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Thermodynamics of quantum Heisenberg spin chains
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and Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China
~Received 23 April 1998!

Thermodynamic properties of the quantum Heisenberg spin chains withS51/2, 1, and 3/2 are investigated
using the transfer-matrix renormalization-group method. The temperature dependence of the magnetization,
susceptibility, specific heat, spin-spin correlation length, and several other physical quantities in a zero or finite
applied field are calculated and compared. Our data agree well with the Bethe ansatz, exact diagonalization,
and quantum Monte Carlo results and provide further insight into the quantum effects in the antiferromagnetic
Heisenberg spin chains.@S0163-1829~98!00838-8#
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I. INTRODUCTION

There are a lot of quasi-one-dimensional compou
whose behaviors can be adequately described within
framework of interacting spin chains governed by t
Heisenberg model. Extensive studies on this model h
shed light on the quantum nature of spin dynamics. In 19
Haldane predicted that the one-dimensional~1D! Heisenberg
antiferromagnetic model with integer spin has an excitat
gap and a finite correlation length.1 Since then a grea
amount of experimental and theoretical effort has been m
towards understanding the difference between half-inte
and integer spin chains.

In this paper we report results of a transfer-mat
renormalization-group2–4 ~TMRG! study for the thermody-
namics of quantum Heisenberg spin chains. We have ca
lated the magnetic susceptibility, specific heat, spin-spin c
relation length, and other experimentally relevant quanti
as functions of temperature and applied magnetic field
the S51/2, 1, and 3/2 spin chains.

The Heisenberg model is defined by the Hamiltonian

Ĥ5(
i

N

hi , hi5JSi•Si 112
H

2
~Siz1Si 11z!, ~1!

whereJ is the spin exchange constant andH is an applied
magnetic field.5 In this paper we consider antiferromagne
spin chains only. We use units in whichJ51.

The spin-1/2 Heisenberg model is integrable by Bethe
satz. Many of its thermodynamic quantities, for example,
specific heat and the spin susceptibility, can be calculated
solving the Bethe ansatz equations. The conformal fi
theory is also very useful in analyzing the low-temperat
low-field thermodynamic properties, since theS51/2
Heisenberg model is equivalent to thek51 Wess-Zumino-
Witten nonlinears model.

Higher spin Heisenberg models are not at present a
nable to rigorous solution. The finite-temperature proper
of the model were studied mainly through transfer-matri6

quantum Monte Carlo,7–9 and other approximate
methods.10,11

At zero field, the ground state ofĤ is a spin singlet with
zero spin magnetization. At finite field, the magnetization
the ground state becomes finite and increases with increa
H. There is a critical fieldHc2 beyond which all spins are
PRB 580163-1829/98/58~14!/9142~8!/$15.00
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fully polarized at zero temperature. If we denoteE(N,S) as
the lowest eigenvalue of anN-site Heisenberg chain with
total spinS at H50, then it is straightforward to show tha
Hc25E(N,Smax)2E(N,Smax21)54S, independent ofN. Be-
low Hc2 , a canted Ne´el order, namely, a state which has bo
ferromagnetic order along thez axis and antiferromagnetic
order in thexy plane, exists at sufficiently low temperatur
and the pitch vector~i.e., the value of the momenta at whic
the static structure factor shows a peak! decreases continu
ously fromp to 0 with increasingH.

Integer spin chains can be described by the quantum n
linear s model. It is from the study of this model tha
Haldane made the famous ‘‘Haldane conjecture.’’ T
ground state of theO(3) s model has a finite excitation ga
and consequently a finite correlation length. The applicat
of a magnetic field causes a Zeeman splitting of the trip
with one member crossing the ground state at a critical fi
Hc1 whose value is equal to the excitation gapD. WhenH
,Hc1 , the Haldane gap persists and the ground state is
a nondegenerate spin singlet state. WhenHc1,H,Hc2 , the
ground state has a nonzero magnetization with gapless e
tations. Thus acrossHc1 , an integer spin system undergoes
commensurate to incommensurate transition. This is an
teresting feature which is absent in a half-odd-integer s
system. Evidence for such transitions has been used to i
tify the Haldane gap in NENP~Ref. 12! and other quasi-1D
spin compounds.13 Just aboveHc1 , the ground state can b
regarded as a Bose condensate of the low-energy bo
Varying the magnetic field is equivalent to varying th
chemical potential for this boson and the~uniform! magne-
tization corresponds to the boson number.14

II. TMRG

In this section we briefly discuss the TMRG method.
more detailed introduction to the method can be found
Refs. 3 and 4.

