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SU„4… spin-orbit critical state in one dimension
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Effect of quantum fluctuations concerned with the orbital degrees of freedom is discussed for the model with
SU~4! symmetry in one dimension. An effective Hamiltonian is derived from the orbitally degenerate Hubbard
model at quarter filling. This model is equivalent to the Bethe soluble SU~4! exchange model. Quantum
numbers of the ground state and the lowest branch of excitations are determined. The spin-spin correlation
functions are obtained numerically by the density matrix renormalization group method. It shows a power-law
decay with oscillations of the period of four sites. The period originates from the interference between the spin
and orbital degrees of freedom. The exponent of the power-law decay estimated from the finite size data is
consistent with the prediction by the conformal field theory.@S0163-1829~98!07938-7#
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I. INTRODUCTION

Recently the role of the orbital degrees of freedom
strongly correlated electron systems is attracting growing
terest. The increase of this attention is stimulated by
progress in the experimental studies of transition metal
rare earth compounds such as LaMnO3,CeB6, and TmTe,
which show various interesting properties associated with
orbital degrees of freedom.

In the 1970’s Kugel and Khomskii1 and Inagaki2 studied
an orbitally degenerate model to understand the magn
structures of transition metal compounds within the me
field theory. They concluded that if orbitals ordered antif
romagnetically, then spins ordered ferromagnetically, a
vice versa. Recently Shiina, Shiba, and Thalmeier3 have
studied similar models in connection with a quadrupolar
dering of CeB6 and discussed the phase diagram under
external magnetic field neglecting quantum fluctuations.

In the case of LaMnO3, the orbital ordering tempera
ture, TO (;775 K), is much higher than the Ne´el temp-
erature,TN (;141 K), so the mean field theoretical a
proaches are considered to be a good starting point.
the other hand, for CeB6, TO (;3.4 K) is the same orde
as TN (;2.3 K) and thus the interplay between spin a
orbital quantum fluctuations may be important. Therefore
is necessary to consider the effects of quantum fluctuat
more seriously beyond the mean field theory.

Before considering the effects of the orbital degrees
freedom, we briefly summarize the properties of the o
dimensional single orbital Hubbard model for comparison
the limit of strong correlation at half filling, the model i
reduced to the spin-1/2 antiferromagnetic~AF! Heisenberg
model with SU~2! symmetry. This model is well known as
typical quantum critical system. The ground state of t
model is singlet (@12# in Young’s diagram representation!
and the elementary excitations are gapless and triplet (@21#),
so-called des Cloizeaux-Pearson modes.4 These results are
consistent with the Lieb-Schultz-Mattis theorem,5,6 which
states that the half-integer-S spin chain, which has the trans
lational and rotational symmetries, either has a sing
ground state with gapless excitations or has a finite gap w
PRB 580163-1829/98/58~14!/9114~5!/$15.00
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degenerate ground states, corresponding to spontan
breaking of the parity.

In the present paper we study an effective model of
orbitally degenerate Hubbard model in one dimension.
the density matrix renormalization group~DMRG! method
and exact diagonalization~Lanczos method!, we find a quan-
tum critical state at the SU~4! symmetric point, which origi-
nates from the strong interplay between spin and orb
quantum fluctuations in one dimension.

II. MODEL

We start from the one-dimensional orbitally twofold d
generate Hubbard model with Hund rule coupling betwe
the two orbitals at the same site. This is the simplest mo
which possesses orbital degrees of freedom. Hamiltonia
this model is given by

H5Ht81HU1HJ

5 (
iaa8s

~2t i ,i 11
aa8 cias

† ci 11a8s1H.c.!

1
U

2 (
iaa8ss8

$niasnia8s8~12daa8dss8!%

2J(
i

S 2SW i1•SW i21
1

2D , ~1!

where cias
† (cias) denotes an electron creation~annihila-

tion! operator with orbitala(51,2) and spins at thei th site,
andnias is cias

† cias . SW ia denotes electron spin operator wi
orbital a at thei th site. Concerning the hopping matrix ele
ments, the nearest neighbor hopping between the same

of orbitals is assumed,t i ,i 11
aa8 5tdaa8 . The simplest system

which shows this property is illustrated in Fig. 1: thepx and
py orbitals along a chain parallel to thez axis. We are inter-
ested in the case wheret, U, andJ are positive.

