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SU(4) spin-orbit critical state in one dimension

Yasufumi Yamashita, Naokazu Shibdtand Kazuo Ueda
Institute for Solid State Physics, University of Tokyo, Roppongi 7-22-1, Minatoku, Tokyo 106-8666, Japan
(Received 11 May 1998

Effect of quantum fluctuations concerned with the orbital degrees of freedom is discussed for the model with
SU(4) symmetry in one dimension. An effective Hamiltonian is derived from the orbitally degenerate Hubbard
model at quarter filling. This model is equivalent to the Bethe solubl¢4SExchange model. Quantum
numbers of the ground state and the lowest branch of excitations are determined. The spin-spin correlation
functions are obtained numerically by the density matrix renormalization group method. It shows a power-law
decay with oscillations of the period of four sites. The period originates from the interference between the spin
and orbital degrees of freedom. The exponent of the power-law decay estimated from the finite size data is
consistent with the prediction by the conformal field the¢80163-182608)07938-1

[. INTRODUCTION degenerate ground states, corresponding to spontaneous
breaking of the parity.

Recently the role of the orbital degrees of freedom in In the present paper we study an effective model of an
strongly correlated electron systems is attracting growing inorbitally degenerate Hubbard model in one dimension. By
terest. The increase of this attention is stimulated by théhe density matrix renormalization groPMRG) method
progress in the experimental studies of transition metal an@nd exact diagonalizatioitanczos method we find a quan-
rare earth compounds such as LaMpCeB;, and TmTe, tUm critical state at the S_(IA) symmetric point, vyh|ch origi--
which show various interesting properties associated with th8at€s from the strong interplay between spin and orbital
orbital degrees of freedom. quantum fluctuations in one dimension.

In the 1970’s Kugel and Khomskiiand Inagald studied
an orbitally degenerate model to understand the magnetic Il. MODEL
structures of transition metal compounds within the mean
field theory. They concluded that if orbitals ordered antifer- We start from the one-dimensional orbitally twofold de-
romagnetically, then spins ordered ferromagnetically, and@enerate Hubbard model with Hund rule coupling between
vice versa. Recently Shiina, Shiba, and Thalmeieave the two orbitals at the same site. This is the simplest model
studied similar models in connection with a quadrupolar orWhich possesses orbital degrees of freedom. Hamiltonian of
dering of CeR and discussed the phase diagram under afis model is given by
external magnetic field neglecting quantum fluctuations.

In the case of LaMng the orbital ordering tempera- H=H, +Hy+H,
ture, To (~775 K), is much higher than the Metemp-
erature, Ty (~141 K), so the mean field theoretical ap-
proaches are considered to be a good starting point. On
the other hand, for Ce Ty (~3.4 K) is the same order

— "ot
- E (_tia,ia+lcia(rci +la’e T HC)

f ’
laa’ o

as Ty (~2.3 K) and thus the interplay between spin and +B E (Mo Niar o1 (1= 801 8 )}

orbital qguantum fluctuations may be important. Therefore it iaa oo’

is necessary to consider the effects of quantum fluctuations

more seriously beyond the mean field theory. _JE (zgl, §i2+ E , (1)
Before considering the effects of the orbital degrees of i 2

freedom, we briefly summarize the properties of the one-
dimensional single orbital Hubbard model for comparison. In . . ¢ (Cias) denotes an electron creatidannihila-
the limit of strong_correlathn at half filling, the_ model is tion) operator with orbitak (= 1,2) and spin at theith site,
reduced to the spin-1/2 antiferromagneti) Heisenberg ot - ) )
model with SU2) symmetry. This model is well known as a @NdNiac IS CiasCiaa - Sio dENOtes electron spin operator with
typical quantum critical system. The ground state of thisOrPital @ at theith site. Concerning the hopping matrix ele-
model is singlet [12] in Young's diagram representatijon ments, the nearest nelghpor hopping between the same type
and the elementary excitations are gapless and tripkdf),  of orbitals is assumed,"{’, ;=t5,, . The simplest system
so-called des Cloizeaux-Pearson motidhese results are which shows this property is illustrated in Fig. 1: thgand
consistent with the Lieb-Schultz-Mattis theoréfhwhich p, orbitals along a chain parallel to tlzeaxis. We are inter-
states that the half-integ&spin chain, which has the trans- ested in the case whete U, andJ are positive.