The TMRG method starts by mapping a 1D quantum s
tem onto a 2D classical one with the Trotter-Suzuki deco
position and represents the partition function as a trace
power function of virtual transfer matrixTM :

Z5Tr e2bH5 lim
M→`

Tr TM
N/2 , ~2!
9142 © 1998 The American Physical Society
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PRB 58 9143THERMODYNAMICS OF QUANTUM HEISENBERG SPIN CHAINS
whereM is the Trotter number.TM is defined by an inner
product of 2M local transfer matrices

^s3
1 , . . . ,s3

2MuTMus1
1 , . . . ,s1

2M&

5 (
$s2

k%
)
k51

M

t~s3
2k21s3

2kus2
2k21s2

2k!

3t~s2
2ks2

2k11us1
2ks1

2k11!,

where

t~s i 11
k s i 11

k11us i
ks i

k11!5^2s i
k11 ,s i 11

k11ue2thius i
k ,2s i 11

k &

andt5b/M . us i
k& is an eigenstate ofSi

z ands i
k is the cor-

responding eigenvalue:Si
zus i

k&5s i
kus i

k&. The superscripts
and subscripts inTM andt represent the spin positions in th
Trotter and real space, respectively.

TM conserves the total spin in the Trotter space, i
(ks i

k . ThusTM is block diagonal according to the value
(ks i

k .4 For theS51/2 Heisenberg model, it was shown rig
orously that the maximum eigenstate ofTM is nondegenerate
and in the(ks i

k50 subspace, irrespective of the sign ofJ
and the value ofH.15 When S.1/2, we found numerically
that the maximum eigenvectors ofTM are also in the(ks i

k

50 subblock.
In the thermodynamic limit, the free energy per spin

given by

F52 lim
N→`

1

Nb
ln Z52

1

2b
lim

M→`

ln lmax, ~3!

where lmax is the maximum eigenvalue ofTM . From the
derivatives ofF one can in principle calculate all thermod
namic quantities. The internal energyU and the spin magne
tization Mz could, for example, be calculated from the fir
derivative ofF with respect toH andT, respectively. How-
ever, numerically it is better to calculateU andMz directly
from the eigenvectors ofTM .4 The spin susceptibilityx
5]Mz /]H and the specific heatC5]U/]T can then be cal-
culated by numerical derivatives. The specific heat so de
mined is generally found to be less accurate than, for
ample, the susceptibility data at lowT. The reason for this is
thatU changes very slowly withT ~or equivalentlyC is very
small! at low T, and a small error inU would lead to a
relatively large error inC.

The correlation length of the spin-spin correlation fun
tions, defined byja

2152 limL→` ln^Si,aSi1L,a&, can also be
calculated from this method. The longitudinal and transve
correlation lengths are determined by

jz
215

1

2
lim

M→`

ln
lmax

l2
, ~4!

jx
215

1

2
lim

M→`

ln
lmax

l1
, ~5!

wherel2 is the second largest eigenvalue ofTM in the sub-
space(ksk

i 50 andl1 is the largest eigenvalue ofTM in the
subspace(ksk

i 561.
Figure 1 shows the configuration of superblock used
.,
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-
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our calculation. This configuration of superblock is differe
from those used in Refs. 3 and 4. The advantage for form
the superblock in such a way is that the transfer matrixTM in
this case can always be factorized as a product of two sp
matrices~which are block diagonal with respect tons and
s3^ ne , respectively!. To treat these two sparse matric
instead ofTM itself allows us to save both computer memo
space and CPU time.

We compute the maximum eigenvaluelmax and the cor-
responding right and left eigenvectorsuc R& and^c Lu of TM
using an implicitly restarted Arnoldi method.16 This method
is more efficient than the power method which we us
before.3,4 l1,2 can also be calculated from this method, b
their truncation errors are generally larger than those
lmax. Thus the correlation lengths determined from Eqs.~4!
and ~5! are generally expected to be less accurate than
free energy or other thermodynamic quantities.