To study the region of strong correlation, we consider
limit of U,J@t at quarter filling. In this case charge degre
9114 © 1998 The American Physical Society
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of freedom are suppressed and the system becomes a
insulator. The effective Hamiltonian obtained by the us
second order perturbation is

Heff5(
i

H 4t2

U S SW i•SW i 112
1

4D S 2Ti
z
•Ti 11

z 1
1

2D
1

4t2

U1JS SW i•SW i 112
1

4D S TW i•TW i 1122Ti
z
•Ti 11

z 1
1

4D
1

4t2

U2JS SW i•SW i 111
3

4D S TW i•TW i 112
1

4D J , ~2!

where

SW i[
1

2 (
ass8

~cias
† tWss8cias8!

are the spin operators and

TW i[
1

2 (
saa8

~cias
† tWaa8cia8s!

are the pseudospin operators which describe the orbital
grees of freedom. In the above equationstW are the Pauli spin
matrices.

As a first step, we consider the case with the highest s
metry by taking theJ→0 limit. ThenHeff becomes, neglect
ing a constant term,

Heff5K(
i

Pi ,i 11
~S51/2!

•Pi ,i 11
~T51/2! , ~3!

where K[2t2/U, Pi ,i 11
(S51/2)[2SW i•SW i 1111/2, and Pi ,i 11

(T51/2)

[2TW i•TW i 1111/2. Pi ,i 11
(S51/2) andPi ,i 11

(T51/2) are the spin-1/2 and
the pseudospin-1/2 exchange operators between thei th and
( i 11)-th sites, respectively.

Since the Hamiltonian~3! exchanges bothSandT spins at
the same time, the spin and orbital degrees of freedom
combined into the SU~4! spin ~denoted bySW i

(3/2)) andHeff is
described by using spin-3/2 exchange operators as follo

HSU~4!5K(
i

Pi ,i 11
~S53/2! , ~4!

FIG. 1. A one-dimensional Hubbard model with twofold dege
erate orbitals at each site.
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where

Pi ,i 11
~S53/2!5 2

9 ~SW i
~3/2!

•SW i 11
~3/2!!31 11

18 ~SW i
~3/2!

•SW i 11
~3/2!!2

2 9
8 ~SW i

~3/2!
•SW i 11

~3/2!!2 67
32 .

The Hamiltonian clearly has the SU~4! symmetry. We call
this Hamiltonian the SU~4! exchange Hamiltonian.

The exact ground state energy and the dispersion relat
of the SU~4! exchange Hamiltonian have been already o
tained by the application of the Bethe ansatz technique to
higher spin-chain problems.7 In this paper, we investigate
this model as the coupled spin and orbital system with
strongest orbital quantum fluctuations. It is worth noting th
the SU~4! exchange Hamiltonian may play a similar role
the SU~2! AF Heisenberg model for the single orbital Hub
bard model. The assumptions that the hoppings of electr
are possible only between the same orbitals and the van
ing J produce this SU~4! symmetry, independently of the
strength of the Coulomb repulsionU. Generally speaking, in
real materials the Hund rule couplingJ is not small. How-
ever, an understanding of the most symmetric case will
important for future studies of less symmetric cases co
sponding to a finiteJ.

III. GROUND STATE AND EXCITATIONS

To understand the physics of the present model, let
considerS andT spins as classical spins. The spin config
rations where every adjacent two, eitherS or T, spins point
the opposite direction have the lowest energy. Thus the c
sical ground state energy is zero and the degeneracy o
ground states is macroscopic in the classical theory. T
situation is different from usual orbital and/or spin orderin
discussed so far. Thus it is essential to examine the pro
ties of Hamiltonian~4! by unbiased methods.