lational and rotational symmetries, either has a singlet To study the region of strong correlation, we consider the
ground state with gapless excitations or has a finite gap withimit of U,J>t at quarter filling. In this case charge degrees
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FIG. 1_. A one-dimen_sional Hubbard model with twofold degen-  FIG. 2. Ground state energy as a function\of The numerical
erate orbitals at each site. errors, which are estimated from the truncation errors in the DMRG

calculation, are less than 0.01%. The broken lines represent the
of freedom are suppressed and the system becomes a Matear fitting; E4 s = —0.825< N+0.353). Theinset shows the ex-

insulator. The effective Hamiltonian obtained by the usualcitation gap Q) as a function of M. Error bars are estimated from

second order perturbation is the truncation errors in the DMRG calculation. The dotted line rep-
) resents the linear fitting =7.3N.
4tef L . 1
E— . —_— Z z —
eff EI ( U (SI SI+1 4)(2T| TI+1+2 Where
a2 [ . . 1\ /. . p(S=312)_ 2 &(312 &(312y3 4 11 &(312 &(312y2
+U+J SI S|+1_Z)(Ti‘T|+1_2T|Z T|Z+1+ 4) ii+1 9( ( S+1) 18( ( |+1)
42 3 1 -5(8%2-8§¥)-%.
+ U_J<§i'§i+1+ Z) (T—i'fiﬂ— Z)} (2)  The Hamiltonian clearly has the $&) symmetry. We call
this Hamiltonian the S exchange Hamiltonian.
where The exact ground state energy and the dispersion relations
of the SU4) exchange Hamiltonian have been already ob-
& } E (e 7o Cin) tained by the application of the Bethe ansatz technique to the
2 o, M leoiooag higher spin-chain problenfsin this paper, we investigate
are the spin operators and this model as the coupled spin and orbital system with the

strongest orbital quantum fluctuations. It is worth noting that
o1 R the SU4) exchange Hamiltonian may play a similar role as
TiE§ > (¢l o TaarCiaro) the SU2) AF Heisenberg model for the single orbital Hub-
oaa’ bard model. The assumptions that the hoppings of electrons
are the pseudospin operators which describe the orbital dé'e Possible only between the same orbitals and the vanish-
grees of freedom. In the above equatierare the Pauli spin ing J produce this SU) symmetry, independently .Of the
matrices. strength of the Coulomb repulsidh. .Ge'nerally speaking, in
As a first step, we consider the case with the highest symr—eal materials the Hund rule couplirgis not small. How-

metry by taking the—0 limit. ThenH . becomes, neglect- SV€'> an understanding of the most symmetric case will be
: important for future studies of less symmetric cases corre-
ing a constant term, ; -

sponding to a finitel.

_ (S=12) p(T=1/2)
Heff_Kzi: Pilis1 - Piici™, 3 Ill. GROUND STATE AND EXCITATIONS
where K=2t2/U, Pi(,siﬂ/z)52§i-§i+l+1/2, and Pﬂﬂ,g) To understand the physics of the present model, let us

considerS and T spins as classical spins. The spin configu-
rations where every adjacent two, eitl&or T, spins point
the opposite direction have the lowest energy. Thus the clas-

(i+1)-th sites, respectively. _ sical ground state energy is zero and the degeneracy of the
Since the Hamiltoniak3) exchanges botBandT spins at  ground states is macroscopic in the classical theory. This

the same time, the spin and orbital degrees of freedom argituation is different from usual orbital and/or spin orderings
combined into the SW) spin (denoted byS,(s’z)) andH.;is  discussed so far. Thus it is essential to examine the proper-
described by using spin-3/2 exchange operators as followsties of Hamiltonian(4) by unbiased methods.
First, we calculate the ground state energy, {) by the
H Z
Hoyn=KS p(s=32 4 DMRG method in the subspace of S, Ti,)=(0,0),
sua 2.: bl @ whereS(,;==;S andT;,,;==;T{. We takeK=1 as the en-

=2T; T4, +1/2. P12 and P{[ T 12 are the spin-1/2 and
the pseudospin-1/2 exchange operators betweeintlthaend
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TABLE I. Irreducible representations of the 81 symmetry given by Young’s diagranf¥D) and their
relations to Go(, Tior) and S representationéRef. 9, whereS,y, Tior, andS{EA are the magnitudes of
the $o=2S, Tior=2T;, andSEP=3,SC52 | respectively. Here is the degeneracy of each representa-

tion.

YD v (Stot» Ttot) Sg{z)

[1%] 1 0,0 0

[2112] 15 0,92 (1,091, 10233

[22] 20 0,09(1,)%(0,2%(2,0 0e20204
[3'1Y] 45 0,D)o (1,02 (1,)®(1,29(2,1) 1010293832495
[4%] 35 0,09 (1,)®(2,2 082039496
[2217] 6 (1,0®(0,1) 032