In the TMRG method, the density matrix for the au
mented system or environment block is nonsymmet
which is different than in the zero-temperature densi
matrix renormalization-group~DMRG! method. Numerically
it is much more difficult to treat accurately a nonsymmet
matrix than a symmetric one because the errors inuc R& and
^c Lu may affect the~semi! positiveness of the density matri
and increase the truncation error of the TMRG.

The TMRG treats directly an infinity spin chain. There
therefore no finite size effect. The error caused by the fin
ness of the Trotter number~or t! is of ordert 2, which is
generally very small. The error resulting from the truncati
of basis states is difficult to estimate. A rough estimation
this type of error can be obtained from the value of trun
tion error, which is smaller than 1023 in all our calculations.
More accurate results can be obtained simply by extrapo
ing the results with respect to botht and the numberm of
states retained.

III. RESULTS

A. S51/2

The S51/2 Heisenberg model is by far the best und
stood spin system. In the absence of field, the ground sta

FIG. 1. A pictorial representation of a superblock, which co
sists of system and environment blocks connected by three a
spins to form a periodic chain.ns andne are indices for the system
and environment blocks, respectively. Initially the system blo
contains two spins and the environment block contains only
spin. At each iteration the system and environment blocks are a
mented by addings1 to each of the blocks. The augmented syste

ñs is formed by ne% s1, and the augmented environmentñe is
formed bys1

% ns .
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9144 PRB 58TAO XIANG
massless and the Bethe ansatz result for the ground
energy is (1/42 ln 2). The lowest excitations states are sp
triplets with a spin wave spectrum17 «(k)5(p/2)usinku.
Above this lower boundary of excitations, there is a tw
parameter continuum of spin wave excitations with an up
boundary given by18 «(k)5pusin(k/2)u. There are other ex
citations above this upper boundary.

The specific heat of the model was first calculated
merically by Bonner and Fisher.19 They found that at low
temperatureC;0.7T whenH50. Later, Affleck,20 using the
conformal field theory, found thatC5(2/3)T. The zero-field
zero-temperature magnetic susceptibility isx51/p2. This
result was obtained by Griffiths with the Bethe ansatz a
numerics.21 Recently, Eggert, Affleck, and Takahash22

found that the zero-field susceptibility approaches its ze
temperature value logarithmically whenT,0.01,

x5
1

2pv F11S 2 ln
T0

T D 21G , ~6!

wherev5(p/2) is the spin wave velocity andT0'7.7.
Figure 2 shows the TMRG results for a number of th

modynamic quantities of theS51/2 antiferromagnetic
Heisenberg model in various magnetic fields withm581 and
t50.1. At zero field, the TMRG reproduces accurately t
results which were previously obtained by the Bethe ans
or conformal field theory. The extrapolated zero-field ze
temperature values of the internal energyU(T) ~i.e., ground
state energy!, the spin susceptibilityx(T), and the linear
coefficient of the specific heatC(T), are20.443, 0.109, and

FIG. 2. ~a! Free energyF(T), ~b! internal energyU(T), ~c!
ratio between the magnetizationMz(T) and the fieldH, ~d! spin
susceptibilityx(T), ~e! specific heatC(T), and ~f! C(T)/T, per
lattice site, for the spin-1/2 Heisenberg model in four applied fie
H50 ~or 0.05!, 1, 2, and 2.5. WhenH52,T1/2x(T) and
2C(T)/T1/2, instead ofx(T) andC(T)/T, are shown in~d! and~f!,
respectively.t50.1 andm581 are used in the TMRG calculation
ate
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-
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0.66, respectively. In all the fields which we studied, t
peak position ofx(T) is located at a temperature which
about twice the peak temperature ofC(T)/T. This is due to
the fact thatx(T) is a measure of two-particle excitation
and C(T)/T is only a measure of one-particle density
states. The maximum ofx when H50 is approximately
equal to 0.147 atT50.64, consistent with the Bethe ansa
calculation.22

There is a significant change in the temperature dep
dences ofx andC whenH is below and above a critical field
Hc252. BelowHc2 , bothC/T andx are finite at zero tem-
perature, which shows that gapless spin excitations wit
finite low-energy density of states exist in this regime. Wh
H5Hc2 , both x andC/T vary as 1/AT at low temperature;
the extrapolated values ofATx and C/AT at zero tempera-
ture are 0.152 and 0.22, respectively. The divergency ox
and C/T at T50 implies that the density of states of sp
excitations is divergent at zero energy whenH5Hc2 . Above
Hc2 , there is a gap in the excitation spectrum as bothx and
C/T drop to zero exponentially at low temperatures. T
value of the gap estimated from the low-temperature beh
ior of x andC grows linearly withH2Hc2 .