First, we calculate the ground state energy (Eg.s.) by the
DMRG method8 in the subspace of (Stot

z ,Ttot
z )5(0,0),

whereStot
z [( iSi

z andTtot
z [( iTi

z . We takeK51 as the en-

- FIG. 2. Ground state energy as a function ofN. The numerical
errors, which are estimated from the truncation errors in the DM
calculation, are less than 0.01%. The broken lines represent
linear fitting;Eg.s.520.8253N10.35(3). Theinset shows the ex-
citation gap (D) as a function of 1/N. Error bars are estimated from
the truncation errors in the DMRG calculation. The dotted line re
resents the linear fitting,D57.3/N.
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TABLE I. Irreducible representations of the SU~4! symmetry given by Young’s diagrams~YD! and their
relations to (Stot ,Ttot) andStot

(3/2) representations~Ref. 9!, whereStot , Ttot , andStot
(3/2) are the magnitudes o

the SW tot[( iSW i , TW tot[( iTW i , andSW tot
(3/2)[( iSW i

(3/2) , respectively. Heren is the degeneracy of each represen
tion.

YD n (Stot ,Ttot) Stot
(3/2)

@14# 1 ~0,0! 0
@2112# 15 ~0,1!% ~1,0!% ~1,1! 1% 2% 3
@22# 20 ~0,0!% ~1,1!% ~0,2!% ~2,0! 0% 2% 2% 4
@3111# 45 ~0,1!% ~1,0!% ~1,1!% ~1,2!% ~2,1! 1% 1% 2% 3% 3% 4% 5
@41# 35 ~0,0!% ~1,1!% ~2,2! 0% 2% 3% 4% 6

@2212# 6 ~1,0!% ~0,1! 0% 2
@23# 10 ~0,0!% ~1,1! 1% 3
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ergy unit and use here the open boundary conditions~OBC!
to obtain sufficient accuracy by the DMRG method. The o
tained results are shown in Fig. 2, which shows that
ground state energy per site (Eg.s. /N) and the surface energ
are equal to20.825 and 0.35~3!, respectively. This ground
state energy is, of course, consistent with that obtained
the Bethe ansatz,Eg.s. /N.20.825 12.7

In Fig. 2 the ground state energies are plotted only
N54n, for which the minimum energy in the subspace
(Stot

z ,Ttot
z )5(1,1) is different fromEg.s. . From Table I it is

seen that the subspace (Stot
z ,Ttot

z )5(0,0) is included in every
irreducible representation, but (Stot

z ,Ttot
z )5(1,1) belongs to

any irreducible representation except for@14#. Thus it is
concluded that the ground state belongs to the@14# irreduc-
ible representation in the Young’s diagram notation. Sim
larly, by calculating the ground state energies with chang
(Stot

z ,Ttot
z ), it is found that forN54n12 the ground states

belong to either@23# or @2212#, which are degenerate 10
and 6-fold, respectively~see Table I!.

These quantum numbers can be understood from the p
of view of maximum antisymmetrization. That is, the irr
ducible representations thus obtained for the ground st
are compatible with the simple fact that the more antisy
metric part one irreducible representation has, the lower i
ground state energy in the subspace, because the Ha
tonian~4! is the sum of SU~4! exchange operators. To avo
complications coming from the degenerate ground states
consider the systems ofN54n in the following. In this case
the ground state belongs to the@14# and is a singlet. Since
the Lieb-Schultz-Mattis theorem applies to this model,
excitations are expected to be gapless, provided that no o
symmetry is broken, in the same way as the spin-1/2
Heisenberg model with SU~2! symmetry.

To estimate the excitation energy, we calculate the gro
state energy and the first excited state energy by using
DMRG method forN>20 and by the exact diagonalizatio
~Lanczos method! for N<16. We determine the ground sta
energy and the first excited energy by the minimum energ
of the states whose quantum numbers (Stot

z ,Ttot
z ) are speci-

fied: (0,0), (1,1), etc. It is found that the first excited sta
belongs to@2112#.

