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Thermodynamics of quantum Heisenberg spin chains
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Thermodynamic properties of the quantum Heisenberg spin chainsS#ithi2, 1, and 3/2 are investigated
using the transfer-matrix renormalization-group method. The temperature dependence of the magnetization,
susceptibility, specific heat, spin-spin correlation length, and several other physical quantities in a zero or finite
applied field are calculated and compared. Our data agree well with the Bethe ansatz, exact diagonalization,
and quantum Monte Carlo results and provide further insight into the quantum effects in the antiferromagnetic
Heisenberg spin chainS0163-18208)00838-9

I. INTRODUCTION fully polarized at zero temperature. If we den®&éN,S) as
the lowest eigenvalue of aN-site Heisenberg chain with
There are a lot of quasi-one-dimensional compounddotal spinS at H=0, then it is straightforward to show that
whose behaviors can be adequately described within the.,=E(N,S;.0)—E(N,Shax—1)=4S independent oN. Be-
framework of interacting spin chains governed by thelow H.,, a canted Nel order, namely, a state which has both
Heisenberg model. Extensive studies on this model havéerromagnetic order along the axis and antiferromagnetic
shed light on the quantum nature of spin dynamics. In 1983prder in thexy plane, exists at sufficiently low temperature,
Haldane predicted that the one-dimensiofi&l) Heisenberg and the pitch vectofi.e., the value of the momenta at which
antiferromagnetic model with integer spin has an excitatiorthe static structure factor shows a pealkecreases continu-
gap and a finite correlation lengthSince then a great ously from to 0 with increasingH.
amount of experimental and theoretical effort has been made Integer spin chains can be described by the quantum non-
towards understanding the difference between half-integéinear o model. It is from the study of this model that
and integer spin chains. Haldane made the famous “Haldane conjecture.” The
In this paper we report results of a transfer-matrixground state of th®(3) o model has a finite excitation gap
renormalization-grolp* (TMRG) study for the thermody- and consequently a finite correlation length. The application
namics of quantum Heisenberg spin chains. We have calcwf a magnetic field causes a Zeeman splitting of the triplet
lated the magnetic susceptibility, specific heat, spin-spin corwith one member crossing the ground state at a critical field
relation length, and other experimentally relevant quantitiesH ., whose value is equal to the excitation gapWhenH
as functions of temperature and applied magnetic field foxxH,, the Haldane gap persists and the ground state is still
the S=1/2, 1, and 3/2 spin chains. a nondegenerate spin singlet state. WHep<H<H,,, the
The Heisenberg model is defined by the Hamiltonian  ground state has a nonzero magnetization with gapless exci-
tations. Thus acrodd;, an integer spin system undergoes a
commensurate to incommensurate transition. This is an in-
teresting feature which is absent in a half-odd-integer spin
system. Evidence for such transitions has been used to iden-
whereJ is the spin exchange constant alddis an applied tify the Haldane gap in NENFRef. 12 and other quasi-1D
magnetic field. In this paper we consider antiferromagnetic spin compound$® Just aboveH,;, the ground state can be
spin chains only. We use units in whidh=1. regarded as a Bose condensate of the low-energy boson.
The spin-1/2 Heisenberg model is integrable by Bethe anyarying the magnetic field is equivalent to varying the
satz. Many of its thermodynamic quantities, for example, theshemical potential for this boson and theniform) magne-

specific heat and the spin susceptibility, can be calculated byzation corresponds to the boson number.
solving the Bethe ansatz equations. The conformal field

theory is also very useful in analyzing the low-temperature

. H
H=2 h, h=3S:S.1-5(S:+S), @

low-field thermodynamic properties, since th§=1/2 . TMRG

Heisenberg model is equivalent to tke=1 Wess-Zumino- . . . .

Witten nonlinears- model In this section we briefly discuss the TMRG method. A
' nore detailed introduction to the method can be found in

Higher spin Heisenberg models are not at present am

nable to rigorous solution. The finite-temperature propertie .
of the model were studied mainly through transfer-métrix, The TMRG mlethqd sltarts bY rr]nahpplng alb qual?_ttém Sys-
quantum Monte Carl6;® and other approximate tem onto a 2D classical one with the Trotter-Suzuki decom-

method<0:11 position and represents the partition function as a trace of a
' power function of virtual transfer matriXy, :

efs. 3 and 4.