Figure 3 shows the longitudinal and transverse correla
lengths of theS51/2 model in different applied fields. Whe
H50,jx5jz diverges at zero temperature and the slope
jz

21 at low temperature is approximately equal to 2, in agr
ment with the thermal Bethe ansatz as well as thek51
WZW s model result23

jz
215TF22S ln

T0

T D 21G . ~7!

, FIG. 3. ~a! 1/jx and ~b! jz vs T for the spin-1/2 Heisenberg
models.t50.1 andm581 are used in the TMRG calculations. Th
circles ~Ref. 23! and squares~Ref. 24! are thermal Bethe ansat
results.
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In the presence of magnetic field,jz is substantially sup-
pressed and becomes finite at zero temperature. As the
relation length is inversely proportional to the energy gap
excitations, the finiteness ofjz at T50 means that the lon
gitudinal spin excitation modes are massive in a field. Th
is a small dip in the curve ofjz at T;0.4 whenH50.2 or at
T;0.6 whenH51. This dip feature ofjz , as will be shown
later, appears also in largeS systems.

The effect of the applied field on the transverse spin
citation modes is weaker than the longitudinal modes. T
transverse spin excitations become massive only whenH
.Hc2 . Below Hc2 , jx drops to zero linearly withT, as for
the caseH50. When H5Hc2 , jx drops to zero asAT.
Clearly the thermodynamics of the Heisenberg model i
field is mainly determined by the transverse excitation mo
at low temperatures.

A simple understanding of the above results can be
tained from an equivalent spinless fermion model of theS
51/2 Heisenberg model:

Ĥ5(
i

F2
1

2
~ci 11

† ci1ci
†ci 11!1~H21!ci

†ci

1S 1

4
2H D1ci

†cici 11
† ci 11G , ~8!

whereci is a spinless fermion operator which is linked to t
S51/2 spin operator by the Jordan-Wigner transformat
ci5Si

1 exp(ip(l,icl
†cl). The magnetic field is equivalent to

chemical potential for the fermions. WhenH50, the ground
state has zero uniform magnetization, corresponding to a
filled fermion band. AsH increases, the ground state is fe
romagnetically polarized and the Fermi energy shifts dow
When H is smaller than the critical fieldHc2 , the ground
state of this fermion model has no gap but the spin orien
tion is canted, i.e., in an incommensurate state. The p
angle of this incommensurate ground state, namely, the w
vector at which the maximum of the spin-spin correlati
function appears, can be estimated from the Fermi mom
tum of noninteracting fermions as 2kF5@122Mz(H)#p.
This value ofkF is not normalized by interactions accordin
to the Luttinger theorem.

Above Hc2 , there are no fermions at the ground state.
low temperature, the number of fermions excited from
ground state is small. Thus, as a good approximation,
interaction term in Eq.~8! can be ignored at low tempera
tures. For the noninteracting system, the energy dispersio
fermion excitations from the ground state is given by«k
5H2(11cosk), which has a gap ofH2Hc2 . When H
5Hc2 , «k5(12cosk), the density of states of excited fe
mions varies as 1/A« at low energy. From the standar
theory of noninteracting fermions, it is straightforward
show that this singular density of states will cause bothx and
C/T to diverge as 1/AT at low temperature. WhenH
.Hc2 , there is a gap in the fermion excitations, and bothx
and C should decrease exponentially at low temperatu
These results are just what we found in Fig. 2.

B. S51

As mentioned previously, there are two critical fields
the spin-1 Heisenberg model,Hc1 andHc2 : below Hc1 , the
or-
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ground state is a massive spin singlet; aboveHc2 , the ground
state becomes a fully polarized ferromagnetic state; betw
Hc1 and Hc2 , the ground state is massless and has a fi
magnetization. The temperature dependence of thermo
namic quantities of theS51 model below, above, and~ap-
proximately! at these critical fields is shown in Fig. 4.

