,Ch,Cyopt, A (R=0).
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There are three ordered phages., with R>0) of inter- Em ,
est(where LRO means long-range orjler NZ =23y 3, — At X+ 27g(r)tpx+---
(1) antiferromagnetLRO at w): F,=C,=0, m2r — ma Sirfa (16
(Il) canted(LRO at 0 and): A,,C,=0, (sina—a cosa)

wherea(r) €[0,7] is defined implicitly by the equation
(1) FerromagnetLRO at 0: .A4,=0.
) - a—Sina cosa=m7r. (17)
These phases were identified by de Gerfhe® have also _ . . .
found evidence of phase separation belbw(see also Refs. We obtain 7, =xt,/J,+O(x?) in this regime. Forr <3,

22 and 23, as we shall describe below. The disorder&d ( 9(r)<O0 and the coefficient ok’ is negative, indicating

=0) states may also be classified: phase separation. Fer<r<1,g(r)>0 and there is a homo-
geneous, thermodynamically stable canted phase, originally
(IV) 3d local magnetic ordetF,+ 0,F,+#0, identified by de GennesOur estimate ~0.33 suggests that
phase separation is likely.
(V) 2d local magnetic ordetF,=C,=0,F,#0, Within the canted phase, asincreases from 0 tg, the
canting angle decreases froth=3= (7 is long-range or-
(V1) pure local:A4,=F,=F,=C,=C,=0. dered LRO to 9=0 (0 is long-range ordered LROThe

) _ transition from canted to ferromagnetic order is continuous,
Phase IV describes a standard paramagnetic system. At Secyrring at a critical concentratiox* determined by the

ficiently high temperaturegphases V a.nd. VI neighboring simultaneous solution of the two equations,
spins become totally uncorrelated; this is an artifact of the

mean-field theory. In what follows we describe our analytical . d3k
and numerical investigations of the phase diagram. X =f 2n7 O (u—€(k)),

V. T=0,S—« LIMIT

t f IK cosk O (n—e(k) (18)
—=| ——5cosk,0(u——ek)),
Our mean-field equations simplify considerably in the t, (27) ‘
limit of zero teInperature anB—o. We examine the three i, the two variablex* andu. For sufficiently largel, ,  is
ordered A =A*, R>0) phases, nonzero even at half-filing and the system remains canted

for all x.
) A,=Fn=2S, F,=C,=0, It is interesting to note that the same regimes with the

same critical values for the parametecan be obtained by

() F,= V4SS~ AZ=St,C,1J,, F,=Fn=2S, minimizing the mean-field energy in the manner proposed by
de Genne&.Phase separation was already implicit in the cal-
(ny A,=o0. culations reported there.

The canted phase Il can smoothly interpolate betweenrthe
antiferromagnet | and the ferromagnet I, wihgoing from
zm to 0. We start with the canted structure, solving the To explore the finite-temperature phases of our model, we
mean-field equatiotF,=2C, /J, . We do this in the regime have solved the mean-field equations numerically using the
x<1 by expanding the fermion dispersion relation MINPACK routineHYBRD.F. (To simplify matters, we assumed
J,=Jy=J andt,=t,=t.) We found that there is often more
than one solution to the mean-field equations; in such cases
we computed the energy of each solution and identified the
) ) . . ) minimum total energy state. To compare with the analytical
since 7,=0 is a possible solution, we keep the felaxis  results of the previous section, we computed the energy ver-
dispersion. We find that the solution is characterized by th&ys concentration for three different values of, all at a
dimensionless parameter=8mJ,t,/t5. Forr>1, the only  temperature well belowl, (see Fig. 1 This verified our
solution hasF,=C,=0, and we have antiferromagnetism at prediction of phase separation for®<%.

finite doping. However, experiments suggest J, In Figs. 2 and 3 we plot phase diagrams ft=0.01
~0.58 meV while spin-density functional calculatiéhsug- (r=0.251) and)/t=0.03 ( =0.754), respectively. Regions
gestt,~44 meV (the physical hopping parameter &t  are labeled | through VI corresponding to the six phases
~100 meV). This gives~0.33, so the >1 regime is un-  discussed abovéecall that a condensate is present only in
physical for Lg _,A,MnOs. The ground-state energy per site phases |, Il, and I)l We find that forJ/t=0.01 all of region

is found to be Il is unstable toward phase separation. Bér=0.03, we
found a first-order line separating phases | and Il from the
disordered phases. This is so everxatO; the mean-field
theory predicts a first-order transition from t@&0,7) Neel

state to a magnetically disordered state. This is perhaps a
Forr<1, we have a solution with nonzerg, . We find worrisome artifact of the mean-field theory. In addition, the

VI. FINITE- T PHASES

(k)= €(0) + St,F,(1—cosk,) + % St Fn(K2+K2)+-+ ;

Eq) 2
W:_ZJh_‘]v_4thX+27ﬂ:hx Feee (15)
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FIG. 1. Energy per sit&/N (solid) versus concentratior for

) FIG. 3. Phase diagram fa't=0.03 (r=0.754) obtained from
J,=J,=J, t,=t,=t=1 at temperatur&=0.01t for three different

numerical solution of the mean-field equations. A small sliver of the

value_s or:r =$WJ/;2I(56;) r2=0.25r,](b) r=(;.50, (C()j :‘zr%/?NS r;l’ol_as- w-ordered phase exists in the lower left corner. The dark solid line
certain the sign o dgx%, we have subtracted 1ro the fin- separating phases | and IV as well as Il and IV is first order. All

ear p_art; the dashed Curve 1s the remaining c_ontnbutlon. Note tha<§ther transitions are second order. As in Fig. 2, dotted lines repre-
E(x) is convex for smalk in (a) and(b), indicative of phase sepa- sent transitions between disordered states.

ration.