At zero field, the ground state ¢f is a spin singlet with
zero spin magnetization. At finite field, the magnetization of
the ground state becomes finite and increases with increasing Z=Tre A= Iim Tr TV?, 2)
H. There is a critical fieldH., beyond which all spins are M—o0
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whereM is the Trotter numberT, is defined by an inner c, n/ c. o, n’ o,
product of 2V local transfer matrices o ° ° °
1 2M 1 2M
<O'3, ...,0'3 |TM|O'1, ...,0'1 >
0 2k—-1_2k| 2k—1 2k 612 0, 0> S
:Ek kﬂlt(% 030y 03
{"'2} B ¢ | ¢
Xt( 2k 2k+l| 2k ik-%—l)’ Gi Ils Gf Gf Ile Gi
where FIG. 1. A pictorial representation of a superblock, which con-
sists of system and environment blocks connected by three added
t(ok, ok Y ofott = (= of"t o e M|k, — ok, ) spins to form a periodic chaimg andn, are indices for the system

) ) 2 . and environment blocks, respectively. Initially the system block
and 7= /M. |‘7 ) is an e'genStatke o5 anda is the cor- contains two spins and the environment block contains only one
responding eigenvalueS/|o})=o{|of). The superscripts spin. At each iteration the system and environment blocks are aug-
and subscripts iy, andt represent the spin positions in the mented by adding* to each of the blocks. The augmented system

Trotter and real space, respectively. n, is formed byn.®¢*, and the augmented environmemy is
T,\,I conserves the total spin in the Trotter space, i.e.formed byo'@n,.

3ok, ThusTy is block diagonal according to the value of

Ek0'|k-4 For theS=1/2 Heisenberg model, it was shown rig- our calculation. This configuration of superblock is different
orously that the maximum eigenstateTqj is nondegenerate from those used in Refs. 3 and 4. The advantage for forming
and in theZ,0*=0 subspace, irrespective of the signdf the superblock in such a way is that the transfer matgjxin

and the value oH.'® When S>1/2, we found numerically this case can always be factorized as a product of two sparse
that the maximum eigenvectors ®f, are also in thezkg:‘ matrices(which are block diagonal with respect tg and

=0 subblock. o3®n,, respectively. To treat these two sparse matrices
In the thermodynamic limit, the free energy per spin isinstead ofTy, itself allows us to save both computer memory
given by space and CPU time.

We compute the maximum eigenvall?lwe]ax andL the cor-
_ 1 1 responding right and left eigenvectdeg®) and(y"| of Ty
- _hll'inm N—ﬂln == 28 ,\/I||an N N nax, 3) using an implicitly restarted Arnoldi methdfl.This method
is more efficient than the power method which we used
where \nay is the maximum eigenvalue ofy . From the  before®* \;, can also be calculated from this method, but
derivatives ofF one can in principle calculate all thermody- their truncation errors are generally larger than those of
namic quantities. The internal energlyand the spin magne- \.x. Thus the correlation lengths determined from E¢gs.
tization M, could, for example, be calculated from the first and (5) are generally expected to be less accurate than the
derivative ofF with respect taH andT, respectively. How- free energy or other thermodynamic quantities.
ever, numerically it is better to calculaté and M, directly In the TMRG method, the density matrix for the aug-
from the eigenvectors ofy,.* The spin susceptibilityy =~ mented system or environment block is nonsymmetric,
=M, /dH and the specific he&=dU/JT can then be cal- which is different than in the zero-temperature density-
culated by numerical derivatives. The specific heat so detematrix renormalization-groufDMRG) method. Numerically
mined is generally found to be less accurate than, for exit is much more difficult to treat accurately a nonsymmetric
ample, the susceptibility data at I6v The reason for this is matrix than a symmetric one because the errofg/if) and
thatU changes very slowly witfl (or equivalentlyC is very (| may affect thelsem) positiveness of the density matrix
smal) at low T, and a small error ilJ would lead to a and increase the truncation error of the TMRG.