Though the DMRG is more suitable for OBC than pe
odic boundary conditions~PBC!, here we apply the PBC in
order to study the properties in the bulk limit. When we u
the OBC, we get lower excitation energies than those sho
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in the inset of Fig. 2, but they correspond to excitations at
surfaces rather than those in bulk. From the inset of Fig
we can conclude that the excitation gap (D) goes to zero as
D;7.3/N.

In order to examine the properties of the excitations
more detail, we calculate the dispersion relation by using
Lanczos method with the use of translational symmetry
the systems with the PBC. Figure 3 shows that the excita
spectrum has a ‘‘bactrian camel’’ structure and shows s
ening atq5p/2. This structure is also known by the Beth
ansatz results.7 Corresponding to the softening atq5p/2, the
correlation functions would show a characteristic featu
namely, oscillatory behaviors with a period of four, whi
we will discuss in the next section.

Figure 3 shows that height of the left hump is alwa
lower than that of the right one. To consider a possible r
son, we determine the irreducible representation of each
for N58 and 12. Quantum numbers assigned for eacq
point in the dispersion curves are shown in Fig. 3 by
SU~4! Young’s diagram representations. In these finite s
calculations, the state atq5p/2 and left part of the two
humps always belongs to@2112# and the right one to@3111#.
From Table I, the first excited states atq5p/2 consist of the

FIG. 3. Dispersion relations. The symbolsn, h, andL repre-
sent data forN58, 12, and 16, respectively. Young’s diagram
~YD! show the irreducible representations. The numbers accom
nied by YD show the degeneracy and32 represents the sam
weight fromq and2q. The solid line represents the Bethe ans
result ~Ref. 7!.
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coupled spin and orbital excitations in addition to the pu
spin and orbital excitations and have the 1532-fold degen-
eracy in total. The difference of the height of the two hum
may be attributed to the difference of the irreducible rep
sentations of the two humps. In fact, the left~lower! hump
belongs to the irreducible representation which has a m
antisymmetric part than that of the right~higher! one. In the
bulk limit, however, we expect that the two parts, 0,q
,p/2 andp/2,q,p, converge to the same dispersion r
lation as is known by the Bethe ansatz solution.7

IV. CORRELATION FUNCTIONS

Now we move on to the behaviors of the correlation fun
tions,^Si

z
•Si 1 j

z &g.s. , where^•••&g.s. denotes expectation va
ues for the ground state. Since Hamiltonian~3! has rotational
symmetry with respect to bothS and T spins, we consider
only z components of spins.

We use the OBC to get better accuracy in the DMR
calculations, but in this case we must keep in mind that
data contain the effects from boundaries.^Si

z
•Si 1 j

z &g.s. shows
an oscillatory behavior with a period of four as a function
j . But the correlation functions also vary with a period
four with respect toi . That is, ^Si

z
•Si 1 j

z &g.s. is equal to
^Si 14

z
•Si 141 j

z &g.s. for any i , j .
This behavior is caused by the standing wave with a

riod of four originating from the open boundaries. To r
move such an artifact due to the OBC, we average^Si

z

•Si 1 j
z &g.s. for one period with respect toi . Thus we define an

approximate bulk correlation function as follows:

^Si
z
•Si 1 j

z &bulk[
1

4(
k50

3

^Si 1k
z

•Si 1k1 j
z &g.s. . ~5!

After this averaging procedure, we get the natural beha
of the correlation functions as shown in Fig. 4.

FIG. 4. Correlation functions (^Si
z
•Si 1 j

z &bulk) for the systems
with N548 (1) and 60 (L). Broken and dotted lines ar
0.144/j 1.80 and20.108/j 1.55, which are the results of the least mea
square fitting using the upper and lower data, respectively. Num
cal errors, which are estimated from the values of^Si

z
•Ti 1 j

z &bulk ,
are less than 1%. The inset shows the entire form of the correla
functions. The symbols3 andh represent data forN548 and 60,
respectively, but they overlap nearly perfectly.
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Because the results discussed in the previous section s
that this model is gapless, we try to fit the envelope of^Si

z

•Si 1 j
z &bulk data with a power-law function (j 2a) by the least

mean square method and get critical exponenta equal to
1.80 or 1.55 depending on using either the upper (j 512, 16,
and 20! or the lower (j 514, 18, and 22! data. We did not use
the data ofj 524, 26, and 28, because these sites are
close to the boundary. Due to finite size effects, the value
a depends on how to fit, buta is always between 1.5 an
2.0. From these results, we conclude that the asympt
form of the correlation function is given by