At zero field bothx(T) andC(T) drop exponentially with
decreasingT at low temperatures due to the opening of t
Haldane gap. In this case the ground state energy extr
lated from the internal energyU(T) is 21.4015, in agree-
ment with the zero-temperature DMRG result.25 The ground
state excitation gapD can be determined from the temper
ture dependence ofx andC at low temperatures. If we adap
the ansatz that the low-lying excitation spectrum has
proximately the form26

«~k!5D1
v2

2D
~k2p!21O~ uk2pu3!, ~9!

wherev is the spin wave velocity, it is then straightforwar
to show that, whenT!D, the spin susceptibility and the
specific heat are

x~T!'
1

v
A2D

pT
e2D/T, ~10!

C~T!'
3D

vA2p
S D

T D 3/2

e2D/T, ~11!

irrespective of the statistics of the excitations. Taking t
ratio betweenx(T) andC(T) gives

FIG. 4. Thermodynamic quantities for the spin-1 Heisenb
model in five applied fields,H50 ~or 0.05!, 0.4105, 2, 4, and 4.5
WhenH50 and 0.4105,F(T) andU(T) are almost indistinguish-
able in the figure. WhenH50.4105 or 4,T1/2x(T) and 2C(T)/T1/2

~dotted lines! are shown in~d! and ~f!, respectively.t50.1 andm
5100 are used in the TMRG calculations.



n
re

o
ta
s
o

sa
s-

e

itu-
he
e
i-
e is

e
ise
f
ur

re
he

G

-
d

dden
n-

-
-

9146 PRB 58TAO XIANG
D5 lim
T→0

A2TC~T!

3x~T!
. ~12!

This is a very useful equation for determiningD, especially
from the point of view of experiments, since bothx(T) and
C(T) are experimentally measurable quantities.

Figure 5 showsA2TC(T)/3x(T) as a function ofT for
the S51 Heisenberg model at zero field. By extrapolatio
we find thatD;0.41 in agreement with the zero-temperatu
DMRG ~Ref. 27! and exact diagonalization28 results. Given
D, the value ofv can be found from Eq.~10! in the limit T
→0. The value ofv we found is;2.45, consistent with
other numerical calculations.26

At the two critical fields,Hc1;0.4105 andHc254, both
x(T) andC(T)/T diverge asT21/2 at low temperatures. This
divergence, as for theS51/2 case, is due to the square-ro
divergence of the density of states of the low-lying exci
tions. At Hc1 , one branch of theS51 excitations become
massless and the low-energy excitation spectrum is appr
mately given by

«~k!;
v2

2D
~k2p!2. ~13!

If we assume that these excitations are fermionlike, i.e.,
isfy the Fermi statistics~a short-range interacting Bose sy
tem is equivalent to a system of free fermions!, then it is
simple to show that whenT!D

x~T!'
1

3pv
A2D

T
, ~14!

C~T!'
1

2pv
A2DT. ~15!

Thus in the limitT→0,

T1/2x~T!5
A2D

3pv
;0.4, ~16!

T21/2C~T!5
A2D

2pv
;0.6. ~17!

By extrapolation, the TMRG result givesT1/2xuT→0
;0.45, which is close to that given by Eq.~16!. The value of

FIG. 5. @2TC(T)/3x(T)#1/2 vs T for the S51 Heisenberg
model. (m5100 andt50.1.)
,

t
-

xi-

t-

T21/2CuT→0 is difficult to determine accurately from th
TMRG result since the error ofC(T) at low temperature is
larger thanC(T) itself.

Figure 6 showsjx
21 andjz

21 of theS51 model in differ-
ent applied fields. Because of the Haldane gap, the long
dinal correlation length is finite even at zero field. Thus t
longitudinal excitation mode is always full of gaps. Abov
Hc1 but below Hc2 , the transverse correlation length d
verges at zero temperature. Thus the transverse mod
massless in this field regime. We note, however, thatjx,z

21 at
H50 ~similarly j z

21 at H50.4105) does not decreas
monotonically at low temperatures, actually it starts to r
below a temperatureT* . This nonmonotonic behavior o
j21 at H50 seems only due to the truncation error. O
preliminary calculation shows thatT* decreases with in-
creasingm. But by far we still do not know ifT* is zero in
the limit m→`. Further investigation of the low-temperatu
behavior ofj is needed. If we do an extrapolation using t
TMRG data ofjx

21 aboveT* , we find thatjx(T50);6.0,
which is consistent with the zero-temperature DMR
result.25 If, however, the TMRG data belowT* are also in-
cluded in the extrapolation, we find thatjx(T50) is only
;4.4.