relatively large error irC. The TMRG treats directly an infinity spin chain. There is
The correlation length of the spin-spin correlation func-therefore no finite size effect. The error caused by the finite-
tions, defined by, '=—lim__.. I(S ,S.:L.), can also be ness of the Trotter numbeor 7) is of order 7?2, which is
calculated from this method. The longitudinal and transversgenerally very small. The error resulting from the truncation
correlation lengths are determined by of basis states is difficult to estimate. A rough estimation for
this type of error can be obtained from the value of trunca-
1 im | A max tion error, which is smaller than 16 in all our calculations.
& "2 M'Tw : Ny ) More accurate results can be obtained simply by extrapolat-

ing the results with respect to bothand the numbem of
states retained.

5

Ill. RESULTS
wherel, is the second largest eigenvalueTgj in the sub-
spaceEkaL=Q and\ ; is the largest eigenvalue af, in the A. S=112
subspace€, oy = = 1. The S=1/2 Heisenberg model is by far the best under-
Figure 1 shows the configuration of superblock used irstood spin system. In the absence of field, the ground state is
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FIG. 2. (a) Free energyF(T), (b) internal energyU(T), (c)
ratio between the magnetizatiov,(T) and the fieldH, (d) spin
susceptibility x(T), (e) specific heatC(T), and (f) C(T)/T, per
lattice site, for the spin-1/2 Heisenberg model in four applied fields, FIG. 3. (a) 1/, and (b) &, vs T for the spin-1/2 Heisenberg
H=0 (or 0.09, 1, 2, and 2.5. WhenH=2,T*>((T) and  models.r=0.1 andm=81 are used in the TMRG calculations. The

2C(T)/T*2 instead ofy(T) andC(T)/T, are shown ir(d) and(f),  circles (Ref. 23 and squaregRef. 24 are thermal Bethe ansatz
respectivelyr=0.1 andm=_81 are used in the TMRG calculations. results.

T

massless and the Bethe ansatz result for the ground staQe66k’ resalectivily._rln'alll th? gelqts V;'hiCh W? StUdiﬁ.d’hthe
energy is (1/4In 2). The lowest excitations states are spingﬁg tﬁosééo?hg X((aa?( Itzn?cgrgt rae (%T?/rprp?rrﬁ'gr‘z é’jvécto IS
triplets with a spin wave spectrd (k)= (7/2)|sink. ut twi pe peratu - LIS IS Cue

: o ; the fact thaty(T) is a measure of two-particle excitations
Above this lower boundary of excitations, there is a two-

) . o : and C(T)/T is only a measure of one-particle density of
parameter continuum of spin wave excitations with an uppe

X . Ktates. The maximum of when H=0 is approximately
boundary given b (k) = m|sin(/2)|. There are other ex- equal to 0.147 al=0.64, consistent with the Bethe ansatz
citations above this upper boundary.

g : calculation??
The specific heat of the model was first calculated nu-  Tphere is a significant change in the temperature depen-

merically by Bonner and Fishé?. They found that at low  gences ofy andC whenH is below and above a critical field
temperatur€€~0.7T whenH=0. Later, Affleck;”usingthe _,=2 BelowH,,, bothC/T and y are finite at zero tem-

conformal field theory, found thal=(2/3)T. The zero-field  perature, which shows that gapless spin excitations with a
zero-temperature magnetic susceptibility is=1/7*. This finite low-energy density of states exist in this regime. When
result was obtained by Griffiths with the Bethe ansatz andy—p_, poth y andC/T vary as 14T at low temperature;
numerics’ Recently, Eggert, Affleck, and Takaha%zi"n the extrapolated values afTy andC/\/T at zero tempera-
found that the zero-field susceptibility approaches its zerog, e are 0.152 and 0.22, respectively. The divergency of
temperature value logarithmically whan<0.01, and C/T at T=0 implies that the density of states of spin
. excitations is divergent at zero energy whérs H.,. Above
oI E) } ©6) H.,, there is a gap in the excitation spectrum as bptnd
T ' C/T drop to zero exponentially at low temperatures. The
value of the gap estimated from the low-temperature behav-
wherev = (7/2) is the spin wave velocity antl,~7.7. ior of y andC grows linearly withH—H.,.