[23] 10 0,0®(1,2) 103

ergy unit and use here the open boundary conditi@BC) in the inset of Fig. 2, but they correspond to excitations at the
to obtain sufficient accuracy by the DMRG method. The ob-surfaces rather than those in bulk. From the inset of Fig. 2
tained results are shown in Fig. 2, which shows that theve can conclude that the excitation gap)(goes to zero as
ground state energy per site{ /N) and the surface energy A~7.3N.
are equal to—0.825 and 0.38), respectively. This ground In order to examine the properties of the excitations in
state energy is, of course, consistent with that obtained bynore detail, we calculate the dispersion relation by using the
the Bethe ansat£ s /N=—0.825 127 Lanczos method with the use of translational symmetry for
In Fig. 2 the ground state energies are plotted only forthe systems with the PBC. Figure 3 shows that the excitation
N=4n, for which the minimum energy in the subspace of spectrum has a “bactrian camel” structure and shows soft-
(Shot: Tio0) = (1,1) is different fromEy s . From Table I it is ening atq= /2. This structure is also known by the Bethe
seen that the subspacly,, T%,)=(0,0) is included in every ~ansatz result5Corresponding to the softeningat: /2, the
irreducible representation, bus,,,T%,)=(1,1) belongs to correlation fgnctlons wou!d shqw a cha}racter|st|c feat_ure,
any irreducible representation except fa*]. Thus it is namely, oscillatory behaviors with a period of four, which
concluded that the ground state belongs to[ttfd irreduc- ~ We Will discuss in the next section. .
ible representation in the Young's diagram notation. Simi- Figure 3 shows that height of the left hump is always

larly, by calculating the ground state energies with changindower than that of the right one. To consider a possible rea-

(S, T2, itis found that forN=4n+2 the ground states son, we determine the irreducible representation of each state
ot ot/ .
belong to eithe23] or [2212], which are degenerate 10- for N=8 and 12. Quantum numbers assigned for egch

and 6-fold, respectivelysee Table )L point in the dispersion curves are shown in Fig. 3 by the
These quantum numbers can be understood from the poir?tu(4) Young's diagram representations. In these finite size

of view of maximum antisymmetrization. That is, the irre- c@lculations, the state a=m/2 and left part of the two

112 H 111
ducible representations thus obtained for the ground statd&/Mps always belongs {@"1°] and the right one tp3°17].
are compatible with the simple fact that the more antisym-':rom Table I, the first excited statescgt 7/2 consist of the

metric part one irreducible representation has, the lower is its
ground state energy in the subspace, because the Hami'

2
tonian(4) is the sum of S(®) exchange operators. To avoid H“ﬁtl Hj B 5 220
complications coming from the degenerate ground states, wi e _ [rpsx l/?llllf“a
consider the systems df=4n in the following. In this case 1al /A\ .
the ground state belongs to th&*] and is a singlet. Since 2l ]
the Lieb-Schultz-Mattis theorem applies to this model, the g ,/A ~~~~~ //E"jjg;::::&\\\\ )
excitations are expected to be gapless, provided that no othe2 I 6::‘&\ T P TR
symmetry is broken, in the same way as the spin-1/2 AF© 08 | 2 NN SO
Heisenberg model with S@) symmetry. 06t  # N

To estimate the excitation energy, we calculate the grounc o, | 2 o
state energy and the first excited state energy by using th oz | /
DMRG method forN=20 and by the exact diagonalization ’
(Lanczos methodfor N<16. We determine the ground state ~ *% x = = =i & sz2s 3z Sxiz =«
8§86 4 38 2 3 4 68

energy and the first excited energy by the minimum energies
of the states whose quantum numbe®§ (, T;,;) are speci-
f|ed (0,0), (1,1), etc. It |S found that the fIrSt eXC'ted state FIG. 3. Dispersion relations. The Symbms DY and O repre-
belongs tof 2*17]. sent data forN=8, 12, and 16, respectively. Young's diagrams

Though the DMRG is more suitable for OBC than peri- (YD) show the irreducible representations. The numbers accompa-
odic boundary condition§PBC), here we apply the PBC in nied by YD show the degeneracy and2 represents the same
order to study the properties in the bulk limit. When we useweight fromq and —qg. The solid line represents the Bethe ansatz
the OBC, we get lower excitation energies than those showresult(Ref. 7.

8
Momentum(q)
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_FIG. 4. Correlation functions(§- S, j)pui) for the systems FIG. 5. Fourier transformation of the correlation function for the
with N=48 (+) and 60 (©). Broken and dotted lines are systems withN=60 () andN=48 (X).
0.144j1®and —0.108 5% which are the results of the least mean

square fitting using the upper and lower data, respectively. Numeri- Because the results discussed in the previous section show

cal errors, which are estimated from the values($ff- T7. ;) puik . . .
are less than 1%. The inset shows the entire form of the (:orrelatioplh'fj;t this model is gapless, we try to fit the envelope §f

functions. The symbols andCJ represent data fdk=48 and 60, 5 +j/bulk data with a power-law functionj () by the least
respectively, but they overlap nearly perfectly. mean square method and get critical exponenequal to
1.80 or 1.55 depending on using either the upper12, 16,