^Si
z
•Si 1 j

z &bulk;

cosS p

2
j D

j a
; a51.5–2.0, ~6!

in the bulk limit.
Of course,^Si

z
•Si 1 j

z &bulk is equal to^Ti
z
•Ti 1 j

z &bulk , be-
cause of the symmetry of Hamiltonian~3! concerning the
exchange betweenSW and TW . Furthermore,̂ Si

z
•Ti 1 j

z &bulk al-
ways equals zero as is easily shown by the Wigner-Ec
theorem. In fact, the calculated values of^Si

z
•Ti 1 j

z &bulk are
almost zero, and the numerical errors for the values of^Si

z

•Si 1 j
z &bulk may be estimated from these values, which a

less than 1% even at the farthest site fromi .
Next we study the structure factor defined by

Sz~q![ (
j 52N/213

N/222

^Si
z
•Si 1 j

z &bulk•e2 iq j . ~7!

As is seen in Fig. 5,Sz(q) has a characteristic cusp structu
at q5p/2. This result is consistent with the softening atq
5p/2 in the dispersion relation. By Fourier transformatio
of Eq. ~6!, the analytic form ofSz(q) is given by

Sz~q!;SzS q5
p

2 D2
p

2

Uq2
p

2U
a21

G~a!sin
a21

2
p

1OS q2
p

2 D
~8!

ri-

n

FIG. 5. Fourier transformation of the correlation function for t
systems withN560 (h) andN548 (3).
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aroundq5p/2, when 1,a,3. If a is greater than 2, Eq
~8! does not show any cusp structure atq5p/2. Soa must
be less than 2, since we clearly see the cusp structur
Sz(q) which becomes sharper as the system size is increa

By the SU~4! conformal field theory, the critical exponen
of the SU~4! spin correlation functions withq5p/2 oscilla-
tions is obtained to be 3/2,10 which is consistent with the
present numerical result. Although the correlation functio
discussed in this paper are theS-spin correlation functions
but not the SU~4! spin correlation functions, we can sho
that the exponent is the same for the two correlation fu
tions.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have studied the quantum critical st
for the coupled spin-orbit system. The quantum numbers
the ground state and the lowest branch of the excitations
determined. Furthermore, the spin-spin correlation functi
are obtained explicitly for the first time by the DMRG
method. It shows a power-law decay with a period of fo
which originate from the interference between the spin a
orbital degrees of freedom. The exponent of the asympt
behavior is consistent with the prediction by the conform
field theory.

In this paper we have investigated only the most symm
ric model, but it is more realistic to consider a model w
lower symmetry corresponding to a finiteJ. In such a case
the effective Hamiltonian is given by theS-spin isotropic and
of
ed.
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T-spin Ising-type Hamiltonian~2!, whose properties are no
yet fully understood.

Related to the SU~4! model, several models with lowe
symmetries have been studied.11–13Kawano and Takahashi12

discussedS-spin isotropic andT-spin XY-type Hamiltonians
to study the three-leg antiferromagnetic Heisenberg lad
and showed that such a model is gapful and has expo
tially decaying correlation functions. Kolezhuk an
Mikeska13 studied a special SU(2)3SU(2) symmetric
Hamiltonian ( i(SW i•SW i 1113/4)(TW i•TW i 1113/4) and showed
that this model is also gapful.

It may be possible to study the properties of these mod
in a unified way by introducing different types of anisotr
pies from the SU~4! symmetric point. For this purpose, it i
highly desirable to develop an analytic theory around t
symmetric point.
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