Figure 2 shows the TMRG results for a number of ther-  Figure 3 shows the longitudinal and transverse correlation
modynamic quantities of theS=1/2 antiferromagnetic |engths of theS=1/2 model in different applied fields. When
Heisenberg model in various magnetic fields wits=81 and H =0, &,=¢, diverges at zero temperature and the slope of
7=0.1. At zero field, the TMRG reproduces accurately theg;l at low temperature is approximately equal to 2, in agree-
results which were previously obtained by the Bethe ansatgment with the thermal Bethe ansatz as well as khel
or conformal field theory. The extrapolated zero-field zero\yzW o model resuf®
temperature values of the internal enetdfT) (i.e., ground .
state energy the spin susceptibilityy(T), and the linear glzT[Z—(ln E) } @
coefficient of the specific he&(T), are—0.443, 0.109, and z '

1+

3 1
X_27TU
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In the presence of magnetic field, is substantially sup- -1 0 ®
pressed and becomes finite at zero temperature. As the cor
relation length is inversely proportional to the energy gap of
excitations, the finiteness @f, at T=0 means that the lon-
gitudinal spin excitation modes are massive in a field. There
is a small dip in the curve of, at T~0.4 whenH=0.2 or at
T~0.6 whenH=1. This dip feature ot,, as will be shown
later, appears also in largg@systems.

The effect of the applied field on the transverse spin ex-
citation modes is weaker than the longitudinal modes. The
transverse spin excitations become massive only wHen %
>H.,. BelowH,,, & drops to zero linearly witi, as for
the caseH=0. WhenH=H,,, & drops to zero as/T.
Clearly the thermodynamics of the Heisenberg model in a
field is mainly determined by the transverse excitation modes
at low temperatures.

A simple understanding of the above results can be ob-
tained from an equivalent spinless fermion model of &e
=1/2 Heisenberg model:

-3

KT)
U(T)
v

0D

M.

)
C(T)/T

1 t t
- E(Ci+1ci+ci Ci+1)+(H—-1)c/c;

1 FIG. 4. Thermodynamic quantities for the spin-1 Heisenberg
+ ( ——H|+clcicl, 1644, (8)  model in five applied fieldsH=0 (or 0.09, 0.4105, 2, 4, and 4.5.
4 WhenH=0 and 0.4105F(T) andU(T) are almost indistinguish-

wherec; is a spinless fermion operator which is linked to the able in the figure. Whehi =0.4105 or 4T*2(T) and Z5(T)/T*?
S=1/2 spin operator by the Jordan-Wigner transformatior(dotted lines are shown in(d) and (f), respectively.7=0.1 andm
ci=S’ exp(nS-ic'c). The magnetic field is equivalent to a ~ 100 are used in the TMRG calculations.

chemical potential for the fermions. Whéh= 0, the ground

state has zero uniform magnetization, corresponding to a hafifound state is a massive spin singlet; abbyg, the ground
filed fermion band. AsH increases, the ground state is fer- state becomes a fully polarized ferromagnetic state; between

romagnetically polarized and the Fermi energy shifts downc1 @dHe,, the ground state is massless and has a finite

When H is smaller than the critical fieltH.,, the ground magnetization. The temperature dependence of thermody-

state of this fermion model has no gap but the spin oriental@Mic quantities of th&=1 model below, above, an@p-

tion is canted, i.e., in an incommensurate state. The pitcR"oximately at these critical fields is shown in Fig. 4.
angle of this incommensurate ground state, namely, the wave At zero field bothy(T) andC(T) drop exponentially with
vector at which the maximum of the spin-spin correlationdecreasingdl at low temperatures due to the opening of the

function appears, can be estimated from the Fermi momer{ialdane gap. In this case the ground state energy exirapo-

tum of noninteracting fermions askp=[1—2M(H)]. lated frqm the internal energy(T) is —1.4015, in agree-
This value ofke is not normalized by interactions according Ment with the zero-temperature DMRG restilThe ground
to the Luttinger theorem. state excitation gap can be determined from the tempera-