coupled spin and orbital excitations in addition to the purednd 20 or the lower (=14, 18, and 2Pdata. We did not use
spin and orbital excitations and have thexiB-fold degen- the data ofj=24, 26, and 28, because these sites are too
eracy in total. The difference of the height of the two humpsclose to the boundary. Due to finite size effects, the value of
may be attributed to the difference of the irreducible repre« depends on how to fit, but is always between 1.5 and
sentations of the two humps. In fact, the ldfiwer) hump ~ 2.0- From these results, we conclude that the asymptotic
belongs to the irreducible representation which has a morform of the correlation function is given by

antisymmetric part than that of the rigtitighep one. In the

bulk limit, however, we expect that the two parts<f cos(zj)

<m/2 and7w/2<q<r, converge to the same dispersion re- 2 e 27

lation as is known by the Bethe ansatz solution. (S-S bu J—a a=1.5-20, ©

in the bulk limit.
. . Of course,(S7- Sf; )puik is equal to(TrTr puik, be-
Now we move on to the behaviors of the correlation func-c5se of the symmetry of Hamiltonia8) concerning the
tions,(S'- S, )q.s.» Where(- - - ), s denotes expectation val- = 2 z +z )
ues for the grloarswd state. Sincegljamilton(am has rotational exchange betweeB andT. Furthermore(S; - Tr.)puik al
symmetry with respect to botB and T spins, we consider ways equals zero as is easily shown by the Wigner-Eckart
y P pIns, theorem. In fact, the calculated values(&" Ti. )pui are

only z components of spins. .
\¥Ve usepthe OBC topget better accuracy in the DMRgalmost zero, and the numerical errors for the value¢S5f
Sﬁj)bmk may be estimated from these values, which are

calculations, but in this case we must keep in mind that thée est
data contain the effects from boundari¢&- 7, )45 shows less than 1% even at the farthest site from
an oscillatory behavior with a period of four as a function of Next we study the structure factor defined by
j. But the correlation functions also vary with a period of N/2—2
fogr Wltzh respect toi. T_h_at is, (Sf-Sf}j)g.s. is equal to (q)= D
(S4Siiatj)gs foranyi,j. j=-N/2+3
This behavior is caused by the standing wave with a pe- o , -
riod of four originating from the open boundaries. To re-AS iS s€en in Fig. 55°(q) has a characteristic cusp structure

move such an artifact due to the OBC, we averdge at g= /2. This result is consistent with the softeningcat

-, )q.s. for one period with respect o Thl’JS we define an — /2 in the dispersion relation. By Fourier transformation
+]/0.s. H V4 H H

approximate bulk correlation function as follows: of Eq. (6), the analytic form of5(q) is given by

IV. CORRELATION FUNCTIONS

(S-S puik-e . (7)

a—1
3 T
1 q- =
(S-SE oun= 72 (Show Sows s 5 m\ o ‘ 2 ( ™
4= J/9.s. Z = |- ==t _
k=0 SHq)~S q 5 ZF =1 +0 5
After this averaging procedure, we get the natural behavior (a)si 2 7

of the correlation functions as shown in Fig. 4. (8
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aroundg= /2, when < a<3. If « is greater than 2, Eq. T-spin Ising-type Hamiltoniari2), whose properties are not
(8) does not show any cusp structuregat 7/2. Soa must  yet fully understood.
be less than 2, since we clearly see the cusp structure of Related to the Si4) model, several models with lower
$%(q) which becomes sharper as the system size is increase@ymmetries have been studi¥d’*Kawano and Takahasfi
By the SU4) conformal field theory, the critical exponent discussed-spin isotropic andr-spin XY-type Hamiltonians
of the SU4) spin correlation functions witkq= /2 oscilla- 10 study the three-leg antiferromagnetic Heisenberg ladder
tions is obtained to be 3/, which is consistent with the and showed that such a model is gapful and has exponen-
present numerical result. Although the correlation functiondi@!y descaymg correlation functions. ~Kolezhuk and
discussed in this paper are tlsespin correlation functions M'ke§ka1_ StUd'gd a speualﬁ SP(ZQSU(Z) symmetric
but not the SWW) spin correlation functions, we can show Hamiltonian 2;i(S- S ;1 +3/4)(T;- Ti, 1 +3/4) and showed
that the exponent is the same for the two correlation functhat this model is also gapful. _
tions. It may be possible to study the properties of these models
in a unified way by introducing different types of anisotro-
ies from the SI¥) symmetric point. For this purpose, it is
V. CONCLUSIONS AND DISCUSSIONS Eighly desirablelailz) gevelop arFl) analytic theoFr)y ground this
In conclusion, we have studied the quantum critical statyMmetric point.
for the coupled spin-orbit system. The quantum numbers of
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