N _ width vanishes, analogous to phas4).
transitions between the disordered phases may well become sarket® has discussed the behavior of the electron spec-

smooth crossovers when fluctuation effects are accountegy) function and found it to be entirely incoherent when the
for. Indeed, application of the Schwinger boson formalism tocore spins are disordered. Writirtgt finite-temperaturd)
the Heisenberg mod&lleads to a spurious high-temperature

mean-field transition to a state in which the magnon band- GRa(k,t)= —i<{l//ka(t),l//lﬁ(0)})(t),

PapK,@")

I/t = 0.01
T w—o' +i0"’

PRt

08 ——————

Gﬁﬁ(k,w):ﬁ do’

A"
we find, at the mean-field level,

d3q
pastko)= | ooty [+ 8,14 )]

X S(w+E(q)—e(k+q)+pu), (19

. wheren,z(q) =(b{ bqe) andf(p)=(clc,) are equilibrium
averages. The contribution of the condensate to the spectral
density results in well-defined quasiparticle peaks. For in-
stance,

temperature T/t

p$T K, ) = Y2Sir?(9/2) (e +E(0) — e(K) + )
+X2cog(912) 8(w+E(m)— e(r—K)+ w),

o=t . . v, whereX, Y, andd describe the amplitude and orientation of
0 0.1 . oz 03 the condensatgrecall Eq.(11)]. The remaining contribution
concentration x to the spectral functiomp is incoherent and spectrally
FIG. 2. Phase diagram fai't=0.01 (r =0.251) obtained from broad:> Our calculation allows for condensation bothlat

numerical solution of the mean-field equations. The dark solid line=0 as well as ak=, and as expected there are two qua-
separating phases Il and 1V is first order. All other transitions aresiparticle peaks when translational symmetry is broken
second order. Dotted lines represent transitions between disorderéphase ). A detailed study ofp(k,w) in the various ordered
states. Region Il is phase separated. and disordered phases is pending.
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VII. CONCLUSIONS of the Hund’'s-rule coupling, this model reduces to the
double-exchange model, plus antiferromagnetic interactions
etween the core spins. In-plane ferromagnetic interactions
o0 not arise, as they are induced by the seagnland. Our
results, forT=0, are qualitatively in agreement with those
?eported in Ref. 23, provided that one identifies our canted
Bhase with the incommensurate order reported there.

We have shown that the double-exchange model has
variety of possible phase diagrams, controlled by the paramy
eterr=87J,t,/t>. For realistic values of, 0.05<r<0.2,
we find a phase diagram similar to the one proposed by d
Genne$, except that the canted phase is replaced by a regio

Oftﬂhaf’ﬁ step?]ra}tm@mote that t(;utshre;ﬂtgg_rtj als?hbetden\_/ed Our calculation reproduces the observed magnon spec-
within the technique proposed thérén addition, the transi- trum at zero doping® except for a small anisotropy gap. In

tion to the pgramagne_tic phase may be_ of firstl order, _and thﬁ]e canted phase, the long-wavelength spin waves behave as
paramagnetic phase itself is anisotropic. For;, we find ?/U (K1 K2+ v, KZ. In the phase-separated regime, local-
that the canted phase is stable. The main source of uncer- "M"x " ™y L0z . . '

ized ferromagnetic and antiferromagnetic modes are ex-

tainty in the value ofr arises from the lack of a precise eoected which may have been observed experimerilly
determination of the hoppings, which may depend on th A detailed study of transport properties lies beyond the

composition and details of the lattice structdieerhaps both : o .
scope of the present calculation. It is interesting to note,

situations may be realized experimentally. thowever, that, in the presence of phase separation, hopping

Coulomb interactions will prevent charge separation al suppressed in the out-of-plane direction in the antiferro-
large scales. The electrostatic energy required to break tHg SUPP P

system into charged domains of sidlegoes ase®x%/el, magnetic domains. This effect can contribute to making

wheree is the dielectric constant. The magnetic energy cos%h.ese compounds insulating at low dopings, in agreement

; 4,25
to create a domain wall of sideis roughlyJ, (1/a)?, where with experiments:
a is the lattice spacing. Hence, the domain sizgoes as
a*3(J,e/e?x?)3, which should be on the order of a few
lattice constants. We are particularly grateful to J. M. D. Coey for educat-

Phase separation in these compounds has previous bemy us on many issues regarding manganates. We also thank
discussed phenomenologically in Ref. 22, and in Ref. 23, imA. Millis for useful comments. F.G. acknowledges the hos-
the context of numerical results for the ferromagnetic Kondaopitality of the University of California at San Diego, where
lattice in one, two, and infinite dimensions. At large valuesthis work was performed.
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