AboveH,,, there are no fermions at the ground state. AtlUre dependence gfandC at low temperatures. If we adapt

low temperature, the number of fermions excited from thethe ansatz that threﬁelovv-lying excitation spectrum has ap-
ground state is small. Thus, as a good approximation, thBroximately the for

interaction term in Eq(8) can be ignored at low tempera- )
tures. For the noninteracting system, the energy dispersion of e(K)=A+ U_(k_ )24 0([k—7[3) 9)
fermion excitations from the ground state is given by 2A ’

=H—(1+cosk), which has a gap oH—H,. WhenH

=H,,, e,=(1—cosk), the density of states of excited fer-
mions varies as 1/ at low energy. From the standard
theory of noninteracting fermions, it is straightforward to

wherev is the spin wave velocity, it is then straightforward
to show that, whenT<A, the spin susceptibility and the
specific heat are

show that this singular density of states will cause hptind
C/T to diverge as NT at low temperature. WherH X(T)%l \ /2A e AT (10)
>H_.,, there is a gap in the fermion excitations, and bgth v mT ’
and C should decrease exponentially at low temperature.
These results are just what we found in Fig. 2. 3A [A)\32
C(T)~ (—) e 4T, (12)
B.S=1 N2\ T

As mentioned previously, there are two critical fields inirrespective of the statistics of the excitations. Taking the
the spin-1 Heisenberg modéd,; andH,: belowH.,, the ratio betweeny(T) andC(T) gives
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FIG. 5. [2TC(T)/3x(T)]¥? vs T for the S=1 Heisenberg
model. (mn=100 andr=0.1.)

Al [2TC(T)
N BT

T—0

(12

This is a very useful equation for determinidg especially
from the point of view of experiments, since boffT) and
C(T) are experimentally measurable quantities.

Figure 5 showsy2TC(T)/3x(T) as a function ofT for

the S=1 Heisenberg model at zero field. By extrapolation,
we find thatA ~0.41 in agreement with the zero-temperature

DMRG (Ref. 27 and exact diagonalizatiéhresults. Given
A, the value ofv can be found from Eq(10) in the limit T

—0. The value ofv we found is~2.45, consistent with

other numerical calculatiorf§.
At the two critical fields,H.;~0.4105 andH.,=4, both
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1,

1,

H=0

0 0.5 1
T

FIG. 6. (@ &' and (b) &, vs T for the spin-1 Heisenberg
models.&, *(H=0) andé&, }(H=0.4105) are almost indistinguish-
able whenT>0.6. 7=0.1 andm= 100 are used in the TMRG cal-
culations.

x(T) andC(T)/T diverge asT~*? at low temperatures. This __ N .
divergence, as for th8=1/2 case, is due to the square-rootT Y*Cly_o is .d'ﬁ'CU|t to determine accurately from the
divergence of the density of states of the low-lying excita-' MRG result since the error &Z(T) at low temperature is
tions. AtH.,, one branch of thé&=1 excitations becomes larger thanC(T) |tsellf. . o
massless and the low-energy excitation spectrum is approxi- Figure 6 shows, = and&; * of the S=1 model in differ-

mately given by

2

U
s(k)~ﬂ(k— )2 (13

If we assume that these excitations are fermionlike, i.e., sa
isfy the Fermi statisticga short-range interacting Bose sys-

tem is equivalent to a system of free fermignghen it is
simple to show that whem<A

- 1 2A
X( )N% \/7,

(14
1
C(T)% % V2AT. (15)
Thus in the limitT—0,
V2A
1/2 _ .
TX(T) 370 0.4, (16)
V2A
T Y2C(T)= 55 06 (17

By extrapolation, the TMRG result give32y|r_ o
~0.45, which is close to that given by Ed.6). The value of

ent applied fields. Because of the Haldane gap, the longitu-
dinal correlation length is finite even at zero field. Thus the
longitudinal excitation mode is always full of gaps. Above
H.; but belowH.,, the transverse correlation length di-
verges at zero temperature. Thus the transverse mode is
massless in this field regime. We note, however, m’eﬂt at
H=0 (similarly 5;1 at H=0.4105) does not decrease
monotonically at low temperatures, actually it starts to rise
below a temperaturd™*. This nonmonotonic behavior of
&1 at H=0 seems only due to the truncation error. Our
preliminary calculation shows thaf* decreases with in-
creasingm. But by far we still do not know ifT* is zero in

the limit m—oco. Further investigation of the low-temperature
behavior of¢ is needed. If we do an extrapolation using the
TMRG data ofé, ! aboveT*, we find that£,(T=0)~6.0,
which is consistent with the zero-temperature DMRG
result?® If, however, the TMRG data belo@* are also in-
cluded in the extrapolation, we find th&(T=0) is only
~4.4.