When H.Hc1 , jz
21 drops rather sharply at some tem

peratures. These sharp drops ofjz
21 happen when the secon

and third eigenvalues of the transfer matrix with(ks
k50

cross each other. The physical consequence of these su
changes in the longitudinal correlation length is still u
known.

FIG. 6. ~a! jx
21 and ~b! jz

21 vs T for the spin-1 Heisenberg
models.jx

21(H50) andjx
21(H50.4105) are almost indistinguish

able whenT.0.6. t50.1 andm5100 are used in the TMRG cal
culations.
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C. S53/2

The thermodynamic behaviors of theS53/2 Heisenberg
model, as shown in Fig. 7, are similar to those of theS
51/2 model. WhenH,Hc256, x is always finite at zero
temperature, indicating that the ground state is massl
aboveHc2 , the ground state is fully ferromagnetically pola
ized and a gap is open in the excitation spectrum; atHc2 ,
both x(T) andC/T diverge asT21/2. At zero field, the sus-
ceptibility data, extrapolated to zero temperature, gi
x(0);0.67, consistent with recent numeric
calculations.8,11

The crossover from quantum to classical behavior can
clearly seen~Fig. 8! by comparing the zero-field susceptib
ity and specific heat of theS51/2, 1, and 3/2 spin chain
with the corresponding results of the classical Heisenb
spin chain:32

x~T!5
1

3T

12u~T!

11u~T!
, u~T!5coth

1

T
2T, ~18!

C~T!512
1

T2sinh2~1/T!
. ~19!

At high temperatures,T/S(S11).1, the quantum results
approach asymptotically the classical ones. The agreem
between the quantum and classical results persists dow
progressively lower temperatures asS increases. At low tem-
peratures, however, the difference between the results o
S53/2 system and those of the classical model is still v
large, indicating the importance of the quantum effects in
study of quantum spin chains.@Note for the classical Heisen

FIG. 7. Thermodynamic quantities for the spin-3/2 Heisenb
model in four applied fields,H50 ~or 0.05!, 3, 6, and 6.5. When
H56, T1/2x(T) and 2C(T)/T1/2 ~dotted lines! are shown in~d! and
~f!, respectively.t50.075 andm581 are used in the TMRG cal
culations.
s;

s

e

rg

nt
to

he
y
e

berg model,C(T) does not vanish at zero temperature. Th
is an unrealistic feature of this model.#

D. Zero-temperature magnetization

Figure 9 showsMz(T50), extrapolated from the finite
temperature TMRG data ofMz(T), for the S51/2, 1, and
3/2 systems. For comparison the Bethe ansatz result21 for the
S51/2 Heisenberg model is also shown in the figure. W

g

FIG. 8. The zero-field specific heat and susceptibility vsT/uSu2

for the S51/2, 1, and 3/2 spin chains@ uSu25S(S11)#. The corre-
sponding results for the classical Heisenberg model (uSu251) are
also shown for comparison.

FIG. 9. Normalized zero-temperature magnetizationMz as a
function of H/Hc2 . The TMRG results forS51/2 ~circles!, S51
~solid line!, andS53/2 ~dashed line! are obtained by extrapolation
from the low-T values ofMz with (m,t)5(81,0.1), ~81, 0.1!, and
~60, 0.75!, respectively. Dotted line is the Bethe ansatz result for
S51/2 system~Ref. 21!.
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increasingS, we found thatMz tends to approach its class
cal limit (S→`) whereMz increases linearly withH, i.e.,
Mz /S5H/Hc2 .