WhenH>H,,, gz‘l drops rather sharply at some tem-
peratures. These sharp drop.@.ggf1 happen when the second
and third eigenvalues of the transfer matrix wio*=0
cross each other. The physical consequence of these sudden
changes in the longitudinal correlation length is still un-
known.
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FIG. 7. Thermodynamic quantities for the spin-3/2 Heisenberg 0.01 0.1 ) 1 10
model in four applied fieldsiH=0 (or 0.05, 3, 6, and 6.5. When T /ISl
H=6, T¥%(T) and Z(T)/T*? (dotted line$ are shown ind) and . - o )
(f), respectively.r=0.075 andm=81 are used in the TMRG cal- FIG. 8. The zero-field specific heat and susceptibilityTvES|
culations. for the S=1/2, 1, and 3/2 spin chairj$S?=S(S+1)]. The corre-
sponding results for the classical Heisenberg mofiglF&1) are
C.S=3/2 also shown for comparison.

The thermodynamic behaviors of tise=3/2 Heisenberg b delc(T) d ish Thi
model, as shown in Fig. 7, are similar to those of e erg model C(T) does not vanish at zero temperature. This

~1/2 model. WherH<H_,=6, y is always finite at zero IS n unrealistic feature of this modgl.

temperature, indicating that the ground state is massless;

aboveH,, the ground state is fully ferromagnetically polar- D. Zero- N

ized and a gap is open in the excitation spectrumid gt, - Zero-temperature magnetization

both x(T) andC/T diverge asT~*2 At zero field, the sus- Figure 9 showdM,(T=0), extrapolated from the finite-
ceptibility data, extrapolated to zero temperature, givesemperature TMRG data df1,(T), for the S=1/2, 1, and
x(0)~0.67, consistent  with recent  numerical 3/2 systems. For comparison the Bethe ansatz fésaitthe

calculation$!! S=1/2 Heisenberg model is also shown in the figure. With
The crossover from quantum to classical behavior can be

clearly seer(Fig. 8 by comparing the zero-field susceptibil-

ity and specific heat of th&=1/2, 1, and 3/2 spin chains 1t
with the corresponding results of the classical Heisenberg
spin chain®?
[>]
e & 17 T—coth=—T, (18 <
X( )—ﬁm, u(T)=cot 7T (18) < 05|
C(m=1 ! (19
T2sint?(1/T) 0 e ‘ .
. 0 05 1
At high temperaturesT/S(S+1)>1, the quantum results H/H
C

approach asymptotically the classical ones. The agreement
between the quantum and classical results persists down t0 g, 9. Normalized zero-temperature magnetizatidn as a
progressively lower temperatures@mcreases. At low tem-  fynction of H/H,,. The TMRG results foiS= 1/2 (circles, S=1
peratures, however, the difference between the results of thgolid line), andS=23/2 (dashed lingare obtained by extrapolation
S=3/2 system and those of the classical model is still veryfrom the lowT values ofM, with (m,7)=(81,0.1), (81, 0.1, and
large, indicating the importance of the quantum effects in th&60, 0.75, respectively. Dotted line is the Bethe ansatz result for the
study of quantum spin chaindNote for the classical Heisen- S=1/2 system(Ref. 2.
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increasingS, we found thatM, tends to approach its classi-

cal limit (S—») whereM, increases linearly witH, i.e., 1000
M,/S=H/H,.
For theS= 1/2 system, the TMRG result agrees well with 100 r
the Bethe ansatz one. A least squares fit to the curwd of =
up to the fourth order term offH.,—H gives M=M, =% 10}
—a; VHe, — H + a5 (Hep—H) —ag(He, — H)*?+ a4 (He,
—H)?, with a;~0.448,a,~0.123,a,=0.05, and a, 1r
=0.007 44.a, agrees very accurately with the exact value
v2/ . In the weak-field limit, the asymptotic behavior Ndf, 0.1t . . .
i 0.0 0.1 1 10
T/S(S+1)
M.~ i (1_ 1 ) (20) FIG. 10. The staggered susceptibilipg(T) at zero field. The
z 2 2In(H/Hg,) )’ parameters used for th8=1/2, 1, and 3/2 chains areH({,r,m)
=(0.0001, 0.1, 140)(0.0001, 0.05, 100 and(0.0001, 0.025, 81
as predicted by the Bethe ansatz thedr respectively.
For the S=1 model,M,(T=0) becomes finite whehi
>H.;. In a very narrow regime of field nead ,, M,(0) D T
varies approximately as’H—H,;, in agreement with the Xs:% In 7)( (23

prediction of the Bose condensation thebhBut the differ-

ence between the result of the Bose condensation theory according to a scaling argumefitOur TMRG result agrees

well with this equation at low temperatures. By plotting

M,(T=0)~ V2(H—Hc)A 1) (Txs)? against InT, we find thatD ,~0.30 andT,~10.5, in
z ) agreement with a Monte Carlo calculatidn.

o For theS=1 model, x; is finite at zero temperature. The
and that of the TMRG becomes already significant when  extrapolated zero-temperature value pf for the S=1

—He=0.04. ) ) model is 18.55, in agreement with other numerical
NearH.,, M, approaches its saturation valie.=Sas a  g|culations3®

function of VyH.,—H for the three spin systems we study.

For theS=1/2 and 1 systems, the TMRG results agree very

accurately with the Bethe ansatz re$uft IV. CONCLUSION

In conclusion, the temperature dependence of the suscep-
&_1_1 1_1 22) tibility, specific heat, and several other quantities of the
S 7S Heo quantum Heisenberg spin chains with spin ranging from 1/2
to 3/2 in a finite or zero applied magnetic field are studied
For theS=3/2 system, the asymptotic regimetéfis very ~ using the TMRG method. At high temperatures, the quantum
narrow, and we cannot do a detailed comparison between tHesults for the specific heat as well as other thermodynamic
TMRG result and Eq(22). The magnetization curve does quantities approach asymptotically the classical ones for both
not show a plateau av,=1/2, in agreement with other the integer and half-integer spin systems. At low tempera-
studies®® tures, however, the quantum effect is strong and the integer
spin chains behave very differently than the half-integer spin
chains. For thes=1 model, bothy and C decay exponen-
tially at low temperatures due to the opening of the Haldane
To calculate the staggered susceptibility, we add a staggap. For theS=1/2 and 3/2 spin chains, there is no gap in
gered magnetic fieltti; to the HamiltoniarH. The staggered the excitation spectrum and boghandC/T are finite at zero
magnetization is then calculated in a way similar to the caltemperature. The thermodynamics of the Heisenberg spin
culation of the uniform magnetization. The staggered suscepshains in an applied field is mainly determined by the trans-
tibility x is obtained by differentiating the staggered mag-verse excitation modes. At low temperaturgs,C/T, and
netization with respect tdHs. For half-odd-integer spin the transverse correlation lenggh diverge asT Y2 atH,,
chains y, diverges asT ~! at low temperatures. Thus the for the S=1/2 and 3/2 models and at bokh,; andH, for
staggered magnetization becomes saturated at low tempettite S=1 model. This square-root divergence indicates that
tures whenys(T)H;>S, since the maximum value of the the low-energy spin excitations have a square-root divergent
staggered magnetization per spin9s This means that to density of states at these critical fields. Our data agree well
estimate accurately the zero-field staggered susceptibility theith the Bethe ansatz, quantum Monte Carlo, and other ana-
staggered field used should satisfy the conditibly  lytic or numerical results.
<S/xs(Tmin), WhereT i, is the lowest temperature to study.
Figure 10 shows the temperature dependenogg, fdr the
S=1/2, 1, and 3/2 spin chains. At low temperaturgs for
the S=1/2 model is expected to have the following | would like to thank R. J. Bursill, G. A. Gehring, S. J.
asymptotic form Qin, and X. Wang for stimulating discussions.

E. Staggered susceptibility
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