For theS51/2 system, the TMRG result agrees well wi
the Bethe ansatz one. A least squares fit to the curve ofMz

up to the fourth order term ofAHc22H gives M5Mc

2a1 AHc2 2 H 1 a2 (Hc22H) 2a3 (Hc2 2 H)3/21 a4 (Hc2
2H)2, with a1'0.448,a2'0.123,a350.05, and a4
50.007 44.a1 agrees very accurately with the exact val
&/p. In the weak-field limit, the asymptotic behavior ofMz
is

Mz'
H

p2 S 12
1

2 ln~H/Hc2! D , ~20!

as predicted by the Bethe ansatz theory.29,30

For theS51 model,Mz(T50) becomes finite whenH
.Hc1 . In a very narrow regime of field nearHc1 , Mz(0)
varies approximately asAH2Hc1, in agreement with the
prediction of the Bose condensation theory.14 But the differ-
ence between the result of the Bose condensation theor

Mz~T50!'
A2~H2Hc1!D

pv
~21!

and that of the TMRG becomes already significant whenH
2Hc150.04.

NearHc2 , Mz approaches its saturation valueMc5S as a
function of AHc22H for the three spin systems we stud
For theS51/2 and 1 systems, the TMRG results agree v
accurately with the Bethe ansatz result29,31

Mz

S
512

2

pS
A12

H

Hc2
. ~22!

For theS53/2 system, the asymptotic regime ofH is very
narrow, and we cannot do a detailed comparison between
TMRG result and Eq.~22!. The magnetization curve doe
not show a plateau atMz51/2, in agreement with othe
studies.33

E. Staggered susceptibility

To calculate the staggered susceptibility, we add a s
gered magnetic fieldHs to the HamiltonianĤ. The staggered
magnetization is then calculated in a way similar to the c
culation of the uniform magnetization. The staggered susc
tibility xs is obtained by differentiating the staggered ma
netization with respect toHs . For half-odd-integer spin
chainsxs diverges asT 21 at low temperatures. Thus th
staggered magnetization becomes saturated at low tem
tures whenxs(T)Hs.S, since the maximum value of th
staggered magnetization per spin isS. This means that to
estimate accurately the zero-field staggered susceptibility
staggered field used should satisfy the conditionHs
!S/xs(Tmin), whereTmin is the lowest temperature to stud

Figure 10 shows the temperature dependence ofxs for the
S51/2, 1, and 3/2 spin chains. At low temperatures,xs for
the S51/2 model is expected to have the followin
asymptotic form
y

he

g-

l-
p-
-

ra-

he

xs5
Dx

T
Aln

Tx

T
~23!

according to a scaling argument.34 Our TMRG result agrees
well with this equation at low temperatures. By plottin
(Txs)

2 against lnT, we find thatDx'0.30 andTx'10.5, in
agreement with a Monte Carlo calculation.8

For theS51 model,xs is finite at zero temperature. Th
extrapolated zero-temperature value ofxs for the S51
model is 18.55, in agreement with other numeric
calculations.8,35

IV. CONCLUSION

In conclusion, the temperature dependence of the sus
tibility, specific heat, and several other quantities of t
quantum Heisenberg spin chains with spin ranging from
to 3/2 in a finite or zero applied magnetic field are stud
using the TMRG method. At high temperatures, the quant
results for the specific heat as well as other thermodyna
quantities approach asymptotically the classical ones for b
the integer and half-integer spin systems. At low tempe
tures, however, the quantum effect is strong and the inte
spin chains behave very differently than the half-integer s
chains. For theS51 model, bothx and C decay exponen-
tially at low temperatures due to the opening of the Halda
gap. For theS51/2 and 3/2 spin chains, there is no gap
the excitation spectrum and bothx andC/T are finite at zero
temperature. The thermodynamics of the Heisenberg s
chains in an applied field is mainly determined by the tra
verse excitation modes. At low temperatures,x, C/T, and
the transverse correlation lengthjx diverge asT21/2 at Hc2
for the S51/2 and 3/2 models and at bothHc1 andHc2 for
the S51 model. This square-root divergence indicates t
the low-energy spin excitations have a square-root diverg
density of states at these critical fields. Our data agree w
with the Bethe ansatz, quantum Monte Carlo, and other a
lytic or numerical results.

ACKNOWLEDGMENTS

I would like to thank R. J. Bursill, G. A. Gehring, S. J
Qin, and X. Wang for stimulating discussions.

FIG. 10. The staggered susceptibilityxs(T) at zero field. The
parameters used for theS51/2, 1, and 3/2 chains are (Hs ,t,m)
5(0.0001, 0.1, 140),~0.0001, 0.05, 100!, and ~0.0001, 0.025, 81!,
respectively.
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